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Abstract

In this paper we give an overview of recent developments pertaining to the quantitative
aspects of dynamics of group actions on homogeneous spaces.
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1. Introduction

Dynamical systems have become a major player in several unexpected areas in
modern mathematics. Homogeneous spaces and the moduli spaces of compact Riemann
surfaces serve as two hubs where techniques from dynamical systems and analysis duel in
a nearly magical fashion with the structure provided by the rich geometric, algebraic, and
arithmetic properties of the underlying space.

Investigations in these directions have resulted in several breakthrough results with
striking applications in other areas of mathematics. However, most of these celebrated
achievements share the lacuna that they are not quantitative. It is much anticipated and a
challenging task to develop finitary arguments in these contexts; this article aims at provid-
ing an overview of some of the quantitative results in this setting.

Let us begin by recalling the general frame work of homogeneous dynamics. Let
G � SLd .R/ be a connected linear Lie group, and let � �G be a lattice (a discrete subgroup
with finite covolume). Let W � G be a closed connected subgroup of G. The following
problem has proven to be of fundamental importance:

Describe the behavior of the orbit Wx for every point x 2 G=� .

Note that we demand information about the orbit of every point in the space not merely
a typical point, which is a more common theme in ergodic theory. Note also that in the
above generality, one cannot expect a meaningful answer to this problem. For example, if
G D SL2.R/ andW is the group of diagonal matrices in G, then individual orbits can have
very complicated behavior and in particular the closure of orbits can be a fractal set, see,
e.g., [64].

If W is generated by unipotent elements,1 however, Raghunathan had conjectured
that for every x 2G=� there exists a connected subgroupW �L�G so thatLx is periodic
and the closure ofWx equalsLx; an orbitLx is periodic if the stabilizer of x inL is a lattice
in L, see Section 2.

Raghunaths’s conjecture in its full generality was proved by Ratner [88–90]. Prior to
Ratner’s seminal work, some important special cases of this conjecture were established by
Margulis [74], and Dani and Margulis [25,26].

As was alluded to above, these fundamental results are not quantitative, e.g., they
do not provide any rate at which the orbit fills up its closure. Indeed Ratner’s work relies
on the pointwise ergodic theorem which is hard to effectivize. The work of Dani and Mar-
gulis uses minimal sets, which though formally ineffective, can be effectivized with some
effort. However, this a rather challenging task; moreover, the rates one obtains are often
poor, see Section 6 for further discussion.

We note that good effective bounds for equidistribution of unipotent orbits can have
far reaching consequences. Indeed, the Riemann hypothesis is equivalent to giving an error

1 An d � d matrix is called unipotent if all its complex eigenvalues are 1. A connected sub-
group of SLd .R/ is called unipotent if all its elements are unipotent.
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term of the form O".y
3
4 C"/ for equidistribution of periodic horocycles of period 1=y on the

modular surface [91, 100]. Motivated by related but less dramatic applications, one is inter-
ested in obtaining rates which have polynomial nature. In the generality that will be discussed
in Section 6, however, such bounds seem beyond the reach of the current technology. That
said, there have been some exciting developments in this direction which will be discussed
in the sequel.

We bring this introduction to a close by mentioning that there have also been ground-
breaking works in a similar vein to the rigidity phenomena which lie at the heart of this
paper, but in different contexts: In fact, the papers [30, 68] concern higher rank diagonaliz-
able flows; the papers [5–7,12] concern the classification of stationary measures; the papers
[40,41] concern the action of SL2.R/ on moduli spaces and apply also the method developed
for stationary measures; and [4, 66, 79, 80] concern the case where � has infinite covolume.
These works, with the exception of [12], are all qualitative and any effective account of these
would be very intriguing.

2. Complexity of periodic orbits

Let L � G be a closed subgroup. A point x 2 X D G=� is called L-periodic if

StabL.x/ D ¹g 2 L W gx D xº

is a lattice in L. A periodic L-orbit (or simply a periodic orbit if L is clear from the context)
is an orbit Lx where x is an L-periodic point. Note that a periodic L-orbit is always closed
in X , see [87].

The rigidity results we will discuss here assert that the closure of an orbit Wx is a
periodic orbit Lx of an intermediate subgroupW � L � G. It is therefore natural to expect
that quantitative statements in this context will in general depend on delicate properties of
the point x and the acting group W . Indeed, already for an irrational rotation of a circle,
Diophantine properties of the angle of rotation dictate the rate of equidistribution. In the
more general context at the heart of our discussions here, periodic orbits of intermediate
subgroups will play the role of rational numbers. Consequently, it is crucial to fix a measure
of complexity for the periodic orbits which are obstructions to the density of an orbit in X .

