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Abstract

We survey some results on the dynamics of the horocycle flow on the moduli space of
translation surfaces. We outline proofs of some recent results, obtained by the authors in
collaboration with John Smillie, and pose some open questions.
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1. Introduction

The study of dynamics on moduli spaces of translation surfaces has been undergo-
ing intensive growth over the last two decades. This subdomain of ergodic theory lies at the
crossroads of dynamics of Lie group actions and geometry of surfaces and has close con-
nections with the theory of rational billiards, interval exchange transformations, Teichmüller
theory, algebraic geometry, number theory, mathematical physics, and more. The founda-
tions of the theory were laid down by Masur and Veech in the 1980s, in work motivated by
a conjecture of Keane about interval exchange transformations. Through the efforts of many
mathematicians (see the ICM proceedings contributions [11,16,23,30,49], and the survey [33]

about billiards in this volume), we now know a great deal about the dynamics on these spaces.
As entry points we recommend the surveys [17,24,26,44,46–48].

Our focus in this survey will be results and open questions concerning the dynamics
of the horocycle flow. Much of the work on the dynamics on spaces of translation surfaces
has been motivated by a fruitful analogy with the study of Lie group actions on homogeneous
spaces. In such a putative dictionary, the horocycle flow on moduli spaces corresponds to a
unipotent flow on a homogeneous space, for which Ratner [31] famously showed that all orbit-
closures and invariant measures admit a nice algebraic description. The celebrated “magic
wand” theorems of Eskin, Mirzakhani, and Mohammadi [14,15], which we will discuss briefly
below, may be regarded as providing positive evidence for the existence of a corresponding
picture for moduli spaces of translation surfaces. However, as we will see, the emerging
picture for the horocycle flow in moduli spaces is more complicated than this simple analogy
might suggest.

2. Definitions and background

There are several alternative points of view concerning the definitions of translation
surfaces, their moduli spaces, and the SL2.R/-action on them, see Definitions 1, 4, and 5
of [24]. See the surveys mentioned above for more information, and alternative definitions,
and see [4, §2] for a more detailed treatment following the point of view we will take here.

A polygonal surface (which we will also call a polygonal presentation of a transla-
tion surface) is a finite collection of polygons in the plane, equipped with a partition of the
sides into pairs of parallel sides of equal length and opposite orientation, which we identify
by translations.

If e; e0 is a pair of identified sides, then there is a unique translation ' D 'e;e0 with
'.e/ D e0, and we say that each x 2 e is identified with '.x/ 2 e0. The identifying maps
¹'e;e0º generate an equivalence relation on the polygonal surface. For points in the interior
of polygons, the equivalence class is a singleton; for points in the interior of a side, it is
a pair of points; and for vertices, it is some finite set of vertices. The union of polygons
has a topology as a subset of Euclidean space, and we endow the polygonal surface with
the quotient topology for the equivalence relation just defined. Thus the polygonal surface
becomes a compact oriented surface. We make the further requirement that it is connected.
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Figure 1

A polygonal surface. Parallel edges (in case of ambiguity, those with the same marking) are identified by
translations, and the points marked with � and ı represent two singularities, each of order 1. The rotating arc
around singularity ı measures its turning angle of 4� .

A polygonal surface inherits some geometric structures from the plane. Each point
has a cone angle which measures the total turning angle made by a curve around the point.
At points which are interior points of polygons or of edges, the turning angle is 2� , and for
vertices of polygons, it is 2�.1C k/ for some integer k � 0 measuring the excess in angle.
Points for which the excess in angle is positive are called singularities, and the excess in
angle of a singularity is its order. One defines the area of a polygonal surface, as the sum
of the areas of the polygons. The surface also inherits the notion of a straightline flow in any
direction. This is defined by extending the motion along a straight line by applying the maps
'e;e0 . If a straightline flow reaches a singularity, the straightline trajectory does not extend
past the singularity, and thus the straightline flow in a given direction is defined for all times,
only on a denseGı subset of the polygonal surface. A finite straightline flow trajectory which
begins and ends at singular points is called a saddle connection. One can also measure the
total horizontal and vertical displacement along an oriented path ˛ in a polygonal surface
M , i.e., the total amount traveled in the horizontal and vertical directions, when traveling
along the path. We denote by holM .˛/ 2 R2 the holonomy vector whose components are
these horizontal and vertical displacements. See Figure 2.

