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Abstract

We survey some recent advances in the study of (area-preserving) flows on surfaces,
in particular on the typical dynamical, ergodic, and spectral properties of smooth area-
preserving (or locally Hamiltonian) flows, as well as recent breakthroughs on linearization
and rigidity questions in higher genus. We focus in particular on the Diophantine-like
conditions which are required to prove such results, which can be thought of as a gener-
alization of arithmetic conditions for flows on tori and circle diffeomorphisms. We will
explain how these conditions on higher genus flows and their Poincaré sections (namely
generalized interval exchange maps) can be imposed by controlling a renormalization
dynamics, but are of more subtle nature than in genus one since they often exploit features
which originate from the nonuniform hyperbolicity of the renormalization.
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1. Introduction

Flows on surfaces are among the most basic and fundamental examples of dynam-
ical systems. First of all, they are among the lowest possible dimensional smooth systems;
furthermore, many models of systems of physical origin are described by flows on surfaces,
starting from celestial mechanics, up to solid state physics or statistical mechanics models.
The beginning of the study of surface flows can be dated back to Poincaré [63] at the end
of the 19th century, and coincides with the birth of dynamical systems as a research field.
Poincaré was in particular interested in the study of flows on tori, or surfaces of genus one.
Several famous systems in physics lead naturally to the study of flows on surfaces of higher
genus, which, in this survey, will mean genus g � 2. Examples include the Ehrenfest model
in statistical mechanics (related to a linear flow on a translation surface of genus five), or
the Novikov model in solid state physics, which is described by locally Hamiltonian flows,
a class which will be one of the central themes of this survey (see Section 3.1).

There is a rich history of results on the topological and qualitative behavior of tra-
jectories (see, for example, [60] and the references therein), as well as on the ergodic theory
of certain well-studied classes of flows (for example, in genus one, in relation with KAM
theory, see Section 2, and linear flows on translation surfaces, whose study is intertwined
with Teichmüller dynamics, see Section 3). Many fundamental problems, though, in partic-
ular on the mathematical characterization of chaos (such as dynamical, spectral, and rigidity
questions) in various natural classes of surface flows, in particular smooth flows preserv-
ing a smooth measure, were only recently understood and many others are still open (see
Section 3.1).

One of the reasons for this late development is perhaps that, in order to investigate
fine chaotic or rigidity properties of flows in higher genus, one needs to impose quite delicate
assumptions on the behavior of orbits on different scales. To capture these multiscale fea-
tures, the concept of renormalization plays a crucial role (see Section 4). In the case of genus
one, the assumptions on the flow often take the form of Diophantine conditions or, more gen-
erally, of arithmetic conditions on the rotation number (see Section 5) and control how well
the flow orbits are approximated by periodic orbits. The renormalization point of view on
these conditions is that they can be described in terms of continued fraction theory and there-
fore studying the dynamics of the Gauss map, or, equivalently, geometrically, studying the
geodesic flow on the modular surface, both of which are classically well understood.

In higher genus, on the other hand, one had to wait for the development of the rich
and fruitful theory of renormalization in Teichmüller dynamics (see Section 4). This theory
provides a renormalization framework (initially developed to study ergodic properties of
rational billiards, interval exchange transformations, and translation flows), which can be
exploited to understand when a surface flow is renormalizable (see Sections 3.2 and 4) and
when it preserves a smooth invariant measure; in the latter case, then, it allows imposing con-
ditions on a (smooth) surface flows to guarantee the presence of particular chaotic properties
(see Section 3.1). The type and nature of what we refer to as Diophantine-like conditions in
higher genus, which is much more delicate than in genus one and often involves assumptions
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on hyperbolicity of the renormalization, will be the leading theme of this survey. These con-
ditions are sometimes also called arithmetic conditions, by analogy with the genus one case,
even though the relation with classical arithmetic and Diophantine equations is lost when
the genus is greater than one.

In what follows, we first start in the next Section 2 with the classical case of flows
on genus one surfaces, recalling some of the classical results on the linearization problem
and ergodic properties and discussing the related arithmetic conditions. Then, in Section 3,
we will briefly overview some of the rapid developments in our understanding of ergodic,
spectral, and disjointness properties of (smooth) area-preserving flows on higher genus sur-
faces (see Section 3.1), as well as linearization and rigidity problems in higher genus (in
Section 3.2). After having introduced the notion of renormalization in this setting (see Sec-
tion 4), we then focus in Section 5 on the Diophantine-like conditions behind these results.

2. Flows on surfaces of genus one and classical

arithmetic conditions

A central idea introduced by Poincaré was that the study of a surface flow can be
often reduced to the study of a one-dimensional discrete dynamical system, by taking what
we nowadays call a Poincaré section and considering the Poincaré first return map of the
flow to the section (when and where it is defined). If we start from a flow 'R WD .'t /t2R

on a torus, i.e., on a compact, orientable surface S of genus one, and assume that it does
not have fixed points, or closed orbits (or, more generally, Reeb components, see [60]),
there is a (global) section given by a closed transverse curve and the Poincaré first return
map to it is a diffeomorphism f W S1 ! S1 of the circle S1 Š R=Z. The simplest exam-
ple of circle diffeomorphism (or circle diffeo for short) is a (rigid) rotation, i.e., the map
R˛.x/ D x C ˛ mod 1 on R=Z D Œ0; 1�= �. A key concept associated to circle diffeomor-
phisms is that of rotation number: if � is an invariant probability measure for the circle diffeo
f (which always exists by Krylov–Bogolyubov theorem), the rotation number �.f / of f can
be seen as an average displacement of points, namely �.f / D

R 1

0
.F.x/ � x/ d�.x/ mod 1

where F W R ! R is a lift of f W R=Z ! R. The rotation R˛ can be seen as the linear model
of a circle diffeo with rotation number ˛.

The topological behavior of trajectories of .'t /t2R can be completely understood
and classified exploiting the rotation number (this is essentially the content of Poincaré clas-
sification theorem, see [36] for an expository account): when �.f / 2 Q, there exist periodic
orbits (which either foliate the surface S , or are attracting or repelling). On the other hand,
when �.f / … Q, the dynamics of .'t /t2R is either minimal on the whole surface (i.e., all
orbits are dense), or minimal when restricted to a Cantor-like invariant limit set (locally
a product of a Cantor set with R). In the latter case, we speak of Denjoy-counterexamples;
their existence is ruled out when the diffeo (and the flow) is sufficiently smooth, for example,
C2 in view of Denjoy’s work [15] (less regularity, in particular C1 with bounded variation
derivative, suffices, see, e.g., [36] for more details).
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Arithmetic conditions for linearization of circle diffeomorphisms. To gain a finer under-
standing of the dynamics and describe the ergodic behavior of almost-every trajectory with
respect to a smooth measure, one has to address the linearization problem, a classical ques-
tion which is at the heart of the theory of circle diffeomorphisms. Namely, one wants to
understand when a circle diffeomorphism T is linearizable, i.e., conjugate to a rigid rota-
tion R˛ (i.e., when there exists a homeomorphism h W S1 ! S1, called the conjugacy, such
that R˛ ı h D h ı T ) and what is the regularity of the conjugacy h. To address this question,
one needs to put further assumptions both on the regularity of the diffeo and, in relation to
it, the irrationality of the rotation number.

We recall that arithmetic conditions are conditions that prescribe how well (or how
badly) the irrational rotation number ˛ 2 R is approximated by rational numbers and morally
control how well the flow orbits are approximated by periodic orbits. The best known such
condition is perhaps the (classical) Diophantine condition (or DC, for short): ˛ 2 RnQ is
said to be Diophantine (of exponent � � 0) iff there exists C > 0 such thatˇ̌̌̌

˛ �
p

q

ˇ̌̌̌
�

C

q2C�
; for all p; q 2 Z; q ¤ 0:

If the above condition holds for � D 0, we say that ˛ is badly approximable or bounded-
type. Equivalently, the DC can be rephrased in terms of the continued fraction expansion
Œa0; a1; : : : ; an; : : : � of ˛: if qn denotes the convergents of ˛, namely the denominators of
the partial approximations pn=qn WD Œa0; a1; : : : ; an�, the DC is equivalent to the growth
control anC1 D O.q�

n/. In particular, ˛ is of bounded type iff an are uniformly bounded.
The local theory of linearization of circle diffeos, which treats the case of diffeos

f W S1 ! S1 which are C1-close (or analytically, or C r -close) to a circle rotation R˛ ,
where ˛ D �.f /, is a rather classical application of KAM theory. The prototype result is
the local rigidity theorem of Arnold [1], who showed that if ˛ is Diophantine, circle diffeos
which are a sufficiently small analytic deformations of R˛ and have rotation number equal
to ˛, must be analytically conjugate to R˛ . Among the few global results (which do not
assume that f is close to a rotation), we recall the celebrated theorem by Michael Herman
[30] and Jean-Christophe Yoccoz [77], answering a question by Arnold, showing that if f

is C1 (or analytic) and its rotation number �.f / satisfies the DC, the conjugacy is C1

(resp. analytic). Furthermore, the DC turns out to be the optimal arithmetic condition for
global smooth linearization. Another, more subtle arithmetic condition, called “condition H”
in honor of Herman, was introduced by Yoccoz as the optimal condition for global analytic
linearization of analytic diffeos, see [79].

Another famous arithmetic condition is the Roth-type condition, which is satisfied
by irrationals ˛ 2 RnQ such that an D O".q"

n/ for all " > 0. A crucial step in the KAM
approach developed by Arnold for circle diffeomorphisms is to solve a linearized version of
the conjugacy equation R˛ ı h D h ı T , namely the cohomological equation: given a smooth
� W I ! R, one looks for a smooth solution ' W I ! R to the equation ' ı R˛ � ' D �.
The Roth-type condition turns out to be the optimal one needed to solve this cohomological
equation with optimal loss of differentiability: for any r > s C 1 � 1, one can find a solution
' 2 C s for any � 2 C r as long as

R
� D 0 (which is a trivial necessary condition) if and only
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if ˛ is Roth-type: this equivalent characterization provides a remarkable connection between
dynamical and arithmetical properties.

