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Abstract

This brief survey describes recent progress in our understanding of a variety of equilib-
rium states for finite-horizon dispersing billiard maps in two dimensions. In particular,
we review formulations of topological entropy and pressure for the family of geometric
potentials �t log J uT , where J uT denotes the unstable Jacobian of the map and t 2 R.
We summarize recent results, proving the existence and uniqueness of related equilibrium
states for some range of t � 0, including Œ0; 1�. In this family, t D 0 corresponds to the
measure of maximal entropy, while t D 1 corresponds to the smooth invariant measure for
the billiard map. In addition, variational principles are presented which express topological
notions of pressure and entropy as the supremum of their measure-theoretic counterparts.
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1. Introduction

The study of mathematical billiards as prototypical examples of mechanical systems
with frictionless collisions was introduced by Sinai [57] and subsequently developed by many
authors. In such models, a finite number of convex obstacles are placed on a two-dimensional
torus, forming the billiard table, and a point particle is set in motion, moving with constant
velocity between collisions, and undergoing elastic reflections at the boundary. The billiard
map is the discrete-time map which takes the particle from one collision to the next. Despite
the presence of singularities (the map is discontinuous and its derivative is unbounded near
tangential collisions) the map preserves a smooth invariant measure, and the ergodic proper-
ties of the map with respect to this measure have been studied extensively through a variety
of techniques, including Markov partitions [14] and sieves [16], Young towers [21,60], and the
spectral analysis of the associated transfer operator [32–34].

It is also possible to introduce variations on the dynamics, by varying the shape
of the boundary or by including external forces such as electric fields and potentials which
act on the particle between collisions [24,25,29], or twists and kicks at the moment of colli-
sion [45,61]. For small forces, the dynamics resemble those of the classical billiard [8,22,23],
while for large forces the dynamics may change significantly [36,45,52]. The subject quickly
becomes vast and technical, so in this note we will focus on the dynamics of the classical
Sinai billiard without external forces. The book [27] by Chernov and Markarian provides an
excellent introduction to the subject.

The purpose of this expository note is to introduce the reader, without delving
into too many technicalities, to recent developments in the study of a family of equilib-
rium states for this class of billiards. Traditionally, and in all the references listed above, the
focus has been on the ergodic and statistical properties of the map with respect to the Sinai–
Ruelle–Bowen (SRB) measure, which in the unperturbed case has a smooth density with
respect to Lebesgue measure, such as ergodicity, mixing and the Bernoulli property [37,57],
rate of decay of correlations [21,60], dynamical Central Limit Theorem [14], and related limit
theorems [32,46,51]. Here, instead, we outline the progress made in [3,4] regarding the family
of geometric potentials, �t logJ uT , t 2 R, determining the existence and uniqueness of the
associated equilibrium states. The importance of this family lies in the fact that t D 1 cor-
responds to the SRB measure while t D 0 corresponds to the measure of maximal entropy.
More generally, the parameter t has been linked to the Hausdorff dimension of certain invari-
ant sets [12,42].

Despite this, geometric potentials have received relatively little attention in the con-
text of billiards. For t D 0, the topological entropy of a finite-horizon Sinai billiard map
T was studied in [20] by identifying a full Lebesgue measure set of points M1 that can be
coded via a countable Markov partition. Chernov showed that the topological entropy of T
restricted toM1 is equal to the topological entropy of the induced topological Markov chain
and used this to obtain a lower bound on the growth of periodic orbits. Yet, no invariant
measure achieving this topological entropy was constructed and whether the setM1 saw the
full topological entropy of the system was left open. For t near 1, the preprint [19] obtains
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results regarding equilibrium states for this class of geometric potentials. Yet, uniqueness is
not proved, and left open is the possible connection to a topological notion of pressure.

With these questions in mind, the papers [3,4] represent a significant advance in our
understanding of topological entropy and pressure and related equilibrium states. It is these
ideas and the techniques involved that we hope to illuminate in this note. These, naturally,
lead to further questions, several of which we formulate at the end of this review.

The paper is organized as follows. In Section 2, we present the minimal background
on dispersing billiards necessary for the subsequent discussion, and state the main results
from [3, 4]. In Section 3 we outline the main approach and principle estimates needed to
prove the variational principle for t > 0, and in Section 4 we do the same for the case t D 0.
In Section 5, we formulate some open problems related to the equilibrium states we will
construct.

2. Preliminaries and statements of main theorems

A Sinai billiard table is a subset of the torus T2 obtained by removing finitely many
pairwise disjoint, closed convex sets Bi , i.e.,Q D T2 n .

Sd
iD1Bi /. The Bi are called scat-

terers and are assumed to haveC 3 boundaries with strictly positive curvature K . The billiard
flow is the motion of a point particle in Q traveling at unit speed and undergoing specular
reflections (angle of incidence equals angle of reflection) at collisions with the scatterers.

We introduce coordinates on @Q by parametrizing @Bi according to arclength and
recording at each collision the position r and the angle ' made by the postcollision velocity
vector with the outward pointing normal to the boundary. Thus the phase space for the map,
M D .

Sd
iD0 @Bi /� Œ��

2
; �
2
�, is a union of cylinders, and for each xD .r;'/2M , the billiard

map T .r; '/ D .r1; '1/ maps one collision to the next. The map preserves a smooth prob-
ability measure, d�SRB D .2j@Qj/�1drd', which is ergodic, indeed Bernoulli, and enjoys
exponential decay of correlations on smooth observables, as described in the Introduction.

Let �.x/ denote the (Euclidean) distance from x to T .x/ in Q. We say the billiard
has finite horizon if there is no trajectory making only tangential collisions. This implies,
in particular, that �max WD sup � < 1. In addition, the fact that the scatterers are disjoint
guarantees �min WD inf � > 0. Setting Kmin D inf K > 0 and Kmax D sup K <1, it follows
[27, Sect. 4.4] that the stable and unstable cones in the tangent space R2,

C s D

²
.dr; d'/

ˇ̌
� Kmax �

1

�min
�
d'

dr
� �Kmin

³
;

Cu D

²
.dr; d'/

ˇ̌
Kmin �

d'

dr
� Kmax C

1

�min

³
are strictly invariant under DT �1 and DT , respectively, whenever the derivatives exist.
Away from tangential collisions, T is uniformly hyperbolic, i.e., for ƒ WD 1C 2�minKmin,
there exists C0 > 0 such that for all n � 0,DT n.x/v � C0ƒ

n
kvk; 8v 2 Cu; andDT �n.x/v

 � C0ƒ
n
kvk; 8v 2 C s :

(2.1)
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2.1. Singularities and distortion
Denote the set of tangential collisions by �0 D ¹x D .r; '/ 2 M j ' D ˙

�
2

º. The
singularity set for T n, n 2 Z, is defined by

�n D

n[
iD0

T �i�0:

Assuming finite horizon, �n comprises a finite collection ofC 2 curves for each n. Indeed, the
hyperbolicity of T implies an alignment property: for n > 0, �n n �0 comprises decreasing
curves in C s , while for n < 0, �n n �0 comprises increasing curves in Cu [27, Prop. 4.45].

While the set
S
n2Z �n is dense inM [27, Sect. 4.11], its �SRB-measure is 0. Setting

M 0 D M n
S
n2Z �n, it follows that the stable/unstable subspaces Es.x/ and Eu.x/ are

defined for all x 2 M 0. Thus we may define the stable/unstable Jacobians of T by

J sT .x/ D
DT.x/jE s.x/ and J uT .x/ D

DT.x/jEu.x/ 8x 2 M 0:

If x has a stable/unstable manifold of positive length (which also occurs on a full-measure set
M 00 �M 0 [27, Thm. 4.66]), then J sT and J uT serve as the Jacobians for a change of variables
when integrating along these manifolds with respect to arclength. We let W s denote the set
of local stable manifolds of T with length at most ı0 > 0, which is chosen to guarantee a
local complexity condition. See Lemma 3.1 for t > 0 and Section 4.1.1 for t D 0.

In fact, DT.x/ becomes unbounded as T .x/ approaches �0. To compensate for
this, the standard technique is to introduce homogeneity strips that partition the space into a
countable set of horizontal strips accumulating on �0 and which are effectively treated as sin-
gularity curves in exchange for providing some control of distortion. Specifically, choosing1

q > 1 and an index k0 2 N, one defines for k � k0,

Hk D

²
.r; '/ j .k C 1/�q �

�

2
� ' � k�q

³
;

with a similar definition for H�k approaching ' D ��=2. Let W s
H � W s denote the set

of curves W 2 W s which lie in a single homogeneity strip. Such curves are called weakly
homogeneous stable manifolds for T .

