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Abstract

In this text we review a selection of contemporary research themes in holomorphic dynamics.
The main topics that will be discussed are geometric (laminar and woven) currents and
their applications, bifurcation theory in one and several variables, and the problem of
wandering Fatou components.

Mathematics Subject Classification 2020

Primary 37F80; Secondary 32U40, 37F46, 37F44, 37F10

Keywords

Laminar and woven currents, stability and bifurcations, wandering Fatou components

©2022 International Mathematical Union
Proc. Int. Cong.Math. 2022, Vol. 5, pp. 3460–3482
DOI 10.4171/ICM2022/60

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


Holomorphic dynamics was once part of classical complex analysis, but since its
rebirth in the 1980s it keeps enlarging its scope, integrating new ideas, and developing new
interactions. Some main tendencies of contemporary holomorphic dynamics are the conver-
gence between its one- and higher-dimensional aspects and its ever deeper interconnection
with algebraic and arithmetic dynamics. As a consequence, there is an endless diversifica-
tion of the available mathematical techniques. Besides the classical methods from dynam-
ics and complex analysis, its modern toolbox now comprises sophisticated tools and ideas
imported from complex geometry, pluripotential theory (and its latest advances for currents
of higher bidegree), algebraic geometry and commutative algebra, non-Archimedean anal-
ysis and geometry, arithmetic geometry (in particular, arithmetic equidistribution theory),
Teichmüller theory, geometric group theory, etc. Conversely, each of these domains bene-
fits from its interaction with holomorphic dynamics, by gaining new problems and examples.
Many (though not all!) of these connections were reported in recent ICMs [21,25,34,40,71,77].
Our purpose here is to present a few contemporary research themes whose common thread—
if one were to find one—is an emphasis on “soft” geometric techniques, such as the basic
geometry of analytic subsets in Cn. These represent only a tiny piece of the domain, reflect-
ing, of course, the author’s own taste and research interests. The main topics that will be
discussed are geometric currents, bifurcation theory, and the problem of wandering Fatou
components. The reader will soon notice that these three subjects are largely interrelated.
Many open problems have also been included, as a motivation for future investigations.

Let us describe in more detail the contents of this paper. Section 1 is a short survey
on positive closed currents with “geometric structure”. The use of geometric currents in
holomorphic dynamics was pioneered by Bedford, Lyubich, and Smillie in their seminal
work [9] on complex Hénon maps. Since then they have turned into a very versatile tool,
with many applications. Here we intend to give the flavor of a few specific results and how
they are used in dynamical problems, so this part of the paper will be a bit more technical
than the remaining sections.

Holomorphic dynamics is equally about the dynamics of a holomorphic map f and
about the evolution of this dynamical behavior when f depends on certain parameters. The
basic stability/bifurcation theory of rational maps in one variable was designed by Mañé,
Sad, Sullivan, and Lyubich [69,70,73] in the 1980s, who showed that one-dimensional ratio-
nal maps are generically structurally stable, using surprisingly elementary arguments. For
the quadratic family z2 C c, c 2 C, the bifurcation locus is the celebrated Mandelbrot set,
whose intricate structure was thoroughly studied since then, using a variety of combinato-
rial and geometric methods. This research area was profoundly renewed in the 2000s by the
systematic investigation of higher-dimensional phenomena, and in particular with the intro-
duction of bifurcation currents by DeMarco [32]. The bifurcation theory of holomorphic
dynamical systems is nowadays a very active research domain, and a meeting point between
the communities of one and several variable dynamicists. We relate this continuing story in
Section 2.
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Finally, one recent breakthrough is the construction of wandering Fatou components
in higher-dimensional polynomial dynamics, which at the same time solves an old problem
and raises many questions. We review these recent developments in Section 3.

Let us conclude this introduction with a little notice. Some important theorems will
be mentioned only in passing, while others are isolated within numbered environments: this
is meant to keep the reading flow, not to reflect a hierarchy of importance. Likewise, the list
of references is already quite long, but not exhaustive, and we apologize in advance for any
serious omission.

1. Geometric currents

1.1. Definitions
This part assumes some familiarity with positive currents and pluripotential theory

(see, e.g., Demailly [31] for basics). All the definitions here are local, so we work in some
bounded open set � � Ck . Let T be a positive closed current of bidimension .p; p/ in �.
Following Bedford, Lyubich, and Smillie [9], we say that T is locally uniformly laminar if
there exists a lamination by complex submanifolds of dimension p embedded in� such that
the restriction of T to any flow box B of the lamination is of the form

T jB D

Z
�

Œ�t �d�.t/: (1.1)

Here � is a global transversal in the flow box B , the �t are the plaques of the lamination
in the flow box, and � is a positive measure on � . The word “uniform” here refers to the
local uniformity of the geometry of the plaques �t We say that T is laminar if there exists
a sequence of open subsets �k , together with a sequence of currents Tk , locally uniformly
laminar in �k , such that Tk increases to T . The �k should be thought of as a union of
many small polydisks, whose complement has a small mass. The key word in the defini-
tion is “increases.” Intuitively, this definition should be understood as follows: Tk represents
all the disks contained in T of some given size (say 2�k); then, to Tk we add TkC1 � Tk

which is made of disks of size 2�.kC1/ (which may have nonempty boundary in �k , but
form a lamination in �kC1 � �k), and so on. The sequence Tk is not canonical, and has to
be understood as the choice of a “representation” of T as a laminar current. From this we
can deduce another representation of T as an integral over an abstract family of compatible
holomorphic disks, namely

T D

Z
A

ŒD˛�d�.˛/: (1.2)

Here compatible means that two disks can only intersect along some relatively open subset,
but there is no further restriction on the geometry of theD˛ . Even if this definition is rather
restrictive, it can lead to pathological examples, and for dynamical applications we will have
to constrain it further (see the notion of “strongly approximable” current below).

