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Abstract

In this paper we review the authors’ recent work [1] which gives a complete description
of the formation and development of singularities for the compressible Euler equations in
two space dimensions, under azimuthal symmetry. This solves an open problem posed by
Landau and Lifshitz, which was previously open even in one space dimension. Our proof
applies mutatis mutandis in the drastically simpler situations of one-dimensional flows, or
multidimensional flows with radial symmetry. We prove that for smooth and generic ini-
tial data with azimuthal symmetry, the 2D compressible Euler equations yield a local in
time smooth solution, which in finite time forms a first gradient singularity, the so-called
C 1=3 preshock. We then show that a discontinuous entropy producing shock wave instan-
taneously develops from the preshock. Simultaneous to the development of the shock,
two other characteristic surfaces of higher-order cusp-type singularities emerge from the
preshock. These surfaces have been termed weak discontinuities by Landau and Lifshitz
[17, Chapter IX, §96], who conjectured their existence. We prove that along the character-
istic surface moving with the fluid, a weak contact discontinuity is formed, while along the
slowest surface in the problem, a weak rarefaction wave emerges. The constructed solution
is the unique solution of the Euler equations in a certain class of entropy-producing weak
solutions with azimuthal symmetry and with regularity determined by the fact that it arises
from a generic preshock.
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1. Introduction

The compressible Euler equations are the fundamental mathematical model of fluid
dynamics. Their mathematical analysis has a very rich history, see, for instance, the classical
books of Courant and Friedrichs [10], or Landau and Lifshitz [17]. The unknowns of the
model are the velocity u W Rd � R ! Rd , the mass density � W Rd � R ! RC, the total
energyE W Rd � R ! RC, where d � 1 is the spatial dimension. The quasilinear system of
conservation laws describing their evolution is given by

@t .�u/C div.�u˝ uC pI/ D 0; (1.1a)

@t�C div.�u/ D 0; (1.1b)

@tE C div
�
.p CE/u

�
D 0; (1.1c)

representing the conservation of momentum, mass, and energy. Here p W Rd � R ! RC is
the pressure which may be computed in terms of .u; �; E/ as

p D .
 � 1/

�
E �

1

2
�juj

2

�
; (1.1d)

where 
 > 1 denotes the adiabatic exponent. The pressure may alternatively be computed in
terms of the (specific) entropy S W Rd � R ! R via

p.�; S/ D
1



�
eS : (1.2)

Note that in regions of spacetime where the fields .u;�;E/ are smooth, one may replace (1.1c)
by the transport of specific entropy

@tS C u � rS D 0: (1.3)

The system (1.1) is supplemented with smooth Cauchy data .u0; �0; E0/.
At least since the middle of the 19th century and the work of Riemann [21], it is

known that the compressible Euler equations exhibit solutions which have smooth initial
data and develop a finite-time singularity. The nonlinear interactions in (1.1) cause a gradual
steepening of the density and velocity profiles, eventually leading to a first spacetime point
at which their slope becomes infinite (the preshock). A shock wave then forms and propa-
gates through the fluid according to the so-called Rankine–Hugoniot jump conditions, which
ensure that the evolution gives an entropy-producing weak solution of (1.1).

A rigorous mathematical understanding of the above described process of shock for-
mation and shock development, from smooth initial data, is partially available only in one
space dimension [10,11,17], or equivalently, in the presence of radial symmetry for d � 2. We
emphasize, however, that even for d D 1 a complete understanding of these phenomena was
not available as of 2019. Indeed, regarding the 1D shock formation process, a rigorous proof
of the expectation (see Eggers and Fontelos [13]) that the first singularity is asymptotically
self-similar, and a stability analysis of the associated self-similar profiles within the Euler
evolution (1.1), was unavailable. This issue was settled in our work [3]. Regarding the shock
development process, Landau and Lifshitz note in [17, Chapter IX, §96] that simultaneously to
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the development of the discontinuous shock wave, other surfaces of higher-order singulari-
ties are expected to form. Landau and Lifschitz termed these surfaces weak discontinuities,
but stopped short of describing their nature: “The irregularity may be of various kinds. For
example, the first spatial derivatives of �; p; u, etc., may be discontinuous on a surface, or
these derivatives may become infinite or higher derivatives may behave in the same manner.”
In spite of the huge literature on compressible flows, we are not aware of any analysis of these
weak discontinuities for the Euler system (1.1). Providing a resolution to the problem raised
by Landau and Lifschitz is the purpose of our work [1].

