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Abstract

We discuss the problem of determining the dimension of self-similar sets and measures
on R. We focus on the developments of the last four years. At the end of the paper, we
survey recent results about other aspects of self-similar measures including their Fourier
decay and absolute continuity.
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A (self-similar) iterated function system, IFS for short, is a finite collection

ˆ D ¹'i W i 2 ƒº

of contractive similarities of Rd . A contractive similarity is a map x 7! � � Ux C t , where
� 2 .0;1/, U 2 O.d/ is a rotation, and t 2 R. We call � the contraction factor of the similarity.
Given such an IFS, there is a unique self-similar set, that is, a compact set K � Rd such that

K D

[
i2ƒ

'i .K/:

This set K is also known as the attractor of the IFS. Furthermore, given an IFS and a proba-
bility vector ¹pi W i 2 ƒº, there is a unique self-similar measure, that is, a probability measure
� on Rd such that

� D

X
i2ƒ

pi 'i .�/:

Here 'i .�/ denotes the push-forward of � under 'i . In other words, � is the unique stationary
measure for the Markov chain on Rd with transitions 'i executed with probability pi . The
support of � equals the self-similar set K provided pi > 0 for all i .

Self-similar sets and measures are central objects of interest in fractal geometry and
they include many classical examples of fractals. For example, the attractor of the IFS

¹x 7! �x � 1; x 7! �x C 1º

is (a scaled copy of) the middle 1 � 2� Cantor set for � 2 .0; 1=2/, while for � � 1=2,
the attractor is an interval. The self-similar measure associated to the same IFS with equal
probability weights pi D 1=2 is called the Bernoulli convolution and is denoted by ��. They
can also be defined as the distribution of the random variables

1X
nD0

˙�n;

where the ˙ are independent fair coin tosses. The study of these measures go back at least to
Wintner and his collaborators in the 1930s. See [38] for more on Bernoulli convolutions.
Other classical self-similar sets include the Sierpiński triangle and (a side of) the Koch
snowflake curve.

The systematic study of self-similar sets and measures was initiated by Hutchin-
son [25]. We refer to his paper and Falconer’s book [15, Chapter 9] for thorough treatments of
the fundamental properties of these objects.

Determining the dimension of self-similar sets and measures is a central problem
in fractal geometry. While there are several competing notions of dimension for sets and
measures, most of them coincide in the self-similar case. In this paper, for self-similar sets,
by dimension we mean the common value of the Minkowski and Hausdorff dimensions.

The local dimension of a measure � in Rd at a point x is

lim
r!0

log �.B.x; r//

log r
;
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provided the limit exists, where B.x; r/ is the ball of radius r around x. We say that the mea-
sure is exact dimensional if its local dimension exists and is constant �-almost everywhere.
By the dimension of an exact dimensional measure � we mean this �-almost constant value
of its local dimension. It is known that self-similar measures are exact dimensional (see [18]).

Before we state the main conjectures in the dimension theory of self-similar sets
and measures on R, which will be the main focus of this paper, we make some simple obser-
vations to motivate them. Let K be the attractor of a self-similar IFS ¹'i W i 2 ƒº. We write
H s for the s-dimensional Hausdorff measure. Now suppose that the sets 'i .K/ are pairwise
disjoint for i 2 ƒ and that 0 < H s.K/ < 1 for some s. Then we can write

H s.K/ D

X
i2ƒ

H s
�
'i .K/

�
D H s.K/

X
i2ƒ

�s
i ;

where �i is the contraction factor of 'i . It follows that s must be the unique solution of

1 D

X
i2ƒ

�s
i : (1)

While an s with 0 < H s.K/ < 1 may not exist in general, if it does, then it must
equal the Hausdorff dimension of K. Therefore, the above considerations suggest that a rea-
sonable guess for dim.K/ is the unique solution of the equation (1). It is a classical result
going back to Moran [35] in some form, that this guess is correct when the IFS satisfies the
so-called open set condition, which is a mild relaxation of requiring that the sets 'i .K/ are
pairwise disjoint. See [15, Chapter 9] for a precise definition.

It turns out that the unique solution of (1) is always an upper bound for dim.K/

and it is natural to ask to what extent it is possible to drop the open set condition without
turning this upper bound into a strict inequality. There are two immediate obstructions to
this. First, the solution of (1) may be larger than d , but the dimension of K will never exceed
d which is the dimension of the ambient space Rd . Second, (1) depends on the IFS and not
only on the set K. It may be possible to realize K as the attractor of another IFS such that
the corresponding (1) has a smaller solution. This happens, for example, if the IFS contains
exact overlaps, which we define now.

Definition 1. An IFS ¹'i W i 2 ƒº contains exact overlaps if there is some n 2 Z�1 and
.i1; : : : ; in/ ¤ .Qi1; : : : ; Qin/ 2 ƒn such that

'i1 ı � � � ı 'in D 'Qi1
ı � � � ı 'Qin

: (2)

In other words, the IFS contains no exact overlaps if and only if the semigroup
generated by the maps in the IFS with respect to the composition operation is free. We note
that it does not make a difference in the definition whether or not we require that we have
the same number of composition factors on the two sides of (2).

The next conjecture due to Simon (see [47]) predicts that apart from the above two
obstructions, dim.K/ equals the unique solution of (1) in the d D 1 case.

Conjecture 2. Let K be the attractor of a self-similar IFS ¹'i W i 2 ƒº on R that contains
no exact overlaps. Let �i be the contraction factor of 'i . Then

dim K D min.1; s/;
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where s is the unique solution of the equationX
i

�s
i D 1:

The conjecture also has a counterpart for measures.

Conjecture 3. Let � be the self-similar measure on R associated to an IFS ¹'i W i 2 ƒº

without exact overlaps and a probability vector ¹pi º. Let �i be the contraction factor of 'i .
Then

dim � D min
�

1;

P
i pi log p�1

iP
i pi log ��1

i

�
:

Self-similar measures are of interest in their own right, but a major motivation for
Conjecture 3 is that it implies Conjecture 2. To see this, recall that if a set K supports an exact
dimensional measure � of dimension s, then the Hausdorff dimension of K is at least s, see
[15, Principle 4.2]. This is a common way of giving lower bounds on the Hausdorff dimension.
Now let s be the solution of (1), and consider the probability weights pi D �s

i . Observe that
this choice yields

s D

P
i pi log p�1

iP
i pi log j�i j

�1
;

showing that Conjecture 3 indeed implies Conjecture 2.
Almost all of this paper is concerned only with self-similar measures on R. Some

difficulties arise when one tries to formulate versions of Conjectures 2 and 3 for self-similar
sets and measures in higher-dimensional ambient spaces due to the presence of affine sub-
spaces of intermediate dimension. For a discussion of these issues and results in higher
dimension, we refer to [22].