It was observed by Dinh [39] that in many situations it is more natural to let the
disks admit nontrivial intersections. One then defines uniformly woven currents by replac-
ing “lamination” by “web” in (1.1), where a web is locally given by a family of disks of
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dimension p with uniformly bounded volume or, more generally, a family of holomorphic
chains of dimension p with uniformly bounded volume (any such family is precompact for
the Hausdorff topology, so it makes sense to define a measure on a set of such disks). Then,
woven currents are defined from uniformly woven ones as in the laminar case. A difference
between laminar and woven currents is that in the woven case the measures in (1.1) and (1.2)
are not determined by T (e.g., the standard Kähler form in C2 admits several representations
as a uniformly woven current), so a woven current has to be thought of as “marked” by such
a measure �. It is not completely obvious to show that not every positive closed current is
woven; we leave this as an exercise to the reader!

There is no unified reference for the basic properties of laminar and woven currents.
Besides [9] and [39], the information in this paragraph was extracted from various papers,
notably by De Thélin and the author [28, 30, 37, 43,44,46]. In the following we use the word
geometric as a synonym of “laminar or woven.”

1.2. Construction and approximation
Positive closed currents often appear as limits of sequences of normalized currents

of integration. Furthermore, by a classical theorem of Lelong, any positive closed current
of bidegree .1; 1/ is locally of this form. In this section we explain how, under appropriate
hypotheses, a geometric structure can be extracted from such an approximation.

Still working locally in some open set�� Ck , endowedwith its standard Hermitian
structure, we say that a submanifold V of dimension p in� has size r at x 2 V if it contains
a graph over a ball of radius r of its tangent space TxV , relative to the orthogonal projection
to TxV , with slope (i.e., the norm of the derivative of the graphing map) bounded by 1.
In particular, V has no boundary in B.x; cr/ for some constant c depending only on p
and k. This notion of size makes sense in any compact complex manifold, up to uniform
constants, by choosing a finite covering by coordinate charts and a Hermitian metric. Note
that we may relax this definition by allowing V to be an analytic set: then V can have several
irreducible components at x, some of which being of size r .

If V is any submanifold (or subvariety) of�, possibly with boundary, and r > 0, we
denote by V r the set of x 2 V such that V has size r at x. In this way we get a tautological
decomposition, V D V r [ .V n V r /, which is reminiscent of the thin–thick decomposition
of hyperbolic manifolds.

Assume now that Vn is a sequence ofp-dimensional subvarieties of volume vn, such
that v�1

n ŒVn� converges to a positive closed current T . If Vol.V rn / � vn.1 � ".r// where
" is a function independent of n and such that ".r/ ! 0 as r ! 0, then one may extract
a subsequence so that v�1

n ŒV rn � converges to a geometric current T r � T with the mass
estimate M.T � T r / � ".r/. This endows T with a geometric structure: if p � k � 2, we
obtain a woven current and, if p D k � 1, this current is laminar. Indeed, if p D k � 1, by the
persistence of proper intersections, the limiting graphs cannot intersect nontrivially. (Note
that when p � k � 2, intersections can appear at the limit even if the Vn are submanifolds.
Conversely, if in codimension 1 we allow the Vn to admit self-intersections, we obtain woven
currents also in this case.)
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A technically convenient option is to further assume that the disks constituting V rn
are submanifolds (without boundary) in a subdivision of � by cubes of size cr (for some
constant c > 0). This is consistent with the manner in which the V rn are constructed in prac-
tice, and the resulting definition is equivalent (see [46]). In this way the limiting currents T r

are uniformly geometric in the cubes of this subdivision.
There are several easily checkable geometric and/or topological criteria ensuring

this condition, which sometimes give an explicit bound on ".r/:

• If W C !X is an entire curve in a projectivemanifold, then byAhlfors’ theory of
covering surfaces, for well-chosen sequencesRn ! 1, Vn WD .D.0;Rn// satis-
fies v�1

n Œ@Vn�! 0 andVol.V rn /� vn.1� ".r// for ".r/DO.r2/. Thus the cluster
values of v�1

n ŒVn� are closed woven currents; if, in addition,  is injective and
dim.X/ D 2, then they are laminar (Bedford–Lyubich–Smillie [9], Cantat [24]).

• If Vn is a sequence of algebraic curves in a projective surface whose geometric
genus is O.vn/, then Vol.V rn / � vn.1 � ".r// for ".r/ D O.r2/, therefore the
limiting currents of v�1

n ŒVn� are woven; under a mild additional condition on the
singularities of Vn, they are laminar (Dujardin [43]).

• If �n W Pp ! X is a sequence of holomorphic mappings of generic degree 1 to a
projective manifold X of dimension k > p and Vn D �n.Pp/, then the limiting
currents of v�1

n ŒVn� are woven (Dinh [39]). In addition, ".r/ D O.r2/ [46].

• If Vn is a sequence of smooth curves in the unit ball in C2, whose genus isO.vn/,
then the limiting currents of v�1

n ŒVn� are laminar (De Thélin [28]). A version of
this result in arbitrary dimension is given by De Thélin in [30].

In all these papers, the geometric structure is obtained by projecting Vn in several directions
and keeping only from Vn the graphs over these directions with bounded diameter or volume.
The bound ".r/ D O.r2/ plays an important role in applications as we shall see below.

1.3. Geometric intersection
The main interest of geometric currents is the possibility of a geometric interpreta-

tion of their wedge products. This technique was introduced in [9], and it was systematized
and generalized in several subsequent works. Such results are so far essentially available in
dimension 2; again since the problem is local, we work in some open set � � C2, say a
ball. If T1 and T2 are closed positive .1; 1/ currents in �, we say that the wedge product
T1 ^ T2 is well defined if u1 2 L1loc.T2/, where ui is a local potential of Ti , in which case
we set T1 ^ T2 D dd c.u1T2/. This condition and the resulting wedge product are actually
symmetric in T1 and T2. We also say that such a current is diffuse if it gives no mass to
curves.