Fix some open bounded neighborhood � of the identity in G. For a periodic orbit
Lx � X , define

vol.Lx/ D
mL.Lx/

mL.�/
; (2.1)

where mL is an arbitrary Haar measure on L and mL.Lx/ is the covolume of StabL.x/ in
L with respect tomL. This notion of volume will serve as our measure of the complexity of
the periodic orbit,

We refer the reader to [31, §2.3] for basic properties of the above definition. Here we
only mention that even though this notion depends on the choice of�, two different choices
of� give rise to comparable definitions of vol, in the sense that their ratio is bounded above
and below. Therefore, we ignore the dependence on � in the notation.
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Given a periodic orbit Lx, we let �Lx denote the probability L-invariant measure
on Lx. The G-invariant probability measure on X will be denoted by mX .

The general theme of a finitary statement will be a dichotomy as follows: Unless
there is an explicit obstruction with low complexity, the orbitWx fills up X with an explicit
rate—as we will see, the quality of this rate varies in different situations.

3. Effective equidistribution of nilflows

Perhaps the first natural place to seek quantitative density theorems is the case of
nilflows. LetX be a nilmanifold. That is,X DG=� whereG is a closed connected subgroup
of the group of strictly upper triangular d � d matrices and � � G is a lattice.

Rigidity results in this setting have been known for quite some time thanks to works
of Weyl, Kronecker, L. Green, and Parry [2,85], and more recently Leibman [67].

Quantitative results, with a polynomial error rate, have also been established in
this context and beyond the abelian case, see [46, 53]. The complete solution was given by
B. Green and T. Tao [53]. The following is a special case of the main result in [53].

Theorem 3.1 ([53]). Let X D G=� be a nilmanifold as above. There exists some A � 1

depending on dimG so that the following holds. Let x 2 X , let ¹u.t/ W t 2 Rº be a one-
parameter subgroup ofG, let 0 < � < 1=2, and let T > 0. Then at least one of the following
holds for the partial trajectory ¹u.t/x W t 2 Œ0; T �º:

(1) For every f 2 C1.X/, we haveˇ̌̌̌
ˇ 1T

Z T

0

f
�
u.t/x

�
dt �

Z
X

f dmX

ˇ̌̌̌
ˇ �X;f �;

where the dependence on f is given using a certain Lipschitz norm.

(2) For every 0� t0 � T , there exist some g 2G and someH ¨G so thatH�=� is
periodic with vol.gH�=�/�X ��A and for all t 2 Œ0; T � with jt � t0j � �AT ,
we have

distX
�
u.t/x; gH�=�

�
�X �;

where distX is a metric onX induced from a right invariant Riemannian metric
on G.

We refer the reader to [33] for this formulation and the deduction of it from the main
result in [53]. Let us, however, highlight here the aforementioned dichotomy: either the orbit
¹u.t/x W t 2 Œ0; T �º is effectively equidistributed, part (1) in Theorem 3.1, or there is an
explicit obstruction of low complexity which prevents this, part (2) in Theorem 3.1.
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4. Horospherical groups

Let G be a connected semisimple Lie group. A subgroup W � G is called horo-
spherical if there exists an (R-diagonalizable) element a 2 G so that

W D W C.a/ WD
®
g 2 G W anga�n

! e as n ! �1
¯
:

It is well known that W � G is horospherical if and only if it is the unipotent rad-
ical of a proper parabolic subgroup of G. In particular, a horospherical subgroup is always
unipotent,2 but not vice versa; indeed, if W is horospherical, then G=NG.W / is compact
where NG.W / denotes the normalizer of W in G.

The study of the action of a horospherical subgroup ofG onG=� has a long history,
and rigidity theorems á la Ratner in this case were established by Hedlund, Furstenberg,
Veech, and Dani [20, 21, 24, 48, 59, 97] prior to Ratner’s theorems. Indeed, thanks to the fact
that the behavior of individual orbits of a horospherical subgroup can be related to the decay
of matrix coefficients, effective equidistribution, with a polynomial error rate, can also be
established. The first works in this direction we are aware of are [16,64,91], as well as the more
recent [45,93,95], and this has now been established in much greater generality [62,63,78,82].
Closely related is the case of translates of orbits of subgroups of G which are fixed by an
involution [3,29,39].

We refer the reader to [78, Thm. 3.1] for the case of SLn.R/= SLn.Z/ and to [62,

Thm. 1.11] for the general case. Let us only mention here that in this case, obstructions to
effective equidistribution of Wx, where W D W C.a/, can be described using the rate of
excursion of ¹a�nx W n 2 Nº to infinity. Consequently, quantitative nondivergence of unipo-
tent flows [22,23,27,65,73] plays a crucial role in the analysis, see also the discussion in Sec-
tion 6.2. In particular, when X D G=� is compact, Wx is equidistributed in .X;mX / with
a polynomial rate for every point x 2 X .

Another class of examples where one may attempt to bring properties of horospher-
ical subgroups to bear are provided by semidirect product constructions. Let G D H Ë V
where H is a noncompact semisimple Lie group and V is an irreducible representation of
H . One then investigates the action of a horospherical subgroup W � H on G=� . This
case is significantly more complicated that the case of horospherical subgroups, and only
partial progress has been made in this direction. Indeed, Strömbergsson [96] used analytic
methods to settle the case of G D SL2.R/ Ë R2 with the standard action of SL2.R/ on R2,
� D SL2.Z/ Ë Z2, and W the group of unipotent upper triangular matrices in SL2.R/; his
method has also been used to tackle some other cases.