The purpose of this paper is to survey results towards Conjectures 2 and 3. Since this
subject has already been exposed by Hochman in his ICM lecture in 2018 [24], we focus on
the developments of the last four years and discuss earlier results only to the extent necessary
to keep our presentation self-contained.

We will outline some ideas from the proofs of these results; however, we will not
give full details, and some of our discussion will be imprecise. Our aim is to overview the
theory and give insight into the role played by its components. For details and a rigorous
discussion of the proofs we refer to the original papers.

In the final section, we briefly survey some further recent developments on Fourier
decay and absolute continuity of self-similar measures.

1. Exponential separation property

The exponential separation property was introduced by Hochman [23] who showed
that Conjectures 2 and 3 hold when the IFS satisfies this property. This property can be
verified in many cases of interest. While these results have been already discussed in [24], we
recall them now because they are of crucial importance to later developments both logically
and for the motivation of ideas.
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We begin with the definitions. We introduce a distance function on the group of
similarities on R. Let 'i W x 7! �i x C ti be similarities for i D 1; 2. We define

dist.'1; '2/ D

8<: jt1 � t2j if �1 D �2;

1 if �1 ¤ �2:

Given an IFS ˆ WD ¹'i W i 2 ƒº, we define its level n separation by

�n.ˆ/ WD min
.i1;:::;in/¤.Qi1;:::;Qin/2ƒn

dist.'i1 ı � � � ı 'in ; 'Qi1
ı � � � ı 'Qin

/:

We say that the IFS satisfies the exponential separation property if there is a constant c > 0

such that �n.ˆ/ > cn for infinitely many n’s.
We observe that the IFS contains exact overlaps if and only if �n D 0 for some

and hence for all sufficiently large n. The exponential separation property is a quantitative
strengthening of the condition that the IFS contains no exact overlaps. Hochman proved that
Conjectures 2 and 3 hold under this strengthening of the hypothesis.

Theorem 4 (Hochman [23]). Let ¹'i W i 2 ƒº be an IFS that satisfies the exponential sepa-
ration property and let K be its attractor. Write �i for the contraction factor of 'i . Then

dim K D min.1; s/;

where s is the unique solution of the equationX
i

�s
i D 1:

Let � be the self-similar measure associated to the above IFS and a probability
vector ¹pi º. Then

dim � D min
�

1;

P
i pi log p�1

iP
i pi log ��1

i

�
:

It can be shown that the exponential separation property holds in parametric families
of IFSs for all but possibly a (packing or Hausdorff) codimension 1 subset of exceptions. This
shows that Conjectures 2 and 3 hold generically in a very strong sense. We refer to [23] for
details and more precise results.

We also note that a stronger version of Conjecture 3 involving the Lq dimension
instead of local dimension of measures was established subsequently by Shmerkin [46] under
the exponential separation property. This result has very important and far reaching applica-
tions, see also [45] and Shmerkin’s paper in this volume.

Our main focus here are explicit cases and families of IFSs for which the exponential
separation property can be verified. We first observe that the exponential separation property
holds always whenever all contraction and translation parameters in the IFS are rational and
the IFS contains no exact overlaps. Indeed, writing Q for the least common denominator
of all parameters, a simple calculation shows that the translation parameters of n-fold com-
positions of maps in the IFS have denominators that divide Qn. This means that for all n,
we have �n � Q�n or �n D 0. The second possibility is excluded by the absence of exact
overlaps.
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In fact, the above reasoning can be extended to the case when the parameters are
algebraic numbers and not necessarily rational. To do this, one need to work with heights
instead of denominators, or see [23, Theorem 1.5] for a more elementary argument. This leads
to the following result

Corollary 5 (Hochman). Conjectures 2 and 3 hold for IFSs in which all contraction and
translation parameters are algebraic numbers.

The exponential separation property can be verified also for certain IFSs that involve
transcendental parameters. One such example is the family IFSs²

x 7!
x

3
; x 7!

x

3
C 1; x 7!

x

3
C t

³
; (3)

where t 2 R is a parameter. It can be seen that the attractors of these IFSs are the linear
projections of the Sierpiński triangle.

Another corollary of Theorem 4 is the following.

Corollary 6 (Hochman). Conjectures 2 and 3 hold for the IFS (3) for all values of the param-
eter t 2 R.

We sketch the proof of the exponential separation property for the family (3), as these
ideas will recur later. For details, see [23, Theorem 1.6], where this argument is attributed to
Solomyak and Shmerkin. The translation component of an n-fold composition of maps from
the above IFS is of the form

n�1X
j D0

j̨ 3�j ;

where each j̨ is equal to 0, 1, or t . Based on this observation, it can be seen that for each
t and for each n, there are some integers a1; a2 2 Z not both 0 with ja1j; ja2j � 3n�1 such
that

�n D
a1

3n�1
�

a2

3n�1
t:

Assuming a2 ¤ 0, which holds whenever �n � 3�nC1, we getˇ̌̌̌
t �

a1

a2

ˇ̌̌̌
� 3n�n:

Now fix the value of the parameter t such that the IFS (3) contains no exact overlaps.
Suppose �n < 27�n�1 for some n. Then there is a rational number a1=a2 as above such that
jt � a1=a2j < 9�n�1. Let Qn be such that 9�Qn�1 < jt � a1=a2j � 9�Qn. (Note that t ¤ a1=a2,
for otherwise we would have �n D 0 and the IFS would contain exact overlaps.) We observe
that there is no rational Qa1= Qa2 with jt � Qa1= Qa2j < 9�Qn�1 and j Qa1j; j Qa2j � 3Qn�1. Indeed, if
such a rational existed, we would haveˇ̌̌̌

a1 Qa2 � a2 Qa1

a2 Qa2

ˇ̌̌̌
D

ˇ̌̌̌
a1

a2

�
Qa1

Qa2

ˇ̌̌̌
�

ˇ̌̌̌
a1

a2

� t

ˇ̌̌̌
C

ˇ̌̌̌
t �

Qa1

Qa2

ˇ̌̌̌
� 2 � 9�Qn:
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Since ja2 Qa2j � 9Qn�1, this would yield a1 Qa2 � a2 Qa1 D 0, leading to a1=a2 D Qa1= Qa2 and
contradicting ˇ̌̌̌

t �
Qa1

Qa2

ˇ̌̌̌
< 9�Qn�1 <

ˇ̌̌̌
t �

a1

a2

ˇ̌̌̌
:

This shows that �Qn � 27�Qn�1, and the exponential separation property follows.
A key property of the IFS (3) exploited in the above argument is that exact overlaps

occur for certain special values of the parameter t , in this case certain rational numbers, and
these special values are very well separated from each other. This will be a recurrent concern
for us in what follows.