For uniformly laminar and woven currents, geometric intersection is easy and basi-
cally follows from Fubini’s theorem. Indeed, assume that T1 and T2 are uniformly geometric
.1; 1/-currents in �, which locally in � admit the representation Ti D

R
Œ�it �d�i .t/. Then,
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if the wedge product T1 ^ T2 is well defined, locally we have that

T1 ^ T2 D

Z �
�1t \�2s

�
d�1.t/d�2.s/; (1.3)

where Œ�1t \ �2s � is the sum of point masses at isolated intersection points, counting mul-
tiplicities (see [38, 44]). In addition, if T1 and T2 are laminar and diffuse, nontransverse
intersections do not contribute to the integral, so we can restrict to transverse intersections.
Note the intermediate “semigeometric intersection” result

T1 ^ T2 D

Z ��
�1t

�
^ T2

�
d�1.t/; (1.4)

which makes sense for an arbitrary positive closed current T2.
Now assume that T is a geometric positive closed current in � � C2 and S is an

arbitrary positive closed current in� such that the wedge product S ^ T is well defined. We
say that T ^ S is semigeometric if there is a representation T D limr!0 T

r as an increasing
limit of uniformly geometric currents, such that T r ^ S increases to T ^ S as r ! 0. Thanks
to (1.4), T r ^ S admits a geometric interpretation. If now S itself is a geometric current,
we say that the wedge product T ^ S is geometric if there are representations T r % T and
S r % S such that T r ^ S r (which has a geometric interpretation by (1.3)) increases to
T ^ S .

We say that a geometric current is strongly approximable if there is a representation
T r % T where T r is uniformly geometric in a subdivision�r of� into cubes of size r , and
".r/ D M.T � T r / D O.r2/. As we have seen in Section 1.2, this estimate is commonly
satisfied in practice. (Technically, some freedom on the choice of �r is also necessary, but
we do not dwell on this point.) The sharpest version of the geometric intersection theorem
for geometric currents in dimension 2 is the following:

Theorem 1.1 (Dujardin [38, 44, 45]). Let S and T be closed positive .1; 1/ currents in
� � C2, such that the wedge product T ^ S is well defined. Assume that T is a strongly
approximable geometric current. Then, if S has locally bounded potentials, or if T ^ S gives
no mass to pluripolar sets, then T ^ S is semigeometric.

A consequence of this theorem, which is often as useful as the result itself, is that if
T was obtained as the limit of v�1

n ŒVn� as in Section 1.2, then v�1
n ŒV rn �^ S is close to T ^ S

for small r and large n.
Applying Theorem 1.1 to T ^ S and S ^ T , we get:

Corollary 1.2. If in Theorem 1.1 both S and T are strongly approximable geometric cur-
rents and T ^ S gives no mass to pluripolar sets, then T ^ S is geometric.

Themain open problem at this stage is the extension of these results to higher dimen-
sions.

Question 1.3. Is there a version of Theorem 1.1 for geometric currents of arbitrary codi-
mension?
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While the case of uniformly geometric currents and the case where T is of bidimen-
sion .1; 1/ follow without serious difficulties (see [46] and [47] for details), the general case
remains a challenge so far. The crucial mass estimate M.T � T r /DO.r2/ is known to hold
in some significant cases (see [46]), but it does not appear to be sufficient to conclude for
currents of arbitrary bidimension.

1.4. Dynamical applications
The first application of laminar currents by Bedford, Lyubich, and Smillie [9]was to

prove that certain intersections are nonempty. A typical example is the following: assume that
we are given an entire curve  W C ! X in some projective manifold, and let T be a closed
current obtained from  by Ahlfors’ construction. Let S be a current of bidegree .1; 1/ with
bounded potentials. If we know that

R
T ^ S > 0 (for instance, for cohomological reasons),

then by Theorem 1.1, this intersection is semigeometric, thereforeS j .D.0;Rn// is nonzero for
large n. (A version of this result which does not apply to laminarity was proved by Dinh and
Sibony [42].) This fact (as well as some variants) plays an important role in the dynamics of
automorphisms and birational maps on complex surfaces, where it is used as a tool to create
intersections between stable and unstable manifolds. This is used in [9] to establish that any
saddle point belongs to the support of the maximal entropy measure; this technique also
appears in the work of Cantat, Favre, Lyubich, and the author [24, 26, 52, 53], among others.
Note also that the failure of Theorem 1.1 for unbounded potentials can be viewed as the main
reason why the uniqueness of the measure of maximal entropy for general birational maps
of surfaces remains an unsolved problem.

Another use of geometric intersection, which was initiated in [45], concerns the
dynamical analysis of wedge products of dynamically defined currents. Indeed, suppose that
f is a self-map of some complex manifold X , and f n.L/ is a sequence of iterated curves
such that d�nf n.L/ converges to a geometric current T , with a control of the asymptotic
geometry of f n.L/ as in Section 1.2. Assume also that S is some invariant current of bide-
gree .1; 1/: f �S D dS and that T ^ S is a semigeometric intersection. Then for large n,
the action of f k on the bounded geometry part of d�nŒf n.L/� ^ S is a good approxima-
tion of the action of f k on T ^ S , and its expansion properties “in the direction of T ” can
be analyzed geometrically by “soft” methods, such as counting disjoint disks of size r and
length–area estimates (see below Theorem 2.4 for a worked out example). This idea was used
in various contexts by De Thélin and others [29,36,37,45,46].

1.5. Foliations
FoliatedAhlfors currents play an important role in thework of Brunella andMcQuil-

lan on singular holomorphic foliations (see, e.g., [20]). Geometric intersection has been
applied in foliation theory to prove the vanishing of certain self-intersections. For a posi-
tive current directed by a holomorphic foliation on a compact Kähler surface, this vanishing
can in turn be used to infer dynamical properties of the foliation such as the nonexistence
of invariant transverse measures (for closed currents) or the uniqueness of harmonic mea-
sures (for dd c-closed currents), according to a Hodge-theoretic formalism for dd c-closed
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currents devised by Fornæss and Sibony [58]. Proving that the self-intersection of harmonic
currents directed by holomorphic foliations vanishes is a very difficult problem in the pres-
ence of singularities. On P2 this can be treated by regularizing with global automorphisms,
the general case makes use of the theory of densities of Dinh and Sibony (see [41]). Here we
want to mention a more elementary-looking problem:

Question 1.4. Does there exist a diffuse (closed) uniformly laminar current on P2?