It follows that there exists Cd > 0 such that for all n � 0, if T i .x/; T i .y/ 2 T iW 2

W s
H for each 0 � i � n � 1, thenˇ̌̌̌

J sT n.x/

J sT n.y/
� 1

ˇ̌̌̌
� Cdd.x; y/

1=.qC1/; (2.2)

which is the desired distortion control (see [27, Lemma 5.27] or [4, Lemma 2.1]).

2.2. Measure-theoretic pressure for geometric potentials
Let t 2 R and � be an invariant probability measure for T . Define the pressure of

� with respect to the geometric potential �t logJ uT to be

P�.�t logJ uT / D h�.T / � t

Z
M

logJ uT d�;

1 The standard choice for dispersing billiards is q D 2, yet here we will choose q depending
on the parameter t in our potential.
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where h�.T / denotes the Kolmogorov–Sinai entropy2 of �. If � satisfies

P�.�t logJ uT / D P.t/ WD sup
®
P�.�t logJ uT / j � 2 I

¯
;

where I is the set of invariant probability measures for T , then � is called an equilibrium
state for the potential, and P.t/ is the pressure of �t logJ uT .

The theory of equilibrium states has been well established for Hölder-continuous
potentials, first for Anosov and Axiom A systems [11, 53, 58], and then for nonuniformly
hyperbolic systems using a variety of techniques [17, 18, 44, 50, 56]. Much less is known in
the case of billiards. For t D 1, it is known that P�SRB.� logJ uT / D 0; this is the so-called
Pesin entropy formula [27, Thm. 3.42]. Yet, the uniqueness of this equilibrium state was not
proved until [4]. For t near 1, Chen–Wang–Zhang [19] prove existence, but not uniqueness,
of equilibrium states using Young towers.

One of the complications of studying equilibrium states associated with this poten-
tial is that the unstable Jacobian is not Hölder continuous; indeed, J uT is not continuous
on any open set and it is not bounded (for x near �1, J uT .x/ � 1= cos '.T x/). Yet, it is
regular along homogeneous unstable manifolds (as the time reversal of (2.2) demonstrates)
and can be approximated by smooth functions in the distributional norms we will define in
Sections 3.2 and 4.2, permitting the analysis we will describe here.

In addition to proving the existence and uniqueness of equilibrium states for the
family of geometric potentials, we are interested in expressing the pressure P.t/ in terms
of topological notions of entropy for t D 0 and pressure for t > 0. We define such notions
precisely in the next two subsections.

Remark 2.1. For t < 0, P.t/ D 1 if there is a periodic orbit making a grazing collision.
In this case, if � is the atomic measure supported on such a periodic orbit, then P�.t/ D 1

as well. Thus the (possibly many) measures maximizing the pressure are simple to describe,
so we will not discuss the case t < 0 here.

2.3. Topological entropy and variational principle for t D 0

Following [3], define for n; k � 0,

Mn
�k D

®
maximal connected components of M n .��k [ �n/

¯
: (2.3)

Thus elements of Mn
0 are the (open) domains of continuity for T n and M0

�n plays the anal-
ogous role for T �n. We define the topological entropy of T to be the exponential rate of
growth of #Mn

0 , where #A denotes the cardinality of the set A.

Definition 2.2 (Topological entropy). Define h� WD limn!1
1
n

log.#Mn
0 /.

The limit above exists due to the submultiplicativity of #Mn
0 [3, Lemma 3.3]. Note

also that ifA 2 Mn
0 , then T nA 2 M0

�n, so that #Mn
0 D #M0

�n and hence h�.T /D h�.T
�1/.

2 Since T admits a finite generating partition, h�.T / is necessarily finite for any T -invariant
probability measure.
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One can connect h� to the usual Bowen definitions of topological entropy via both
"-separated and "-spanning sets, whose definitions we do not recall here. Although such
definitions are usually made for continuous maps, it is a consequence of [3, Thm. 2.3] that
both of the Bowen definitions coincide with h�.

The main result in [3] is the following.

Theorem 2.3 (Measure of maximal entropy and variational principle). Let T be a finite-
horizon Sinai billiard map as defined above. Under a sparse recurrence condition on the
singularity set, defined in (4.1), there exists a unique measure �0 such that

h� D h�0.T / D sup
�2I

h�.T /:

Moreover, �0 is hyperbolic and Bernoulli,3 has no atoms and is positive on open sets.

A more complete set of properties for �0 can be found in [3, Thm. 2.6]. That
h� � P�.0/ for any T -invariant probability measure � is due to a soft, classical argument
(see, for example, [59, Prop. 9.10]) since the sequence Mn

0 is related to a finite generating par-
tition for T [3, Lemma 3.3]. The main work of [3] is to construct an invariant measure�0 whose
entropy equals h�. This requires a precise understanding of the geometry of the sets Mn

0 com-
bined with some functional analytic techniques, whose main ideas are described in Section 4.

2.4. Topological pressure and variational principle for t > 0

Before defining our notion of topological pressure for the potential �t log J uT ,
it is convenient to consider the corresponding potential in the associated transfer operator.
Indeed, arguing by analogy to smooth hyperbolic systems, the transfer operator QLt with
spectral radius eP.t/ is defined, for example, on bounded, measurable functions, by

QLtf D
f ı T �1

..J uT /tJ sT / ı T �1
:

For a Sinai billiard, setting E.x/ D sin.†.Es.x/; Eu.x/// to denote the sine of the angle
between the stable and unstable subspaces at x, and denoting by JLebT the Jacobian of T
with respect to Lebesgue measure on M , we have

cos'.x/
cos'.T x/

D JLebT .x/ D J sT .x/J uT .x/
E.T x/

E.x/

H) .J uT /tJ sT D

�
E cos'

.E cos'/ ı T

�t
.J sT /1�t :

Since the two potentials are related by a coboundary, the associated transfer operators will
have the same spectral radius, so we will study instead the operator

Ltf D
f ı T �1

.J sT /1�t ı T �1
: (2.4)

Remark that J sT � cos' so that the potential is unbounded whenever t ¤ 1.

3 By hyperbolic, we mean that �0-a.e. point has stable and unstable manifolds of positive
length. By Bernoulli, we mean that it is isomorphic to a Bernoulli shift, which implies also
that �0 is ergodic and K-mixing.
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2.4.1. Weight function for the topological pressure
In order to control the evolution of Ltf in Section 3.2, it will be necessary to control

integrals of the formZ
W

Ln
t f  dmW D

Z
T�nW

f  ı T n
ˇ̌
J sT n

ˇ̌t
dmT�nW ;

whereW 2 W s ,mW is (unnormalized) arclength onW ,  is a Hölder-continuous test func-
tion, and f is an element of the Banach space we will construct.

In order for .J sT n/t to play the role of a test function, (2.2) suggests that we decom-
pose T �1W into a countable collection of maximal curvesW 1

i 2 W s
H and then iterate these,

subdividing into homogeneous components at each step until time n. We denote this collec-
tion of curves comprising T �nW by G H

n .W /. Then the spectral properties of Lt depend on
the growth of X

Wi2G H
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

as a function of n and W . (2.5)

This toy calculation suggests the weight we use to define the topological pressure below.

2.4.2. Definition of topological pressure
Define �H

0 D �0 [ .
S

jkj�k0
@Hk/ and for n 2 Z, �H

n D
Sn
iD0 T

�i�H
0 . This will act

as an extended singularity set for T n where we introduce artificial cuts in order to preserve
bounded distortion. Let

M
n;H
0 WD

®
maximal connected components of M n .�H

n�1 [ T �n�0/
¯
:

We define the weighted sum

Qn.t/ D

X
A2M

n;H
0

sup
x2A\M 0

ˇ̌
J sT n.x/

ˇ̌t
;

and the topological pressure for t > 0 is the exponential rate of growth of Qn.t/.

Definition 2.4 (Topological pressure). We let P�.t/ WD limn!1
1
n

logQn.t/.

As with Definition 2.2, the limit above exists and equals the lim inf due to the sub-
multiplicativity of Qn.t/. It follows that Qn.t/ � enP�.t/ for each n � 0.

The first theorem from [4] says that P�.t/ dominates the metric pressures.