A similar argument can be made when the contraction factor 1=3 in (3) is replaced
by another algebraic number. We omit the details.

2. Bernoulli convolutions

In this section, we consider the one parameter family of IFSs

ˆ� WD ¹x 7! �x; x 7! �x C 1º;

where � 2 .0; 1/. Instead of 0 and 1 we could take any other pair of distinct real numbers as
the translation parameters; we would get the same IFS up to a change of coordinates. In fact,
it is more customary to take ˙1 instead of 0 and 1, but the above choice will make notation
more consistent with the rest of this note.

In this case, the resulting self-similar sets have a simple structure. For � < 1=2, it
is the middle .1 � 2�)th Cantor set, while for � � 1=2 it is an interval. In both cases, Con-
jecture 2 is easily verified. However, the associated self-similar measures called Bernoulli
convolutions are more difficult to understand. The purpose of this section is to summarize
the developments that lead to the following result.

Theorem 7. Conjecture 3 holds for the IFS ˆ� for any value of the parameter � 2 .0; 1/.

For algebraic parameters, this result is due to Hochman as it falls under the scope of
Corollary 5. For transcendental parameters, the result has been established in [54]. Strictly
speaking, only the case of uniform .1=2; 1=2/ probability weights is treated there, but the
arguments can be extended to the general case. Moreover, one can even allow more general
IFSs with an arbitrary number of maps as long as the contraction factors are the same and
the translation parameters are rational. This has been demonstrated in the Appendix of [41].

To simplify the exposition, we assume in our discussion that the probability weights
are uniform. We write �� for the self-similar measure associated to the IFS ˆ�. We note that
�� is the law of the random variable

P1

nD0 �n�n, where .�n/ is a sequence of independent
random variables taking the values 0 and 1 with equal probability.

In the algebraic case, Hochman’s results yield more information, which allows com-
puting the dimension even in the presence of exact overlaps. This is in terms of the entropy
rate of the IFS ˆ�, which we define now, and which will also play an important role later
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on. The entropy rate is defined as

h.ˆ�/ WD lim
n!1

H.
Pn�1

j D0 �j �j /

n
;

where H.�/ stands for Shannon entropy of a discrete random variable. The numerator on the
right can be shown to be a subadditive sequence, hence the limit exists and, moreover,

h.ˆ�/ �
H.
Pn�1

j D0 �j �j /

n

for each n.
See [9, Section 3.4] for the details of how the following follows from the main result

of Hochman [23].

Theorem 8 (Hochman). Let � 2 .0; 1/ be an algebraic number. Then

dim �� D min
�

1;
h.ˆ�/

log ��1

�
: (4)

This result, together with Theorem 7, gives an almost complete solution to the
problem of determining the dimension of Bernoulli convolutions. In addition, there are
numerical algorithms to compute dim �� with arbitrary precision for any given algebraic
�, see [1,17,21,29]. However, it is still not known precisely what is the set of algebraic param-
eters � 2 .1=2; 1/ for which dim �� < 1.

We turn to the case of transcendental parameters in Theorem 7. If the IFS ˆ� sat-
isfied the exponential separation property whenever it does not contain exact overlaps, then
Theorem 7 would follow at once from Theorem 4. This very well could be true; however,
this is still an open problem, which seems to be beyond reach of existing methods.

In fact, the decay rate of �n.ˆ�/ is very closely related to a problem in Diophantine
approximation, which is the separation between the elements of the set

E.n/
WD ¹� W P.�/ D 0 for some polynomial P 2 P .n/

º;

where P .n/ is the set of polynomials of degree at most n � 1 with coefficients �1; 0; 1. As
it will be clear from what follows, the set

E WD

[
n

E.n/
\ .0; 1/

is precisely the set of parameters for which ˆ� contains exact overlaps.
We begin our discussion of the proof of Theorem 7 by explaining the connection

between the behavior of �n.ˆ�/ and the separation properties of the sets E.n/ following
Hochman [23, Question 1.10]. This can be formalized as follows.

Lemma 9. If it is true that the elements of E.n/ are separated by at least C �n for some
constant C for all n, then the exponential separation property holds for the IFS ˆ� whenever
it lacks exact overlaps.

Sketch of proof. Fix some " > 0 and assume � 2 ."; 1 � "/. We first observe that if
�n.ˆ�/ < C �n for some C D C."/, then there is some � 2 E.n/ with

j� � �j < �n.ˆ�/˛
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for some ˛ D ˛."/ > 0. This follows from the fact that the translation component of an n-fold
composition of the maps in ˆ� in some order is a polynomial in � of degree at most n � 1

with coefficients 0;1. This means that �n.ˆ�/ D P.�/ for some P 2 P .n/ that also depends
on �. To complete the proof of our observation, we need to argue that the only way P.�/

can be very small is if � is close to a root of P . For more details, see [52, Lemma 5.2].
Now suppose that � is such that �n.ˆ�/ < C

�2n=˛
2 for some n, where ˛ is as in

the previous paragraph and C2 is the constant C in the assumption about the separation
between the elements of En. Then there is �n such that j� � �nj < C �2n

2 . If ˆ� contains
no exact overlaps, then � … E so � ¤ �n. Now we take the smallest integer Qn > n such that
j� � �nj > C �2Qn

2 . It follows by the assumed separation property on E.Qn/ that there is no
�Qn 2 E.Qn/ with j� � �Qnj < C �2Qn

2 . This means that �Qn.ˆ�/ � C
�2Qn=˛
2 , and the exponential

separation property follows.

It is not known whether or not the elements of E.n/ are exponentially separated. The
best lower bound known for the minimal distance of the elements of E.n/ is exp.�C n log n/

for some constant C (one could take, e.g., C D 4), which is due to Mahler [33]. This yields
via the argument in the proof of Lemma 9 that for all � such that ˆ� contains no exact
overlaps, there are infinitely many values of n with

�n.ˆ�/ � exp.�C n log n/ (5)

for some (other) constant C .
One may wonder if this weaker separation condition could be used in a refined form

of Hochman’s argument in place of exponential separation. This has been done in [8], how-
ever, the argument requires that there are several values of n sufficiently close to each other
such that the separation (5) holds. Such a condition can be satisfied if we assume that � is
not approximated too closely by elements of E.n/. Indeed, in the above argument the size of
Qn is controlled by the distance between � and E.n/. More precisely, the following was proved
in [8].