We emphasize that the arguments in our works [3] and [1] are able to treat not just the
case d D 1, or d � 2with radial symmetry, but a more general situation: d D 2 for flows with
azimuthal symmetry and nonzero vorticity. We view the analysis of solutions with azimuthal
symmetry as a key step in our program of understanding shock formation and development
for the full Euler system (1.1) in multiple space dimensions (d � 2), from smooth initial data,
in the absence of any symmetry assumptions, which is considered to be the outstanding open
problem in the field.

2. Prior results for Euler shock formation and

development

The mathematical literature on the compressible Euler equations is too vast to review
here. The majority of results have been focused on either the one-dimensional problem, or
on the theory of weak solutions, or on the Riemann problem. See, for instance, the book
of Dafermos [11] for an extensive modern review. In spite of this, there are very few results
devoted to the mathematical analysis of shock formation for smooth initial data, and even
less so to the shock development problem.

For the one-dimensional p-system (which models 1D isentropic Euler), Lebaud [18]

was the first to prove shock formation and development. Chen and Dong [5], and also
Kong [16], revisited the proof of Lebaud and established the formation and development
of shocks for the 1D p-system with slightly more general initial data. However, as explained
in Remark 3.3 below, the use an isentropic system cannot produce weak solutions to the
Euler equations, even for d D 1. The first work to address the formation and development
problem for the nonisentropic Euler equations was Yin [22], who considered the 3� 3 system
under spherical symmetry (which makes the problem one-dimensional). Independently of
Yin, shock development for the barotropic Euler equations under spherical symmetry was
established by Christodoulou and Lisbach [8]. Since isentropic dynamics cannot yield weak
solutions to the Euler equations (see Remark 3.3), the analysis in [8] has been termed the
restricted shock development. Christodoulou [7] has established restricted shock develop-
ment for irrotational and isentropic 3D Euler equations, outside of symmetry assumptions.
We note, however, that besides the inability of the isentropic model to capture the correct
shock jump conditions, outside of radial symmetry the usage of an irrotational model can
also not be justified; regular shock solutions produce entropy and generically create vorticity
(see Remark 4.1 below).
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As noted above, Landau and Lifshitz conjectured in [17, Chapter IX, §96] that at the
same time that the discontinuous shock wave develops, other surfaces of weak singularities
are expected to simultaneously form. For the full Euler system (1.1), with or without sym-
metry, even in one space dimension, the analysis of these surfaces of weak singularities has
been heretofore nonexistent. In [1] we have proven that for the Euler equations in azimuthal
symmetry, two such surfaces emerge from the preshock and move with the slower sound-
speed characteristic (s1), and respectively with the fluid velocity (s2). We shall refer to this
s2 surface as a weak contact because it moves with the fluid velocity, and both the normal
velocity and pressure are one degree smoother than the density and entropy across this sur-
face. The shall also refer to s1 as a weak rarefaction because the normal velocity to this curve
is decreasing in the direction of its motion.