We remark that the Diophantine condition, the H condition, and the Roth-type con-
dition can all be proved to have full measure, namely they hold for a set of ˛ 2 Œ0; 1� of
Lebesgue measure one (the set of badly approximable ˛ 2 Œ0; 1�, on the other hand, has
Lebesgue measure zero, although full Hausdorff dimension). While full measure of the Dio-
phantine and Roth conditions can be proved in an elementary way, it is an instructive exercise
to derive it from the properties of the Gauss map G W Œ0; 1� ! Œ0; 1� and of the Gauss invari-
ant measure dx=log 2.1 C x/, since this point of view can be applied to show full measure
of other arithmetic conditions as well and it can be furthermore generalized to higher genus
(see Sections 4 and 5).

In view of this remark, we conclude this section with a reinterpretation of Herman’s
linearization theorem in the language of foliations into flow trajectories. In this setting, the
linear model of a flow on a torus is a linear flow on R2=Z2 (i.e., the flow which arises as
solution of . Px1; Px2/ D .�1; �2/, which moves points with unit speed along lines of slope
�2=�1).

Theorem 2.1 (Reformulation of Herman’s global theorem [30]). For a full measure set of
real numbers ˛, a foliation on a genus one surface which is topologically conjugate to the
foliation given by a linear flow with rotation number ˛ is also C1-conjugate to it.

Since the regularity of a conjugacy between foliations, which sends leaves into
leaves, is defined in terms of the transverse structure, this result is just a restatement of
the result for the Poincaré maps of the two flows (which are circle diffeomorphisms and
rotations respectively).

Ergodic properties in genus one and exceptional behavior. From the existence (and abun-
dance) of smooth (or at least continuously differentiable, i.e., C1) linearizations, one can infer
many of the smooth measure-theoretical ergodic properties of flows of genus one. In partic-
ular, one sees that, for a full measure set of rotation numbers, flows in genus one are ergodic
(since irrational rotations are) with respect to a smooth invariant measure of full support (the
C1-regularity of the conjugacy allows us indeed to transport the Lebesgue invariant measure
to obtain the invariant measure for the diffeo, which in turns gives a transverse measure for
the flow). Furthermore, they are uniquely ergodic (in view of Kronecker–Weyl theorem for
rotations, e.g., [14]), i.e., this natural invariant measure is the unique invariant measure (up
to scaling).

We remark that exceptional ergodic behaviors in genus one (smooth) surface flows,
can be constructed for flows whose rotation numbers are irrational but not Diophantine,
i.e., the so-called Liouvillean (rotation) numbers. When ˛ is Liouville, exploiting the abun-
dance of good rational approximations .pn=qn/n to ˛, for example, using the method of
periodic approximations pioneered by Anosov and Katok and later revived by Fayad, Katok
et al. (see [36] or the survey [18]), one can construct many examples with pathological behav-
ior, for example, flows with a singular invariant measures and time-reparametrizations (also
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Figure 1

Pictorial representation of locally Hamiltonian flows on a surfaces: in (a) an Arnold flow (g D 1) and in (b) a flow
in g D 3 with two minimal components and 3 periodic components.

called time-changes) which are weakly mixing or which have mixed spectrum (see [18] and
the references therein).

Finally, before moving to higher genus, we remark that another possible way to
introduce interesting dynamical features for typical rotation numbers is to consider flows on
tori with singularities. The simplest type of singularity is a stopping point. Already such a
simple perturbation, which is only a time-reparametrization of the flow, can lead to flows
which are typically mixing (see [43]) and even to flows with Lebesgue spectrum (see [17]).
Smooth measure preserving flows on a torus with one center and one simple saddle (see
Figure 1a) were first studied by Arnold in [2] and constitute one of the most studied examples
in the class of flows known as locally Hamiltonian: we return to them and to their typical
ergodic properties in Section 3.1.

3. Dynamics of flows on surfaces of higher genus

Let us now consider the higher genus case, namely consider now a (smooth) flow
'R WD .'t /t2R on a compact, connected orientable (closed) surface S of genus g � 2. Notice
that in this case, by Euler characteristic restrictions, the flow always has fixed points (see
Figure 2 for some examples). We require that singularities be isolated (so that in particular,
by compactness, the set Fix.'R/ of fixed points is finite).

Topological dynamics and quasiminimal sets. The topological classification of the possi-
ble behavior of trajectories of a flow on a surface (and, more generally, of surface foliations
which are not necessarily orientable) has been a topic of research in the 20th century (start-
ing from the 1930–1940s, up to the 1970s). In particular, through the works of Maier, Levitt,
Gutierrez, Gardiner et al. (see [60] for references), one could obtain results on what possible
orbit closures are, as well as a classification of quasiminimal sets, which can be defined as
possible !-limit sets of nontrivial recurrent trajectories, i.e., set of accumulation points of
trajectories different from a fixed point or a closed, periodic orbit. Quasiminimal sets can be
the whole surface, subsurfaces with boundary, or a Cantor-like invariant sets. Moreover, one

3581 Dynamics and “arithmetics” of higher genus surface flows



Figure 2

Type of singularities of a locally Hamiltonian flow: a center in (a), a simple saddle in (b) and a multisaddle in (c).
Decelerations and shearing near a Hamiltonian saddle in (d).

can prove decomposition theorems showing that one can cut the surface S into subsurfaces
each of which contains at most one quasiminimal set (see in particular the work by Levitt
[49]). We do not enter here into the details of these topological results, but refer the interested
reader, for example, to the monograph [60] and the references therein.

Interval exchanges and generalized IETs as Poincaré sections. As in the case of genus
one, an essential tool to study a higher genus flow is to consider a (local) transversal I � S

to the flow and the Poincaré first return map T of the flow on I (when it is defined, for
example, almost everywhere when the flow preserves a finite measure with full support; for
more general situations, see [60]). Such first return maps T W I ! I are one-to-one piecewise
diffeomorphisms known as generalized interval exchange transformations: a map T W I ! I

is a generalized interval exchange transformations or, for short, a GIET, if one can partition
I into intervals I1; : : : ; Id (finitely many since we are assuming that 'R has finitely many
fixed points) so that the restriction Ti of T to Ii , for each 1 � i � d , is a diffeomorphism
onto its image which extends to a diffeo of the closure I i (see, e.g., [55]). We say in this case
that T is a d -GIET. We say, furthermore, that T is of class C r if the restriction of T to each
Ii extends to a C r -diffeomorphism onto the closed interval I i . The adjective generalized
is used to distinguish them from the more commonly studied (standard) interval exchange
transformations (or simply IETs), which are one-to-one piecewise isometries, namely GIETs
such that the derivative T 0

i of each branch is constant and equal to one.
Standard IETs are a generalization of circle rotations (since an IET is a rotation when

d D 2) and play an analogous role in higher genus, providing the natural linear model of a
GIET (see Section 3.2). Furthermore, as rotations are Poincaré maps of linear flows on the
torus R2=Z2, IETs arise naturally as Poincaré maps of linear flows on translation surfaces
(see the ICM proceeding [12] for an introduction to the latter).

3.1. Locally Hamiltonian flows
We will be mostly concerned with flows which preserve a (probability) measure � of

full support, for example, an area-form, since this is a natural setup for ergodic theory. Given
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a surface S with a fixed smooth area form !, a smooth area-preserving flow 'R D .'t /t2R

on S is a smooth flow on S which preserves the measure � given integrating a smooth
density with respect to !. The interest in the study of these flows and, in particular, in their
ergodic and mixing properties, was revived by Novikov [61] in the 1990s, in connection with
problems arising in solid-state physics, as well as in pseudoperiodic topology (see, e.g., the
survey [84] by A. Zorich). Smooth area-preserving flows are also called locally Hamiltonian
flows or multivalued Hamiltonian flows in the literature, in view of their interpretation as
flows locally given by Hamiltonian equations: one can find local coordinates .x1; x2/ on
each open set U ¨ S in which 'R is given by the solution to the equations:8<: Px1 D @H=@x2;

Px2 D �@H=@x1;

where H W U ! R is a real-valued (local) Hamiltonian. For simplicity, we will assume here
that H is infinitely differentiable, even though for several results C3 (or also C2C" for every
" > 0) suffices. It turns out that such smooth area-preserving flows on S are in one-to-one
correspondence with smooth closed real-valued differential 1-forms: given such a 1-form �,
we can associate to it the integral flow '

�
R of the vector field X such that � D iX !, where iX

denotes the contraction operator. Since � is closed, '
�
R is area-preserving; conversely, every

smooth area-preserving flow can be obtained in this way.

Topology and measure class. Let F denote the set of smooth closed 1-forms on S with
isolated zeros. On F (which we can think of as the space of locally Hamiltonian flows) one
can define a topology as well as a measure class. The topology is obtained by considering
perturbations of closed smooth 1-forms by (small) closed smooth 1-forms. We will often
restrict our attention to the subset M � F of Morse closed 1-forms (i.e., forms which are
locally the differential of a Morse function), which is open and dense in F with respect to
this topology (see, e.g., [64]). Locally Hamiltonian flows corresponding to forms in M have
only nondegenerate fixed points, i.e., centers and simple saddles (as in Figures 2a and 2b), as
opposed to degenerate multisaddles (as in Figure 2c). Furthermore, if Fs;l denote the flows
which correspond to flows in M with s saddle points and l centers, each Fs;l is open and
their union is dense in F (see [64]).

A measure-theoretical notion of typical can be defined on each Fs;l using the Katok
fundamental class (introduced by Katok in [35], see also [60]), i.e., the cohomology class of
the 1-form � which defines the flow. Let Fix.'R/ denote the set of fixed points (also called
singularities) of the flow 'R and let k D s C l be its cardinality (recall that it is finite since
the flow is in F and k � 1 when g � 2). If we fix a base 1; : : : ; n of the relative homology
H1.S; Fix.'R/; R/ (where n D 2g C k � 1 D 2g C s C l � 1) and consider the period
map Per given by Per.�/ D .

R
1

�; : : : ;
R

n
�/ 2 Rn, we say that a property holds for a typical

locally Hamiltonian flow in Fs;l if it holds for all � such that Per.�/ belongs to a full measure
set with respect to the Lebesgue measure on Rn.