Theorem 2.5 (Variational inequality). Let T be a finite-horizon Sinai billiard map. Then
P�.t/ is a convex, continuous, decreasing function for t > 0, and P.t/ satisfies

P�.t/ � P.t/ D sup
®
P�.�t logJ uT / j � is an invariant probability measure for T

¯
:

Remark that for anyT -invariant measure�,
R

logJ uT d�D �
R

logJ sT d�, which
is useful for relating P.t/ with P�.t/. As with Theorem 2.3, the inequality P�.t/ � P.t/ is
straightforward, while the main work lies in constructing a measure �t such that
P�t .�t log J uT / D P�.t/. This again requires a detailed analysis of the growth rate of
Qn.t/ and the pressure of G H

n .W / from (2.5) as a function of n and W 2 W s
H.
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2.4.3. Equilibrium state and variational principle
To prove that, in fact, P.t/ D P�.t/ and produce an equilibrium state, we restrict

our range of t . Recalling ƒ > 1 from (2.1), define

t� WD sup
®
t > 0 j P.t/ > �t logƒ

¯
:

Remark 2.6. The definition of t� is motivated by the fact thatƒ�t controls the local growth
in complexity due to singularities (and homogeneity strips), while eP�.t/ controls the global
growth in complexity via Qn.t/. Then t < t� implies the “pressure gap” condition ƒ�t <

eP.t/ � eP�.t/.
Note that since P.1/ D 0, ƒ > 1 and P.t/ is decreasing, it must be that t� > 1.

The main result in this setting from [4] is the following.

Theorem 2.7 (Unique equilibrium state and variational principle). Let T be a finite-horizon
Sinai billiard and let t 2 .0; t�/. Then P�.t/ D P.t/ and there exists a unique equilibrium
state �t for the potential �t logJ uT , i.e.,

P�t .�t logJ uT / D P�.t/ D P.t/:

Moreover, �t is hyperbolic, has no atoms, is positive on every open set, and enjoys exponen-
tial decay of correlations against Hölder observables.

The main technique used in the proof of the theorem is the construction of aniso-
tropic Banach spaces of distributions, adapted to t , on which the transfer operator Lt has
a spectral gap. Then the measure �t is constructed as a product of left and right eigenvec-
tors of Lt , following the standard Parry construction (see, for example, [43, Sect. 4.4] for an
introduction, or [41] for an application in the case of Anosov diffeomorphisms). Indeed, our
control of the spectrum of Lt also implies the following theorem.

Theorem 2.8 (Analyticity of P.t/). The pressure function P.t/ is analytic for t 2 .0; t�/,
with

P 0.t/ D

Z
logJ sT d�t D �

Z
logJ uT dmt < 0 and

P 00.t/ D

X
k�0

�Z
.logJ sT ı T k/ logJ sT d�t �

�
P 0.t/

�2�
� 0:

Moreover, P 00.t/ D 0 if and only if logJ sT D f � f ı T C P 0.t/ for some f 2 L2.�t /.
If there exists s ¤ t 2 .0; t�/ such that �s D �t , then P.t/ is affine on .0; t�/ and

logJ sT is �t -a.e. cohomologous to a constant for all t 2 .0; t�/.
Finally, under the sparse recurrence condition (4.1), limt#0 P.t/ D P.0/ D h�.

We conjecture that, in fact, �s ¤ �t for any s ¤ t in .0; t�/, i.e., J sT cannot be
cohomologous to a constant for a Sinai billiard. If it were, then the theorem would imply that
P.t/ is affine and, by uniqueness, �t D �SRB for each t 2 Œ0; t�/. See Section 5.
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3. Ideas from the proof of Theorem 2.7

In this section, we present some of the key ideas in the proof of Theorem 2.7. In
light of Theorem 2.5, they divide into two principal parts: (1) geometric estimates that con-
trol local complexity and establish a uniform exponential rate of growth for Qn.t/; (2) the
functional-analytic framework needed to construct a measure �t with pressure P�.t/.

The development of a functional-analytic framework in which to study transfer oper-
ators for hyperbolic systems has a well-established history. After some early success in the
hyperbolic analytic case [54,55], intense interest was generated by the paper of Blank, Keller,
and Liverani [10], which launched a series of subsequent papers developing a variety of
Banach spaces for Anosov and Axiom A maps [1,7,40,41]. This was later extended to piece-
wise hyperbolic maps [5, 6, 31] and ultimately to a variety of hyperbolic billiards [3, 32–34].
See [2] for a comprehensive survey or [30] for a gentle introduction to the use of such spaces.
The norms we shall define in Section 3.2 are a natural adaptation of these ideas to the family
of geometric potentials.

3.1. Growth lemmas and exact exponential growth of Qn.t/

Our first goal is to establish precise bounds on the exponential growth of Qn.t/ as
well as the growth of the pressure over G H

n .W / from (2.5). In order to accomplish this, we
fix t0 > 0 and t1 < t� and obtain uniform bounds for t in the closed interval Œt0; t1�.

Fix q � 2=t0 and let � 2 .ƒ; 1/ be such that � t1 < eP�.t1/. The latter choice is
possible by definition of t�, and implies by the convexity of P�.t/ that � t < eP�.t/ for all
t 2 Œt0; t1�. Next we adapt the usual one-step expansion (see [27, Lemma 5.56]) to our potential.

Lemma 3.1. There exist k0, ı0 > 0 such that

sup
V 2Ws

jV j�ı0

X
Vi

ˇ̌
J sT

ˇ̌t
�;C 0.Vi /

< � t for all t � t0,

where Vi are the maximal, connected homogeneous components of T �1V and j � j� denotes
the sup norm with respect to an adapted metric.4

Sketch of proof. Due to the finite-horizon condition, a short stable manifold V can be cut
by at most �max=�min tangential collisions under T �1 and all but one of these collisions are
nearly grazing. Near grazing collisions, Vk � Hk and, since J sT � cos',X

k�k0

ˇ̌
J sT

ˇ̌t
�;C 0.Vk/

� C
X
k�k0

k�qt
� C 0k�1

0 since qt � 2.

Thus setting "D � �ƒ�1 > 0, we choose k0 in the definition of homogeneity strips so large
thatC 0k�1

0
�max
�min

< ". Finally, choose ı0 so small that if jV j � ı0, then T �1V can intersect only
homogeneity strips of index at least k0 at the nearly tangential collisions. This is possible
since jT �1V j � C jV j1=2 [27, Exercise 4.60].

4 The adapted metric is defined as in [27, Sect. 5.10] so that in (2.1) the constant C0 D 1,
i.e., the expansion is seen in one step. The lemma applies equally well to more general cone-
stable curves and its time reversal to cone-unstable curves.
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The one-step expansion expressed by Lemma 3.1 guarantees that the expansion pro-
vided by the weight 1=.J sT /t along stable manifolds mapped by T �1 is strong enough to
overcome the effect of cutting by both the primary and secondary discontinuities of T �1.
This can be iterated inductively to obtain statements regarding the prevalence of long pieces
in both T �nW and M

n;H
0 , as summarized in Lemma 3.2 below.

Recalling the definition of G H
n .W / from (2.5), for ı1 < ı0 and W 2 W s , define

G
ı1;H
n .W / as a decomposition of T �nW in an analogous manner with G H

n .W /, but with
pieces longer than length ı1 subdivided into length between ı1=2 and ı1 at each step (rather
than length ı0).

For a setE �M , we use diamu.E/ to denote the length of the longest cone-unstable
curve in E, and diams.E/ to denote the length of the longest cone-stable curve in E.

Lemma 3.2. (a) 8" > 0 9ı1; n1 > 0 such that 8W 2 W s with jW j � ı1=3 and all
n � n1, X

Wi2G
ı1;H
n .Wi /

jWi j<ı1=3

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� "
X

Wi2G
ı1;H
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

:

(b) For A 2 M
n;H
0 , let Bn�1.A/ denote the connected component of M n

.
Sn�1
iD0 T i�H

0 / containing T n�1A. Define An.ı/ D ¹A 2 M
n;H
0 W

diamu.Bn�1.A// � ı=3º. There exist ı2 � ı1 and c0 > 0 such thatX
A2An.ı2/

sup
x2A\M 0

ˇ̌
J sT n.x/

ˇ̌t
� c0Qn.t/; 8n 2 N;8t 2 Œt0; 1�:

Comments on proof. The proof of part (a) relies on iterating Lemma 3.1 combined with the
following lower bound on growth valid for t � 1 and V 2 W s ,X

Wi2G
ı1;H
k

.V /

ˇ̌
J sT k

ˇ̌t
C 0.Wi /

D

X
Wi2G

ı1;H
k

.V /

ˇ̌
J sT k

ˇ̌
C 0.Wi /

ˇ̌
J sT k

ˇ̌t�1
C 0.Wi /

� C1ƒ
k.1�t/

X
Wi2G

ı1;H
k

.V /

jT kWi j

jWi j
� C1ƒ

k.1�t/
jV jı�1

1 ;

which guarantees that long pieces most continue to produce a sufficient number of long
pieces. Once (a) is proved for t � 1, we extend it to t 2 .1; t1� via interpolation (see
[4, Sect. 3.4]).