There is a scissors congruence equivalence relation on polygonal surfaces, gener-
ated by the following three operations:

(a) subdividing a polygon into two polygons by adding a diagonal (in this case the
two new edges are “both sides” of the new diagonal and they are identified);

(b) the inverse operation of amalgamating two polygons separated by an edge into
a larger one by deleting a diagonal; and

(c) translating polygons by translations.

See Figure 3.
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Figure 2

Measuring holM .˛/ for a saddle connection ˛.

A scissors equivalence class of polygonal surfaces is called a translation surface.
The number of singularities of a fixed order, the area and the holonomy vectors of piecewise
linear paths are the same for polygonal surfaces that are the same up to scissors congruence,
and thus make sense on translation surfaces.

The collection of all translation surfaces with a fixed number of singularities of
given orders is called a stratum; we denote by H .a1; : : : ; ar /, where a1; : : : ; ar are positive
integers, the stratum of translation surfaces with r singularities, of orders a1; : : : ; ar . The
group

G D SL2.R/ D

´ 
a b

c d

!
W ad � bc D 1

µ
acts on the plane by linear transformations. This action extends to an action on polygonal
surfaces (by applying the same linear transformation to each polygon) and preserves scissors
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Figure 3

Two scissors-equivalent polygonal surfaces.

equivalence, and thus acts on each stratum. The restriction of this action to the group

¹gt W t 2 Rº; where gt D

 
et 0

0 e�t

!
is called the geodesic flow. This action has been extensively studied, since the projections
of its orbits to the moduli space of Riemann surfaces are parameterized geodesic paths with
respect to the Teichmüller metric, and also since it provides a renormalization framework
used for studying billiards and interval exchange transformations. Our focus will be on the
horocycle flow, which is defined as the restriction of the G-action to the subgroup

U D ¹us W s 2 Rº; where us D

 
1 s

0 1

!
: (2.1)

We will pay special attention to orbit-closures for this action. For this, we need to define a
topology on a stratum H . The topology we will use is a metrizable topology, characterized
by the property that a sequence ¹Mj º of translation surfaces converges to M as j ! 1 if
one can choose polygonal surfaces which are representatives forM and each of theMj such
that, for all large enough j , the polygonal surfaces have the same combinatorics (that is, the
same number of polygons with the same number of sides and the same side identifications)
and the vertices of the polygons comprising Mj converge to the corresponding vertices of
the polygons comprising M . See [4, §2.4] for more details.
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2.1. Some foundational results
The following fundamental results were proved in the 1980s and 1990s.

• The G-action preserves the area of a translation surface, and we denote by
H1.a1; : : : ; ar / the collection of area-one surfaces in H .a1; : : : ; ar /. There is a
natural smoothG-invariant measure of full support on the spaces H1.a1; : : : ; ar /,
derived from the Lebesgue measure in “period coordinates” via a “cone construc-
tion,” which was constructed by Masur [20] and Veech [40], and is now referred
to as the Masur–Veech measure. Masur, Veech, and Masur–Smillie [25] proved
that it is finite. Kontsevich and Zorich [19] classified the connected components
of strata.

• Masur [20] and Veech [38] showed that interval exchange transformations can be
suspended and understood via straighline flows on translation surfaces, and that
the ¹gt º-action can be used to renormalize the straightline flow dynamics. They
used this approach to settle a conjecture of Keane concerning the unique ergod-
icity of interval exchange transformations.

• Masur [20] and Veech [39] showed that the G-action is ergodic with respect to the
Masur–Veech measure. This implies that there are dense orbits for the horocycle
flow and the geodesic flow, and that these flows are both mixing.

• Veech [37] gave examples of Z=2Z skew products of rotations that can be inter-
preted as flows on translation surfaces [26]. In these translation surfaces one has
directions in which the straightline flow is minimal but not uniquely ergodic.
Similar examples were also independently constructed by Sataev [32]. This phe-
nomenon of minimality without unique ergodicity of the straightline flow will
play an important role in our discussion. Masur [22] established a link between
nondivergence of geodesic trajectories and unique ergodicity of foliations. Masur
and Smillie [25] showed that, while they are rare, there are abundant examples of
minimal and not uniquely ergodic flows on translation surfaces.