We end this section by mentioning that ideas developed in the homogeneous setting
have also found applications in the study of horospherical foliation (strong unstable foliation)
in the space of translation surfaces, see, e.g., [42,70].

2 The fact that a horospherical subgroup is unipotent follows readily from the definition.
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5. Periodic orbits of semisimple groups

Until roughly 15 years ago, the source of quantitative treatments in this context
could essentially be traced back to the settings discussed in Sections 3 and 4. However, the
situation has recently improved. In the remaining parts of this article, we discuss some of
these advances.

One of the earliest works in this new wave was the landmark paper of Einsiedler,
Margulis, and Venkatesh [32] concerning the periodic orbits of semisimple groups. Let G

be a connected, semisimple algebraic Q-group, and let G be the connected component of
the identity in the Lie group G .R/. Let � � G be a congruence subgroup of G .Q/, and put
X D G=� . LetH � G be a semisimple subgroup without any compact factors which has a
finite centralizer in G.

The following is the main equidistribution theorem proved in [32].

Theorem 5.1 ([32]). There exists some ı D ı.G; H/ so that the following holds. Let Hx
be a periodic orbit. For every V > 1, there exists a subgroup H � S � G so that Sx is
periodic, vol.Sx/ � V , andˇ̌̌̌ Z

X

f d�Hx �

Z
X

f d�Sx

ˇ̌̌̌
�G;�;H �.f /V �ı for all f 2 C1

c .X/;

where �.f / denotes a certain Sobolev norm.

Theorem 5.1 is an effective version (of a special case) of a theorem by Mozes and
Shah [84]. The polynomial nature of the error term, i.e., a (negative) power of V , in The-
orem 5.1 is quite remarkable—effectivizations of dynamical arguments often yield much
worse rates, see Section 6. The source of this polynomial rate is the uniform spectral gap for
congruence quotients, which is used as a crucial input in [32].

As it was alluded to already, the fact that one deals with periodic orbits of semisim-
ple groups in arithmetic quotients is an indispensable features of the ideas developed in [32],
namely the uniform spectral gap for congruence quotients. However, some of the other
assumptions made in Theorem 5.1 may be relaxed. Indeed, in a subsequent work, Einsiedler,
Margulis, Mohammadi, and Venkatesh [31] proved an adelic statement which lifts two of
the restrictions imposed in Theorem 5.1: the fact that H is assumed fixed (the estimates in
Theorem 5.1 depend onH ) and splitting assumption onH at the archimedean place (H has
no compact factors).

Let G be a connected, semisimple, algebraic Q-group3 and set X D G .A/=G .Q/

where A denotes the ring of adeles. Then X admits an action of the locally compact group
G .A/ preserving the probability measure mX . Let H be a semisimple, simply connected,
algebraic Q-group, and let g 2 G .A/. Fix also an algebraic homomorphism � W H ! G
defined over Q with finite central kernel. For example, let G D SLd and H D Spin.Q/ for
an integral quadratic form Q in d variables.

3 The paper [31] allows for any number field, F , but unless X is compact, ı in Theorem 5.2
will depend on dim G and ŒF W Q�.

3535 Finitary analysis in homogeneous spaces



To this algebraic data and any g 2 G .A/, one associates a homogeneous set

Y WD g�
�
H .A/=H.Q/

�
� X

and a homogeneous probability measure �.
The following is a special case of the main theorem in [31].

Theorem 5.2 ([31]). Assume further that G is simply connected. There exists some ı > 0,
depending only on dim G , so that the following holds. Let Y be a homogeneous set and
assume that �.H / � G is maximal. Thenˇ̌̌̌ Z

X

f d� �

Z
X

f dmX

ˇ̌̌̌
�G �.f / vol.Y /�ı for all f 2 C1

c .X/;

where �.f / is a certain adelic Sobolev norm.

The flexibility that Theorem 5.2 provides has interesting number theoretic applica-
tions. Indeed, the following generalization of Duke’s theorem is proved in [31].

Let Qd D POd .R/nPGLd .R/=PGLd .Z/ be the space of positive definite quadratic
forms on Rd up to the equivalence relation defined by scaling and equivalence over Z.
Equip Qd with the push-forward of the normalized Haar measure on PGLd .R/=PGLd .Z/.

LetQ be a positive definite integral quadratic form on Zd , and let genus.Q/ (resp.
spin genus.Q/) be its genus (resp. spin genus).

Theorem 5.3 ([31]). Suppose ¹Qnº varies through any sequence of pairwise inequivalent,
integral, positive definite quadratic forms. Then the genus (and also the spin genus) of Qn,
considered as a subset of Qd , equidistributes as n! 1 (with speed determined by a power
of j genus.Qn/j).