(b) The proof of (b) follows the same lines as (a), using a version of Lemma 3.1
for elements of M

n;H
0 and a generalization of bounded distortion which says that J sT n.x/,

J sT n.y/ are comparable when x; y belong to the same element of M
n;H
0 .

Using Lemma 3.2, we can prove the following key results regarding the uniform
growth of W 2 W s and a type of supermultiplicativity for Qn.t/.

Proposition 3.3. (a) 9c1 > 0 such that 8W 2 W s with jW j � ı1=3,X
Wi2G H

n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� c1Qn.t/; 8n � 1;8t 2 Œt0; t1�:

(b) 9c2 > 0 such that for all k;n� 1 and all t 2 Œt0; t1�,QnCk.t/� c2Qn.t/Qk.t/.
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Sketch of proof. Let Lı1n .W / denote the elements of G
ı1;H
n .W / longer than ı1=3. Then (b)

follows from (a) and Lemma 3.2 (choosing " D 1=2 there) since,X
Wi2G

ı1;H
nCk

.W /

ˇ̌
J sT nCk

ˇ̌t
C 0.Wi /

� C
X

Vj2L
ı1
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Vj /

X
Wi2G

ı1;H
k

.Vj /

ˇ̌
J sT k

ˇ̌t
C 0.Wi /

�
C

2

X
Vj2G

ı1;H
n

ˇ̌
J sT n

ˇ̌t
C 0.Vj /

c1Qk.t/ �
C

2
c21Qn.t/Qk.t/:

The proof of (a) relies on covering a full �SRB-measure set of M with a finite col-
lection of Cantor rectangles, formed by maximal intersections of local stable and unstable
manifolds so that each rectangle has a hyperbolic product structure. By [27, Lemma 7.87], we
may choose a finite collection of such rectangles, R.ı2/D ¹Riº

Nı2
iD1, such that any cone-stable

or cone-unstable curve of length at least ı2=3 properly crosses at least one Ri . Let

Ai
n WD

®
A 2 An.ı2/ � M

n;H
0 j Bn�1.A/ properly crosses Ri

¯
:

By Lemma 3.2(b), there must exist i� such that
P
A2A

i�
n

supA jJ sT njt �
c0
Nı2

Qn.t/.
LetW 2 W s with jW j � ı1=3 � ı2=3.W must properly cross one Rj . Since �SRB

is mixing, we may ensure that V D T �NW properly crosses Ri� , where N depends only
on ı2. This proper crossing ensures that

P
Wi2G H

n .V /
jJ sT njt

C 0.Wi /
will be comparable toP

A2A
i�
n

supAjJ sT njt , and then, adjusting forN , we conclude that
P
Wi2G H

n .W /
jJ sT njt

C 0.Wi /

grows at the rate Qn.t/.

Remark 3.4. Proposition 3.3(a) says that the pressure of all long (in the scale ı1) local stable
manifolds grows at a uniform exponential rate (not just asymptotically the same rate).

A corollary of Proposition 3.3(b) is the exact exponential growth of Qn.t/,

enP�.t/ � Qn.t/ � 2c�1
2 enP�.t/ 8n � 1;8t 2 Œt0; t1�;

where the lower bound follows from the submultiplicativity of Qn.t/ and the upper bound
follows from its (approximate) supermultiplicativity. This bound is essential in proving the
requisite spectral properties of Lt in Section 3.2.2.

3.2. Banach spaces adapted to t 2 Œt0; t1�

The Banach spaces adapted to the operator Lt for t 2 .0; t�/ are similar to those
used in [33] for the case t D 1. For convenience, we identify f 2 C 1.M/ with the measure
d� D fd�SRB. With this identification, the transfer operator defined on distributions � by

Lt�. / D �
�
 ı T � .J sT /t�1

�
for suitable test functions  ; (3.1)

coincides with the pointwise definition of Ltf acting on measurable functions from (2.4).
As in Section 3.1, we fix Œt0; t1� � .0; t�/ and obtain uniform estimates for t 2 Œt0; t1�.

3.2.1. Definition of norms
Since Ltf has a deregularizing effect in the stable direction, but improves regular-

ity in the unstable direction, the norms defined below have two important properties: they
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integrate along local stable manifolds to average out the action of Ltf in the stable direc-
tion, while requiring Ltf to have a form of average regularity in the unstable direction (see
the definition of k � ku below). Integrating along local stable manifolds (as opposed to the
cone-stable curves used in [32–34]) also allows us to take advantage of the fact that J sT is
Hölder continuous along such manifolds.

Fix 0 < ˛ � 1=.q C 1/. For f 2 C 1.M/, define the weak norm of f by

jf jw D sup
W 2Ws

H

sup
 2C˛.W /
j jC˛�1

Z
W

f  dmW : (3.2)

Define Bw to be the completion of C 1.M/ in the j � jw norm.
For the strong norm, we need additional parameters. Choose

p > q C 1 such that � t1�1=p < eP�.t1/; ˇ 2 .1=p; ˛/ and  < min¹1=p; ˛ � ˇº:

Define the strong stable norm of f by

kf ks D sup
W 2Ws

H

sup
 2Cˇ .W /

j j
Cˇ

�jW j�1=p

Z
W

f  dmW :

The strong unstable norm measures the integral of f on two curves that are close together. To
define this, we need notions of distance between curves and test functions. Since the stable
cone C s is bounded away from the vertical, we view W 2 W s as the graph of a function of
the r-coordinate over an interval IW ,

W WD
®
GW .r/ j r 2 IW

¯
WD

®�
r; 'W .r/

�
j r 2 IW

¯
:

Now given W1;W2 2 W s defined by 'W1 ; 'W2 , define

d.W1;W2/ D jIW1 4 IW2 j C j'W1 � 'W2 jC 1.IW1\IW2 /
;

if W1; W2 lie in the same homogeneity strip, and d.W1; W2/ D 1 otherwise. If
d.W1;W2/ < 1, we define a distance between test functions  k 2 C 0.Wk/ by

d0. 1;  2/ D j 1 ıGW1 �  2 ıGW2 jC 0.IW1\IW2 /
:

With these definitions, we are able to define the strong unstable norm of f as

kf ku D sup
"�"0

sup
W1;W22Ws

H
d.W1;W2/�"

sup
j i jC˛.Wi /�1

d0. 1; 2/D0

"�

ˇ̌̌̌Z
W1

f  1 dmW1 �

Z
W2

f  2 dmW2

ˇ̌̌̌
;

where "0 > 0 is a small constant depending on the table. Finally, define B to be the closure
of C 1.M/ in the strong norm k � kB , defined by kf kB D kf ks C cukf ku, where cu is
chosen so that the inequalities in Theorem 3.7 provide contraction in the strong norm (see
[4, Sect. 4.3]).

Remark 3.5. The choices of parameters are motivated as follows: ˛ � 1=.q C 1/ due to
the Hölder exponent in (2.2). Then ˇ < ˛ is required for relative compactness of the unit
ball of B in Bw . The weight jW j�1=p weakens the contraction of the one-step expansion to
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W1

W2

��n

T �n

Gn.W1/

Gn.W2/

Figure 1

Two stable manifolds W1 (green) and W2 (blue) and their images under T �n. Green and blue pieces are matched,
while red curves are not matched due to cuts introduced by ��n.

� t�1=p , so p is chosen large enough that this is still small compared to the pressure eP�.t/.
Finally, the regularity exponent  is chosen sufficiently small that the unmatched pieces
created by discontinuities in the Lasota–Yorke inequalities are rendered negligible by the
weight jW j1=p .

Proposition 3.6. With the correct choices of parameters above, we have a sequence of con-
tinuous inclusions, C 1.M/ � B � Bw � .C ˛.M//�.

Moreover, the embedding of the unit ball of B into Bw is compact.