• Veech [41] gave example of surfaces whose G-orbit carries a finite G-invariant
measure (such surfaces are now known as Veech surfaces). Using the connec-
tion to the G-dynamics, he showed that for Veech surfaces, the straightline flow
dynamics admits a complete description.

• Masur [21] showed that G-orbits are never bounded, and used this to show the
existence of periodic trajectories for rational billiards. On the other hand, Smillie
(see [35,42]) showed that aG-orbitGq is closed if and only if q is a Veech surface.

2.2. The analogy with Ratner’s work, and the magic wand theorem
The results mentioned in Section 2.1 can be seen as counterparts of similar results

in the setting of homogeneous flows. Around the end of the 20th century, several researchers
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began to speculate that there might be a translation surface analogue of Ratner’s celebrated
theorems on the action of groups generated by unipotents, acting on homogeneous spaces. In
particular, see [1,11], whose authors noted the usefulness of obtaining analogues of Ratner’s
theorem for applications in geometry and dynamics of translation surfaces.

What makes Ratner’s results so powerful is that they are able to shed light on the
behavior of every orbit (in contrast to softer results in ergodic theory which describe the
behavior of typical orbits). Indeed, this analogy led to the hope that it might be possible
to completely classify all invariant measures and all orbit-closures for the G-action and the
U -action, as these are the only two connected subgroups of G (up to conjugation) that are
generated by unipotent one parameter subgroups. McMullen [27] established such a result
for the G-action in genus two, see also Calta [6] for earlier strong results in this direction.
These results gave further impetus to work in this direction. The search was officially on
when Zorich published an influential survey [48] with a section titled “hope for a magic
wand.” For the G-action, the conjecture was confirmed in a spectacular fashion by Eskin,
Mirzakhani, and Mohammadi in [14,15]. This work has revolutionized the study of dynamics
on translation surfaces and has already had many applications in geometry which we do not
survey here. As a sample of their results, we have the following:

Theorem 2.1 (Eskin–Mirzakhani–Mohammadi, P -genericity). For any translation surface
q, there is a measure � whose support is the orbit-closure Gq and such that, for any com-
pactly supported continuous test function ' on the stratum containing q,

1

T

Z T

0

Z 1

0

'.gtusq/dsdt �!
T !1

Z
' d�:

The measure � is affine in natural coordinates, see [15, Def. 1.1] for a precise statement.

These developments left open the question of whether a similar result was possible
for the U -action, i.e., whether it is possible to classify all the U -orbit closures in terms of
some algebraic or geometric data. Can one understand allU -invariant ergodic measures, and
the asymptotic distribution of averages along any U -orbit? While the focus of this survey is
on the horocycle dynamics as an interesting subject in its own right, we note that positive
answers to these questions would have far-reaching consequences for some counting prob-
lems associated with billiards and flat surfaces. However, as we will see in this survey, the
behavior of U -orbits in strata of translation surfaces can be quite different from the behavior
of unipotent trajectories in homogeneous spaces.

3. Behavior of individual horocycle orbits

3.1. Some early results
Using ideas of Kerckhoff, Masur, and Smillie [18], Veech [43] showed that there is

no orbit of the horocycle flow that diverges in H . That is, for any q 2 H , there is a compact
K � H such that the set of visit times

¹s > 0 W usq 2 Kº
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is unbounded. A quantitative strengthening of this result was obtained by Minsky and Weiss
[28]: for any q 2 H and any " > 0, there is a compact subset K � H such that

lim inf
T !1

1

T

ˇ̌®
s 2 Œ0; T � W usq 2 K

¯ˇ̌
> 1 � ":

These results are parallels of quantitative nondivergence results of Dani and Margulis for
unipotent flows on homogeneous spaces (see [10]). With these results in hand, Smillie and
Weiss [34] classified the minimal sets for theU -action on H . They showed that for any q 2 H ,
the orbit-closure Uq contains a minimal set, i.e., a closed U -invariant subset containing no
proper closedU -invariant subsets. Furthermore,Uq is minimal if and only if the straightline
flow in the horizontal direction on the underlying surface Mq is completely periodic. It fol-
lows that any orbit-closure for theU -action contains such a horizontally completely periodic
surface.