Minimal components and ergodicity. To describe (typical) chaotic behavior in locally
Hamiltonian flows, it is crucial to distinguish between two open sets (complementary, up
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to measure zero, see [75] or [64] for more details): in the first open set, which we will denote
by Umin, the typical flow is minimal (the term quasiminimal is also used in the literature),
in the sense that the orbits of all points which are not fixed points are dense in S ; flows
in Umin have only saddles, since the presence of centers prevents minimality. On the other
open set, that we call U: min, the flow is not minimal (there are saddle loops homologous to
zero which disconnect the surface), but one can decompose the surface into a finite number
of subsurfaces with boundary Si , i D 1; : : : ; N such that for each i either Si is a periodic
component, i.e., the interior of Si if foliated into closed orbits of 'R (in Figure 1b one can
see three periodic components, namely two disks and one cylinder), or Si is such that the
restriction of 'R to Si is minimal in the sense above, as pictured in the remaining two sub-
surfaces in Figure 1b. These are called minimal components and there are at most g of them
(where g is the genus of S ), see Section 3.1.

Notice that minimality and ergodicity of a (minimal component of a) locally Hamil-
tonian flow are equivalent to minimality or respectively ergodicity of an (and hence any)
interval exchange transformation which appears as the Poincaré map. Classical results proved
in the 1980s guarantee that almost every IET (with respect to the Lebesgue measure on the
interval lengths, assuming that the permutation is irreducible) is minimal (as showed by
Keane [37], see also [35]) and (uniquely) ergodic (as proved in the works by Masur [50] and
Veech [76], considered early milestones of the successful application of Teichmüller dynam-
ics to the study of IETs and translation surfaces, see the ICM proceeding [12] or the survey
[85]). It then follows from definition of Katok measure class that a typical local Hamiltonian
flow in Umin is minimal and ergodic and, given a typical local Hamiltonian flow in U: min,
its restriction on each minimal component is ergodic.

Classification of mixing properties. Finer chaotic features of locally Hamiltonian flows,
in particular mixing and spectral properties, change according to the type of singularities
and depend crucially on the locally Hamiltonian parametrization of saddle points. For a
(nongeneric) locally Hamiltonian flow with at least one degenerate saddle (an example of
such a saddle is shown in Figure 2c), mixing (for the definition, see (3.1) with n D 2) was
proved in the 1970s by Kochergin [43]. When, on the other hand, � 2 M is a Morse 1-form,
so that all saddles are simple, one has a dichotomy: inside the open set Umin in which the
typical flow is minimal, almost every locally Hamiltonian flow is weakly mixing, but it is
not mixing; both results follow from work by the author [72,73]. On the other hand, for a full
measure set of flows in U: min, the restriction to each of minimal components is mixing (as
proved by Ravotti [64] extending the previous work [71] by the author).

The question of mixing in higher genus was raised by V. Arnold in the 1990s, when
he conjectured (see [2]) that the restriction of a typical smooth flow on a torus with one
center and one simple saddle to its minimal component (namely for what we nowadays call
an Arnold flow) was indeed mixing. His conjecture was proved shortly after by Khanin and
Sinai in [67], who showed mixing under the assumption that the rotation number ˛ is such that
the entries an of the continued fraction expansion of ˛ do not grow too fast, namely there exist
a power 1 < � < 2 and C > 0 such that janj � C n� . One can show (for example, exploiting the
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Gauss map G and the finiteness of
R 1

0
a0.x/ d �G.x/, where �G is the Gauss measure, via a

standard Borel–Cantelli argument) that this arithmetic condition holds for a full measure set
of ˛. The condition was later improved by Kocerghin, see [44]. Also in the case of absence of
mixing, a prototype result for flows over a full measure set of rotation numbers was proved by
Kochergin [42] already in the 1970s (and much more recently extended in [45] to all irrational
rotation numbers), much earlier than results in higher genus [65,70,73].

In higher genus, the above mentioned results on mixing/absence of mixing require
the introduction of Diophantine-like conditions, which describe the full measure set of
locally Hamiltonian flows for which the results hold. In [71], for example, we introduced
a condition on a IET (see Section 5 for more details) called Mixing Diophantine Condition
(or MDC, for short). Let us say that the restriction of a locally Hamiltonian flow 'R to one
of its minimal components Si satisfies the MDC if one can find a section I � Si (in good
position in the sense of [55]) such that the IET which arises as Poincaré map of 'R to I

satisfies the MDC. One can then prove:

Theorem 3.1 (Ulcigrai [71], Ravotti [64]). Let 'R be a flow in U: min and let Si be a minimal
component. If the restriction of 'R to Si satisfies the Mixing Diophantine Condition, then
'R restricted to Si is mixing.

We then show in [71] (exploiting results from [3], see Section 5) that the MDC is
satisfied by a full measure set of IETs. Similarly, to prove that a typical flow in Umin is not
mixing, a Diophantine-like condition is introduced and proved to be of full measure in [73].
Special cases of the absence of mixing result for surfaces with g D 2 and two isometric
saddles were proved in [70] and by Scheglov in [65]. We remark that in Umin there exist,
nevertheless, exceptional mixing flows, as shown by Chaika and Wright in [13], who produced
sporadic examples in g D 5.

Parabolic dynamics and slow chaos. Smooth area-preserving flows on surfaces also pro-
vide one of the fundamental classes of parabolic, or slowly chaotic, dynamical systems (see,
e.g., the survey [75]). In systems which display sensitive dependence on initial conditions
(the so-called butterfly effect), one can find many nearby initial conditions whose trajec-
tories diverge with time. Contrary to hyperbolic systems, where this divergence happens
(infinitesimally) at exponential speed, in parabolic systems the divergence speed is slow,
namely subexponential, and in all known examples polynomial or subpolynomial. Slow
divergence in locally Hamiltonian flows is created by Hamiltonian saddles, which create
different deceleration rates of nearby trajectories and produce a form of (local) shearing, by
tilting in the flow direction the image under the flow of arcs initially transverse to the dynam-
ics, as illustrated in Figure 2d. Shearing happens not only locally, near a saddle, but globally
for typical flows in U: min, which (in view of the presence of saddle loops) display a global
asymmetry in the prevalent direction of shearing. It is this geometric mechanism which is
behind the proof of mixing (in this setting, but also for many other classes of parabolic flows,
see the survey [74] and the references therein). Under the assumption that the restriction of
'R to a minimal component Si satisfies the Mixing Diophantine Condition, one can produce
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quantitative estimates on shearing of transverse arcs and, as shown by Ravotti in [64], prove
quantitative mixing estimates, which show that mixing happens (at least) at subpolynomial
speed, i.e., for any two smooth observables f; g W Si ! R supported outside the saddles in
Fix.'R/ \ Si ,̌ˇ̌̌Z

Si

f
�
't .x/

�
g.x/d� �

Z
Si

f d�

Z
Si

f d�

ˇ̌̌̌
�

Cf;g

.log t /
; t � 0:

This is expected to be also the optimal nature of the estimates, namely the decay is not
expected to be polynomial or faster in this setting, but no lower bounds on the decay of
correlations are currently available.

Ratner’s forms of shearing. Striking consequences of shearing (such as measure and join-
ing rigidity) were proved for another famous class of parabolic flows, namely horocycle flows
on hyperbolic surfaces and their time-changes, by exploiting a quantitative shearing property
introduced by Marina Ratner and nowadays known as Ratner property (or RP). In view of its
importance, in the study of horocycle flows and, more generally, unipotent flows in homo-
geneous dynamics, it is natural to ask whether this property can be proved and exploited
in other parabolic (non homogeneous) settings. For locally Hamiltonian flows, which are
natural candidates, the original Ratner property is believed to fail due to the presence of
singularities (see [16]). Nevertheless, a variant of the RP which has the same dynamical con-
sequences, called Switchable Ratner Property (or SRP, for short), was introduced by B. Fayad
and A. Kanigowski [16] and showed to hold for typical Arnold flows (as well as some flows
in genus one with one degenerate singularity). As an abstract consequence of the SRP prop-
erty, one can conclude that typical Arnold flows are not only mixing, but mixing of all orders,
namely for any n � 2 and any n-tuple A0; : : : ; An�1 of measurable sets,

�
�
A0 \ 't1.A1/ \ � � � \ 't1C���Ctn�1.An�1/

� t1;t2;:::;tn�1!1
�����������! �.A0/ � � � �.An�1/: (3.1)

Notice that this definition reduces to the classical definition of mixing in the special case
n D 2; whether mixing implies mixing of all orders in general is still an open problem,
known as Rohlin conjecture.

To prove the SRP property, one needs to assume that the rotation number ˛ D

Œa0; a1; : : : ; an; : : : � satisfies an ad hoc arithmetic condition, namely, if qn are the denomi-
nators of ˛, one requires that, for some 0 < � , � < 1 (taken to be � D � D 7=8 in [16]) the
following series is finite:X

k…K.˛/

1

.log qn/�
< C1; where K.˛/ WD

®
k 2 N; akC1 � C.log qk/�

¯
: (3.2)

In a joint work with A. Kanigowski and J. Kułaga-Przymus [33], we were able to gener-
alize this result to higher genus. To do so, it is once again crucial to introduce a suitable
Diophantine-like condition, which we called in [33] the Ratner Diophantine Condition (or
RDC) and we describe in Section 5. The main result we prove is the following.

Theorem 3.2 (Kanigowski, Kułaga-Przymus, Ulcigrai [33]). If the restriction of 'R 2 U: min

to a minimal component Si satisfies the Ratner Diophantine Condition, 'R W Si ! Si satisfies
the Switchable Ratner Property and is mixing of all orders.
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We then show that the RDC is satisfied by almost every IET and therefore can con-
clude that, for a full measure set of locally Hamiltonian flows in U: min, each restriction to
a minimal component is mixing of all orders.

Quantitative estimates on slow, Ratner-type shearing were recently used (in the joint
work [34] with A. Kanigowski and M. Lemańczyk) to study disjointness of rescalings, a prop-
erty that has recently received a revival of attention in view of its role as possible tool to prove
Sarnak Möbius orthogonality conjecture (see the ICM proceedings survey [48] and the ref-
erences therein). In [34] we introduce a disjointness criterium based on Ratner shearing and
use it (as one of the applications) to show that, in genus one, typical Arnold flows have dis-
joint rescalings and satisfy Moebius orthogonality. Disjointness of rescalings seems to be
an important feature of parabolic dynamics: while specific parabolic flows may fail to be
disjoint from their rescalings (primarily the horocyle flow on a hyperbolic surface), several
recent results seem to indicate that this property is indeed widespread among parabolic flows
(see, e.g., the results in [34] on time-changes of horocycle flows). In the context of surface
flows, disjointness of rescalings has been verified in [4] for von Neumann flows (which can
be realized as translation flows on surfaces with boundary). Whether one can extend the dis-
jointess result proved in [34] for Arnold flows to higher genus smooth flows, remains an open
problem and is likely to require a delicate control of Diophantine-like properties.