3.2.2. A spectral gap for Lt

Since B is defined as the completion of C 1.M/ in k � kB , a priori it is not clear that
Lt acts continuously on B since J sT is not even piecewise Hölder continuous; however,
[27, Theorem 5.66] and [4, Lemma 4.10] show that J sT varies sufficiently regularly on hyperbolic
Cantor rectangles so that if f 2 C 1.M/, then Ltf can be approximated by C 1 functions
in the k � kB-norm, i.e., Ltf 2 B. Thus we are able to prove:

Theorem 3.7 ([4]). Operator Lt acts continuously on B and satisfies the following Lasota–
Yorke (or Doeblin–Fortet) inequalities: there exist C;Cn > 0 such that for all f 2 B, n � 0,ˇ̌

Ln
t f

ˇ̌
w

� CQn.t/jf jw ;Ln
t f


s

� C
�
ƒ�.ˇ�1=p/nQn.t/C � .t�1=p/n

�
kf ks C Cnjf jw ;Ln

t f

u

� CQn.t/
�
nƒ�n

kf ku C Cnkf ks

�
:

Furthermore, Lt has a spectral gap: eP�.t/ is the eigenvalue of maximum modulus, it is
simple, and the rest of the spectrum of Lt is contained in a disk of radius �eP�.t/, where
� < 1 is uniform for t 2 Œt0; t1�.

Comments on the proof. (1) The estimate on unmatched pieces. For a proof of the Lasota–
Yorke inequalities, the reader is referred to [4, Sect. 4.3]. Here we comment only on the control
of “unmatched pieces” in the estimate of the strong unstable norm since this leads to essential
changes in the case t D 0. We must estimate j

R
W1

Ln
t f  1 �

R
W2

Ln
t f  2j.
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Changing variables, we see that G H
n .W1/ comprises matched pieces (that are close

to a corresponding curve in G H
n .W2/), and unmatched pieces (which are not, due to cuts by

the singularity set ��n). See Figure 1. The distance between matched pieces contracts due
to the hyperbolicity of T , but the unmatched pieces do not contract. Yet, unmatched pieces
have length at most ƒ�j " if they are cut by a singularity curve at time �j , so we may use
the strong stable norm to estimateZ

Wi

Ln
t f  D

Z
Vj

L
n�j
t f  ı T j

ˇ̌
JVj T

j
ˇ̌t

� ƒ�j=p"1=p
L

n�j
t f


s

ˇ̌
JVj T

j
ˇ̌t
C 0

In this sense, k � ks acts as a “weak norm” for k � ku to control unmatched pieces. This is
the reason why the weight jW j�1=p must be included in the definition of k � ks , and is an
essential difference with the case t D 0 in Section 4.2.

(2) Quasicompactness of Lt . The Lasota–Yorke inequalities imply that the spectral radius
of Lt on B is at most eP�.t/ and its essential spectral radius < eP�.t/ if � t < eP�.t/. This is
the pressure gap condition guaranteed by choice of � for all t 2 Œt0; t1�. In order to conclude
quasicompactness, however, we need a lower bound on the spectral radius. This follows from
Proposition 3.3(a). Indeed, letW 2 W s

H with jW j � ı1=3, and choose � 1. For any n� 1,Z
W

Ln
t 1 D

X
Wi2G H

n .W /

Z
Wi

ˇ̌
J sT n

ˇ̌t
� e�Cd

ı1

3

X
Wi2L

ı1
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� Cc1Qn.t/

� C 0enP�.t/:

Thus kLn1ks � C 0enP�.t/, and so the spectral radius of L is eP�.t/.

(3) A spectral gap for Lt . Exact exponential growth of Qn.t/ (see Remark 3.4) implies
kLn

t kB � CQn.t/ � C 0enP�.t/, so that the peripheral spectrum of Lt has no Jordan blocks.
Then the expression

�t . / WD lim
n!1

1

n

n�1X
kD0

e�kP�.t/Lt1. / (3.3)

defines a finite Borel measure in B satisfying Lt�t D eP�.t/�t , where, according to our
identification of functions with densities with respect to �SRB, we set

Lt1. / WD

Z
M

 Lt1 d�SRB: (3.4)

Using (3.3) and the uniform control provided by Proposition 3.3, one shows that all eigen-
vectors corresponding to the peripheral spectrum are measures absolutely continuous with
respect to �t and all eigenvalues are roots of unity. Finally, the topological mixing of T
implies that there can be no other eigenvalues of modulus eP�.t/.

3.2.3. An equilibrium state and a variational principle
Let �t be defined as in (3.3) and let Q�t 2 B� denote the analogous construction with

the dual operator L�
t . Define

�t . / D
h�t ;  Q�t i

h�t ; Q�t i
;  2 C ˛.M/:
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The normalization h�t ; Q�t i ¤ 0 by Proposition 3.3(a). Then it is a standard calculation that
�t is an invariant probability measure for T , and due to the spectral gap of Lt , �t enjoys
exponential decay of correlations against Hölder observables.

The facts that �t has no atoms, gives 0 weight to any C 1 curve, is positive on open
sets, and has stable and unstable manifolds of positive length all follow from the regularity
of �t 2 B.

Finally, we comment on the entropy of �t and conclude the variational principle
stated in Theorem 2.7. To this end, define the Bowen balls for T �n by

B.x; n; "/ D
®
y 2 M W d.T �ix; T �iy/ � ";8i 2 Œ0; n�

¯
: (3.5)

Proposition 3.8 (Measure of Bowen balls). There exists C > 0 such that for all x 2 M ,
n � 1, and y 2 B.x; n; "/,

�t
�
B.x; n; "/

�
� Ce�nP�.t/Ct logJ sT n.T�ny/:

Then [13, Main Theorem] implies that for �t -a.e. x 2 M ,

lim
"!0

lim sup
n!1

�
1

n
log�t

�
B.x; n; "/

�
D h�t .T /:

This, together with Proposition 3.8, implies

h�t .T / � P�.t/ � t

Z
logJ sT d�t D P�.t/C t

Z
logJ uT d�t :

But P�.t/ � h�t .T / � t
R

logJ uT d�t since P�.t/ � P.t/ by Theorem 2.5. We conclude
that P�.t/ D h�t .T /� t

R
logJ uT d�t D P.t/, which implies both that �t is the measure

maximizing the pressure and that the topological pressure satisfies a variational principle,
despite the effect of singularities.

The last item of Theorem 2.7, the uniqueness of �t , uses the concept of a tangent
measure. The argument exploits in particular the differentiability of the pressure for t > 0.
We refer the interested reader to [4, Sect. 5.5].

4. Ideas from the proof of Theorem 2.3

In this section, we provide a parallel presentation to Section 3 for the case t D 0,
i.e., the construction of the measure of maximal entropy. As before, we divide the ideas into
two parts: (1) geometric estimates to control local complexity and a uniform rate of growth
for #Mn

0 ; (2) a functional-analytic framework needed to construct the equilibrium state �0.
In contrast to Section 3, we cannot use homogeneity strips and must drastically alter

the weights in the strong norm. These changes are sufficiently severe to prevent us from
obtaining a spectral gap for L0 and exponential mixing for �0.

4.1. Complexity and exact exponential growth of #Mn
0

Recall the toy calculation in Section 2.4.1 for deriving the correct weight for the
topological pressure. If we consider (2.5) with t D 0, we have #G H

n .W / D 1 whenever
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T �nW crosses infinitely many homogeneity strips. Thus we cannot use homogeneity strips
when studying the case t D 0. Moreover, the one-step expansion Lemma 3.1 does not hold.

Instead, we use the linear complexity bound due to Bunimovich. For x 2 M , let
N.�n; x/ denote the number of singularity curves in �n that meet at x. Define N.�n/ D

supx2M N.�n; x/.

Lemma 4.1 ([15]). Assume finite horizon. There exists K > 0, depending only on the con-
figuration of scatterers, such that N.�n/ � Kn for all n � 1.

Sketch of proof from [28]. Suppose x; x0 2 M lie on a straight billiard trajectory with one
or more tangential collisions between them. Let A, A0 be neighborhoods of x; x0 in M ,
partitioned into sectors A1; : : : Ak � A and A0

1; : : : A
0
k

� A such that T njAj D A0
j . Define

OT jAj WD T nj . See Figure 2.

x x0

B3

B1 B2B4

B5

(a)

OT

A A0

x x0

(b)
Figure 2

(a) A trajectory with multiple tangencies. (b) Neighborhood A of x with elements of �n and neighborhood A0 of
x0 with their images in ��n.