In some rather special settings, it was possible to completely classify theU -invariant
measures and orbit-closures. For Veech surfaces, this follows from results in homogeneous
dynamics, as was observed in [13]. The first result of this kind in a nonhomogeneous setting
is due to Eskin, Marklof, and Witte Morris [12], who studied surfaces which are branched
covers of Veech surfaces. This work was later extended by Calta and Wortman [7] and Bain-
bridge, Smillie, and Weiss [4]. In [4], a complete classification of U -invariant measures and
orbit-closures is given within the eigenform loci in genus two. In these loci, which are 5-
dimensionalG-orbit-closures in H .1; 1/ arising in McMullen’s genus-two classification, we
have a complete understanding of the possible orbit-closures and invariant measures. In these
examples one can observe some phenomena not present for the G-dynamics, for instance,
orbit-closures which are manifolds with nonempty boundary and an infinitely generated fun-
damental group. Nevertheless, these partial results were all consistent with a putative “magic
wand theorem for horocycles.”

3.2. Recent results
The situation changed in our work [9]. In this paper we proved the following results.

We recall that if � is a measure on H and q 2 H , we say that q is generic for � if for any
compactly supported continuous function f on H one has

1

T

Z T

0

f .usq/ ds �!
T !1

Z
H

f d�: (3.1)

Theorem 3.1. Let H D H .1; 1/ be the stratum of genus two surfaces with two singular
points. Then:

(1) There is a surface q 2 H and aG-invariant ergodic measure � on H such that
q is generic for � but supp.�/   Uq.

(2) There is a surface q 2 H which is not generic for any measure.

(3) There is a surface q 2 H whose orbit-closure is a fractal, in the sense that the
Hausdorff dimension of Uq is not an integer.
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We make some remarks to put these results in context. The third item in Theorem 3.1
is perhaps the most striking, but the first two are also in stark contrast with a “magic wand
paradigm.” Note that in (1), the support of the measure limit measure � is not the closure of
the orbit – compare with Theorem 2.1 or Ratner’s work. Also in (2) we see that there is no
analogue of Theorem 2.1 for the horocycle flow.

The orbit-closure we construct in (3) has an explicit description. The precise state-
ment requires some technical preparation and will not be discussed here, see [9, Thm. 1.8].

The stratum H .1; 1/ is the simplest one in which we are able to exhibit a surface
satisfying (3) but it is likely that our method can be extended to many other strata. However,
we are not able to establish (1) and (3) in the stratum H .2/. Note, however, that (2) holds in
H .2/ by the work of Chaika, Khalil, and Smillie [8].

In the next sections we will explain some of the ideas of [9], focusing on the proofs
of (1) and (2).

4. Tremors

The dynamical properties of a horocycle flow trajectory are intimately related to
those of the horizontal straightline flow on the corresponding surfaces. Following [9], we
will use the notation q to refer to a surface in a stratum, and Mq to refer to the underlying
translation surfaces. Although they are formally identical, we will use the symbol q when
the dynamical system we are considering is primarily the G-action on the stratum H con-
taining q, and we will useM DMq when we are considering the dynamics of the horizontal
straightline flow on the underlying translation surface. From now on, by straightline flow we
always mean the horizontal straightline flow, which we will denote by ¹�t º (the surface on
which the flow takes place will be clear from the context).

Let � be a ¹�t º-invariant measure onM . The simplest example is the Lebesgue mea-
sure on the individual polygons. The second simplest example is the restriction of Lebesgue
measure to a polygonal subsurface which is ¹�t º-invariant; for example, in Figure 1, the
restriction of Lebesgue measure to one of the two hexagons in the picture (note that these
hexagons are separated from each other by two horizontal saddle connections, and thus each
is ¹�t º-invariant). Finally, a more interesting example referred to earlier, is the case when the
straightline flow is minimal but not uniquely ergodic; in that case there will be two or more
mutually singular ¹�t º-invariant measures, all supported on the entire surfaceM . By a stan-
dard result (see, e.g., [26]), if the straightline flow is not minimal then the surface contains
a horizontally invariant polygonal subsurface, and thus this list exhausts all possible cases.
Note that for almost every surfaceM , with respect to the measures discussed in Section 2.1,
the only ¹�t º-invariant measure (up to scaling) is Lebesgue measure.