It is worth mentioning that when d D 3; 4, this theorem even in its qualitative form
is new. When d > 5, the qualitative version of this theorem follows from an equidistribution
theorem proved in [52], see also [43] for related analysis in the presence of a splitting condition
at the archimedean place

Another application of Theorem 5.2 is an independent proof of property .�/ except
for groups of type A1. In particular, the paper [31] provides an alternative proof of the main
result of Clozel in [19], albeit with weaker exponents, see [31, §4].

In addition to the ingredients involved in [32], the proof of Theorem 5.2 relies on
Prasad’s volume formula [86] and the work of Borel and Prasad [9]. These fundamental inputs
are responsible for liberties supplied by Theorem 5.2.

The main problem which remains open in this direction is to prove an analogue of
Theorem 5.2 which allows �.H / to have an infinite centralizer; such a theorem would have
quite interesting number theoretic applications, see [36]. Some progress has been made in
this direction recently, the reader is invited to consult [1,34,35], for instance.
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6. Effective unipotent dynamics

In view of Theorem 3.1, let us assume that G has noncompact semisimple sub-
groups, e.g.,G is a noncompact semisimple linear Lie group. In light of the results discussed
in Section 4, the analysis of the quantitative behavior of unipotent orbits inG=� is reduced to
orbits of groups which are not horospherical. Not surprisingly, however, this task has proven
quite challenging. In this section, we will discuss some recent progress made in this direc-
tion. The general theme of results in this section revolves around exploiting and effectivizing
the polynomial like behavior of unipotent orbits.

6.1. Effective versions of the Oppenheim conjecture
The Oppenheim conjecture, proved by Margulis [74], states that if Q is a nonde-

generate, indefinite quadratic form which is not a rational multiple of a form with integer
coefficients, then for every " > 0, there exists some v 2 Z3 n ¹0º so that jQ.v/j < ". Gener-
alizations were also proved by Dani and Margulis prior to Ratner’s theorems.

Later, Eskin, Margulis, and Mozes [37,38] proved quantitative (equidistribution) ver-
sions of the Oppenheim conjecture which relies on Ratner’s equidistribution theorem [88–90],
linearization techniques of Dani and Margulis [28], and a system of inequalities for a certain
Margulis function—an ingenious idea introduced in [37] which has become an indispensable
tool in homogeneous dynamics and beyond, see Section 7.2. Similar results for inhomoge-
neous forms have also been established [75,76].

Effective results in this context have also been actively pursued. Indeed, the analytic
approach (using the Hardy–Littlewood circle method) which had been employed prior to
Margulis’ work is by its nature effective. However, this approach is generally only applicable
if either the number of variables is large or the form has special features, see, e.g., [60].
More recently, Buterus, Götze, Hille, and Margulis [18] have proved effective version of
the Oppenheim conjecture (as well as the equidistribution versions [37]), with polynomial
error rates, provided that the number of variable is at least 5. Their proof combines ana-
lytic techniques with ideas from geometry of numbers in the form of inequalities which are
reminiscent of [37]. Analytic methods were also used in [92] and [11] to obtain polynomial
estimates for almost every form in certain families of forms in dimensions 3 and 4. The
case of general forms in 3 and 4 variables, however, seem to be out of the reach of analytic
methods.

Lindenstrauss and Margulis [69] proved an effective version of the Oppenheim con-
jecture for ternary form with polylog error rates.

Theorem 6.1 ([69]). There exist absolute constants A � 1 and � > 0 so that the following
holds:

LetQ be an indefinite, ternary quadratic form with detQ D 1 and let " > 0. There
exists T0."/ > 0 so that for any T � T0."/kQkA at least one of the following holds:
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(1) For every � 2 Œ�.logT /� ; .logT /� �, there is a primitive integer vector v 2 Z3

with 0 < kvk < T A satisfyingˇ̌
Q.v/ � �

ˇ̌
� .logT /�� :

(2) There is an integral quadratic form Q0 with j detQ0j < T " so that

Q � �Q0


 � kQkT �1

where � D j detQ0j�1=3.

The implied multiplicative constants are absolute and k � k denotes a norm on Mat3.R/.

Note in particular that if Q is a reduced, indefinite, ternary quadratic form which
is not proportional to an integral form but has algebraic coefficients, then part (1) in Theo-
rem 6.1 holds true for Q, see [69, Cor. 1.12].

The aforementioned dichotomy is again present in Theorem 6.1: unless there is an
explicit obstruction (part (2) in Theorem 6.1), one obtains an effective density result.