We prove the statement by induction. For nD 1 it is trivial. Now assumeN.�n�1/�

K.n � 1/ for some K > 0. Let N.�i jA0
j ; x

0/ denote the number of curves in �i passing
through x0 and lying in A0

j . Since curves in �i n �0 (stable) and ��n n �0 (unstable) are
uniformly transverse, each sector created by �i can only intersect one sector created by ��n.
Then pulling back the picture from x0 to x and recalling that k is the number of tangencies
meeting at x, we have (here we are using continuity of the flow)

N.�n; x/ � k C

X
j

N.�n�nj jA
0
j ; x

0/ � k C

X
j

N.�n�1jA
0
j ; x

0/;

and, using the inductive assumption on n � 1, this yields N.�n; x/ � k CK.n � 1/, which
is less than Kn if k � K. Due to the finite horizon condition, the number of tangencies
intersecting at a point x 2 M has a finite upper bound depending only on the table. Thus
choosing K to be this upper bound completes the proof of the lemma.

4.1.1. Fragmentation lemmas
Choose n0 2 N such that n�1

0 log.Kn0 C 1/ < h�. Due to Lemma 4.1, we may
choose ı0 > 0 such that any stable curve of length � ı0 is cut into at most Kn0 C 1 pieces
by ��n0 . We use this choice of ı0 in our definition of W s , the set of local stable manifolds
with which we work. (In Section 4.2.2 we will shrink ı0 further depending on the parameters
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in our norms.) This choice of ı0 will ensure that the growth in Gn.W / due to local complexity
will be slower than enh� . We make this precise below.

For ı � ı0, let G ın .W / denote the collection of curves in T �nW analogous to
G H
n .W /, but without using homogeneity strips, and with pieces longer than ı subdivided into

curves between length ı=2 and ı at each step. Define Lın.W /D ¹Wi 2 G ın .W / W jW j � ı=3º

and Shın.W / D G ın .W / n Lın.W /.

Lemma 4.2 ([3]). For all " > 0, there exist n1; ı > 0 such that, for all n � n1,

#Shın.W / � "#G ın .W / for all W 2 OW s with jW j � ı=3.

Idea of proof. Recalling (2.1), choose " > 0 and n1 such that 3C�1
0 .Kn1 C 1/ƒ�n1 < ".

Choose ı > 0 such that if jW j < ı then T �n1W comprises at most Kn1 C 1 connected
components of length at most ı0. Then Shın1.W / contains at most Kn1 C 1 elements.
On the other hand, jT �n1W j � C0ƒ

n1ı=3, where ƒ D 1C 2Kmin�min is from (2.1). Thus
#G ın1.W / � C0ƒ

n1=3, and so #Shın1.W / � "#G ın1.W / by the choice of n1.
The argument can be iterated, grouping each collection of pieces at time kn1 by the

most recent time jn1, j � k, that each piece was contained in an element of Lıjn1.W /.

As in Lemma 3.2(b), some control of short pieces can also be extended to elements
of Mn

0 and M0
�n. Let ı1, n1 � n0 correspond to " D 1=4 in Lemma 4.2. Define

Ls.M
n
0 / D

®
A 2 Mn

0 W diams.A/ � ı1=3
¯

and

Lu.M
0
�n/ D

®
B 2 M0

�n W diamu.B/ � ı1=3
¯
:

Lemma 4.3 ([3]). There exists c0 > 0 such that, for all n � 1,

#Ls.Mn
0 / � c0ı1#Mn

0 and #Lu.M0
�n/ � c0ı1#M0

�n:

4.1.2. Uniform bounds on growth
As in Section 3.1, the fragmentation lemmas above imply uniform bounds on the

growth of #Gn.W / and #Mn
0 .

Proposition 4.4. (a) There exists c1 > 0 such that, for any W 2 W s with
jW j � ı1=3,

#Gn.W / � c1#Mn
0 8n � 1:

(b) There exists c2 > 0 such that for all k; n � 1,

#MnCk
0 � c2#Mn

0 � #Mk
0 :

Idea of proof. Claim (b) follows from (a) and Lemma 4.2 since #MnCk
0 � 2ı�1

0 #GnCk.W /

and

#GnCk.W /�

X
Vj2L

ı1
n .W /

#Gk.Vj /� #Lı1n .W /c1#Mk
0 �

3c1

4
#G ı1n .W /#Mk

0 �
3c21
4

#Mn
0#Mk

0 :

The proof of (a) follows the same lines as the proof of Proposition 3.3(a), covering
M with a finite number Nı1 of Cantor rectangles depending on the length scale ı1. Then
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Lemma 4.3 implies at least one of these rectangles, Ri� , is fully crossed (in the unstable
direction) by at least c0ı1

Nı1
#M0

�n “long” elements of M0
�n. Any W 2 W s of length at least

ı1=3 crosses one rectangleRj . Then there existsN , depending only on ı1, such that T �NW

properly crosses Ri� in the stable direction. Thus T �N�nW intersects at least c0ı1
Nı1

#Mn
0

elements of Mn
0 since #Mn

0 D #M0
�n. Adjusting forN (which only affects c1) proves (a).

Remark 4.5. Proposition 4.4(b) implies the exact exponential growth of #Mn
0 ,

enh� � #Mn
0 � 2c�1

2 enh� for all n � 1.

As in Section 3.2.2, this will be essential to controlling the peripheral spectrum of L0.
A second corollary of our uniform bounds is the uniform growth rate of jT �nW j in

terms of the topological entropy h�, i.e., there exists C > 0 such that, for all W 2 W s with
jW j � ı1=3,

Cenh� �
ˇ̌
T �nW

ˇ̌
� C�1enh� for all n � n1:

This is precisely the rate of growth one sees in smooth hyperbolic systems, despite the fact
that in this context h� also counts cuts due to discontinuities.

To prove this bound, the previous remark, together with Proposition 4.4(a), gives
Cenh� � #Gn.W /�C�1enh� . But jT �nW j � ı0#Gn.W / since curves in Gn.W / have length
at most ı0, proving the upper bound. Finally, the lower bound follows from Lemma 4.2 with
" D 1=4, ˇ̌

T �nW
ˇ̌

D

X
Wi2G

ı1
n

jWi j �
ı1

3
#Lı1n .W / �

ı1

4
#G ı1n .W /:

4.2. Banach spaces adapted to t D 0

We define L0 acting on functions as in (2.4) and on distributions as in (3.1).
Unfortunately, the Hölder weight jW j1=p in the strong stable norm from Sec-

tion 3.2.1 is disastrous when t D 0. This is because if W 2 W s and T �1W has a single
component near a tangential collision so that jT �1W j � jW j1=2, then, if  D jW j�1=p ,Z

W

L0f  D

Z
T�1W

f  ı T � kf ks
jT �1W j1=p

jW j1=p
� kf ksjW j

�1=2p:

Taking the supremum over W 2 W s yields 1 and hence L0 is not a bounded operator.
Yet, we cannot abandon the weight entirely due to the need to control the unmatched

pieces in the Lasota–Yorke estimates, see Figure 1 and the proof of Theorem 3.7. These con-
siderations force us to adopt a weak logarithmic weight j log jW jj in the definition of k � ks ,
which in turn forces a logarithmic modulus of continuity in k � ku. This last change prevents
a genuine contraction in the Lasota–Yorke inequality, which prevents us from proving that
L0 is quasicompact with a spectral gap.

Nevertheless, under a sparse recurrence condition to the singular set (4.1), we show
that the spectral radius of L0 on B is eh� and we obtain left and right eigenvectors of L0 as
limit points using compactness, from which we construct the measure �0 with entropy h�.
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4.2.1. Sparse recurrence to singularities
In order to control the evolution of Ln

0 in the strong norm, we shall need the follow-
ing condition on the rate of recurrence to the singular set �0, which corresponds to tangential,
or grazing, collisions. Note that our results up until now have not needed this condition.

Choose n0 2 N and an angle '0 close to �=2. Let s0 2 .0; 1/ be the smallest number
such that any orbit of length n0 has at most s0n0 collisions with j'j � '0. The finite horizon
condition guarantees that we can always choose n0 and '0 so that s0 < 1. Indeed, if there
are no trajectories with three consecutive tangencies on the table (a generic condition), then
one may choose n0 and '0 so that s0 �

2
3
. Our assumption is the following:

h� > s0 log 2: (4.1)

The log2 comes from the fact that ifW is a local stable manifold that makes a nearly
tangential collision under T �1 then jT �1W j � jW j1=2. Thus our assumption ensures that
the growth due to tangential collisions along sufficiently long orbit segments does not exceed
the exponential rate of growth given by h�.