Theorem 10 (Beruillard, Varjú). Let � 2 .1=2; 1/ be such that Conjecture 3 does not hold
for ˆ�. Then there is ı > 0 and there are infinitely many values of n such that there is
�n 2 E.n/ \ .1=2; 1/ with

j� � �nj < exp.�n100/;

dim ��n < 1 � ı:

The exponent 100 can be replaced by any other number, or even by a slowly growing
function of n, see [8] for details. This result along with Theorem 4 are major ingredients in
the proof of Theorem 7. Given some � 2 .1=2; 1/ such that ˆ� lacks exact overlaps, it can
be shown that � has only finitely many approximants �n as in the conclusion of Theorem 10
or else ˆ� satisfies the exponential separation property. In either case, Conjecture 3 follows
for ˆ� from one of Theorems 4 or 10.

Before we discuss the details of how this can be done, a further remark about Theo-
rem 10 is in order. We have seen that if �n.ˆ�/ < C �n for some n and � with an appropriate
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constant C , then � is approximated by some � 2 E.n/. However, we claim some additional
properties of this � in Theorem 10, most importantly that dim �� < 1 � ı. Now we indicate
how this can be deduced. This leads us to a somewhat lengthy digression; however, it also
gives us the opportunity to introduce several concepts and ideas that will be needed later on.

Already in Theorem 4, the exponential separation property can be relaxed (see
[23, Theorems 1.3 and 1.4]). Instead of assuming �n.ˆ/ > C �n, it is enough to know that
there are not too many pairs of n-fold compositions of maps in ˆ whose translation compo-
nents are closer than C �n. Likewise in the proof of Theorem 10, we work with a similarly
relaxed version of (5).

To properly quantify this, we use entropy. Let X be a bounded real valued random
variable and let r 2 R>0. The entropy of X at scale r is defined as

H.X I r/ D H
��

r�1X
˘�

;

where H.�/ on the right is Shannon entropy. This is the entropy of X with respect to a parti-
tion of R into consecutive intervals of length r . The choice of this partition is not canonical,
and we obtain different values of H.X I r/ by translating X . There are advantages of aver-
aging over translations of X in the definition of H.X I r/, as it is done, e.g., in [8, 53] and
subsequent papers; however, we ignore this point here for the sake of simplicity.

By definition, �n.ˆ�/ > r implies that the points in the support of
Pn�1

j D0 �j �j are
separated by a distance of at least r , hence

H

 
n�1X
j D0

�j �j
I r

!
D log.2/ � n:

In the proof of Theorem 10, instead of working with lower bounds on �n.ˆ�/ like (5), we
work with bounds of the type

H

 
n�1X
j D0

�j �j
I r

!
� ˇn (6)

with suitable ˇ and r .
Now consider some � > 1=2 that lacks the approximations �n as described in the

conclusion in Theorem 10. We discuss how this assumption can be used to show that bounds
of the type (6) hold for suitably many different values of n. Using such bounds and arguments
based on Hochman’s proof of Theorem 4, which we do not discuss in this paper, it can be
shown that dim �� D 1 proving (the contrapositive of) Theorem 10.

In short, the failure of (6) with a suitably small r implies that � can be approximated
by some �n 2 E.n/ such that ˆ�n has enough exact overlaps to force dim ��n � ˇ= log ��1

n .
We give some more details. For every pair of numbers x1; x2 in the support ofPn�1

j D0 �j �j such that jx1 � x2j � r , there is a polynomial P 2 P .n/ such that

jx1 � x2j D
ˇ̌
P.�/

ˇ̌
� r:

As we have already seen, all such polynomials have a root near � provided r < C �n for a
suitable constant C . If r < exp.�C n logn/ for another suitable C , then all the roots obtained
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this way as .x1; x2/ goes over all pairs of points in the support of
Pn�1

j D0 �j �j that are at dis-
tance not more than r can be shown to coincide. This follows from Mahler’s aforementioned
bound on the separation of elements in E.n/. For an alternative argument, see [8, Section 3].

Now it follows that if

H

 
n�1X
j D0

�j �j
I r

!
< log.2/ � n

for some r < exp.�C n log n/, then there is some �n 2 E.n/ close to � (the common root of
the polynomials discussed in the previous paragraph) such that

H

 
n�1X
j D0

�j �j
n

!
� H

 
n�1X
j D0

�j �j
I r

!
: (7)

Notice that on the left there is no designated scale, so H.�/ stands for Shannon entropy there.
Provided H.

Pn�1
j D0 �j �j I r/ is sufficiently small, this can be turned into a bound on dim ��n

with the help of Theorem 8. Indeed, combining our observations, we see that

H

 
n�1X
j D0

�j �j
I r

!
� ˇn

implies

dim ��n �
h.ˆ�n/

log ��1
n

�
H.
Pn�1

j D0 �j �
j
n/

n log ��1
n

�
H.
Pn�1

j D0 �j �j I r/

n log ��1
n

�
ˇ

log ��1
n

:

By the assumption that � lacks the approximations as in the conclusion of Theo-
rem 10, we conclude j� � �nj > exp.�n100/. As we have already discussed, this implies
that we can find an Qn not larger than n100 such that even (5) holds with Qn in place of n. This
provides a sufficiently plentiful supply of numbers n such that at least a bound of the type (6)
holds.

We return to the proof of Theorem 7. We suppose to the contrary that � 2 .1=2; 1/ is
a counterexample to Conjecture 3. By Theorem 10, there are infinitely many approximants
�n to � satisfying the conclusion of that theorem. We fix such an �n corresponding to a
suitably large n.

By virtue of (4), we have h.ˆ�n/ � .1 � ı/ log �n. Our next step is to convert this
information to something that is easier to exploit with the methods of Diophantine Approx-
imation. We introduce a definition for this purpose. The Mahler measure of an algebraic
number � with minimal polynomial ad .x � �.1// � � � .x � �.d// 2 ZŒx� is defined as

M.�/ D jad j

dY
j D1

max
�
1;
ˇ̌
�.j /

ˇ̌�
;

i.e., it is the product of the absolute values of the leading coefficient and the roots outside the
unit disk. This quantity is widely used in number theory as a measure of the “complexity” of
�. Notice that if � 2 Q, then M.�/ is the maximum of the absolute values of the numerator
and the denominator of �.
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Breuillard and Varjú [9] found a connection between the entropy rate and the Mahler
measure. A form of this most suited for the proof of Theorem 7 is the following.

Theorem 11 (Breuillard, Varjú). For any h 2 .0; log 2/, there is a number C.h/ such that
h.ˆ�/ � h implies M.�/ < C.h/ for all algebraic numbers �.