Let � be any nonhorizontal segment in M . Such a segment is known as a cross-
section. We consider � as a piece of a trajectory for a (nonhorizontal) straightline flow,
thus parameterizing it by an interval, where we choose the positive orientation on � so that
holM .�/ D .x� ; y� / satisfies y� > 0. From � we can construct a cross-section measure on

3420 J. Chaika and B. Weiss



� via the formula

ˇ�;�.A/ D ˇ.A/ D lim
"!0C

1

"
�
�®
�t .a/ W a 2 A; t 2 Œ0; "�

¯�
:

This classical construction defines a bijection between straightline flow invariant measures
onM and measures on � which are invariant under the first return map to � along horizon-
tal lines (see [2]).1 If � D Leb is Lebesgue measure on M , the cross-section measure on �
(viewed as an interval via its parameterization) is a multiple of one-dimensional Lebesgue
measure. The system of measures ˇ� D ¹ˇ�;� W � is a cross-sectionº is an example of a trans-
verse measure (corresponding to �).2 The transverse measure corresponding to Leb will be
called the canonical transverse measure. Similarly, if � is the restriction of Lebesgue mea-
sure to a polygonal subsurface, the cross-section measure on each � is the restriction of
Lebesgue measure to a finite collection of subintervals. If ¹�t º is minimal but not uniquely
ergodic, the cross-section measures are fully supported measures which may be distinct from
Lebesgue measure.

Let us now express the action of the horocycle element us (notation as in (2.1)).
Recall that us acts on polygonal surfaces by tilting or shearing polygons. The computation

holusM .�/ D

 
1 s

0 1

! 
x�

y�

!
D

 
x� C sy�

y�

!
D holM .�/C

 
sy�

0

!
shows that the amount of tilting of a side � of a polygon is proportional to its measure, with
respect to the canonical transverse measure. We can tweak this definition and replace each
appearance of y� with ˇ.�/, where ˇ is a transverse measure on M . This idea gives rise to
the tremor map. It takes as input a surface q, a transverse measure ˇ, and a “time parameter”
s, and produces a new translation surface q0 D trems;ˇ .q/, where M 0 D Mq0 is defined by
assigning to each side � of a polygonal presentation of Mq the holonomy

holM 0.s/ D holM .�/C

 
sˇ.�/

0

!
:

A basic observation is that this definition makes sense. That is, there is a polygon presen-
tation of Mq for which the adjusted segments in the above definition still give a polygonal
presentation of a surface M 0, and, moreover, M 0 does not depend on a particular choice of
a polygonal presentation. Furthermore,3 it can be shown that trems;ˇ .q/ is defined for all
values of s. On the other hand, the tremor map is not a flow in the sense that the choice of ˇ
depends on the initial translation surfaceMq . For most choices ofMq , the only choice for ˇ
is the canonical transverse measure, and in that case trems;ˇ .q/ is nothing but the horocycle

1 More precisely, for this correspondence we need � to intersect every straightline trajectory;
this always happens when the straightline flow is minimal but it will be convenient to relax
this condition and define ˇ�;�.A/ for any � .

2 In [9] we use a more general definition of transverse measures, but the only transverse mea-
sures we will need in this survey arise from straightline flow invariant measures via this
construction.

3 Recall that in this survey we discuss a more restrictive class of transverse measures. This
assertion is false in the more general context considered in [9].
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image usq. However, for surfacesMq for which there are noncanonical transverse measures,
we get other tremor paths ¹trems;ˇ .q/ W s 2 Rº.

Sometimes it will be helpful to ignore the dependence of trems;ˇ .q/ on s, and we
will write tremˇ .q/D trem1;ˇ .q/. Note that the multiple of a transverse measure by a positive
scalar is also a transverse measure, and we have the obvious identity

tremsˇ .q/ D trems;ˇ .q/: (4.1)

It is sometimes helpful to work with signed measures, which turns the set of all “signed
transverse measures” into a real vector space. We call elements of this vector space signed
foliation cycles. One can extend the definition of a tremor to the case in which ˇ is a signed
foliation cycle, and then one obtains identities like (4.1) for all s 2 R. In this more general
setup, the set of transverse measures forms a convex cone CC

q in the vector space of signed
foliation cocycles. See [9, §6] for more details.