We remark that there is no known table for which the condition h� > s0 log 2 fails.
Indeed, since h� � h�SRB and h�SRB D

R
logJ uT d�SRB by the Pesin entropy formula, it suf-

fices to check that �C
�SRB

> s0 log2, where �C
�SRB

is the positive Lyapunov exponent of T with
respect to�SRB, in order to conclude that (4.1) holds. Using this criterion, all examples com-
puted numerically in [9] for a triangular lattice and [38] for a rectangular lattice satisfy (4.1).
Furthermore, it is possible to prove analytically that (4.1) holds for large open sets of such
billiard configurations. See [3, Sect. 2.4] for a more detailed discussion.

4.2.2. Definition of norms
Choose ˛; ˇ;  > 0, and p > 1 such that

ˇ < ˛ � 1=3; 2s0p < eh� ;  < p:

Enlarge n0 so that
1

n0
log.Kn0 C 1/ < h� � ps0 log 2;

where K is from Lemma 4.1. Choose ı0 > 0 as in Section 4.1.1 so that any stable manifold
of length � ı0 is cut into at most Kn0 C 1 pieces by ��n0 .

The weak norm j � jw and Bw are defined precisely as in (3.2), so we focus on the
strong norm. For f 2 C 1.M/, define the strong stable norm of f by

kf ks D sup
W 2Ws

sup
 2Cˇ .W /

j j
Cˇ .W /

�j log jW jjp

Z
W

f  dmW

Recalling the distance between curves d.W1; W2/ and between test functions d0. 1;  2/
from Section 3.2.1, we define the strong unstable norm of f by

kf ku D sup
"�"0

sup
W1;W22Ws

d.W1;W2/�"

sup
j i jC˛.Wi /�1

d0. 1; 2/D0

j log "j
ˇ̌̌̌Z
W1

f  1 �

Z
W2

f  2

ˇ̌̌̌
:
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The strong norm of f is defined to be kf kB D kf ks C kf ku, and B is the completion of
C 1.M/ in the k � kB norm.

4.2.3. Spectrum of L0 and construction of an invariant measure
Proposition 3.6 still holds true with these new norms and most importantly, the unit

ball of B is compact in Bw . However, due to the logarithmic modulus of continuity in the
definition of k � ku, the strong unstable norm does not contract. Indeed, recalling Figure 1,
when we compare

R
W 1 L0f  1 �

R
W 2 L0f  2, the matched pieces W k

i 2 Gn.W
k/ have

contracted to a distance d.W 1
i ;W

2
i / � Cƒ�n". Yet, the contraction in the norm is given by

j logCƒ�n"j

j log "j , and taking the supremum over " > 0 yields 1. The inequalities we can prove are
the following.

Proposition 4.6. Assume h� > s0 log2. There exists C > 0 such that, for all f 2 B, n � 0,ˇ̌
Lnf

ˇ̌
w

� C jf jw#Mn
0 ;Lnf


s

� C
�
�nkf ks C jf jw

�
#Mn

0 ; for some � < 1;Lnf

u

� C
�
kf ku C kf ks

�
#Mn

0 :

Although the bounds of Proposition 4.6 are not sufficient to prove the quasicompact-
ness of L0 on B, they, together with Proposition 4.4, do provide good control of kLn

0kB .
Using Remark 4.5, we have kLn

0kB � Cenh� , for all n � 1. Moreover, our lower
bounds on #Lı1n .W / from Lemma 4.2 and #Gn.W / from Proposition 4.4 imply thatLn

01

s

�
ˇ̌
Ln
01

ˇ̌
w

�

Z
W

Ln
01 �

X
Wi2L

ı1
n .W /

jWi j �
ı1

3

3

4
#G ı1n .W / � Cenh� : (4.2)

These estimates imply not only that the spectral radius of L0 on B is eh� , but also
that the sequence e�nh�Ln

01 is uniformly bounded away from 0 and 1 in the strong norm.
We now use this fact to construct an eigenmeasure for L0 with eigenvalue eh� .

By the observation above, for n � 1 the sequence

�n D
1

n

n�1X
kD0

e�kh�Lk
01 is uniformly bounded in B.

Since any ball of finite size in B is compact in Bw , a subsequence converges in Bw . Let
�0 2 Bw be a limit point of �n. A priori, �0 is only a distribution; yet, recalling (3.4), the
calculation ˇ̌

�0. /
ˇ̌

� lim
j!1

1

nj

nj�1X
kD0

e�kh�
ˇ̌
Lk
01. /

ˇ̌
� j j1�0.1/

shows that, indeed, �0 can be extended as a bounded operator on continuous functions, i.e.,
�0 is a measure and, indeed, a nonnegative measure since the �n are nonnegative. A similar
calculation shows that L0�0 D eh��0.

Similarly, let Q�0 2 .Bw/
� be a limit point of the sequence

1

n

n�1X
kD0

e�kh�.L�
0/
k.d�SRB/;
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which is again a measure. Define the pairing

�0. / D
h�0;  Q�0i

h�0; Q�0i
; for  2 C 1.M/.

Since L0�0 D eh��0 and L�
0 Q�0 D eh� Q�0, it is a standard calculation that�0. ıT /D�0. /,

i.e., �0 is an invariant probability measure for T . We remark that, by definition of �0 and Q�0,
the normalization h�0; Q�0i can be computed as the average of the terms e�kh�

R
M

Lk
01d�SRB.

Thus the fact that h�0; Q�0i ¤ 0 follows from the lower bound (4.2) (see [3, proof of Prop. 7.1]).

4.2.4. Properties of �0

The key observation for proving all subsequent properties of �0 is that, although
�0 2 Bw , it inherits stronger regularity as a limit point of the sequence .�n/n2N , which is
uniformly bounded in the k � kB-norm. In particular, the convergence of .�nj / to � in Bw

implies

lim
j!1

sup
W 2Ws

sup
j jC˛.W /�1

�Z
W

� dmW �

Z
W

�nj dmW

�
D 0;

and, since k�nj ku � C for some C > 0, we conclude that k�ku � C as well. Similarly,R
W
� � C j log jW jj�p from the uniform bound on k�nj ks . This regularity then opens the

door to a host of properties for �0.

(1) Hyperbolicity. For k 2 Z, " > 0, letting N".�k/ denote the "-neighborhood of �k inM ,
the strong norm bound implies that there exists Ck > 0 such that

�0
�
N".�k/

�
� Ckj log "j�p and �0

�
N".�k/

�
� Ckj log "j�p: (4.3)

This implies in turn that �0 is T -adapted, i.e.,
R
M

� log d.x; �˙1/ d�0.x/ < 1, and that
�0-a.e. x 2M has a stable and unstable manifold of positive length. The same is true for �0.

(2) Ergodicity. Since �0 is hyperbolic, we may cover a full measure set of M with Cantor
rectangles comprising intersections of stable and unstable manifolds, and study the proper-
ties of �0 on each rectangle. In particular, the fact that k�0ku < 1 allows us to prove the
following (but note that �0 itself is singular with respect to Lebesgue measure).

Lemma 4.7 (Absolute continuity of holonomy). On each Cantor rectangle R, the holon-
omy map sliding along unstable manifolds in R is absolutely continuous with respect to the
conditional measures of �0 on stable manifolds.

Using a Hopf argument and the above lemma, we show that each Cantor rectangle
R belongs to one ergodic component. Then since T is topologically mixing, we can force
images of rectangles to overlap and thus conclude that .T n; �0/ is ergodic for all n.

(3) Mixing and Bernoulli property. The local product structure of the Cantor rectangles,
together with a global argument showing that a full measure set of points on each component
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of M can be connected by a network of stable and unstable manifolds, enables us to prove
that .T; ��/ is K-mixing,5 following techniques of Pesin [48,49].

Then adapting the approach of [26] (carried out there for �SRB), which uses all the
properties we have established thus far: K-mixing, hyperbolicity, the absolute continuity of
Lemma 4.7, and our bounds on�0.N".�˙1//, we prove that the partition M1

�1 is very weakly
Bernoulli. Since

W1

nD�1 T �n.M1
�1/ generates the full � -algebra for T , this implies by [47]

that .T; �0/ is Bernoulli.