The expected answer to the question is “no,” since it is generally expected that there
does not exist a Riemann surface lamination embedded in P2. The above question is sup-
posed to be the “easy case” of this deep conjecture (since it deals with laminations with
transverse measures), and it admits a straightforward approach: if T is such a current, then
T ^ T D 0 because of the laminar structure, which is impossible onP2. This approach works
well as soon as T ^ T is well defined in the sense of pluripotential theory (but it does not for
a curve!), or when the holonomy of the induced lamination is Lipschitz [58]. But in general
the holonomy of a Riemann surface lamination in C2 (that is, a holomorphic motion) is less
regular and, surprisingly enough, the problem is still open so far. (See Kaufmann [66] for a
discussion of the higher-dimensional case.)

2. Bifurcation theory in one and several dimensions

Let .f�/�2ƒ be a family of rational maps on P1 of degree d , holomorphically
parameterized by some complex manifold ƒ. Then the well-known Fatou–Julia decompo-
sition of the phase space is mirrored by a stability–bifurcation dichotomy of the parameter
space. The proper definition of stability in this context was found simultaneously by Mañé–
Sad–Sullivan and Lyubich [69, 70, 73]: the family .f�/�2ƒ is J -stable over some domain
� � ƒ if one of the following equivalent conditions holds over �:

(i) the periodic points of .f�/ do not collide or, equivalently, the nature (attracting,
repelling, indifferent) of each periodic point remains the same in the family;

(ii) the Julia set � 7! J� moves continuously for the Hausdorff topology;

(iii) for any two parameters �; �0 in �, f�jJ� is topologically conjugate to f�0 jJ�0 ;

(iv) the orbits of the critical points f� do not bifurcate.

The equivalence between these properties relies on the notion of holomorphic motion (also
known as holomorphic families of injections) of a subset of the Riemann sphere, and the
simple, yet powerful idea of automatic extension of a holomorphic motion to its closure (the
“�-lemma”). Condition (iv), together with the finiteness of the critical set, easily implies that
in any such parameterized family .f�/, the stability locus is open and dense in ƒ. In other
words, one-dimensional polynomial and rational maps are generically stable.

For the emblematic family f�.z/D z2 C� of quadratic polynomials, the bifurcation
locus is the boundary of the Mandelbrot set M (connectivity locus). Even if its interior is
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empty, @M is still quite large, as shown by the following famous result of Shishikura [80]:
@M has Hausdorff dimension 2. This property was extended to arbitrary families of rational
maps by Tan Lei and McMullen [67, 75]. The basic technical tool underlying Shishikura’s
theorem is the phenomenon of parabolic implosion, which will also play an important role
below. Note that is still unknown whether @M has zero or positive Lebesgue measure.

This research area was renewed in the last 20 years as the result of several tenden-
cies: (1) the use of positive closed currents, and (2) the move towards higher dimensions
(both in dynamical and parameter spaces). In the next few pages, we review some of these
developments; in particular, we will see how these influential one-dimensional results trans-
late to new settings. Lack of space prevents us from giving a complete treatment, and some
important results will barely be mentioned. Also, we do not discuss the profound connection
with arithmetic dynamics, for which the reader is referred, e.g., to [34], or bifurcations of
Kleinian groups (see [35,48]).

2.1. Bifurcation currents in one-dimensional dynamics
Let as above .f�/�2ƒ be a holomorphic family of rational maps of degree d . The

following addition to the list of equivalent conditions to stability was found by DeMarco [33]:

(v) the Lyapunov exponent of the unique measure of maximal entropy �.�f�/ is a
pluriharmonic function of �.

The bifurcation current is then defined by Tbif WD dd c
�
�.�f�/. For the family of quadratic

polynomials, Tbif (D �bif, see below) is the harmonic measure of the Mandelbrot set.
The original definition of the bifurcation current in [32] can be interpreted geomet-

rically as follows (see [51]). Consider the fibered dynamical system in ƒ � P1 defined by
Of W .�; z/ 7! .�; f�.z//. It admits a natural invariant current OT of bidegree .1; 1/, sat-
isfying Of � OT D d OT , whose restriction to a generic vertical line ¹�º � P1 is the maximal
entropy measure �f� . Now, take a holomorphically moving (or “marked”) point � 7! a.�/

in P1, and denote by �a its graph in ƒ � P1. If � W ƒ � P1 ! ƒ is the natural projec-
tion, we obtain a current in ƒ associated to a by slicing OT by �a and projecting down to
ƒ: Ta WD ��. OT ^ Œ�a�/. If in a holomorphic family .f�/, the critical points are marked
by holomorphic functions � 7! ci .�/ (this is always possible up to replacing ƒ by some
branched cover), we thus obtain the corresponding bifurcation currents Tci . It turns out that
Tbif D

P
Tci : this follows from a variant of theManning–Przytycki formula for the Lyapunov

exponent �.�f�/, which in the case of polynomials is written as

�.�f / D log d C

X
i

Gf .ci /;

where Gf is the dynamical Green function (which satisfies dd cGf D �f ).
Bifurcation currents have turned into a fundamental tool for exploring higher dimen-

sional issues in parameter spaces. Here is a sample problem: consider a critically marked
family .f�; ci .�// and suppose that for some parameter �0 2 ƒ, the critical point c1.�/
bifurcates at � D �0. Then a simple application of Montel’s theorem shows that there is
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a sequence of parameters �n ! �0 such that, for � D �n, c1 is preperiodic. Now assume
that several (say all) critical points bifurcate at �0: is it then possible to approximate �0 by
parameters such that the corresponding critical points are preperiodic? Of course, in this
question one has to discard a few “trivial” obstructions, e.g., when dim.ƒ/ is too small, so
that there are not enough degrees of freedom to hope for an independent behavior of the crit-
ical points. Still after excluding these counterexamples, the answer to this problem is “no”
(see [51, Example 6.13]), the fundamental reason for this being the failure of Montel’s theo-
rem in higher dimension. Using currents is a known way of circumventing this problem in
higher-dimensional dynamics, and, as a matter of fact, the following theorem holds:

Theorem 2.1 (Bassanelli–Berteloot [8], Dujardin–Favre [51]). Let .f�/�2ƒ be a holomor-
phic family of rational maps of degree d � 2. Then for every k � dim.ƒ/,

Supp.T kbif/ � ¹�; f� admits k periodic critical pointsº: (2.1)

(This result was actually not stated explicitly in [8, 51], see [48] for this formulation. The
converse inclusion is studied below.)