Polynomial deviations of ergodic averages. Slow chaotic behavior manifests itself not
only through slow mixing, but also through slow convergence of ergodic integrals: given
an ergodic area-preserving flow 'R (or its restriction to an ergodic minimal component
S 0 � S ) and a real valued observable f with zero-mean, the ergodic integrals
IT .f; x/ WD

R T

0
f .'t .x// dt decay to zero polynomially with some exponent 0 < � < 1

for almost every initial point, i.e., jIT .f; x/j � O.T �/ in the sense that

lim sup
T !1

log jIT .f; x/j

log T
D �:

This phenomenon, known as polynomial deviations of ergodic averages, was discovered
experimentally in the 1990s by A. Zorich and explained (for linear flows on translation sur-
faces and observables corresponding to cohomology classes) in seminal work by Kontsevitch
and Zorich [46,83] relating power deviations to Lyapunov exponents of renormalization (see
Section 4). Forni in [23] could extend this result to integrals of sufficiently regular func-
tions over translation flows and show that ergodic integrals can display a power spectrum of
behaviors, i.e., there are exactly g positive exponents 0 < �g � � � � � �2 < �1 WD 1 (which
correspond to the positive Lyapunov exponents of renormalization) and for each a subspace
of finite codimension of smooth observables that present polynomial deviations as above
with exponent � D �i . A finer analysis of the behavior of Birkhoff sums or integrals, beyond
the size of oscillations, appears in the works [7, 54]: Bufetov in [7] shows in particular that
(for typical translation flows and sufficiently regular observables) the asymptotic behavior of
ergodic integrals can be described in terms of g (where g is the genus of the surface) cocy-
cles ˆi .t; x/, 1 � i � g (also called Bufetov functionals): each ˆi W R � S 0 ! R is a cocycle
over the flow 'R (in the sense that ˆi .t C s; x/ D ˆi .t; x/ C ˆi .s; 't .x// for any x 2 S 0
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and t 2 R), ˆ1.T; x/ � T and each ˆi has power deviations jˆi .T; x/j � O.T �i / with
exponent �i . Together, the cocycles encode the asymptotic behavior of the ergodic integrals
up to subpolynomial behavior, in the sense that, for some constants ci D ci .f /,Z T

0

f
�
't .x/

�
dt D c1T C c2ˆ2.T; x/ C � � � C cgˆg.T; x/ C Err.f; T; x/; (3.3)

where for almost every x 2 S 0 the error term Err.f; T; p/ is subpolynomial, i.e., for any
" > 0 there exists C" > 0 such that jErr.f; T; p/j � C"T ". In a joint work with Frączek,
we recently gave a new proof of this result in [26], which extends the result to the setting of
smooth observables over locally Hamiltonian flows with Morse singularities (in Umin as well
as in U: min) and also shows that the set of locally Hamiltonian flows for which the result
holds can be described in terms of a Diophantine-like condition. More precisely, we define
in [26] the Uniform Diophantine Condition (or UDC, for short; see Section 5) and show that
it has full measure. We then prove the following.

Theorem 3.3 (Frączek–Ulcigrai [26]). If the restriction of the locally Hamiltonian flow
'R 2 M on a minimal component S 0 satisfies the Uniform Diophantine Condition, for each
C3 observable f W S 0 ! R, there exist g exponents �i and corresponding cocycles ˆi such
that the expansion (3.3) holds.

Spectral theory. The study of the spectrum of the unitary operators acting on L2.S; �/

given by f 7! f ı 't can shed further light on the chaotic features of the dynamics of the
flow 'R WD .'t /t2R and is at the heart of the study of spectral theory of dynamical systems
(see [48] or [75] and the references therein). While the classification of mixing properties
of locally Hamiltonian flows is essentially complete, very little is known about their spec-
tral properties beyond the case of genus one (and some sporadic examples, such as Blokhin
examples, essentially built gluing genus one flows, see the work [25]). The recent result [17]
by Fayad, Forni, and Kanigowski for genus one suggests that it may be possible to prove that
the spectrum is countable Lebesgue also in higher genus when in presence of degenerate,
sufficiently strong (multisaddle) singularities. In the nondegenerate case, though, we recently
proved in joint work with Chaika, Frączek, and Kanigowski [10] that a typical locally Hamil-
tonian flow on a genus two surface with two isomorphic simple saddles has purely singular
spectrum. This result does not use explicit Diophantine-like conditions, but rather geometry
and, in particular, a special symmetry (the hyperelliptic involution) that surfaces in genus
two are endowed with; Liouville-type Diophantine conditions are here imposed by request-
ing the presence on the surface of large flat cylinders close to the direction of the flow, whose
existence for typical flows is then proved by a Borel–Cantelli-type of argument (see [10] for
details). Extending this result beyond genus two, though, will probably require the use of
Rauzy–Veech induction (see Section 4) and the introduction of new Diophantine-like con-
ditions, which impose some controlled form of degeneration. The nature of the spectrum
of minimal components of locally Hamiltonian flows in U: min (even in genus one, i.e., for
Arnold flows) is a completely open problem.
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3.2. Linearization and rigidity in higher genus
A different line of problems in which Diophantine-like conditions in higher genus

play a crucial role are conjectures concerning linearization and rigidity properties of higher
genus flows and their Poincaré sections, GIETs (defined in Section 3). In analogy with the
case of circle diffeos, we say that a GIET T is linearizable if it is topologically conjugate to
a linear model, namely to a (standard) IET T0.

Topological conjugacy and wandering intervals. To generalize Poincaré and Denjoy
work, one needs first of all a combinatorial invariant which extends the notion of rota-
tion number. Such an invariant can be constructed by recording the combinatorial data of a
renormalization process, as we explain in Section 4. One of the crucial differences between
GIETs and circle diffeomorphisms, though, is the failure of a generalization of Denjoy
theorem: there are smooth GIETs that are semiconjugate to a minimal IET for which the
semiconjugacy is not a conjugacy; in other words, they have wandering intervals (see the
examples found in [6,8] in the class of periodic-type (affine) IETs and, more generally, [54]).
It is important to stress that this is not a low-regularity phenomenon, nor is it related to spe-
cial arithmetic assumptions: as shown by the key work [54] by Marmi, Moussa, and Yoccoz,
wandering intervals exist even for piecewise affine (hence analytic) GIETs (called AIETs),
for almost every topological conjugacy class. The presence of wandering intervals is on the
contrary expected to be typical (see, e.g., the conjectures in [27,55]) and it is closely interknit
with the absence of a Denjoy Koksma inequality and, more generally, a priori bounds for
renormalization, see [29].

Local obstructions to linearization. As an important first step towards local linearization,
we already mentioned the cohomological equation ' ı T � ' D � in Section 2, where
T D R˛ was a rotation. Whether the cohomological equation could be solved when T is
an IET, under suitable assumptions, was unknown until the pioneering work of Forni [21],
who brought to light the existence of a finite number of obstructions to the existence of
a (piecewise finite differentiable) solution. We remark that obstructions to solve the coho-
mological equation have been since then discovered to be a characteristic phenomenon in
parabolic dynamics (e.g., their existence have been proved by Flaminio and Forni for horo-
cycle flows [19] and nilflows on nilmanifolds [20], see also the ICM talk [22]). Forni’s work
is a breakthrough that paved the way for the development of a linearization theory in higher
genus.

Another breakthrough, which put the stress on the arithmetic aspect of linearization
in higher genus, was achieved by Marmi–Moussa–Yoccoz in their work [55] (and related
works [53, 57]). In [53], in particular, they reproved and extended Forni’s result using the
IETs renormalization described in Section 5 and introduced the Roth-type condition (see
also Section 5), as an explicit Diophantine-like condition on the IET needed to solve the
cohomological equation ' ı T � ' D � � �, where � is a piecewise constant function which
embodies the finite-dimensional obstructions. This result, combined with a generalization
of Herman’s Schwarzian derivative trick, then led to the proof in [55] by the same authors
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that, for any r � 2, the C r local conjugacy class of almost every IET T (more precisely, of
any T of restricted Roth-type, see Section 5) is a submanifold of finite codimension. Marmi,
Moussa, and Yoccoz also conjectured that for r D 1 it is a submanifold of codimension
.d � 1/ C .g � 1/, where d is the number of exchanged intervals and g the genus of the
surface of which T is a Poincaré section. For the measure zero class of IETs of hyperbolic
periodic type (see Section 5), this conjecture has recently been proved by Ghazouani in [28].
The proof of this result for almost every IET will require the introduction of a new suitable
Diophantine-like condition on IETs.

Rigidity of GIETs. We say that a class of (dynamical) systems is geometrically rigid (or
also C1-rigid), if the existence of a topological conjugacy between two objects in the class
automatically imply that the conjugacy is actually C1. The global linearization results by
Herman and Yoccoz recalled in Section 2 shows that the class of (smooth, or at least C3)
circle diffeomorphisms with Diophantine rotation number is geometrically rigid (and actu-
ally C1-rigid, i.e., if a smooth circle diffeo is conjugated via a homeomorphism h to R˛

with ˛ satisfying the DC, then h is C1). We already saw that this can be reinterpreted as
a rigidity result for flows on surfaces of genus one (see Theorem 2.1). In joint work with
S. Ghazouani, we recently proved a generalization of this result to genus two.

Theorem 3.4 (Ghazouani, Ulcigrai [29]). Under a full measure Diophantine-like condition,
a foliation on a genus two surface which is topologically conjugate to the foliation given by
a linear flow with Morse saddles is also C1 conjugate to it.