See [54, Theorem 9] for the details of how this follows from the technical results of [9].
Using this theorem, we conclude that M.�n/ < C for a constant C that only depends

on �, but not on n. Furthermore, recall that we have j� � �nj < exp.�n100/. Now we use
the following, which follows easily from a more general result of Mignotte [34].

Theorem 12 (Mignotte). Let � be an algebraic number of degree at most n. Let Qn > n.logn/2

be an integer, and lete� ¤ � 2 E.Qn/. Then there is an absolute constant C , such that

j� �e�j � C �QnM.�/�2Qn:

We finish our discussion of the proof of Theorem 7. Thanks to the approximation
of � by �n this theorem acts as a substitute for the separation condition between elements
of E.Qn/ in the proof of Lemma 9, and we can conclude that �Qn.ˆ�/ > C �Qn for a suitable
choice of Qn for some C independent of n. Now we are in a position to apply Theorem 4 to
show that Conjecture 3 holds for �, which is our desired contradiction proving Theorem 7.

The original argument in [54] used an alternative variant of Theorem 12, which was
deduced from an observation of Garsia [20] and a transversality argument of Solomyak [49].
It was pointed out by Vesselin Dimitrov that the transversality argument can be replaced by
a simpler version based on Jensen’s formula. This has the advantage that it is applicable in
greater generality. See [41, Lemmata 2.3 and 4.6] for details.

3. Failure of exponential separation

As we discussed in the previous section, it is not known whether Bernoulli convo-
lutions without exact overlaps satisfy the exponential separation property. However, they are
known to satisfy a slightly weaker lower bound on �n, and this played an important role in
the proof of Conjecture 3 for this class of IFS’s.

On the other hand, there are some IFS’s without exact overlaps for which it is known
that the exponential separation property fails, and moreover, �n converges to 0 in an arbi-
trarily fast prescribed way.

Theorem 13 (Baker; Bárány, Käenmäki). Let .�n/ � R>0. Then there is an IFS ˆ without
exact overlaps such that �n.ˆ/ � �n for all n.

The first examples of such IFSs were given by Baker [4] in the form²
x 7!

x

2
; x 7!

x C 1

2
; x 7!

x C s

2
; x 7!

x C t

2
; x 7!

x C 1 C s

2
; x 7!

x C 1 C t

2

³
for suitable choices of the parameters t; s, and by Bárány, Käenmäki [5] in the form

¹x 7! �x; x 7! �x C 1; x 7! �x C tº
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for suitable choices of �; t . Baker’s example was modified by Chen [11], who disposed of
the last two maps and replaced the denominator 2 by an arbitrary real algebraic number not
smaller than 2. These constructions were further extended by Baker [3].

In what follows we give a heuristic argument to show why such IFSs with very
small separation may be expected to exist. Our purpose (due to limitation of space) is not
to give insight to the proofs of Theorem 13, which are based on a variety of tools, such as
continued fraction expansions in [4] and the transversality method in [5]. Instead, we just aim
to highlight the difference between families of IFSs depending on a single parameter, such
as Bernoulli convolutions, or the examples covered by Corollary 6, and families depending
on more than one parameter, which will be discussed in the next two sections.

Let
ˆx;y D ¹'i;x;y W i 2 ƒº

be a family of IFS’s (smoothly) depending on two parameters. Let n 2 Z>0, and we write
�.n/ for the collection of curves in the parameter space, which arise as the solution sets of
equations of the form

'i1;x;y ı � � � ı 'in;x;y D 'Qi1;x;y ı � � � ı 'Qin;x;y

in .x; y/ where i1; : : : ; in and Qi1; : : : ; Qin are two distinct sequences of indices in ƒ. Note
that the union of all these curves is the set of all parameter points for which the IFS contains
exact overlaps.

The key difference between this setting and a family depending on a single parameter
is that exact overlaps occur along curves in the parameter space rather than at isolated points.
These curves may intersect each other, and then there is no separation between them, which
rules out the arguments presented for the proof of Corollary 6 and later in Section 2.

We now give the heuristic suggesting the existence of the IFS’s claimed in The-
orem 13. We give a recursive construction. After the kth step, we will have a sequence
n1; : : : ; nk 2 Z�1, a sequence 
1; : : : ; 
k , where 
j is a segment of a curve in �.nj /, and a
sequence ı1; : : : ; ık�1 2 R>0. These will satisfy the property that 
k is contained in the ıj

neighborhood of 
j for all j < k.
We begin the process by setting 
1 to be any segment (of positive length) of a curve

in �.1/. Suppose now that 
1; : : : ; 
k and ı1; : : : ; ık�1 are given for some k � 1. We choose a
curvee
kC1 2 �.nkC1/ for some nkC1 > nk that intersects 
k . The existence of such a curve is
plausible, but requires proof, and this is why this construction is only a heuristic. We observe
that �n.ˆx;y/ D 0 for all n � nk and .x; y/ 2 
k . By continuity, there is a choice of ık so
that �n.ˆx;y/ � �n holds for all n 2 Œnk ; nkC1/ and .x; y/ in the ık neighborhood of 
k .
Finally, we set 
kC1 to be a suitable segment ofe
kC1 contained in the ıj neighborhood of

j for all j � k.

It is immediate from the construction that there is a point .x; y/ which is contained
in the (closed) ık neighborhood of 
k for all k, and that �n.ˆx;y/ � �n for all n.

With a small modification of the construction, we can ensure that ˆx;y contains
no exact overlaps for the resulting parameter point .x; y/. Indeed, observe that

S
�.n/ is
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a countable set, and let 
�
1 ; 
�

2 ; : : : be an enumeration of it. In the construction, we have
considerable liberty in choosing the curve segment 
k so we can make sure that it does
not intersect 
�

k
. (This requires, in particular, that we choose e
k not to coincide with 
�

k
.

The possibility of this is again plausible, but requires proof.) Then in the next step of the
construction, we can ensure that ık is chosen to be sufficiently small so that 
�

k
is entirely

outside the ık neighborhood of 
k . This way we can ensure that the resulting parameter point
.x; y/ at the end of the process is not contained in 
�

k
for any k, and hence ˆx;y is without

exact overlaps.

4. IFSs with algebraic contraction factors

In this section we discuss the following result of Rapaport [39].

Theorem 14 (Rapaport). Conjectures 2 and 3 hold for all IFSs in which all contraction
parameters are algebraic numbers.

This is a far reaching common generalization of Hochman’s Corollaries 5 and 6. We
discuss some of the main ideas in the special case of the family of IFSs

ˆs;t D

²
x 7!

x

3
; x 7!

x

3
C 1; x 7!

x

3
C s; x 7!

x

3
C t

³
with uniform probability weights. This is perhaps the simplest family not contained in the
results of Hochman, and as was shown by Chen (see Section 3), this family contains IFSs
without exact overlaps that fail the exponential separation property (in a very strong sense).