The proof in [69] is rather involved and is based on effectivizing Margulis’ original
proof of the Oppenheim conjecture, as well as the subsequent works by Dani and Margulis.
This approach, is based on the study of the action of SO.Q/, the isometry group of Q, on
X D SL3.R/=SL3.Z/, and relies on the notion of minimal sets from topological dynamics.
Minimal sets are not suitable for quantitative arguments. Indeed, the paper [69] replaces this
qualitative notion with a Diophantine condition in terms of the rate of escape to infinity under
a certain one-parameter R-diagonalizable subgroup. This novel ingredient plays a crucial
role in obtaining an effective account—similar elements in more general contexts will be
discussed in Section 6.2. It is worth mentioning that relying only on this input, one gets a
rate that is � log.log T /. The stronger bound obtained in [69] is made possible thanks to a
combinatorial lemma [69, §9] which is of independent interest.

6.2. Linearization of unipotent orbits
As it was mentioned before, Margulis and Dani developed a topological approach to

settle certain special cases of Raghunathan’s conjecture which relied on the notion of mini-
mal sets. One of the first steps in effectivizing this topological argument would therefore be
to replace minimal sets with an explicit Diophantine condition. This was established by Lin-
denstrauss, Margulis, Mohammadi, and Shah in [72] which may be thought of as an effective
version of the linearization technique of Dani and Margulis [28].

The linearization technique has its roots in the techniques developed by Margulis
[73] in his proof of the nondivergence of unipotent orbits. These nondivergence results are
effective. Indeed, they were sharpened by Dani in [22,23] and have been given a very explicit
and effective form by Kleinbock and Margulis in [65]. However, the author is not aware of
an effective treatment of the main results in [28] prior to [72].

Let us recall the setting in [72]. Let G be a connected Q-group, and putG D G .R/.
We assume that � � G is an arithmetic lattice. More specifically, fix an embedding � W G !
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SLN defined over Q so that �.�/ � SLN .Z/. Using �, we identify G with �.G / � SLN , and
hence will always assume that G � SLN .R/.

Define the following family:

H D
®
H � G W H is a connected Q-subgroup and R.H / D Ru.H /

¯
;

where R.H / (resp. Ru.H /) denotes the solvable (resp. unipotent) radical of H . Alterna-
tively, H 2 H if and only if H is a connected Q-subgroup which is generated by unipotent
subgroups over the algebraic closure of Q. By a theorem of Borel and Harish-Chandra,
H .R/ \ � is a lattice in H .R/ for every H 2 H . We always assume that G 2 H .

LetU �G be a (connected) unipotent subgroup ofG, and putX DG=� . For every
H 2 H , put H D H .R/. Define

NG.U;H/ WD ¹g 2 G W Ug � gH º:

Note that NG.U; H/ is an R-subvariety of G. Moreover, if H C G and U � H , then
NG.U;H/ D G.

Put

�.U / D

� [
H2H
H¤G

NG.U;H/

�
=� and G .U / D X n �.U /:

Points in �.U / are called singular with respect to U , and points in G .U / are called generic
with respect toU . These are, a priori, different from the measure-theoretically generic points
in the sense of Furstenberg for the action of U on X equipped with mX (see, e.g., [50, p. 98]
for a definition); however, any measure theoretically generic point is generic in this explicit
sense as well. The aforementioned remarkable theorem of Ratner [90] states that for every
x 2 G .U /, we have Ux D X .

Dani and Margulis [28] proved that U orbits of points in G .U / avoid �.U /. The
paper [72] makes this principle quantitative with polynomial rates.

We need some more notation to state this quantitative result. Let g D Lie.G/ and put
g.Z/ WD g \ slN .Z/. Let k � k denote the max norm on slN .R/ with respect to the standard
basis. This induces a family of norms on ^slN .R/, which we continue to denote by k � k.

Let H 2 H be a nontrivial proper subgroup of G , and put

�H WD ^
dim H Ad and VH WD ^

dim H g.

The representation �H is defined over Q.
Let vH be a primitive integral vector in ^dim H Lie.G / corresponding to the Lie

algebra of H , i.e., we fix a Z-basis for Lie.H/ \ slN .Z/, and let vH be the corresponding
wedge product. The vector vH embeds diagonally in ^dim H g; we denote this diagonally
embedded vector by vH . Define

�H .g/ WD �H .g/vH for every g 2 G:

In order to simplify the exposition, let us assume thatU is a one-parameter unipotent
subgroup of G. Fix some z 2 g with kzk D 1 so that U D ¹u.t/ D exp.tz/ W t 2 Rº. With
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this notation, for an element H 2 H , we have

NG.U;H/ D
®
g 2 G W z ^ �H .g/ D 0

¯
:

As it was observed before, NG.U;H/ is a variety; therefore, it could change drasti-
cally under small perturbations of U . However, effective notions must be stable under small
perturbations. One of the innovations of [72] is the introduction of the following effective
notion of generic points:

Definition 6.2. Let " W RC ! .0; 1/ be a monotone decreasing function, and let t 2 RC.
A point g� is called ."; t/-Diophantine for the action of U D ¹exp.tz/ W t 2 Rº if for all
H 2 H with ¹eº ¤ H ¤ G ,

z ^ �H .g/



 � "
�
k�H .g/k

�
if



�H .g/


 < et : (6.1)

A point is "-Diophantine if it is ."; t/-Diophantine for all t > 0.