Here full measure refers to the Katok measure class on the linear flow models (see
the definition given earlier in this section). For simplicity, we stated the result for flows with
simple, Morse-type saddles; degenerate saddles can also be considered, but then one has
to further assume that the foliations are locally C1 conjugated in a neighborhood of the
multisaddle. Both these results can be reformulated at level of Poincaré sections: we intro-
duce more precisely a rather subtle Diophantine-like conditions on (irreducible) IETs of any
number of intervals d � 2, that we call the Regular Diophantine Condition, or RDC (we
comment on it in Section 3) and show that it is satisfied by almost every (irreducible) IET
on d . We then prove:

Theorem 3.5 (Ghazouani, Ulcigrai [29]). If an irreducible d -IET T0 with d D 4 or d D 5

satisfies the RDC, then any C3-generalized interval exchange map T which is topologically
conjugate to T0, and whose boundary B.T / vanishes, is actually conjugated to T0 via a C1

diffeomorphism.

The boundary operator B.T / which appears in this statement is a C1-conjugacy
invariant introduced in [55]; it encodes the holonomy at singular points of the surface of which
T is a Poincaré section. Requesting that B.T / vanishes is therefore a necessary condition for
the existence of a conjugacy of class C1. Theorem 3.5 solves for d D 4; 5 one of the open
problems suggested by Marmi, Moussa, and Yoccoz in [55], where they conjecture the result
to hold also for any other larger d . The result which is missing to prove the conjecture in
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Figure 3

Renormalization algorithms for rotations and IETs.

its generality is a generalization of an estimate used in [54] to show existence of wandering
intervals in affine IETs. The main result in [29], on the other hand (namely a dynamical
dichotomy for the orbit of T under renormalization) is already proved for IETs which satisfy
the RDC for any d � 2.

4. Renormalization and cocycles

In this section we introduce the renormalization dynamics which is used as main
tool to impose Diophantine-like conditions in higher genus. Renormalization in dynam-
ics is a powerful tool to study dynamical systems which present forms of self-similarity
(exact or approximate) at different scales. A map T W I ! I of the unit interval which is
(infinitely) renormalizable is such that one can find a (infinite) sequence of nested subin-
tervals InC1 � In � � � � � I such that the induced dynamics Tn W In ! In (obtained by
considering the first return map of T on In) is well defined and, up to rescaling, belongs to
the same class of dynamical systems of the original T . Here, the rescaling, which is done
so that the rescaled (or renormalized) map acts again on an interval of unit length, is given
by the map x 7! Tn.jInjx/=jInj. We will now describe renormalization in the context of
rotations first and then IETs. In both cases, at the level of (minimal) flows (or equivalently
orientable foliations) on surfaces, the inducing process corresponds to taking shorter and
shorter Poincaré sections of a given surface flow (on the torus or on a higher genus surface).

Renormalization algorithms. If T D R˛ is a rotation by an irrational ˛ and qn, n 2 N, are
the denominators of the convergents pn=qn of ˛, then one can consider as sequence .In/n2N

the shrinking arcs on S1 which have as endpoints R
qn
˛ .0/ and R

qnC1
˛ .0/. These endpoints

correspond dynamically to consecutive closest returns of the orbit of 0 (see Figure 3a). The
induced map Tn is then again a rotation R˛n , with rotation number ˛n D G n.˛/, where G is
the Gauss map G .x/ D ¹1=xº and ¹ � º denotes the fractional part.

Similarly, for a d -IET T , one wants to choose the nested sequence .In/n2N of
inducing intervals so that the induced maps Tn are all IETs of the same number d of subin-
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tervals. Given any minimal T (or more generally any IET satisfying the Keane condition
[37], i.e., such that the orbits of its discontinuity points are infinite and distinct), classical
algorithms which produce such an infinite sequence .In/n2N are the Rauzy–Veech induc-
tion algorithm (see Veech [76] or [81] and the references therein) and Zorich induction, an
acceleration of the same algorithm introduced by Zorich in [82]. For the definitions of these
algorithms, which we will not use in the following, we refer the interested reader to the lecture
notes [81]. One can show that, for d D 2, Zorich induction corresponds to the renormalization
of rotations given by the Gauss map.

On the parameter space Id of all d -IETs, these algorithms induce renormalization
operators R W Id ! Id , which associate to T the d -IET R.T / obtained by applying one
step of the corresponding induction and then renormalizing the induced map to act on Œ0; 1�.
Veech showed that Rauzy–Veech renormalization admits a conservative absolutely continu-
ous invariant measure, that induces a finite invariant measure for the Zorich acceleration, as
proved in [82]. The ergodic properties of the renormalization dynamics in parameter space
have been intensively studied and are by now well understood, see, e.g., [80] and the refer-
ences therein for a brief survey.

Rohlin towers and matrices. After n steps of induction, one can recover the original
dynamics through the notion of Rohlin towers as follows: if I i

n is one of the subinter-
vals of Tn and r WD r i

n is its first return time to In under the action of T , the intervals
I i

n; T .I i
n/; : : : ; T r�1.I i

n/ are disjoint. Their union is called a Rohlin tower of step n and each
of them is called a floor (see Figure 3b for a graphical depiction of floors and towers). Given
an infinitely renormalizable T , for any n one can see Œ0; 1� as a union of d Rohlin towers of
step n, as shown in Figure 3b. Rohlin towers thus produce a sequence of partitions of Œ0; 1�

(into floors of towers of step n).
Renormalization produces also a sequence of d � d matrices An, n 2 N, with inte-

ger entries, which should be thought of as multidimensional continued fraction digits and
describe intersection numbers of Rohlin towers. The matrices .An/n2N are defined so that
the entries of the product An WD An � � � A1 have the following dynamical meaning: the .i; j /

entry .An/ij is the number of visits of the orbit of any point x 2 I
j
n to the initial subinterval

I i
0 until its first return time r

j
n ; in other words, .An/ij is the number of floors of the j th

tower of level n which are contained in I i
0 . These entries generalize the classical continued

fraction digits: for d D 2, indeed, the matrices .An/n2N associated to R˛ , for n of alternate
parity, have respectively the form 

1 an

0 1

!
or

 
1 0

an 1

!
;

where an are the entries of the continued fraction expansion ˛ D Œa0; a1; : : : ; an; : : : �.
Diophantine-like conditions for IETs are defined by imposing conditions on these matrices,
on their growth as well as on their hyperbolicity, see in Section 5. The matrices .An/n2N are
produced by the renormalization dynamics: for rotations, the entries .an/n2N of the contin-
ued fraction expansion of ˛ satisfy an D a.G n.˛//, where a.�/ is an integer-valued function
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on Œ0; 1�. Similarly, one has now that An D A.Rn.T //, where A W Id ! SL.d;Z/ is a matrix-
valued function on the space Id of d -IETs, i.e., a cocycle (known as the Rauzy–Veech cocycle,
or Zorich cocycle if considering the Zorich acceleration).

Positive and balanced accelerations. It turns out though that Zorich acceleration is often
not sufficient (see, for example, [41] and [40] where it is shown that the classical Diophantine
notions of bounded- [41] and Diophantine-type [40] do not generalize naturally when using
Zorich acceleration). Two accelerations which play a key role in Diophantine-like conditions
are the positive and the balanced acceleration. By accelerations we mean here an induction
which is obtained by considering only a subsequence .nk/k2N of Rauzy–Veech times. The
associated (accelerated) cocycle is then obtained considering products

A.nk ; nkC1/ WD AnkC1�1 � � � AnkC1Ank
:

The positive acceleration appears in the works by Marmi, Moussa, and Yoccoz [53, 55, 57].
They showed that if T satisfies the Keane condition, for any n there exists m > n such that
A.n;m/ is a strictly positive matrix. The accelerated algorithm then corresponds to choosing
the sequence .nk/k2N setting n0 WD 0 and then, for k � 1, choosing nk to be the small-
est integer n > nk�1 such that A.nk�1; n/ is strictly positive. On the other hand, to define
the balanced acceleration, one considers a subsequence .nk/k2N of Rauzy–Veech times n

for which the corresponding Rohlin towers are balanced, in the sense that ratios of widths
jI i

nj=jI
j
n j and heights r i

n=r
j
n are uniformly bounded above and below. We will return to these

accelerations and some instances in which they are helpful in Section 5.

Combinatorial rotation numbers. We remark that the definition of Rauzy–Veech induc-
tion can be extended also to a GIET T (under the Keane condition, which guarantees that
Rn.T / can be defined for every n 2 N) and then exploited to give a combinatorial notion of
rotation number as well as a definition of irrationality in higher genus (following [55,57], see
also [81]). As one computes the induced maps .Tn/n2N , one can indeed record the sequence
.�n/n2N of permutations of the GIETs .Tn/n2N : this sequence provides the desired com-
binatorial rotation number for d > 2. We say that a GIET is irrational if the sequence of
matrices .An/n2N have a positive acceleration (or equivalently, in the terminology intro-
duced by Marmi, Moussa, and Yoccoz, the path described by .�n/n2N is infinitely complete).
One can then show that two irrational GIETs with the same rotation number are semicon-
jugated (see, e.g., [81]), a result that generalizes a property of rotations numbers and circle
diffeos and hence explains the choice of calling this higher genus combinatorial object the
“rotation number” of a GIET.

Renormalization of Birkhoff sums. Given T W I ! I and a function f W I ! R, we denote
by Snf WD

Pn�1
kD0 f ı T k the nth Birkhoff sum (of the function f under the action of T ).

When T D R˛ is a rotation (or a circle diffeo), it is standard to study first Birkhoff sums
of the form Sqnf for qn convergent of ˛, corresponding to closest returns, and then use
them to decompose more general Birkhoff sums. Similarly, renormalization for (G)IETs can
be exploited to produce special Birkhoff sums, namely Birkhoff sums of a special form that
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can be understood first, exploiting renormalization, and then used to decompose and study
general Birkhoff sums. For each n 2 N, if Tn W In ! In is the induced map after n steps
of renormalization, the nth special Birkhoff sum is the induced function S.n/f W In ! In,
defined by S.n/f .x/ WD Sr i

n
f .x/ if x 2 I i

n. Thus, since r i
n is the height of the Rohlin tower

over I i
n, the value S.n/f .x/ is obtained summing the orbit along the tower which has x

in the base, see Figure 3b. Notice that for d D 2, when considering Zorich acceleration,
these reduce to sums of the form Sqnf .x/. The associated special Birkhoff sums operators
S.n/, n 2 N, map f W I ! R to S.n/f W In ! R. When f is piecewise constant and takes
a constant value fi on each I i , S.n/ can be identified with a linear operator given by the
(studied acceleration of the) Rauzy–Veech cocycle An D An � � � A1 as follows: one can show
that S.n/f takes constant values f i

n on each I i
n and the column vectors f WD .f i /d

iD1 and
fn WD .f i

n /d
iD1 are related by fn D An f . Thus, special Birkhoff sums operators can be seen

as infinite-dimensional extensions of the Rauzy–Veech cocycle (and its accelerations).
When considering a rotation R˛ , to decompose Snf .x/ into Birkhoff sums of the

form Sqk
f .y/ where y 2 Ik , one can write n D

Pkn

kD0
bkqk , where kn is the smallest integer

k such that n < qk and bk are integers such that 0 � bk � ak (a presentation sometimes known
as Ostrowsky decomposition). Correspondingly, recalling that Sqk

f .y/ D S.k/f .y/ when
y 2 Ik , we can write

Snf .x/ D

knX
kD0

bk�1X
j D0

S.k/f
�
xk

j

�
; where xk

j 2 Ik ; for all 0 � j < bk : (4.1)

For IETs one can also get an analogous decomposition of any Birkhoff sums Snf .x/ into spe-
cial Birkhoff sums, which has the same form (4.1), but where 0 � bk � kAnk WD

P
i;j .An/ij

and the decomposition is obtained dynamically, by decomposing the orbit of x until time n

into blocks, each of which is contained in a tower and hence corresponds to a special Birkhoff
sums.