When ƒ is the moduli space Pd of polynomials of degree d with marked critical
points (which is a finite quotient ofCd�1) or themoduli spaceMd of rational maps of degree
d with marked critical points (which is of dimension 2d � 2), we define the bifurcation
measure �bif to be the maximal exterior power of Tbif, that is, �bif D T d�1

bif or �bif D T 2d�2
bif ,

respectively. The following neat dynamical characterization of Supp.�bif/ can be obtained:

Theorem 2.2 (Dujardin–Favre [51], Buff–Epstein [22]). For ƒ D Pd or Md , the support of
�bif is the closure of (non-Lattès) strictly postcritically finite parameters, that is, parameters
for which all critical points are preperiodic to a repelling cycle.

A version of this result for intermediate powers of Tbif was obtained in [47], which
explains to what extent the converse inclusion in (2.1) holds.

Sketch of proof. The most delicate point is to show that any non-Lattès postcritically finite
parameter �0 belongs to Supp.�bif/. To fix the ideas, assume thatƒD Md . Observe that �0
is an intersection point of a family of .2d � 2/ hypersurfaces of the form®

� 2 Md ; f
n
�

�
ci .�/

�
D f nCk

�

�
ci .�/

�¯
(one for each critical point). The proof in [22] is based on two important ideas. The first
one consists in proving that these hypersurfaces are smooth and transverse at �0: this is
based on Teichmüller-theoretic ideas. Then, using this transversality, a version of Tan Lei’s
transfer principle between dynamical and parameter space allows comparing the mass of
�bif in a carefully scaled small polydisk about �0 with the mass of �f�0 near the f

n.ci /, and
conclude that this mass is positive.

In the space of polynomials of degree d , Theorem 2.2, together with other charac-
terizations of Supp.�bif/, e.g., in terms of landing of parameter rays, makes Supp.�bif/ the
natural analogue of the boundary of the Mandelbrot set for polynomials of higher degree.
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This motivates an investigation of its topological and geometric properties. First, it is a com-
pact set, which, for d � 3, is strictly contained in the boundary of the locusCd of polynomials
with connected Julia set. A topological consequence of Theorem 2.1 is that Supp.�bif/ is con-
tained in the closure of Int.Cd /; on the other hand, it is unknownwhetherCd is the closure of
its interior. Gauthier [59] extended Shishikura’s theorem to show that Supp.�bif/ has maximal
Hausdorff dimension at each of its points. Let us also note that by using advanced nonuni-
form hyperbolicity techniques, it was shown by Astorg, Gauthier, Mihalache, and Vigny [6]

that in the space Md of rational maps of degree d , Supp.�bif/ has positive volume.
The technical core of Theorems 2.1 and 2.2 is the fact that Tbif and its exterior powers

describe the asymptotic distribution of families of dynamically defined hypersurfaces in the
parameter space, like parameters with a preperiodic critical point, or parameters with a peri-
odic point of a givenmultiplier. Initiated in [7,8,51], this research theme has gradually evolved
in scope and sophistication, notably through its connections with arithmetic equidistribution
(see [54]).

A striking and unexpected consequence of this technology is an asymptotic estimate
for the number of hyperbolic components in Md , which is so far not accessible by other
means. Recall that a hyperbolic component is a connected component of the stability locus
in which the dynamics is uniformly expanding on the Julia set. We say that a hyperbolic
component� is of disjoint type .n1; : : : ; n2d�2/ if the critical points are attracted by distinct
attracting cycles of respective exact period ni .

Theorem 2.3 (Gauthier, Okuyama, and Vigny [60]). The number N.n/ of hyperbolic com-
ponents of disjoint type .n; : : : ; n/ in Md satisfies

N.n/ �
n!1

d .2d�2/n

.2d � 2/Š

Z
Md

�bif:

(An analogous formula holds for arbitrary disjoint type .n1; : : : ;n2d�2/.) Note that the corre-
sponding result inPd is much easier and follows essentially fromBézout’s theorem (together
with a transversality argument). The value of

R
Md

�bif is known only for d D 2 [60].
Once the bifurcation measure is constructed on Pd or Md , it is natural to inquire

about the dynamics of a �bif-typical parameter. In Md this question is completely open so
far. For the family of quadratic (and more generally unicritical) polynomials, it was shown
by Graczyk–Swiatek [62] and Smirnov [81] in the late 1990s that a �bif-typical parameter
satisfies the Collet–Eckmann condition; in particular, the local geometry of its Julia set is
well understood. These results are based on combinatorial techniques and the landing of
external and parameter rays, and the method carries over for degree d polynomials (see [51,

Thm. 10]). Interestingly, a completely new approach to the results of [62,81]was recently found,
which applies to arbitrary families of rational maps.

Theorem 2.4 (De Thélin, Gauthier, and Vigny [36]). Let .f�/�2ƒ be an algebraic family of
rational maps of degree d with a marked critical point c.�/. Let Tc be the bifurcation current
associated to c and kTck be the associated total variation measure. Then for kTck-a.e. �,

lim inf
n!1

ˇ̌
Df n�

�
c.�/

�ˇ̌
�
1

2
log d > 0: (2.2)
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For the unicritical family zd C �, this statement is precisely the typicality of the
Collet–Eckmann expansion property.

Sketch of proof. This is an application of the techniques of Section 1.4. We may assume that
ƒ is of dimension 1, so that Tc is just a positive measure on ƒ. Consider the sequence of
iterated graphs �f n.c/, parameterized by 
n W � 7! .�; f n

�
.c.�///. Then, as explained above,

Tc D ��. OT ^ Œ�c �/, where � W ƒ � P1 ! ƒ is the first projection and OT is the natural
Of -invariant current in ƒ � P1. Using the Of -invariance of OT , we infer that

Tc D ��

�
d�nŒ�f n.c/� ^ OT

�
; and conversely .
n/�.Tc/ D d�nŒ�f n.c/� ^ OT :

Since the �f n.c/ are algebraic curves of uniformly bounded genus, by the results of Sec-
tion 1.2, the part .d�nŒ�f n.c/�/

r of these curves made of disks of size r has mass 1�O.r2/,
and since OT has continuous potential, by Theorem 1.1 the intersection d�nŒ�f n.c/� ^ OT is
carried by .d�nŒ�f n.c/�/

r , up to a small error �.r/. But to fill up a set of measure 1 � �.r/

of d�nŒ�f n.c/� ^ OT , at least c.r/dn disjoint such disks are required, and, pulling them back
by 
n, we get a set of c.r/dn disjoint disks in ƒ, covering a set of measure 1 � �.r/ for Tc ,
each of which mapped under 
n to a disk of size r . Being disjoint, most of the pulled-back
disks in ƒ have area at most Cd�n, so the derivative of 
n there must typically be larger
than Cdn=2. Analyzing how the derivative of 
n is expressed in terms of theDf k� .c.�//, for
0 � k � n, finally leads to (2.2).