Note that this is a condition on the pair .U; g�/. Unless U � H .R/ for some
(proper) H C G , the set G .U / is nonempty; moreover, any x 2 G .U / is "-Diophantine
for some " as above. In most interesting examples, the singular set �.U / is a dense subset
of X . Therefore, G .U / is usually a Gı -set without any interior points. For any t 2 RC, on
the other hand, the set of ."; t/-Diophantine points in Definition 6.2 is a nice closed set with
interior points (indeed, it is the closure of its interior points).

As was discussed in Section 2, and we have seen in prior sections, finitary statements
require a measure of complexity for obstructions. In [72], the following measure of arithmetic
complexity for subgroups in H is used. Define

ht.H / WD kvH k: (6.2)

That is, the height of a Q-group H is given by the height of the corresponding point in
the Grassmanian of Lie.G /, see [8, §1.5]. It is worth mentioning that for subgroups H 2 H ,
ht.H / is closely related to the volume of the periodic orbitH�=� as it was defined in Sec-
tion 2, see [32, §17], [31, App. B], and [81, §6.2].

The spaceX is not necessarily compact; to deal with this issue, we fix an exhaustion
of X by compact subsets as follows. For every � > 0, define

X� D

°
g� 2 X W min

0¤v2g.Z/



 Ad.g/v


 � �

±
:

By (a generalization of) Mahler’s compactness criterion,X� is compact for every � > 0, see,
e.g., [72, Lemma 2.8]. Moreover,

S
�>0X� D G=� .

For every g 2 SLN .R/, in particular for every g 2 G, we let

jgj D max
®
kgk;



g�1


¯
;

where k � k denotes the max norm on SLN .R/ with respect to the standard basis.
The following is the main result in [72] in the case of real groups.
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Theorem 6.3 ([72]). There are constantsA;D > 1 depending only onN , andE > 1 depend-
ing on N , G, and � , so that the following holds. Let g 2 G, t > 0, k � 1, and 0 < � < 1=2.
Assume " W RC ! .0; 1/ satisfies for every s > 0 that

".s/ � �As�A=E:

Then at least one of the following three possibilities holds:

(1) ˇ̌®
� 2 Œ�1; 1� W u.ek�/g� 62 X� or

u.ek�/g� is not ."; t/-Diophantine
¯ˇ̌
< E�1=D :

(2) There exist a nontrivial proper subgroup H 2 H with

ht.H / � E
�
jgj

A
C eAt

�
��A

so that the following hold for all � 2 Œ�1; 1�:

�H

�
u.ek�/g

�

 � E
�
jgj

A
C eAt

�
��A;

z ^ �H

�
u.ek�/g

�

 � Ee�k=D
�
jgj

A
C eAt

�
��A;

where U D ¹exp.tz/ W t 2 Rº.

(3) There exist a nontrivial proper normal subgroup H C G with

ht.H / � EeAt��A

so that
kz ^ vH k � "

�
ht.H /1=A�=E

�1=A
:

Indeed, the paper [72] proves versions of this theorem for friendly measures [72,

Thm. 1.7] as well as S -arithmetic versions of this theorem [72, §3]. In particular, in view of [72,
Thm. 3.2], and by using the restriction of scalars from number fields to Q, the results in [72]

are applicable also in the case of groups defined over a general number field.
The arguments in [72] rely on polynomial behavior of unipotent orbits as did the

arguments in [28]. However, in addition to being polynomially effective, the results also
differ from [28] in the following sense. They provide a compact subset of G .U / which is
independent of the base point and to which a unipotent orbit returns unless there is an alge-
braic obstruction, see [72, Thms. 1.1 and 1.5]. Regarding nondivergence properties of unipotent
orbits, such uniformity is well known and is due to Dani (see [23,27]), but in this context it
was not known prior to [72].

These features have been made possible using two main new ingredients. First is the
use of an effective notion of a generic point, Definition 6.2. The second ingredient is the use
of a certain subgroup in H which controls the speed of unipotent orbits in the representation
space VH , see [72, §4.7]. In addition, the arguments in [72] rely on effective versions of Null-
stellensatz [77, Thm. IV], as well as some local nonvanishing theorems related to Lojasiewicz
inequality [15,54,55].
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6.3. Effective density of unipotent orbits
The paper [72] is the first in a series of papers which provide a general effective orbit

closure theorem for unipotent orbits on arithmetic quotients. The second paper, which is in
preparation, crucially relies on the results of [72].

The rate we obtain (for density of a unipotent orbit) are an iteration of logarithms
in the size of the flow parameter where the number of iterations depends on dimG.

7. Arithmetic combinatorics and polynomial bounds

The discussion in Section 6 allude to the fact that effectivizing the existing argu-
ments from unipotent dynamics often does not yield a polynomial rate. Indeed, beyond the
notable settings we discussed in Sections 3–5, polynomial rates of density or equidistribu-
tion in this context are rather rare. In this section we discuss some recent progress made in
this direction.