Renormalization in moduli spaces. We conclude this section mentioning that these renor-
malization algorithms (for rotations and IETs) describe a discretization of a renormalization
dynamics on the moduli space of surfaces. In genus one, the Gauss map is well known to be
related to the geodesic flow on the modular surface (which can be seen as the moduli space of
flat tori), see, e.g., [66]. Similarly, (an extension of) Rauzy–Veech induction can be obtained
as Poincaré map of the Teichmüller geodesic flow on the moduli space of translation surfaces
(see, e.g., [85]).

The full measure Diophantine-like conditions that we discuss in this survey are sat-
isfied by (Poincaré maps of) linear flows in almost every direction on almost every translation
surface in these moduli space (with respect to the Lebesgue, or Masur–Veech measure, see
[12]). A different question is whether these properties hold for a given surface in almost
every direction, in particular if the surface has special properties, for example, is a torus
cover (i.e., it is a square-tiled surface), or has special symmetries (e.g., it is a Veech surface
or it belongs to an SL.2; R/-invariant locus, see [12]). In these settings, while some results
can be obtained by general measure-rigidity techniques (in particular, from the work [9] by
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Chaika and Eskin, see also the ICM proceedings [12] and the references therein), to describe
explicit Diophantine-like conditions, it is often helpful to exploit or develop ad hoc renor-
malization algorithms (for example, one can use finite extensions of the Gauss map to study
square-tiled surfaces, see, e.g., [59], or construct Gauss-like maps for some Veech surfaces,
see, e.g., [69]).

5. Diophantine-like conditions in higher genus

We finally describe in this section some of the Diophantine-like conditions which
were introduced to prove some of the results on typical ergodic and spectral properties of
smooth area-preserving flows on surfaces (see Section 3.1) and on linearization (such as
solvability of the cohomological equation and rigidity questions in higher genus, see Sec-
tion 3.2).

5.1. Bounded-type IETs and Lagrange spectra
We start with two important classes of IETs, namely periodic-type and bounded-

type IETs, both of which have measure zero in the space Id of IETs (although full Hausdorff
dimension in the case of bounded-type IETs), but often constitute an important class of IETs
in which dynamical and ergodic properties can be tested.

One of the simplest requests on a (G)IET is that its orbit under renormalization is
periodic, so that the sequence of Rauzy–Veech cocycle matrices .An/n2N introduced in the
previous Section 4 is periodic, i.e., there exists p > 0 such that AnCp D An for every n 2 N.
We will furthermore request that the period matrix A WD Ap � � � A2A1 is strictly positive.
These IETs are called in the literature periodic-type IETs (see, e.g., [68]), in analogy with
periodic-type rotation numbers (quadratic irrationals like the golden mean .

p
5 � 1/=2 D

Œ1; 1; : : : ; 1; : : : � which have a periodic continued fraction expansion). By construction they
are self-similar, and one can also show that they arise as Poincaré section of foliations which
are fixed by a pseudo-Anosov surface diffeomorphism. Notice that d -IETs of periodic type
form a measure zero set in Id (they are actually countable). One can show (in view of a
Perron–Frobenius argument, e.g., following [76]) that periodic-type IETs are always uniquely
ergodic with respect to the Lebesgue measure.

Periodic-type IETs are often the very first type of IETs used to construct explicit
examples; see, e.g., the explicit examples of weakly mixing periodic-type IETs in [68] or the
explicit examples of Roth-type IETs build in the Appendix of [53]. On the other hand, among
periodic-type IETs one can also find examples with exceptional behavior. A further request,
that is used to guarantee that a periodic-type T displays features similar to those of typical
(in the measure theoretical sense) IETs is that T is of hyperbolic periodic-type: this means
that the periodic matrix A has g eigenvalues of modulus greater than 1, where g is the genus
of the surface of which T is a Poincaré section. Notice that g is the largest possible number
of such eigenvalues, as it can be shown by either geometric or combinatorial arguments (in
particular, exploiting the symplectic features of the cocycle matrices, which come from their
interpretation as action of renormalization on the relative homology H1.S;Fix.'R/;R/, one
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can show that A has also g eigenvalues of modulus less than 1, while the transpose AT acts as
a permutation on a subspace of dimension k WD d � 2g which gives rise to a k-dimensional
central space).

Bounded-type IETs equivalent characterizations. Periodic-type IETs are a special case
of so called bounded-type IETs: we say that a (Keane) IET T is of bounded-type if the matri-
ces of the positive acceleration Pk WD A.nk ; nkC1/ are uniformly bounded, i.e., there exists
a constant M > 0 such that kPkk � M for every k 2 N. From this point of view, bounded-
type IETs can be seen as a generalization of bounded-type rotation numbers (which, recalling
Section 2, are ˛ D Œa0; a1; : : : ; an; : : : � such that for some M > 0 we have janj � M ). It
turns out that this renormalization-based definition characterizes a natural class of IETs (and
corresponding surfaces) from the combinatorial and geometric point of view: bounded-type
IETs are linearly recurrent (i.e., satisfy an important notion of low complexity in word-
combinatorics) and surfaces which have a bounded-type IET as a section give rise to bounded
Teichmüller geodesics in the moduli space of translation surfaces (see, e.g., [31] for the proof
of the equivalences). These natural characterizations show once more how the positive accel-
eration (and not simply Zorich acceleration) is the good one to use in this setting (see also [41]

where it is shown that asking that Zorich matrices are bounded leads to a different, strictly
larger class).

Furthermore, from the point of view of renormalization, the uniform bounds on the
norm of the matrices Pk imply that the partitions into Rohlin towers produced by Rauzy–
Veech renormalization are all balanced (see Section 4). From a purely dynamics perspective,
the orbits of a bounded-type IET are well-spaced: there are uniform constants c; C > 0 such
that, for any point x and any n, the gaps (i.e., the distances between closest point) of the
orbit ¹T i x; 0 � i < nº are all comparable to n, i.e., are bounded below by c=n and above by
C=n. Yet another characterization is in terms of orbits of discontinuities: if ın.T / denotes
the smallest length of a continuity interval for Tn, lim infn2N nın.T / > 0, see [31] and the
reference therein.

Several results in the literature were proved first assuming bounded-type (for exam-
ple, the absence of mixing for flows in Umin, see [70], preceding [73]) and some properties are
currently known only under the assumption of being bounded-type, for example, absence of
partial rigidity and mild-mixing (see [47] and [32], respectively) for flows in Umin (it is pos-
sible, but an open question, that these two properties fail without assuming that a Poincaré
section is of bounded-type), or ergodicity of typical skew-product extensions of IETs by
piecewise constant cocycles (see [11]).

Bounded-type uniform contraction and deviations estimates. One of the way in which
the bounded-type assumption can be exploited is the following. It is well known that iterates
of a positive d � d matrix A > 0 act on the positive cone Rd

C as a strict contraction (e.g.,
with respect to the Hilbert projective metric): this is the phenomenon behind the proof of
Perron–Frobenius theorem, showing that A has a unique (positive) eigenvector with maximal
eigenvalue. More generally, the projective action of any matrix Ai with kAi k � M has a
contraction rate which depends on M only; this, in view of the connection between the entries
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of the cocycle products An WD An � � � A1 and (special) Birkhoff sums (see Section 4), can be
used, given a bounded-type IET, to prove unique ergodicity and to give uniform estimates
on the rate of convergence of ergodic averages: one can, for example, show that there is a
uniform constant (which can be taken to be 1) and a uniform exponent M such that, for
any bounded-type IET with kPkk � M and any mean zero (piecewise) smooth f W I ! R,
jSnf .x/j � nM for all x 2 I (see the Appendix of [11]).

The role of bounded-type conditions in the study of Lagrange spectra. Periodic-type and
bounded-type rotation numbers play a central role in the study of the Lagrange spectrum
L � R [ ¹C1º, a classical object in both number theory and dynamics (see, for exam-
ple, [31] or [58] and the reference therein). It is defined as the set L WD ¹L.˛/; ˛ 2 Rº where
L.˛/ WD lim supq;p!1 1=qjq˛ � pj; one can show that L.˛/ < 1 exactly when ˛ is of
bounded-type, in which case L.˛/�1 provides the smallest constant such that j˛ � p=qj <

L.˛/�1=q2 has infinitely many integer solutions p;q 2 Z, q ¤ 0 (and it has also an interpre-
tation in terms of depths of excursions into the cusp of hyperbolic geodesics on the modular
surface). Among the many geometric and dynamical extensions of the notion of Lagrange
spectrum (see some of the references in [31]), a natural generalization to higher genus leads
to Lagrange spectra of IETs and translation surfaces, which we introduced in joint work
with Hubert and Marchese in [31]. The finite values of these spectra are achieved exactly by
bounded-type IETs and can be computed using renormalization. We show furthermore in
[31] that these spectra can be obtained as the closure of the values achieved by periodic-type
IETs.

5.2. Roth-like conditions and type
The Roth-type condition, to the best of our knowledge, was historically the first full

measure “arithmetic” condition to be defined and exploited in higher genus.