As already mentioned, the theory of bifurcation currents has deep connections with
arithmetic dynamics, and related rigidity problems in moduli spaces. A typical problem in
this context is the classification of families with amarked point .f�;a.�// for which the bifur-
cation current Ta is “abnormally regular.” The reader is referred to the recent monograph [55]

by Favre and Gauthier for more on this topic.

2.2. Stability/bifurcation theory in higher dimension
Moving to higher dimension, it is tempting to imitate the definition of J -stability

by coining a definition of stability from the noncollision of periodic points. An obvious
difficulty is that in this context the automatic extension of holomorphic motions fails and
the relevance of this definition needs to be justified, for instance, by proving its equivalence
with other natural ones. Due to the variety of possible situations, in higher dimension the
details depend on the category of maps under study. So far, this program has been fulfilled in
two cases: polynomial automorphisms of C2 (by Lyubich and the author), and holomorphic
maps on Pk (by Berteloot, Bianchi, and Dupont).

2.2.1. Polynomial automorphisms of C2

For a polynomial automorphism f of C2, we can define Julia sets JC and J�

respectively associated to forward and backward iteration, as well as the “small Julia set”
J D JC \ J�, and J � � J the closure of the set of saddle periodic points, which is also
the support of the maximal entropy measure [9]. Following [53], we say that a holomorphic
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family .f�/�2ƒ of polynomial automorphisms of fixed dynamical degree d is weakly J �-
stable if (i) its saddle points do not bifurcate, hence (under mild assumptions) so do all
periodic points. (Here the numbering of properties corresponds to that of the 1-dimensional
case at the beginning Section 2.) Then the holomorphic motion of saddle points extends to
a branched holomorphic motion of J � and the condition is equivalent to (ii) � 7! J �.f�/

is continuous. Furthermore, the branched holomorphic motion extends to the “big Julia set”
JC [ J�. It remains an open question whether weak J �-stability yields a conjugacy on J �

or J (that is, whether an analogue of (iii) holds). It is proved in [13] that weak J �-stability
implies a probabilistic form of structural stability, that is, a conjugacy can be defined on a
full measure subset for any hyperbolic measure. Also, weak J �-stability preserves uniform
hyperbolicity [13, 50], so the familiar concept of hyperbolic component makes sense in this
setting.

Even if strictly speaking polynomial automorphisms have no critical points, the
main issue in [53] is about condition (iv) (stability of critical points). Indeed, it a popular
analogue of a prerepelling critical point for a 2-dimensional diffeomorphism is a hetero-
clinic tangency, so we are looking for a characterization of stability in terms of (absence of)
tangencies. It is well known that in dissipative dynamics, homoclinic tangencies yield bifur-
cations from saddles to sources, and the main point of [53] is to find a mechanism for the
converse implication. The key is the phenomenon of semiparabolic implosion.

Before moving on to this topic, let us point out that so far there is no theory of
bifurcation currents for automorphisms of C2.

Question 2.5. For polynomial automorphisms of C2, is stability characterized by the har-
monicity of the Lyapunov exponents of the maximal entropy measure? In other words, does
an analogue of condition (v) above hold?

2.2.2. Semiparabolic implosion and tangencies
Parabolic implosion refers to a set of phenomena, discovered by Douady and La-

vaurs, occurring when unfolding a periodic point with a rational indifferent multiplier. To be
specific, consider a family of the form

f�.z/ D .1C �/z C z2 C h:o:t:

in a neighborhood of the origin, for small �. For � D 0, the fixed point 0 admits a basin of
attraction B. Now If � approaches the origin tangentially to the imaginary axis, we can track
precisely how the parabolic basin B “implodes” by “passing through the eggbeater” created
between two slightly repelling fixed points p� D 0 and q� � ��. More precisely, for well-
chosen �n, f n�n converges locally uniformly in B to a nonconstant Lavaurs map W B ! C,
depending on .�n/. Of course, for �n � 0,  D 0: in this sense the limiting dynamics of f�
as � ! 0 is richer than that of f0. This gives rise to a wealth of dynamical phenomena at a
such a parabolic bifurcation, like the discontinuity of the Julia set or the birth of hyperbolic
set of large Hausdorff dimension, which are instrumental in Shishikura’s theorem that the
boundary of the Mandelbrot set has dimension 2.
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Bedford, Smillie and Ueda [11] extended this analysis to the unfolding of a semi-
parabolic fixed point of multiplicity 2 in C2, that is, of the form

f�.z; w/ D
�
.1C �/z C z2 C h:o:t:; b�w C h:o:t:

�
; with jb0j < 1: (2.3)

In this dissipative situation, as before the Lavaurs map is a limit of iterates of the form f n
�n
,

its domain is the attracting basin B of the origin, but its values are contained a curve: the
repelling petal of the semiparabolic point. For polynomial automorphisms, this leads to a pre-
cise description of the discontinuity of the Julia sets J and JC at�D 0. (See also Bianchi [15]
for some results about the implosion of general parabolic germs.)