Let �1; �2; : : : be a sequence of independent random variables taking the values
0; 1; s; t with equal probabilities. As we discussed in Section 2, the exponential separation
property can be relaxed in Hochman’s results. Instead of a lower bound on �n, it suffices to
have bounds of the form

H

 
n�1X
j D0

�j � 3�j
I C �n

!
� .log 3 � "n/n (8)

for infinitely many values of n with some constant C and a sequence "n ! 0. (See Section 2
for the definition of this notation.)

Theorem 14 is proved by verifying condition (8). With this aim in mind, we examine
what happens when (8) fails for some n, C and "n. We write L.n/ for the family of (inho-
mogeneous) linear forms of the form a1 � 1 C a2Y1 C a3Y2, where each ai is a sum of a
subset of the numbers 1; 3�1; : : : ; 3�nC1 and each term 3j is allowed in at most one of the
ai . This definition is designed so that the values taken by the random variable

Pn�1
j D0 �j � 3�j

are precisely the values of the linear forms in L.n/ evaluated at s and t .
We write L.n/ � L.n/ for the set of linear forms that can be written as the differ-

ence of two elements of L.n/. We also fix some parameter point .s0; t0/ such that the IFS
lacks exact overlaps. We consider pairs of elements in the support of

Pn�1
j D0 �j � 3�j that

are at distance no more than C �n. Then for any such pair, there corresponds a linear form
L 2 L.n/ � L.n/ such that jL.s0; t0/j � C �n. We write A.n/ for the collection of linear
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forms in L.n/ � L.n/ that arise in this way. (This definition depends on C , s0 and t0, which
we suppress in our notation.)

Let n be such that (8) fails (for some choice of "n and C ). We distinguish two cases
depending on the rank of A.n/. The first case arises when there are at least two linearly
independent forms in A.n/, and the second case is when the elements of A.n/ are all scalar
multiples of each other.

In the first case, we take two linearly independent L1; L2 2 L.n/ � L.n/. Provided
C is sufficiently large, the lines determined by L1 and L2 cannot be parallel. Indeed, if that
was the case, their distance would be a rational number with denominator bounded by an
exponential in n, which we can force to be 0 by taking C sufficiently large. Since the lines
are not parallel, we can solve the equations

L1.sn; tn/ D 0;

L2.sn; tn/ D 0;

and find that their solution .sn; tn/ is a pair of rational numbers with denominators bounded
by an exponential in n. Moreover, the distance of .sn; tn/ from .s0; t0/ will be an arbitrarily
small exponential in n if C is chosen sufficiently large.

The points .sn; tn/ have the same repellency property as those in the proof of Corol-
lary 6. We discuss next how to show that the second case, that is when the elements of A.n/

are proportional, arises for only finitely many values of n. Then the argument for Corollary 6
can be carried over to prove (8).

We begin by extending the definition of entropy rates. Let ` be a line in R2

(that does not necessarily contain 0). We denote by Y
.n/

`
the random ` ! R function

.s; t/ 7!
Pn�1

j D0 �j .s; t/ � 3�j . We define the entropy rate of the line ` by

h.`/ WD lim
n!1

H.Y
.n/

`
/

n
:

Here H.Y
.n/

`
/ stands for the Shannon entropy of Y

.n/

`
, which is a random element taking

finitely many values. It can be shown that H.Y
.n/

`
/ is subadditive, hence the limit exists and

is equal to the infimum. The quantity h.`/ measures the amount of exact overlaps that occur
simultaneously for all parameter points .s; t/ 2 `.

Now suppose that the second case occurs for some n in our above discussion, that
is the linear forms in A.n/ are proportional. Let ` be the line on which all elements of A.n/

vanish. It is immediate from the definition of A.n/ that

H.Y
.n/

`
/ � H

 
nX

j D0

�j 3�j
I C �n

!
:

Supposing

H

 
nX

j D0

�j 3�j
I C �n

!
� .log 3 � "/n (9)

for some " > 0, we can conclude

h.`/ � log 3 � ":
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In light of all this, the next proposition—implicit in [39]—implies that the second
case and (9) for some fixed " > 0 may occur for only finitely many n’s.

Proposition 15. Let .s0; t0/ be some parameters such that the IFS ˆs0;t0 contains no exact
overlaps. Fix some " > 0. Then there is a neighborhood of .s0; t0/ that is not intersected by
any lines ` with h.`/ � log 3 � ".

We end this section by discussing the proof of this result. Suppose to the contrary
that the result is false, that is, there is a sequence `1; `2; : : : of lines passing closer and closer
to .s0; t0/ with h.`n/ < log 3 � ". We suppose as we may that the lines `n converge (in any
reasonable topology) to a line `1. We also suppose for simplicity that none of `1; `2; : : : ; `1

is parallel to either of the s or t axes, and none of them goes through the origin.
We associate a self-similar measure in R2 to each line j̀ . For j D 1; 2; : : : ; 1, let

�j and �j be the unique numbers such that j̀ is spanned by .�j ; 0/ and .0; �j /. For �; � 2 R,
we define the IFS

‰�;� WD

²
.x; y/ 7!

�
x

3
;

y

3

�
; .x; y/ 7!

�
x

3
C 1;

y

3
C 1

�
;

.x; y/ 7!

�
x

3
C �;

y

3

�
; .x; y/ 7!

�
x

3
;

y

3
C �

�³
;

and write ��;� for the associated self-similar measure (with equal probability weights).
It is immediate from the definitions that the same exact overlaps occur for the random

variables Y
.n/

j̀
as for the IFS ‰.�j ; �j /. It follows that

h.‰�j ;�j
/ D h. j̀ / � log 3 � "

for j < 1. Using this, it can be shown that

dim ��j ;�j
�

log 3 � "

log 3
D 1 � "= log 3:

It is a general phenomenon that the dimension of self-similar measures depends
lower semicontinuously on the parameters, see, e.g., [16] for results of this type covering
even self-affine measures. Using this, it follows that

dim ��1;�1
� 1 � "= log 3:

The proof of Proposition 15 is now finished by establishing a suitable analogue of
Conjecture 3 for the IFSs ‰�;� , which shows that ‰�0;�0

and hence ˆs;t for all .s; t/ 2 `

including .s0; t0/ contains exact overlaps. This can be done along the lines of the proof
of Corollary 5 discussed in Section 1 using a higher dimensional version of Hochman’s
theorem, which can be found in [22]. The crucial difference between the IFSs ˆs;t and ‰�;�

is that the ambient space is 2-dimensional for the latter and this matches the number of
parameters. This means that exact overlaps occur at single points (as opposed to along lines),
which have the required repellency property.
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5. Homogeneous IFSs of three maps

In this section, we discuss the IFSs

ˆ�;t D
®
.x 7! �x; x 7! �x C 1; x 7! �x C t /

¯
:

Rapaport and Varjú [41] made some partial progress towards extending the results for
Bernoulli convolutions discussed in Section 2 to this setting and to some more general
IFSs (see [41, Section 3]).