A crucial fact for our analysis is the fact that surfaces which are obtained from one
another by a tremor “have the same horizontal foliation.” To make this precise, in [9, §5],
we show the existence of a homeomorphism  D  ˇ W Mq ! Mq0 , which is a topological
conjugacy between the straightline flow on Mq and the straightline flow on Mq0 , i.e.,

8t 2 R; �0
t ı  D  ı �t ; (4.2)

where �t ;�
0
t denote respectively the straightline flows onMq andMq0 . The pushforward map

 � induces a bijection between the straightline flow invariant measures onMq and those on
Mq0 , and thus between the cones of transverse measures CC

q ; C
C

q0 . In particular, this holds
when ˇ is canonical, i.e., when q0 2 Uq. Thus if Mq is not horizontally uniquely ergodic,
then the same holds for Mq0 . Furthermore, we have the relation

8s 2 R; ustrem�.q/ D trem�.usq/; (4.3)

where we have used � to denote both a transverse measure on Mq , and its image under  �.
Formally, this is a commutation relation between the maps q 7! trem�.q/ and q 7! us.q/.
Note, however, that off of a set of measure zero, any tremor is just the horocycle flow and (4.3)
is just the relation us1 ı us2 D us2 ı us1 .

5. Some ideas in the proof of Theorem 3.1

5.1. U -orbits of tremored surfaces almost track U -orbits
The starting point for our analysis is the following observation:

Proposition 5.1. There is a proper complete metric dist on H , inducing the topology, such
that the following holds. Let q 2 H be such that Mq admits a noncanonical transverse
measure ˇ D ˇ� , where � is a straightline flow invariant measure satisfying � � Leb. Let
q0 D tremˇ .q/. Then

sup
s2R

dist
�
usq; usq

0
�
< 1: (5.1)
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Note that by (4.3), usq
0 D tremˇ .usq/. A useful (but imprecise) heuristic explana-

tion of (5.1) is that a fixed tremor can only move points a bounded distance. The metric dist
appearing in Proposition 5.1 was introduced in [3].

A more detailed analysis of the function s 7! dist.usq; usq
0/ appearing in (5.1)

yields the following statement.

Theorem 5.2. Let M DGq   H be aG orbit-closure, and let � be theG-invariant ergodic
measure on M (as in Theorem 2.1). Suppose q is generic for � andMq is horizontally mini-
mal but not uniquely ergodic. Let ˇ be a noncanonical transverse measure onMq such that
q0 D tremˇ .q/ … M. Then there is s0 2 R so that the surface q0 D us0q satisfies

8" > 0;
1

T

ˇ̌®
s 2 Œ0; T � W dist

�
usq

0; usq0

�
� "

¯ˇ̌
�!

T !1
0: (5.2)

Note that q0 2 M is also generic for �, since q is. If ˇ were the canonical transverse
measure then q0 D us0q D q0 and (5.2) would be vacuously true. The result asserts that
when q0 … M, the trajectory of q0 nevertheless spends all but a negligible proportion of its
time arbitrarily close to the trajectory of a generic point. In particular, it “falls back on M.”
Since genericity is not affected by modifying a trajectory on a set of zero measure, we see
that Theorem 5.2 implies (1) of Theorem 3.1, provided one can find examples of M and q
for which the conditions of Theorem 5.2 are satisfied.

That such examples exist follows from the genericity results in [4]. Indeed, in the
setting of eigenform loci in H .1; 1/ studied in that paper, the condition of having a minimal
but not uniquely ergodic horizontal straightline flow does not have any effect on the asymp-
totic distribution of a horocycle orbit. In the simplest of these examples, M can be taken to
be the collection of surfaces in H .1; 1/ which admit a 2 W 1 branched covering of a torus
(this orbit-closure is denoted by E4 in McMullen’s classification [27]).

We now explain the idea behind the proof of (5.2). It is useful to view a transverse
measure as a cohomology class. Indeed, a transverse measure (or indeed, a signed foliation
cocycle) assigns a real number to any positively oriented transverse segment on Mq . One
can check that the assignment � 7! ˇ�;�.�/ (where ˇ D ¹ˇ�;�º) is a cochain representing
a cohomology class in H 1.Mq; †qI R/, where †q is the set of singularities. Consider the
vector bundle B over H for which the fiber over q is H 1.Mq; †I R/, that is,

H 1.Mq; †qI R/ B

H

The bundle B has a simple description as a subbundle of the tangent bundle of H ,
with the pair .q; ˇ/ representing the tangent direction of the curve s 7! trems;ˇ .q/.4 In par-
ticular, B has a natural topology, and in this topology the set of cones of transverse measures