Roth-type condition. In the seminal paper [53], Marmi, Moussa, and Yoccoz show first
of all that (a predecessor of) the positive acceleration of Rauzy–Veech induction (refer to
Section 4) is well defined for all Keane IETs and use this acceleration to define the Roth-type
condition and prove that it has full measure; they then show that this condition is sufficient
to solve the cohomological equation after removing obstructions (see Section 3.2). Since
bounded-type IETs have measure zero, to describe a full measure set of IETs, one needs to
allow the norms kPkk of the matrices .Pk/k of the positive acceleration to grow. Marmi,
Moussa, and Yoccoz show in [53] that, for almost every d -IETs in Id , the matrices .Pk/k

grow subpolynomially, i.e., for any " > 0 there exists C" > 0 such that

kPkC1k � C"kQkk
"; where Qk WD Pk � � � P1: (5.1)

This condition should be seen as a higher genus generalization of the classical Roth-type con-
dition, see Section 2. A d -IETs is called Roth-type if it satisfies (5.1) (which is equivalent
to condition (a) in [53], see [57]), and two additional conditions, which concern the contrac-
tion properties of the cocycle (condition (b) in [53] imposes that the operators S.k/ act as
contractions on mean-zero functions and guarantees unique ergodicity and the existence of
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a spectral gap, while the last one, condition (c) or coherence, concerns the contraction rate
of the stable space and its quotient space). The presence of additional requests that concern
not only the growth of the matrices but also their hyperbolicity properties seems to be an
important and new feature of several Diophantine-like conditions in higher genus, see Sec-
tion 5.4. While the proof that the latter two conditions are satisfied by almost every IET is
a simple consequence of Forni’s work [23] and Oseledets theorem (which can be applied in
view of the work by Zorich [82]), the proof that the growth condition (5.1) is typical takes
a large part of [53]; a simpler proof can be now deduced (as explained in [52]) from a later
result by Avila–Gouezel–Yoccoz [3].

Variations of the Roth-type condition. As we saw, the periodic-type condition can be
refined to the more restrictive condition of hyperbolic periodic-type. In a similar way, one
may further request, given a Roth-type IET T , that the stable space, i.e., the space �s.T /

of vectors v 2 Rd such that Anv ! 0 exponentially as n grows (which, in the case of a
periodic-type IET with period matrix A, is generated by the eigenvectors corresponding to
the eigenvalues of A which have modulus greater than 1) has maximal dimension, namely
g. The condition that one gets was called restricted Roth-type in [55]; it has full measure
in view of [23] and was used to study the structure and codimension of local C r conjugacy
class of a (G)IET for r > 2. In the joint work [56] with Marmi and Yoccoz, we introduced
a further weakening of the (restricted) Roth-type condition, the absolute (restricted) Roth
type condition, expressed only in terms of the cocycle action on a 2g-dimensional subspace
which can be identified with the absolute homology H1.S; R/ of the surface S of which T

is section (in contrast, the original condition involves the whole cocycle, which describes the
action on the relative homology H1.S; Fix.'R/; R/). Exploiting [9], one can also show that
this absolute (restricted) Roth-type condition holds on every translation surface for almost
every direction (see [9] and [56]). A generalization of the restricted Roth-type condition, the
quasi-Roth-type condition, was introduced in [24] to extend the results of [53] and [55] to
Poincaré maps of surfaces for which the stable space has dimension less than g (see [24] for
details). Let us also mention that a Roth-type condition can also be imposed on the backward
rotation number (of a translation flow), requesting a growth rate similar to (5.1) for the dual
cocycle. The corresponding dual Roth-type condition was used in [56] to study the asymp-
totic oscillations of the error term in (3.3) (which we describe in terms of a distributional
cocycle or distributional limit shape, see [56] for details).

Type and recurrence for IETs. It is not surprising that Diophantine-like conditions can
also be used to study recurrence questions. While for rotations these reduce to Diophantine
properties in the classical arithmetic sense (namely how well a number can be approximated
by rationals), given an IET T , one can study either how frequently the successive iterates
.Tn.x//n2N return close to x (see, e.g., [5]), or how close the iterates of a discontinuity come
to other discontinuities, see, e.g., [51]. The (Diophantine) type � of a rotation R˛ is defined to
be � WD sup¹ˇ W lim infn!1 nˇ ¹n˛º D 0º. Bounded- and Roth-type numbers have type � D 1

(while Liouville ones have type � D 1). One can show (see [40] and [55]) that requesting
an IET T be of Roth-type is equivalent to asking that sup¹ˇ W lim inf nˇ ın.T / D 0º D 1,
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where here ın.T / is the minimum spacing between discontinuities of Tn. It also implies (but
without equivalence) that the first return time �r .x/ of x to a ball of radius r > 0 satisfies
the logarithmic law limr!0 log �r .x/= log.1=r/ D 1 for almost every x 2 Œ0; 1� (see [40]).

5.3. Controlled growth Diophantine-like conditions
Any balanced acceleration of Rauzy–Veech induction (as defined in Section 4), pro-

duces, given a typical IET T , a sequence of times .nk/k which correspond to occurrences
of positive matrices Ank

whose norm kAnk
k � M is uniformly bounded (these are, further-

more, return times to a compact subset K of the parameter space for the natural extension).
As for bounded-type IETs, occurrences of these positive bounded matrices give very good
control of the convergence of (special) Birkhoff sums of characteristic functions �

I
j
0

(see
the end of Section 5.1). More generally, if x0 2 I

j
n belongs to the inducing interval In of

a balanced return time n WD nk and q WD r
j
n is the height of the corresponding tower, the

orbit ¹x0; T .x0/; : : : ; T q�1.x0/º along a tower is so regularly spaced that one can get good
estimates of the Birkhoff sums Sqf .x0/ also for other classes of observables f . In order to
estimate Birkhoff sums Snf .x/ for other times n 2 N and points x 2 Œ0; 1�, one can then
interpolate these estimates by using the decomposition (4.1) into special Birkhoff sums. It is
clear now that for this interpolation to provide good estimates for any time n 2 N, one needs
to impose that the balanced times .nk/k are sufficiently frequent so that kA.nk ; nkC1/k

grows in a controlled way. Notice that by balance the tower heights r
j
nk

for 1 � j � d are
all comparable and if we set qn WD maxj r

j
n , the norm kA.nk ; nkC1/k is proportional to

qnkC1
=qnk

.

Mixing Diophantine condition. The main requirement of the mixing Diophantine condi-
tion introduced in [71] is that there exist a (good) positive acceleration and C > 0 such thatA.nk ; nkC1/

 � C k� ; 8k 2 N; for some 1 < � < 2: (5.2)

This condition should be seen as a higher-genus generalization of the Khanin–Sinai condi-
tion jakj � C k� for mixing of Arnold flows, see Section 2. The proof that it is satisfied by
a full measure set of IETs follows from a Borel–Cantelli argument analogous to that which
can be used in genus one, but the input in higher genus are the highly nontrivial integrabil-
ity estimates for balanced accelerations proved by Avila, Gouezel, and Yoccoz (which the
authors proved to show in [3] that the Teichmüller geodesic flow is exponentially mixing):
it is proved in [3] that for any 0 < � < 1, there exists a suitable compact set K such thatR

K
kAKk�d� is finite (where AK is the accelerated cocycle and � the Zorich measure).

In order to prove mixing of (minimal components of) locally Hamiltonian flows
in U: min (i.e., Theorem 3.1), one needs good quantitative estimates on shearing: these are
given by estimates of Birkhoff sums Snf over an IET which arise as Poincaré map, for a
particular observable f (namely, f is taken to be the derivative of the roof function in the
special flow representation of 'R), which turns out not to be in L1 (indeed, the function f

has singularities of type 1=x, which are not integrable). When n D nk is a balanced time, one
can control the corresponding special Birkhoff sums S.nk/f and show that each Birkhoff

3599 Dynamics and “arithmetics” of higher genus surface flows



sum along a tower Sqf .x/, where q D q
j
nk

and x 2 I
j
nk

, can be controlled after removing
the closest point contribution that, in this case, is simply 1=x. One can indeed show that the
trimmed Birkhoff sum Sqf .x/ � 1=x is asymptotic to C q log q. The mixing Diophantine
condition allows to interpolate these estimates and to show that, also for any other n 2 N,
Snf .x/ grows asymptotically as C n log n for all points x with the exception of points which
belong to a set †n � Œ0; 1� of measure going to zero. The set †n of points which needs to
be removed to get the desired control contains points whose orbits may be resonant, in the
sense that it may contain a close-to-arithmetic progression near one of the singularities of f ,
with step qnk

=qnkC1
(which can be a very small step if qnkC1

is much larger than qnk
).

Ratner Diophantine condition. In order to prove that (minimal components of) locally
Hamiltonian flows in U: min have the switchable Ratner property (e.g., Theorem 3.2, see Sec-
tion 3), one needs more delicate quantitative shearing estimates. Such estimates are proven
assuming first of all the mixing Diophantine condition, but the MDC is not sufficient. While
mixing is an asymptotic condition and therefore it is sufficient, for all large n, to prove
estimates for the Birkhoff sums Snf .x/ (introduced in the previous subsection) on sets of
measure tending to 1 (and hence one can remove a set †n whose measure goes to zero), the
(switchable) Ratner property requires estimates on arbitrarily large sets of initial points, for
all large times n � n0. If the series

P
n2N Leb.†n/ were finite, the tail sets of the formS

n�n0
†n would have arbitrarily small measures, and thus one could throw away these

unions for n0 large. Unfortunately, one can check that the measures .Leb.†n//n2N are not
summable. Instead, we consider a subset K � N such that

P
n…K Leb.†n/ < C1 and

exploit the additional freedom given by the switchable Ratner condition to deal with points
x 2 †n when n 2 K. This requires the introduction of a suitable Diophantine-like condition.

We say that an IET T satisfies the Ratner Diophantine condition (RDC) if T satisfies
the mixing DC along the sequence .nk/k2N of balanced induction times and there exist
0 < � , � < 1 such that, if Bk WD A.nk ; nkC1/ are the matrices of the accelerated cocycle and
qk WD maxj r

j
nk

the maximum height of the corresponding towers, then we haveX
k…K

1=.log qk/� < C1; where K WD
®
k 2 N W kBkk � k�

¯
: (5.3)

The assumption (5.3) guarantees in particular the summability of
P

n…K Leb.†n/, so that
tail sets of this series can be removed. When k 2 K, using that nk is a balanced time and
qk=qk�1 � kBkk is not too large, one can show that an arbitrarily large set of points x

do not get close of order c=qk�1 to a singularity twice in time of order qk , so by either
going forward or backward in time one can avoid getting O.q�1

k
/ close to singularities.