Before we can state these results, we need to introduce some relevant notation and
terminology. We write ��;t for the self-similar measure associated to the IFS ˆ�;t and
uniform probability weights. Let �1; �2; : : : be a sequence of independent random R ! R
functions taking the values t 7! 0, t 7! 1 and t 7! t with equal probability. Let U � .0;1/ � R,
n 2 Z�0, and write A

.n/
U for the random U ! R function

.�; t/ 7!

nX
j D1

�j .t/�j :

We define the entropy rate

h.U / WD lim
n!1

H.A
.n/
U /

n
D inf

H.A
.n/
U /

n
:

We abbreviate A
.n/

¹�;tº
as A

.n/

�;t
, and h.¹�; tº/ as h.�; t/. One should think about h.�; t/ as a

quantity expressing the amount of exact overlaps contained in the IFS ˆ�;t and h.U / aims
to quantify the amount of exact overlaps occurring simultaneously for the parameter points
in U .

We write R for the set of meromorphic functions on the unit disc that can be written
as ratios of two power series with coefficients �1; 0; 1. We denote by � the set of curves

 � .0; 1/ � R that are either of the following two forms:

• 
 D ¹.�; t/ 2 .0; 1/ � R W t D R.�/º for some R 2 R,

• 
 D ¹.�0; t / W t 2 Rº for some fixed �0 2 .0; 1/.

It can be shown that exact overlaps occur in the family of IFSs ˆ�;t along finite unions of
curves in � , but not all elements of � arises in this way.

The next result is an analogue of Theorem 10 in the setting of the IFS ˆ�;t .

Theorem 16 (Rapaport, Varjú). Suppose that Conjecture 3 does not hold for the IFS ˆ�;t

for some choice of parameters � and t . Then for every " > 0 and N � 1, there exist n � N

and .�; s/ 2 .0; 1/ � R such that

(1) j� � �j; jt � sj � exp.�n"�1
/,

(2) 1
n log ��1 H.A

.n/
�;s/ � dim ��;t C ",

(3) h.
/ � min¹log 3; log ��1º � " for all 
 2 � with .�; s/ 2 
 .
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Item (2) in the conclusion means that the IFS ˆ�;s contains enough overlaps after
n iteration to force the dimension of ��;s below dim ��;t C ". Item (3) in the conclu-
sion implies that not all of these exact overlaps occur along the same curve 
 . From these
properties it can be deduced in particular that � and s are algebraic numbers and roots of
polynomials of low degree with small integer coefficients. (For a precise statement, see [41,

Theorem 1.3].) This yields a bound on the number of possible points that can arise as .�; s/

in the conclusion and together with Item (1), this shows that the Hausdorff dimension of the
set of exceptional parameters for which Conjecture 3 fails is 0. This improves Hochman’s
bound, which is 1, albeit that bound is given for the stronger notion of packing dimension,
which may exceed the Hausdorff dimension.

It is still an open problem whether an analogue of Theorem 11 holds for the IFS ˆ�;t .
One possible formulation is the following.

Question 17. Is it true that for all " > 0, there is M such that the following holds? Let
.�; t/ 2 ."; 1 � "/ � R be such that h.�; t/ � min.log 3; log ��1/ � " and h.
/ � min.log 3;

log ��1/ � M �1 for all 
 2 � with .�; t/ 2 
 . Then M.�/ � M .

We note that a condition about the entropy rate of curves passing through .�; t/ is
necessary. Indeed, we have, for example, h.
/ D log 3 � .2=3/ log 2 for the curve

 D ¹.�; 1/ W � 2 .0; 1/º, and hence h.�; 1/ � log 3 � .2=3/ log 2 for all � 2 .0; 1/.

We also have the following conditional result towards Conjecture 3.

Theorem 18 (Rapaport, Varjú). Suppose that the answer to Question 17 is affirmative. Then
Conjecture 3 holds for the IFS ˆ�;t with equal probability weights for all � 2 .0;1/ and t 2 R.

Using ideas from [9], one can answer Question 17 affirmatively if we restrict � to
be near 1. This allows for the following unconditional partial resolution of Conjecture 3.

Theorem 19 (Rapaport, Varjú). Conjecture 3 holds for the IFS ˆ�;t with equal probability
weights for all .�; t/ 2 .2�2=3; 1/ � R.

The key new ingredient in the proof of Theorem 16 compared to that of Theorem 10
is the following result, whose role is similar to that of Proposition 15 in the proof of Theo-
rem 14.

Proposition 20. Let .�; t/ 2 .0; 1/ � R be such that the IFS ˆ�;t contains no exact overlaps.
Then for all h < min.log ��1; log 3/, there is a neighborhood of .�; t/ that is not intersected
by a curve 
 2 � with h.
/ � h.

The proof of this result like Proposition 15 is done by attaching suitable fractal
objects to curves and relating their dimension to the entropy rates of the curves. Then the
proposition is proved using lower semicontinuity of dimension and a limiting argument. The
fractal measures used in the paper [41] are analogues of self-similar measures in function
fields. A suitable notion of dimension is introduced for these objects and Hochman’s the-
orem is generalized to this setting. The analogue of the exponential separation property is
verified using an argument similar to that used in the proof of Corollary 6. An additional dif-
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ficulty compared to the setting of Section 4 is caused by the fact that the curves in � are not
necessarily lines and they may develop singularities, which complicates limiting arguments.

The proofs of Theorems 18 and 19 is complicated by the fact that like in the case of
Bernoulli convolutions, the parameter points with exact overlaps have a weaker than expo-
nential repellency property. To address this, an argument similar to that discussed at the end
of Section 2 is used. This is the reason why we need to assume an affirmative answer to
Question 17. The argument also requires a stronger form of Proposition 20 with a modified
entropy rate. The precise statement requires some preparation. For this reason, we omit it
and refer to [41, Proposition 2.4].

6. Other developments

We survey some recent results about aspects of self-similar measures other than
their dimensions. Due to limitation of space, our discussion will be very brief.