7.1. Random walks by toral automorphisms
Let � � SLd .Z/ be a Zariski-dense subgroup which acts strongly irreducibly on

Rd (that is, no nontrivial subspace of Rd is invariant under a finite index subgroup of �).
Let � be a finitely supported probability measure on � whose support generates � .

Furstenberg [47] showed that

�1.�/ D lim
n!1

1

n
log kg1 � � �gnk �N-a.s.

is positive.
In a landmark paper [12], Bourgain, Furman, Lindenstrauss, and Mozes proved an

equidistribution theorem for random walks on T d corresponding to �, with polynomial rates.

Theorem 7.1 ([12]). For every 0 < � < �1.�/, there exists a constant C D C.�; �/ so that
if for a point x 2 T d the measure �n D �.n/ � ıx satisfies that for some a 2 Zd n ¹0º,ˇ̌b�n.a/

ˇ̌
> t > 0 with n > C log

�
2kak=t

�
;

then x admits a rational approximation p=q where p 2 Zd and q 2 N satisfying



x �
p

q





 < e��n and jqj < .2kak=t/C :

Indeed, the main results in [12] allow for a more general class of subgroups � and
measures �. Let us also mention that the results in [12] have been further generalized in
subsequent works, see, e.g., [57,58].

The argument in [12] is quite involved and relies on several ingredients. Here we
only highlight one the main steps in the proof, which concerns bootstrapping the informa-
tion about one large Fourier coefficient to a (large scale) structure for the set of large Fourier
coefficients. Suppose jb�n.a/j > t for some large n and some nonzero a. Then using quanti-
tative theory of random matrix products, one can show that for a suitable choice of n1 � n

3542 A. Mohammadi



the measure �n1 has Fourier coefficients which are > t=2 on a subset with a (small) posi-
tive dimension [12, Prop. 6.2]. The next task is to deduce from this a possibly smaller scale
n2 < n1, so that �n2 has large (polynomial in t ) Fourier coefficients on a set whose large
scale dimension is d . This is carried out in two steps, the first, and arguably more difficult,
step is to bootstrap the dimension to d � " for a small " (depending on �) [12, Prop. 6.3]. The
paper [12] uses ideas from additive combinatorics, namely discretized ring conjecture [10] to
establish this improvement. After this is obtain, one can use more or less classical estimates
from Fourier analysis to improve the dimension from d � " to d , [12, Props. 6.5 and 6.11].

The three stages in the above outline, namely the initial dimension, bootstrapping the
dimension, and from high dimension to positive density, are reminiscent of the three stages
present in the work of Bourgain and Gamburd on random walks on compact groups [13,

14]—these three stages will be revisited in the next section.

7.2. Quotients of SL2.C/ and SL2.R/ � SL2.R/

We now turn to the question of density (or more ambitiously equidistribution) results
in quotients of semisimple groups, with polynomial rates. For reasons we already discussed,
this has proven quite a challenging task.

Lindenstrauss and Mohammadi [71] have very recently obtained first results in the
literature which provide a polynomial rate for density of general orbits in a homogeneous
space of a semisimple group, beyond the settings we discussed in Sections 4 and 5.

Let us fix some notation. Let

G D SL2.C/ or G D SL2.R/ � SL2.R/;

and let � � G be a lattice. Put X D G=� .
Let dist be the right-invariant metric on G which is defined using the killing form.

This metric induces a metric distX on X . The injectivity radius of a point x 2 X may be
defined using this metric. For every � > 0, let

X� D ¹x 2 X W injectivity radius of x is � �ºI

this is closely related to the definition in Section 6.2, see, e.g., [71, §3] and references there.
Let H � G be one of the following:

SL2.R/ � SL2.C/ or
®
.g; g/ W g 2 SL2.R/

¯
� SL2.R/ � SL2.R/:

Let P � H be the group of upper triangular matrices in H .
As before, let k � k denote the maximum norm on Mat2.C/ or Mat2.R/ � Mat2.R/

with respect to the standard basis. For every R > 0 and every subgroup L � G, let

BL
R D

®
g 2 L W kg � Ik � R

¯
:

The following is one of the main results in [71]:

Theorem 7.2 ([71]). Assume that � is an arithmetic lattice. For every 0 < ı < 1=2, every
x0 2 X , and large enough T (depending explicitly on ı and the injectivity radius of x0), at
least one of the following holds:
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(1) For every x 2 XT ��ı , we have

distX
�
x;BP

T A :x0

�
� CT ��ı :

(2) There exists x0 2 X such that Hx0 is periodic with vol.Hx0/ � T ı , and

distX .x0; x0/ � CT �1:

The above A, �, and C are positive constants depending on X .

The proof of Theorem 7.2 has a similar flavor to [49] by Gamburd, Jakobson, and
Sarnak, as well as to the work of Bourgain and Gamburd [13, 14] and the aforementioned
work of Bourgain, Furman, Lindenstrauss, and Mozes [12], see Theorem 7.1.