This suffices to provide the control of Snf .x/ (and therefore of shearing) required by the
switchable Ratner property for all times.

Notice that if an IET T is of bounded type (so kBkk are bounded) then the RDC is
automatically satisfied (since the complement of K in N is finite and therefore the series is a
sum of finitely many terms). The Ratner DC imposes that the times k for which kBkk is large
are not too frequent: in a sense if an IET satisfies the RDC, it behaves like an IET of bounded
type modulo some error with small density (as a subset of N), but this relaxation allows the
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property to hold for almost every IETs: we prove in [33] that, indeed, for suitable choices
of � and �, the RDC is satisfied by a full measure set of IETs. Formally (when using the
suitable acceleration), the assumption (5.3) looks like the Diophantine condition for rotations
introduced by Kanigowski and Fayad in [16], see (3.2). The proof of full measure of the RDC
is modeled on the proof of full measure of the arithmetic condition (3.2), with the role of
the Gauss map played by the renormalization operator in the parameter space corresponding
to the balanced acceleration. Key ingredients to make this proof work are once more the
integrability estimates by Avila–Gouezel–Yoccoz [3], as well as a quasi-Bernoulli property
of the balanced acceleration, see [33] for details.

Backward growth condition for absence of mixing. The Diophantine-like condition to
prove absence of mixing of typical locally Hamiltonian flows in Umin (see Section 3.1) is
not explicitly stated in [73], but, from the proof, one can see that one needs the existence
of a suitable acceleration of the balanced acceleration, whose matrices will be denoted by
.Bk/k2N , of a subsequence .kl /l and of a constant M > 0 such that

klX
kD0

kBkk

�kl �k
D

klX
j D0

kBkl �j k

�j
� M < C1; for all k 2 N; (5.4)

where � is some constant with � > 1. Such a condition has two interesting features: it requires
a backward control of the growth of the matrices of an accelerated cocycle, which has to
happen infinitely often. Indeed, for the series (5.4) to converge and be uniformly bounded
by M , one needs to ask that the norms kBkk when k belongs to the sequence .kl /l2N are
uniformly bounded; furthermore, it is sufficient to then impose that, going backward in time,
they grow slower than the denominator, namely that kBkl �j k � Ceıj for 0 � j � kl where
ı is chosen so that eı < �. These conditions can be shown to be of full measure by exploiting
Oseledets integrability (for the dual cocycle).

Such backward conditions seem to appear naturally when one wants to provide good
control of the deviations of the points in a finite segment ¹x; T .x/; : : : ; TN .x/º of an IET
orbit from an arithmetic progression: one would like to show, for example, that, if we relabel
the points in the orbit segment so that 0 < x1 < x2 < � � � < xN < 1, the points xi display
polynomial deviations from an arithmetic progression, i.e., there exist C > 0 and 0 <  < 1

such that jxi � i=N j � C.i=N / . These estimates (which are used in [70,73] to show, through
a cancelations mechanism, that there is a subsequence of times with no shearing and, as a
consequence, that mixing fails) can be proved for all times for bounded type IETs (see [70]),
but, for typical IETs, even for orbits along a balanced tower of some renormalization level
nk0

, it may not be possible to choose a constant C uniformly in i . Heuristically, the reason for
this is that, to estimate the location of xi , one can use a spatial decomposition of the interval
Œ0; xi � into floors of renormalization towers which involves the entries of backward cocycle
matrices (a decomposition similar to that in (4.1), but with the role of time now played by
space; geometrically this can also be interpreted as swapping the role of the horizontal and
vertical flows on a translation surface). The presence of an exceptionally large kAkk, even
if k is much smaller than k0, can still spoil the deviations control, since it may correspond
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in the spatial decomposition to a clustering of points, close to an arithmetic progression of
a very small step.

We point out that phenomena of similar nature, where the whole backward history
of the continued fraction entries matters to control orbits, appears also in genus one, in the
theory of circle diffeomorphisms. For example, in the paper [39] (in which the Herman’s
theory of linearization briefly recalled in Section 2) is revisited, following [38], through the
renormalization perspective and optimal results are achieved for low regularity), the finite-
ness of a series of the form

P1

nDn0
anC1

�Pn
iD0

ln

ln�i
.ln�i�1/�

�
, where .an/n2N are the CF

entries of ˛ D Œa0; a1; : : : � ln WD jqn˛ � pnj and 0 < � < 1, is used to control the spatial
decomposition of orbit segments. It would be interesting to know if the analogy, which at this
level is only formal and on the nature of the conditions, hides a more profound similarity.

5.4. Effective Oseledets Diophantine-like conditions
To conclude, we briefly describe the uniform and regular Diophantine-like con-

ditions (UDC and RDC, for short), introduced and used to prove Theorems 3.5 and 3.3,
respectively (see Sections 3.2 and 3.1). Both these conditions present a novel aspect: not only
they impose conditions which control the growth of cocycle matrices of a suitable acceler-
ation (as all the conditions we have seen in Section 5.3), as well hyperbolicity assumptions
(as, for example, the hyperbolic periodic-type or the restricted Roth-type condition, in Sec-
tions 5.1 and 5.2), but they also impose quantitative forms of hyperbolicity, by asking for
effective bounds on the convergence rates in the conclusion of Oseledets theorem, as we now
detail.

Effective Oseledets control and the UDC. Let us say that a sequence of balanced return
times .nk/k2N satisfies an effective Oseledets control if one can find a sequence of invariant
splittings Rd D En

s ˚ En
c ˚ En

u , with dimEn
s D g, such that, for some � > 0 and any k 2 N;A.nk ; n/j

E
nk
s


1

� Ce��.n�nk/ for every n � nk I (5.5)A.n; nk/�1
j
E

nk
u


1

� Ce��.nk�n/ for every 0 � n � nk : (5.6)

Thus, the cocycle contracts the stable space E
nk
s in the future and the unstable space E

nk
u in

the past with a uniform rate � and a uniform constant C . These times can be produced, for
example, by considering returns to a set (for the natural extension) where the conclusion of
Oseledets theorem (for the cocycle and its inverse) can be made uniform. An IET satisfies
the uniform Diophantine condition (UDC) if there exists balanced times .nk/k with effec-
tive Oseledets control and, furthermore, for every " > 0 there exist C; c > 0, � > 0 and a
subsequence .kl /l2N which is linearly growing (i.e., such that lim infl!1 kl=l > 0), for
which A.nk ; nkl

/
 � C"e"jk�kl j for all k � 0 and l � 0I (5.7)

ce�k
�
A.0; nk/

 � Ce.�C"/k for all k � 0: (5.8)

One can show that assuming that T satisfies the RDC implies, in particular that T is of
(restricted) Roth-type (see [26]); on the other hand, (5.5) and (5.6) are assumptions of a new
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nature, and furthermore (5.8) clearly excludes IETs of bounded type; thus this is a more
restrictive Diophantine-like condition, although still of full measure (see [26]).

The RDC and conditions on Diophantine series. In the regular Diophantine condition
(used to study rigidity of GIETs in [29] and, in particular, to prove Theorem 3.5), we assume
that T is Oseledets generic and require the existence of a special sequence of balanced times
.nk/k such that the two following forward and backward series (involving the accelerated
matrices Bk WD A.nk ; nkC1/, their products B.k; l/ WD BlBl�1 � � � BkC1, as well as the pro-
jections …k

s and …k
u to E

nk
s and E

nk
u , respectively) are uniformly bounded by some constant

M > 0 along a linearly growing subsequence .kl /l2N , namely, for every l 2 N,
klX

kD1

B.k; kl /jE
nk
s

…k
s

kBk�1k � M;

1X
kDkl C1

B.kl ; k/�1

jEk
u

…k
u

kBk�1k � M:

(5.9)
We also require a uniform lower bound on the angles between the subspaces En

s ; En
u , and

En
c of the splitting along the subsequence .nkl

/l and subexponential growth of B.kl ; klC1/.
The convergence of these series can be proved assuming that the sequence .nk/k provides
effective Oseledets control; the subsequence .kl /l is then selected so that the uniform upper
bound holds. We remark that also the UDC can be used to prove the convergence and uniform
boundedness (along a linearly growing subsequence) of some series of similar (although sim-
pler) nature (that we call Diophantine series, see [26] for details). Notice also the similarity
between the backward series in (5.9) and the series (5.4) used to prove absence of mixing,
even though the latter involves only the norm of the matrices and not their hyperbolic prop-
erties.

Examples of arithmetic conditions on classical rotation numbers which do not
depend only on the asymptotic behavior of the continued fraction entries (as Diophan-
tine or Roth-type conditions) but instead depend on values or finiteness of series involving
continued fraction entries include the Brjuno-condition (see, e.g., [78]) and the Perez–Marco
condition [62]. Conditions which require recurrence to a set of rotation numbers with this
type of control in the theory of circle diffeos seem to appear in global rigidity results, see,
for example, Condition .H/ defined by Yoccoz [79].

Final remarks and questions. We saw that advancements in our understanding of both
chaotic properties and linearization and rigidity questions in the context of surface flows in
higher genus depend crucially on sometimes delicate Diophantine-like conditions, imposed
to control the renormalization dynamics. While some of these resemble the classical counter-
parts, others are of new nature and involve in particular hyperbolicity features which become
visible only in higher genus. A downside of this new aspect is that conditions that require
Oseledets genericity assumptions are not easily checkable. If there is a way of producing
explicit examples with such properties which are not of periodic type, even within a locus,
remains a challenge. Since many developments are still quite recent, it is possible that some
conditions can be simplified or weakened and still yield the same results; furthermore, the
interdependence or inclusions between the various conditions have not been fully inves-
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tigated. Finally, even though, all the conditions we described, with the only exception of
bounded-type conditions, are of full measure, they are likely not to be the optimal ones
required for the results for which they were introduced (we know this, for example, for the
absence of mixing condition, in view of [13]). Finding optimal conditions for each of these
problems is certainly interesting, but probably very difficult.
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