6.1. Fourier decay
We first discuss Fourier decay of self-similar measures. Specifically, we discuss the

following three properties:

• A measure � on R is Rajchman if its Fourier transform vanishes at infinity, that
is,

lim
j�j!1

ˇ̌b�.�/
ˇ̌

D 0:

• A measure � on R has polylogarithmic Fourier decay if there is a constant a > 0

such that for all sufficiently large �, we haveˇ̌b�.�/
ˇ̌

<
ˇ̌
log j�j

ˇ̌�a
:

• A measure � on R has power Fourier decay if there is a constant a > 0 such that
for all sufficiently large �, we haveˇ̌b�.�/

ˇ̌
< j�j

�a:

There are various motivations for studying these properties. The Rajchman property
is closely related to an old subject in the theory of trigonometric series about the so-called
sets of uniqueness and sets of multiplicity, see [27] for more. Fourier decay has also appli-
cations in metric Diophantine approximation. For example, polylogarithmic Fourier decay
is sufficient to guarantee that almost all numbers with respect to the measure are normal in
every bases. (In the case of self-similar measures on R, even the Rajchman property is enough
for this, see [2, Theorem 1.4].) Power decay is very useful in proving absolute continuity of
the measure, which we discuss more in the next section.

Results about these properties of self-similar measures come in two flavors. In the
first category, properties are proved for most self-similar measures in a parametric family, in
the second the properties are proved for explicit self-similar measures, that is, the hypotheses
of the results are testable in concrete examples.
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We begin by discussing results in the first category. Erdős [14] proved that Bernoulli
convolutions (see Section 2) have power Fourier decay for almost all choices of the param-
eter � 2 .0; 1/. His argument was revisited by Kahane [26] who showed that the exceptional
set of parameters where the power decay fails is, in fact, of 0 Hausdorff dimension. This
method was exposed in the survey [38], where the exponent a was also studied, and the term
Erdős–Kahane argument was coined. Recently Solomyak [50] showed that nondegenerate
self-similar measures on R have power Fourier decay if the vector of contraction parameters
avoid an exceptional set of 0 Hausdorff dimension. See the references in [50, Section 1.1] and
[51] for more recent applications of the Erdős–Kahane method.

The first results in the second category are also in the setting of Bernoulli con-
volutions. Erdős [13] proved that Bernoulli convolutions are not Rajchman when ��1, the
reciprocal of the parameter, is a Pisot number, except when the probability weights are uni-
form and � D 1=2m for an odd integer m. Recall that a Pisot number is an algebraic integer
all of whose Galois conjugates lie inside the complex unit disk. Salem [43] proved the con-
verse of Erdős result by showing that Bernoulli convolutions are Rajchman when ��1 is not
Pisot.

The Rajchman property of general self-similar measures has been understood more
recently. Sahlsten and Li [31] proved that self-similar measures are Rajchman whenever the
semigroup generated by the contraction parameters is not lacunary, that is, it is not contained
in ¹�n W n 2 Z�0º for some n. Their work is based on a new method relying on renewal theory
originating in [30]. See also [2], where this result is extended to self-conformal measures using
a different method. The lacunary case was analyzed by Brémont [7], see also Varjú, Yu [55].
Finally, the problem was solved by Rapaport [40] for self-similar measures on Rd .

For Bernoulli convolutions, polylogarithmic Fourier decay follows from a result of
Bufetov and Solomyak [10, Proposition 5.5] for algebraic parameters � provided ��1 is nei-
ther Salem nor Pisot, that is, it has another Galois conjugate outside the complex unit disk,
see also [19]. Under a mild Diophantine condition for the contraction parameters, Sahlsten
and Li [31] proved polylogarithmic Fourier decay for self-similar measures. Informally speak-
ing, their condition requires that the semigroup generated by the contraction parameters is
not approximated by lacunary semigroups in a suitable quantitative sense. See [2] for a sim-
ilar result under a different Diophantine condition. Polylogarithmic Fourier decay was also
established by Varjú and Yu [55] for certain self-similar measures in the lacunary case.

It is an important open problem to characterize which self-similar measures have
power Fourier decay. Very little is known about this. See [12] for explicit examples of
Bernoulli convolutions with power Fourier decay and [32] for results about self-similar mea-
sures on Rd for d � 3.

6.2. Absolute continuity
Let � be a self-similar measure on R associated to an IFS with contraction factors

¹�i º that contains no exact overlaps, and probability weights ¹pi º. One may expect that � is
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not only of dimension 1 if P
pi log p�1

iP
pi log ��1

i

> 1; (10)

as predicted by Conjecture 3, but it is also absolutely continuous. When there is equality
in (10), the self-similar measure is almost always singular, see [37, Theorem 1.1].

In general, this expectation is false. Simon and Vágó [48] showed that in some fam-
ilies of IFSs, there is a dense Gd set of parameters, which violate the above statement. See
[36] for earlier related results in a different setting. However, it could still be true that (10)
and the lack of exact overlaps imply absolute continuity for some families of self-similar
measures, for example for Bernoulli convolutions.

Nevertheless, it is expected that self-similar measures are absolutely continuous for
almost all choices of the parameters in parametric families when (10) holds. For Bernoulli
convolutions, this was proved by Erdős for � near 1, as a consequence of power Fourier decay
with parameter a > 1. The result has been extended to the optimal range � 2 Œ1=2; 1� by
Solomyak [49] using the transversality method. See [6,37,38] and their references for further
developments. Shmerkin [44] proved that the set of exceptional parameters in Œ1=2; 1� that
make the Bernoulli convolution singular is of Hausdorff dimension 0. His method is based
on a result of his that the convolution of a measure of dimension 1 and another one with
power Fourier decay is absolutely continuous. He used this in conjunction with Hochman’s
theorem and the Erdős-Kahane method. See [42, 46] and the references therein for further
developments using this method.

Explicit examples of absolutely continuous self-similar measures are rare. The first
examples were given by Garsia [20] as the Bernoulli convolutions with parameters of Mahler
measure 2. See [12] for a generalization of this construction, and see [56] for an improvement
on the regularity of the density function using Shmerkin’s method. Varjú gave new exam-
ples of absolutely continuous Bernoulli convolutions in [53]. This paper relies on a similar
method to Hochman’s in a quantitatively refined form. A crucial point is that it requires the
separation condition to hold at all sufficiently small scales rather than just at infinitely many
of them. This restricts the method to algebraic parameters currently. A recent improvement
was given by Kittle [28], who gave further new examples of absolutely continuous Bernoulli
convolutions. While all the new examples in [53] are very close to 1, e.g., 1 � 10�50, this is not
the case for [28], which includes, e.g., one near 0:799533 : : : The paper [28] also introduces
a new tool to quantify the smoothness of measures at scales.

See [32] for results about absolute continuity of self-similar measures on Rd for
d � 3.
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