In particular, the three stages of the proof which were discussed in Section 7.1 are
present here as well: in the first step, a Diophantine condition (in the form of a closing lemma)
is used to show that unless part (2) in Theorem 7.2 holds, one can produce positive dimension
at a certain scale (initial dimension). The arithmeticity of � is used in this step.

The second step, is the bootstrap phase in the following form: by passing to a larger
scale and translating BP

T ı :x0 with a random element of controlled size, one can obtain a
set with large dimension. This step is carried out using a Margulis function argument. As it
was mentioned before, Margulis functions were introduced in the context of homogeneous
dynamics in [37] by Eskin, Margulis, and Mozes, and have become an indispensable tool in
homogeneous dynamics and beyond.

The third step is to deduce effective density from large dimension. Two main ingre-
dients are present in this step: first is a projection theorem which is based on the works
of Wolff and Schlag [94,99] and is an adaptation of [61]. This is used to move the additional
dimension supplied by the bootstrap phase to the direction of a horospherical subgroup ofG.
The second ingredient is an argument due to Venkatesh [98] and is based on the following
quantitative decay of correlations for the ambient space X : There exists �X > 0 so thatˇ̌̌̌ Z

'.gx/ .x/ dmX �

Z
' dmX

Z
 dmX

ˇ̌̌̌
�G �.'/�. /e��X dist.e;g/ (7.1)

for all ';  2 C1.X/, where � is a certain Sobolev norm and dist is our fixed right G-
invariant metric on G.

See, e.g., [64, §2.4] and references there for (7.1); we note that �X is an absolute
constant if � is a congruence subgroup, see [17,19,51].

Periodic orbits
The techniques developed in [71] can also be used to prove an effective density the-

orem for periodic orbits of H .
Let us first recall the following nondivergence result: there exists some �X > 0 so

that for every periodic orbit Y , we have

�Y .X�X
/ � 0:9; (7.2)

where �Y denotes the H -invariant probability measure on Y , see, e.g., [71, Lemma 3.6].
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Theorem 7.3 ([71]). Let Y � X be a periodic H -orbit in X . Then for every x 2 Xvol.Y /�� ,
we have

distX .x; Y / � C vol.Y /�� ;

where � � �2
X=L (for an absolute constant L) and C depends explicitly on �X , vol.X/, and

the minimum of the injectivity radius of points in X�X
. If � is congruence, � is absolute.

If � is an arithmetic lattice, Theorem 7.3 is a rather special case of the results we
discussed in Section 5. Note, however, that Theorem 7.3 does not require� to be arithmetic—
recall that arithmeticity of � was only used in the first step of the proof of Theorem 7.2. In
particular, unlike [31,32], Theorem 7.3 does not rely on property .�/.

We also draw the reader’s attention to the use of Margulis functions in establishing
isolation properties for periodic (or more generally intermediate) orbits in [41] and [83].

We end this exposition with the following application of Theorem 7.3.

Totally geodesic planes in hybrid manifolds
Gromov and Piatetski-Shapiro [56] constructed examples of nonarithmetic hyper-

bolic manifolds by gluing together pieces of noncommensurable arithmetic manifolds. Let
�1 and �2 be two torsion free lattices in Isom.H3/—recall that Isom.H3/ is an index 2
subgroup of O.3; 1/ and that SL2.C/ is locally isomorphic to O.3; 1/. Let Mi D H3=�i .
Assume further that for i D 1; 2, there exists 3-dimensional submanifolds with boundary
Ni � Mi so that

• The Zariski closure of �1.Ni / � �i contains O.3; 1/ı where O.3; 1/ı is the con-
nected component of the identity in O.3; 1/.

• Every connected component of @Ni is a totally geodesic embedded surface inMi

which separates Mi .

• @N1 and @N2 are isometric.

Let M be the manifold obtained by gluing N1 and N2 using the isometry between @N1

and @N2. ThenM carries a complete hyperbolic metric; thus, we consider �1.M/ as a lattice
in O.3; 1/. Let � 0 D �1.M/ \ O.3; 1/ı, and let � denote the inverse image of � 0 in G D

SL2.C/.
If �1 and �2 are arithmetic and noncommensurable, then M is nonarithmetic, i.e.,

� is a nonarithmetic lattice in G. A totally geodesic plane in M lifts to a periodic orbit of
H D SL2.R/ in X D G=� .

Theorem 7.4. Let M be a hyperbolic 3-manifold obtained by gluing the pieces N1 and N2

from noncommensurable arithmetic manifolds along † D @N1 D @N2 as described above.
The number of totally geodesic planes in M is at most

L
�
area.†/ vol.X/��1

X ��1
X

�L=�2
X ;

where L is absolute and X D G=� is as above.
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In qualitative form, this finiteness theorem was proved by Fisher, Lafont, Miller, and
Stover [44, Thm. 1.4], see also [4, §12].
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