4 To make this description precise one should work in the category of orbifold bundles.
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CC
q is closed (see [9, §4.1, §13]). That is, if ˇn 2 H 1.Mqn ; †qn I R/ are cohomology classes

represented by transverse measures, and .qn; ˇn/ ! .q1; ˇ1/ as elements of B, then ˇ1

is also represented by a transverse measure on Mq1
. Furthermore, the map

B ! H ; .q; ˇ/ 7! tremˇ .q/ (5.3)

is continuous with respect to the topology on B.
This basic fact seems to contradict our previous heuristic that surfaces which are in

the same U -orbit have the same cone of transverse measures. Indeed, suppose qn D unq for
un 2 U , and q and thus all of the qn have a noncanonical transverse measure, but qn ! q1

where q1 has a uniquely ergodic straightline flow. Then we have that all the qn have the same
fixed cone CC

q of transverse measures, containing both the canonical transverse measure
and a noncanonical one, while at the same time this cone of transverse measures converges
to CC

q1
, which is just the ray generated by the canonical transverse measure. How is this

possible?
The answer is that, with respect to any reasonable metric on B, the bijection

sending CC
q to CC

qn
is far from being an isometry. One can define norms k � kq on each

H 1.Mq; †qI R/, which are continuous in the bundle topology, with respect to which the
unit length transverse measures ¹ˇ 2 CC

qn
W kˇkqn D 1º all converge to the unique unit

length transverse measure in CC
q1

. Thus, the cones CC
qn

, although of dimension > 1 and in
bijection with each other, “collapse” down to the ray CC

q1
.

Using this idea, in the proof of Theorem 5.2 we show that, for any " > 0, there is an
open set U � M containing all the uniquely ergodic surfaces such that, for any q1 2 U, the
diameter of ¹ˇ 2 CC

q1
W kˇkq1 D 1º is at most ". By genericity, the orbit Uq spends all but a

negligible proportion of its time in U, and since the map (5.3) is continuous for the metric
dist, (5.2) follows.

5.2. From genericity to lack of genericity
Recall that from Birkhoff’s theorem, any ergodic U -invariant measure assigns full

measure to its generic points. It is sometimes useful to work with quasigeneric points instead.
These are defined as points q for which there is a sequence Tn ! 1 such that for all com-
pactly supported continuous test functions f ,

1

Tn

Z Tn

0

f .usq/ ds �!
n!1

Z
f d�:

Note that a generic point is quasigeneric, but a point can be quasigeneric for two measures.
If q0 is quasigeneric for two measures � and �, we can take f for which

R
f d� ¤

R
f d�

to see that the limit limT !1
1
T

R T

0
f .usq0/ ds does not exist, and, in particular, q0 is not

generic for any measure. Thus for a given dynamical system, the condition that there are
distinct invariant measures, and every point is generic for one of them, implies that there
are no points which are quasigeneric for two different measures. Recall that this condition is
satisfied for unipotent flows on homogeneous spaces (by Ratner’s work), as well as for some
averages on moduli spaces of translation surfaces (e.g., the horocycle flow in the settings of
[4,7,12], or two-dimensional averages for G-invariant measures as in Theorem 2.1).
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To see that this is quite restrictive, we note that the set of quasigeneric points for
some measure � is aGı set. Indeed, let ¹fj ºj 2N be a dense countable collection of continuous
compactly supported test functions. For each j 2 N, each T > 0, and each " > 0, continuity
of the action implies that

Uj;T;" D

´
q 2 H W for i D 1; : : : ; j;

ˇ̌̌̌
ˇ 1T

Z T

0

fi .usq/ ds �

Z
fi d�

ˇ̌̌̌
ˇ < "

µ
is open. The set of quasigeneric points can be written as

1\
j D1

1\
kD1

1[
T Dk

Uj;T;1=j ;

proving the claim.
By the Baire category theorem, any two dense Gı subsets intersect. Let M be as in

Theorem 5.2, let � and � be the fully supportedG-invariant measures on H .1; 1/ and on M

respectively. By Birkhoff’s theorem, the set of generic points for � is dense in H .1; 1/. Thus
item (2) of Theorem 3.1 follows from Theorem 5.2 and the following:

Proposition 5.3. The set of surfaces of the form®
tremˇ .q/ W q 2 M is generic for � and horizontally minimal; ˇ 2 CC

q

¯
(5.4)

is dense in H .1; 1/.