If .f�/ is an arbitrary family of dissipative polynomial automorphisms, semi-
parabolic bifurcations (of possibly arbitrary multiplicity) occur densely in the bifurcation
locus by definition. A mechanism producing homoclinic tangencies from semiparabolic
implosion was designed in [53]. Besides the analysis of Lavaurs maps (which is not as pre-
cise as in the multiplicity 2 case (2.3)), this involves a construction of “critical points” in
semiparabolic basins, which by definition are tangencies between unstable manifolds (asso-
ciated to some given saddle point) and the foliation of the basin by strong stable manifolds.
Surprisingly, this construction is based on Wiman’s classical theorem on entire functions of
slow growth, and requires a stronger dissipativity condition: jJac.f�/j < d�2 (substantially
dissipative regime). Altogether we obtain the following theorem, which confirms a classical
conjecture of Palis in this setting:

Theorem 2.6 (Dujardin and Lyubich [53]). In a substantially dissipative family of polyno-
mial automorphisms of C2, parameters with homoclinic tangencies are dense in the bifur-
cation locus.

It is expected that this result holds without the substantial dissipativity assumption.
Also, it is an open question whether quadratic tangencies are always created in this process.
A positive answer would yield an interesting link with the quadratic family, and add further
evidence to the universality of the Mandelbrot set.

2.2.3. Holomorphic maps on P k

The case of families of holomorphic maps on Pk was studied by Berteloot, Bianchi,
and Dupont in [14]. Here, as in the one-dimensional case, one starts with the stability of
repelling periodic points. More precisely, one has to restrict to repelling points contained
in the “small Julia set” J � (which by definition is the support of the maximal entropy
mesure �), since there can be a number of “spurious” repelling points outside J �. Then
Berteloot, Bianchi, and Dupont obtain an almost complete generalization of the results of
Mañé–Sad–Sullivan, Lyubich, and DeMarco (that is, of the above equivalent conditions (i)
to (v)). As before, a remaining issue is whether this notion of weak J �-stability implies
structural stability on J �. A main difference with the 1-dimensional case is that the char-
acterization of bifurcation in terms of currents is now essential to establish the equivalence
between the remaining conditions. More precisely, the link between the instability of critical
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orbits and that of periodic points is provided by a formula à la Manning–Przytycki for the
Lyapunov exponent of the maximal entropy measure.

We saw in Theorems 2.1 and 2.2 that the higher bifurcation currents T kbif describe
accurately certain higher-codimensional phenomena in the parameter space. It seems that the
distinction between Tbif and its powers is not as clear in higher-dimensional dynamics: in a
recent work, Astorg and Bianchi [3] showed that in a large portion of the family of polynomial
skew products of C2, the supports of all currents T kbif coincide with the bifurcation locus. So
the significance of these higher bifurcation currents in this context is yet to be explored.

2.3. Robust bifurcations
As said before, due to the finiteness of the critical locus, one-dimensional polyno-

mial and rational maps are generically stable. Intuition from real dynamics suggests that
this is not anymore the case in higher dimension. As in the previous paragraph, we discuss
separately the cases of polynomial automorphisms and of holomorphic maps on Pk .

2.3.1. Polynomial automorphisms
Given the characterization of weak J �-stability in [53], a straightforward adaptation

of the one-dimensional argument for the density of stability shows that in any holomorphic
family .f�/ of polynomial automorphisms ofC2, the union of (weakly J �-)stable parameters
together with parameters with infinitely many sinks is dense. Prior to [53], it was actually
already known that stability is not a dense phenomenon in this context, due to the following
remarkable result:

Theorem 2.7 (Buzzard [23]). There exist d >1 and an open subset��Autd .C2/ contained
in the bifurcation locus. In particular, maps with infinitely many sinks are dense in �.

Here Autd .C2/ is the space of polynomial automorphisms of C2 of degree d . This
deep theorem is nothing but the adaptation to the complex setting of Newhouse’s theorem
(see [76]) on the existence of surface diffeomorphisms with persistent homoclinic tangencies.
It is obtained by first constructing transcendental examples and then approximating them by
polynomial ones, hence the degree d is unknown and presumably very large. The existence
of this complex Newhouse phenomenon in arbitrary degree is a major open problem.

Question 2.8. Is the bifurcation locus of nonempty interior in Autd .C2/ for any d � 2?

As in the real case (cf. [76]), one may even expect that robust bifurcations (that is,
interior points of the bifurcation locus) are dense in the bifurcation locus, at least in the dissi-
pative regime. For this, it is tempting to imitate the approach of Shishikura’s theorem on the
Hausdorff dimension of @M and use semiparabolic implosion to construct large bifurcation
sets from a single parabolic bifurcation: in this sense the density of robust bifurcations would
be the optimal generalization of Shishikura’s theorem to automorphisms of C2. An interest-
ing first step would be to show that the bifurcation locus has maximal Hausdorff dimension at
every point. More advanced techniques will certainly be needed to get open subsets: an ambi-
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tious research program on the intersection of complex Cantor sets was initiated by Araujo,
Moreira, and Zamudio towards this perspective (see [1,2]).

Biebler observed in [18] that the existence of robust bifurcations is actually more
tractable in higher dimensions and showed that: for every d � 2, the bifurcation locus has
nonempty interior inAutd .C3/. This is based on a distinct mechanism for robust bifurcation,
namely the blenders of Bonatti and Diaz [19]. These are dynamically defined Cantor sets
which are so fat in a certain “direction” that they intersect an open set of curves. The point
of [18] is to use this feature as a building block for persistent tangencies.

Finally, let us point out a recent beautiful result by Yampolsky and Yang [85]: the
one-dimensional family of degree 2 Hénon maps with a golden mean Siegel disk

fa.x; y/ D .x2 C ca � ay; x/;

with ca D .1C a/

�
�

2
C

a

2�

�
�

�
�

2
C

a

2�

�2
and � D e�.1C

p
5/i ;

is structurally unstable at every parameter with small enough Jacobian jaj. This relies on a
completely different approach to persistent tangencies, based on Siegel renormalization.

2.3.2. Holomorphic maps on P k

From the work of Berteloot, Bianchi, and Dupont, we know that the basic phe-
nomenon responsible for bifurcations for holomorphic maps on Pk is when the postcritical
set intersects the small Julia set J �. Thus, to obtain robust bifurcations, it is enough to find a
mechanism ensuring a robust intersection between the postcritical set and J �. A convenient
tool for this is the Bonatti–Diaz blender, which leads to:

Theorem 2.9 (Dujardin [49]). For every k� 2 and d � 2, the bifurcation locus has nonempty
interior in Hold .Pk/.