(4) Entropy of �0. For x 2 M , define the "-Bowen ball for T �n as in (3.5). Using the fact
that �0 scales by enh� under a change of variables, we are able to prove:

Proposition 4.8 (Measure of Bowen balls). There exists C > 0 such that, for all x 2M and
n � 1,

�0
�
B.x; n; "/

�
� Ce�nh� :

As in Section 3.2.3, [13, Main Theorem] implies that for �0-a.e. x 2 M ,

lim
"!0

lim sup
n!1

�
1

n
log�0

�
B.x; n; "/

�
D h�0.T

�1/ D h�0.T /:

This, together with Proposition 4.8, implies h�0.T /� h�. But h� � h�.T / for all T -invariant
probability measures as stated in Section 2.3. We conclude that h� D h�0.T /, so �0 has
maximal entropy.

4.2.5. Uniqueness of �0

Finally, we discuss the proof of uniqueness of the measure of maximal entropy from
Theorem 2.3. This is essentially a modification of the classical Bowen argument, which uses
a uniform lower bound on the measure of Bowen balls,

8" > 0; 9C > 0 such that for �0-a.e. x 2 M;��.B.x; n; "// � Ce�nh�

(see, for example, [43, Sect. 20.3]).
Unfortunately, this lower bound fails for billiards due to the rate of approach of

typical points to the singularity set. We can prove, rather, that 8� > 0 and �0-a.e. x 2 M ,

9C D C.�; x/ > 0 such that �0.B.x; n; "// � Ce�n.h�C�/. (4.4)

But even this arbitrarily small error in the exponent is not sufficient for the Bowen argument.
Instead, we prove a version of the lower bound that “most” x 2 M “often” belong to an
element of M

j
0 satisfying good lower bounds.

To make this precise, let Nn 2 N be such that .K Nn C 1/1= Nn < eh�=2. Then using
Lemma 4.2, choose ı2 > 0 such that if A 2 Mn

�k
satisfies

max
®
diamu.A/; diams.A/

¯
� ı2;

5 If A denotes the Borel sigma-algebra on M , then K-mixing means that there exists a sub-
sigma algebra K � A such that (1) K � TK; (2)

W1
nD0 T

nK D A; (3)
T1
nD0 T

�nK D

¹X;;º.
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then A n �˙ Nn consist of at most K NnC 1 connected components. Define

Sh2n0 WD
®
A 2 M2n

0 W 8j; 0 � j � n=2; T jA � E 2 M
2n�j
0 such that diams.E/ < ı2

¯
;

with a similar definition for Sh0�2n with diamu.E/ replacing diams.E/. These are the “per-
sistently short” elements of M2n

0 and M0
�2n, respectively, which have not belonged to a

“long” element within the past n=2 iterates.
The next lemma demonstrates that persistently short pieces make up a small propor-

tion of M2n
0 and that long elements that also have long images satisfy strong lower bounds.

Lemma 4.9. (a) Let B2n D ¹A 2 M2n
0 W either A 2 Sh2n0 or T 2nA 2 Sh0�2nº.

There exists C > 0 such that, for all n � 1, #B2n � Ce7nh�=4.

(b) For all k � 1, if E 2 Mk
0 with diams.E/ � ı2 and diamu.T kE/ � ı2,

then �0.E/ � Cı2e
�kh� ; for some Cı2 > 0.

Some comments on the proof. Claim (a) follows by iterating the complexity bound given by
Lemma 4.2, using the fact that, by the choice of Nn and ı2, persistently short pieces cannot
grow at a rate faster than .K NnC 1/n=.2 Nn/ < enh�=4 over the most recent n=2 iterates.

Claim (b) rests on the fact that if E is long in the stable direction and T kE is long
in the unstable direction, then both E and T kE cross Cantor rectangles of a fixed size,
depending on ı2. Then the lower bound (4.2) is used to derive (b).

The importance of Lemma 4.9 lies in the fact that if A 2 G2n WD M2n
0 n B2n, then

there exists j; k � n=2 such that T jA � E 2 M
2n�j�k
0 and E satisfies Lemma 4.9(b),

i.e., �0.E/ � Cı2e
�.jCk/h� . Thus, apart from a set of “bad” elements B2n whose size is

relatively small, most elements of M2n
0 belong to the “good” set G2n and are contained in

a larger set that has good lower bounds. This, together with a time shift to group elements
of M2n

0 according to their good counterparts in M
2n�j�k
0 , is sufficient to adapt the Bowen

argument for uniqueness. The reader interested in more details is referred to [3, Sect. 7].

5. Open questions

We conclude by formulating several open questions relating to the family of geo-
metric potentials we have discussed.

(1) Is�0 D �SRB, or, more generally, is�s D �t for s ¤ t? If there exist s; t > 0, s ¤ t , such
that �s D �t , then Theorem 2.8 implies that P.t/ is affine on .0; t�/, so that �SRB would be
the equilibrium state for all t 2 .0; t�/, and assuming the sparse recurrence condition (4.1),
�SRB D �0 as well.

This seems highly unlikely. Indeed, suppose that z is a periodic orbit with no grazing
collisions and let �C

z be its positive Lyapunov exponent. Then our estimates on Bowen balls
such as Proposition 4.8 and (4.4), in addition to analogous ones for�SRB, imply that h� D �C

z

[3, Prop. 7.13]. Thus if we can find two periodic orbits with different Lyapunov exponents, we
can conclude that �0 ¤ �SRB, and in turn �s ¤ �t for all s ¤ t . There are no known Sinai
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billiard tables in which all periodic orbits have the same Lyapunov exponent, yet it is not
proved that this cannot happen. See [35, Sect. 4.4] for a related class of models (a type of
open billiard) for which such anomalous behavior has been effectively ruled out.

(2) Can one establish a rate of mixing for �0? While exponential mixing for �t , t 2 .0; t�/,
follows from the spectral gap for Lt , no such gap is available for L0. The question arises
whether this is a consequence of the technique or whether there is a genuine failure of expo-
nential mixing at t D 0. The fact that the pressure P.t/ is finite for t � 0 and infinite for
t < 0whenever there is a periodic orbit with a grazing collision suggests that there is, indeed,
a phase transition at t D 0, so a loss of exponential mixing would not be out of place. On the
other hand, for many expanding systems, the measure of maximal entropy has a faster rate
of mixing than the SRB measure, not a slower one.

(3)What are other limit theorems and properties of�0?Once a rate of mixing has been estab-
lished, other limits theorems might follow, for example, a dynamical Central Limit Theorem,
which generally requires a summable rate of decay of correlations. Other limit theorems
might include invariance principles or large deviation estimates. These are all available for
�t , t > 0, by spectral techniques (see [39] or [32, Sect. 6]), but not for �0 at this time.

(4) Can one find a finite horizon Sinai billiard table such that the sparse recurrence condition
fails? In other words, can one find a table with h� � s0 log2? If so, does a measure of maximal
entropy still exist and is it T -adapted, i.e., does it satisfy bounds of the form (4.3)?

(5) Does �t ! �0 as t ! 0? For t 2 .0; t�/, continuity of �t and differentiability of P.t/
follow from perturbation theory. Assuming the sparse recurrence condition (4.1), Baladi and
Demers [4, Prop. 5.5] prove that limt#0 P.t/ D P.0/ D h�, yet the question of whether the
equilibrium states converge remains open.

(6) Is P.t/ analytic for all t > 0 or is there a phase transition at some t? > 1? If so,
how does t? depend on the configuration of scatterers? It is clear from the definition of
t� that it is not an optimal condition for most billiard tables since the hyperbolicity constant
ƒ D 1C 2Kmin�min is a lower bound, which in general may not be attained along most or
even all orbits.

A more refined attempt would be to define �min � ƒ to be the minimal positive
Lyapunov exponent over all periodic orbits. Then we could define

t? D sup
®
t > 0 W P.t/ > �t�min

¯
;

and try to show that the spectral techniques described here go through for all t < t? (note that
t? � t�). This should involve in particular working with higher iterates of T and proving a
version of (2.1) withƒ replaced by �min. (In some works on the thermodynamic formalism,
the value of t? is called the freezing point of the geometric family, in analogy with 1=t being
thought of as temperature.)

Some inspiration for �min being the correct quantity to use can be found in finite-
horizon billiards in a triangular lattice. All scatterers on such tables are circles of equal
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radius R, thus the positive Lyapunov exponent of a period 2 orbit between two scatterers
at minimal distance from one another is precisely ƒ D 1 C

2�min
R

. In this case, ƒ D �min

and so t� D t?. If ı is the atomic invariant measure supported on this period 2 orbit, then
Pı.t/ D �t logƒ, so certainly P.t/ � �t logƒ for all t > 0. Yet, it is not known even in
this special case whether in fact P.t/ D �t logƒ at some t D t?, or whether t? D 1.
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