In order to prove this statement, we recall the observation “if q0 is obtained from q by
a tremor thenMq andMusq have the same transverse measures,” which we discussed above
in connection with (4.3). We add to it the additional observation “if q0 is obtained from q by
the ¹gt º-action then Mq and Mq0 have the same transverse measures.” This is proved using
a similar idea to the comparison homeomorphism of [9, §5]. Namely, the definition of the gt

action shows that if q0 D gt0q then there is a homeomorphismMq !Mq0 which intertwines
the straightline flow up to a time change. That is, if ¹�t º and ¹�0

t º denote respectively the
horizontal straightline flows on Mq and Mq0 , and  W Mq ! Mq0 is the map obtained by
acting on a polygonal presentation as in the definition of the gt action, then

8t 2 R; �0

et0 t
ı  D  ı �t :

It follows from this that analogously to (4.3), one has

8ˇ 2 CC
q ; t 2 R; gt trems;ˇ .q/ D tremet s;ˇ .gtq/

(where we consider ˇ simultaneously as belonging to CC
q and CC

gt q via the above bijection).
Together with (4.3), we find that the set of surfaces F defined in (5.4) is invariant under
both flows ¹gt º, ¹usº, and hence, by Theorem 2.1, F is G-invariant. Moreover, M ¨ F ,
and examining the possibilities for F in McMullen’s classification [27] gives that F is dense
in H .1; 1/.
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6. Questions

There are many open questions about the horocycle flow on strata of translation
surfaces. We list some of them. We begin with one of the most outstanding questions in the
field:

Question 1. Is there an “exotic”U -ergodic measure? For example, measures whose support
has noninteger Hausdorff dimension, or fully supported measures that differ from Masur–
Veech measure.

A precise statement of the above question is tricky because Calta [6] and Smillie and
Weiss [36] gave examples of U -invariant ergodic measures whose support is a manifold with
boundary and infinitely generated fundamental group.

The following question is motivated by renormalization dynamics:

Question 2. If � is a U -invariant ergodic measure that is not G-invariant, are there two
G-invariant ergodic measures ��, �C so that

• supp.��/ ¨ supp.�C/,

• gt� �!
t!C1

�C,

• gt� �!
t!�1

��?

Note that we consider the zero measure to be a G-invariant ergodic measure. Even
the special case of measures supported on periodic horocycles (where �� is the zero mea-
sure) is open and very interesting. The same question is also interesting for horocycle orbit
closures.

Some basic questions on the topological dynamics of the horocycle flow are open.
To us, the following is the most outstanding example.

Question 3. Is the horocycle flow recurrent as a topological dynamical system? That is, is
it true that for every q 2 H there exists a sequence ti % 1 so that uti q �!

i!1
q?

In the realm of orbit closures:

Question 4. In [9] we construct an exotic U orbit-closure, which is the orbit closure of the
tremor of a translation surface in an “eigenform locus.” What are all the orbit closures of
tremors of translation surfaces in eigenform loci that do not have horizontal saddle con-
nections? Do they all have the description given in [9, Eq. (1.8)]? Informally, is any such
orbit-closure the set of all surfaces obtained from tremoring surfaces in a given eigenform
locus by at most a certain fixed amount?

Of course, we are also interested in other horocycle orbit-closures, including those
that arise from tremors of surfaces in proper G-orbit closures outside of H .1; 1/.

In special cases (see [4, 7, 12, 13]) the horocycle flow has been shown to behave
much like it does in homogeneous settings. For example, every point is generic for some
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U -invariant ergodic measure. These examples are all rank-one loci in the sense of [45]. This
motivates the following general question.

Question 5. In the special setting of rank-one loci, what can be said about the behavior of
the horocycle flow?

There is a growing dictionary between the earthquake flow and the horocycle flow.
This dictionary was initiated by Mirzakhani [29], who used it to prove that the earthquake
flow is ergodic. Calderon and Farre [5] have added to this dictionary and extended it to other
actions, which has allowed them to showcase additional behavior of the earthquake flow.
It is interesting to see whether some of these results can be proven directly in the setting of
earthquake flows and if any arguments in the setting of earthquake flows can be used to show
new behavior of horocycle flows on strata.
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