Here, Hold .Pk/ is the space of holomorphic maps on Pk of degree d . A specific
one-dimensional family of holomorphic maps of P2 with a full bifurcation locus was found
independently by Bianchi and Taflin [16]. After this result, a natural question is that of the
abundance of robust bifurcations in Hold .Pk/. Taflin [83] showed that robust bifurcations
are abundant near product polynomial maps of C2, and Biebler [17] showed that Lattès maps
of sufficiently large degree are accumulated by robust bifurcations. Blenders are involved
directly or indirectly in both cases, and seem to appear quite naturally when a repelling
periodic point bifurcates to a saddle. Still, the general picture remains elusive.

Question 2.10. Is the bifurcation locus in Hold .Pk/ the closure of its interior?

Lastly, a celebrated theorem of McMullen asserts that any stable algebraic fami-
lies of rational maps on P1 is either isotrivial or a family of flexible Lattès examples [74].
Extending this result to higher dimensions is a promising research problem; one main obsta-
cle is that part of the argument relies on Thurston’s topological characterization of rational
functions. Related preliminary results have been obtained by Gauthier and Vigny [61].
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3. (Non-)Wandering Fatou components

The classification of Fatou components is a basic chapter of holomorphic dynamics.
For rational maps in dimension 1, periodic Fatou components can be classified into attract-
ing basins, parabolic basins, and rotation domains (Siegel disks and Herman rings). The
crowning achievement of this classification is the celebrated nonwandering domain theorem
of Sullivan [82]: for a one-dimensional rational map, any Fatou component is preperiodic.

In higher dimensions, techniques from geometric function theory may be applied to
classify periodic Fatou components. It is convenient to distinguish between recurrent and
nonrecurrent periodic components: a fixed Fatou component � is recurrent if for some
x 2 �, the !-limit set !.x/ is not completely contained in @�. Recurrent Fatou compo-
nents were classified in various classes of rational maps in [10,56,57,84]. The upshot is that
in such a component either there is an transversely attracting submanifold (possibly a point)
or the dynamics is of rotation type. The situation is far less understood in the nonrecurrent
case. A notable exception is that of substantially dissipative automorphisms ofC2, for which
it was shown by Lyubich and Peters [72] that any nonrecurrent Fatou component is the basin
of a semiparabolic periodic point.

On the other hand, it is immediately clear that the quasiconformal techniques used
in Sullivan’s proof are not generalizable to higher dimension. As it turns out, wandering
components do exist in 2-dimensional polynomial dynamics:

Theorem 3.1 (Astorg, Buff, Dujardin, Peters, and Raissy [5]). If 0 < a < 1 is sufficiently
close to 1, the polynomial mapping of C2 defined by

f W .z; w/ 7!
�
p.z;w/; q.w/

�
D

�
z C z2 C az3 C

�2

4
w;w � w2

�
admits a wandering Fatou component.

The proof is based on an original idea of M. Lyubich, and relies on a skew product
version of parabolic implosion. It was further implemented in other situations in [4,63].

Sketch of proof. Write p.z;w/ D p0.z/C ".z;w/, with p0.z/ D z C z2 and ".z;w/ being
thought of as a perturbative term. Start with an initial point .z0; w0/ such that z0 belongs to
the parabolic basin of attraction of 0 for p0 and w0 a small positive number, and let as usual
.zn; wn/ D f n.z0; w0/. Then wn D qn.w/ converges to 0 along the positive real axis, and
pn0 .z0/ converges to 0 along the negative real axis. Therefore zn D pn0 .z0/C "n is pushed
a little faster towards the origin by the term "n. The terms in ".z; w/ are crafted so that if
z0 is chosen carefully in some open set of initial conditions, the iterates zn indeed pass the
origin by going “through the eggbeater” and come back close to their initial position. So we
can repeat this process and conclude that .z0; w0/ belongs to some Fatou component. But
since the returning time increases with the number of iterations, this Fatou component is not
periodic, and we are done.

At this stage the following natural questions arise:
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Question 3.2. (1) Are there other dynamical mechanisms leading to wandering
Fatou components?

(2) Find substantial families of higher-dimensional rational mappings without wan-
dering domains.

Regarding the first question, a mechanism for constructing wandering domains in 2-
dimensional smooth dynamics, based on the Newhouse phenomenon, was devised by Colli
and Vargas [27]. Berger and Biebler recently proved that this mechanism can be implemented
in certain 5-dimensional families of Hénon maps, leading to the following stunning theorem:

Theorem 3.3 (Berger and Biebler [12]). There exists a polynomial automorphism of C2 of
degree 6 with a wandering Fatou component.

This solves the existence problem for wandering Fatou components for plane poly-
nomial automorphisms, which does not seem to be amenable to the techniques of [5].

For the second question, it is a classical fact that hyperbolic dynamics prevents the
existence of wandering domains. Besides this observation, not much is known. In view of
Theorem 3.1, it is natural to investigate the case of skew products with a fixed attracting fiber,
that is, of the form

f .z;w/ D
�
p.z/; q.z; w/

�
; with p.0/ D 0 and

ˇ̌
p0.0/

ˇ̌
< 1: (3.1)

In this case it could be expected that Sullivan’s theorem, together with the attracting nature of
the invariant fiber, should be enough to prevent the existence of wandering domains. Embar-
rassingly enough, even in such a simple situation, there is no definitive answer so far, and
furthermore it was shown by Peters and Vivas [79] that the above naive intuition does not
lead to a proof. Here is the current status of the problem:

Theorem 3.4 (Lilov, Peters-Smit, Ji). If f is an attracting skew product as in (3.1), then
there are no wandering components near the attracting fiber, whenever:

• p0.0/ D 0 [68] or, more generally, if jp0.0/j is small enough (with respect to p
and q) [65];

• jp0.0/j< 1 and q.0; �/ satisfies some nonuniform hyperbolicity properties [64,78].

There is currently no hope for a general understanding of the problem of wandering
Fatou components in several dimensions, and even going beyond skew products seems to be
a serious challenge. An interesting first case to be considered is that of Fatou components in
the neighborhood of an invariant superattracting line, which would cover, for instance, the
case of regular polynomial mappings of C2 near the line at infinity.
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