The precise analysis of the shock development problem in [1] is made possible
by a very detailed understanding of the preshock which arises from smooth generic initial
data. In multiple space dimensions and in the absence of symmetries, such a comprehensive
description of the first singularity is currently unavailable. The constructive proofs of shock
formation by Christodoulou [6], Christodoulou and Miao [9], and by Luk and Speck [19,20]

yield the existence of at least one point in spacetime where a shock must form, and a bound is
given for this blow up time; however, since the construction of the shock solution is a pertur-
bation of a simple plane wave, there are numerous possibilities for the type of singularities
that actually form; the blowup could potentially occur at one point, at multiple points, on a
curve, or along a surface. The first step towards the precise characterization of the preshock
in three space dimensions, without symmetries and for the full Euler equations, has been
obtained recently by the first and last two authors [2,4]. We prove in [2,4] that the first singu-
larity which arises from smooth and nondegenerate initial data develops at a single point in
spacetime, it forms in an asymptotically self-similar way, and the corresponding similarity
profiles are stable. This first singularity has been termed a point-shock, and it is given by the
intersection of the preshock surface with the time slice ¹t D T1º, where T1 is the first time
a gradient blowup occurs.

3. Classical vs regular shock solutions

Given a sufficiently smooth initial datum .u0; �0; E0/ defined on Rd � ¹T0º, the
existence of a unique local in time smooth solution to the Euler system (1.1) defined on
Rd � ŒT0; T0 C ı/ for some ı > 0 is classical. For a proof, see, for instance, the H s energy
estimates of Kato [14]. This solution may be continued uniquely on a maximal time interval
ŒT0; T1/, characterized by the fact that T1 is the first time at which the solution has an infinite
gradient. Thus, there is no ambiguity in the notion of solution to (1.1) on Rd � ŒT0; T1/

since all the fields are differentiable in space and time, and so the solution is classical. The
evolution on the time interval ŒT0; T1/ is called shock formation, leading to a first singularity
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at time T1, the so-called preshock,1 which we shall prove is generically of cusp-type, with
the solution retaining Hölder 1=3 regularity.

The evolution (1.1) may be continued past the time of the first singularity, say on
an interval .T1; T2�, in what is known as shock development. The preshock instantaneously
evolves into a discontinuous entropy producing shock wave, and we shall prove that in addi-
tion two other families of weak characteristic singularities simultaneously emerge from the
preshock. In order to discuss shock development, we first need a suitable notion of solution
to (1.1) on Rd � .T1; T2�, which in turn requires the introduction of the Rankine–Hugoniot
jump conditions and of the entropy condition.

The Rankine–Hugoniot jump conditions are a manifestation of the fact .u;�;E/ is a
weak solution of (1.1), and thus the shock speed is related to the jumps of various quantities
across the shock surface. More precisely, suppose that the shock front � � Rd � .T1; T2� is
an orientable spacetime hypersurface across which the velocity, density, and energy jump.
For t 2 .T1; T2�, the shock front at time t locally separates space into two sets �˙.t/, and
we denote the values of the fields in these sets by .u˙; �˙;E˙/. We consider the case where
this surface is parametrized as � WD ¹s.x; t/ D 0º, and denote the spacetime normal to this
surface as �.rxs; @t s/j� DW .n;�Ps/. We let n.�; t / point from��.t/ to�C.t/, which is the
direction of propagation of the shock front. We denote by Ps the shock speed, while the jump
of a quantity f across the shock is written as ŒŒf ��D f � � f C, where f ˙ are the traces of f
along � in the regions�˙. Let un D u � njnj�1 be the projection of the velocity field in the
direction of the normal vector n. The tangential components of the velocity are continuous
across the shock, i.e., ŒŒu � unnjnj�1�� D 0. The Rankine–Hugoniot jump conditions state
that

Psjnj
�1ŒŒ�un�� D

��
�u2

n C pI
��
; (3.1a)

Psjnj
�1ŒŒ��� D ŒŒ�un��; (3.1b)

Psjnj
�1ŒŒE�� D

��
.p CE/un

��
: (3.1c)

Note that only one of the equations in (3.1) are used to compute the shock speed, while the
remaining equations yield two constraints for the variables .uC

n ; �
C; EC/j� and

.u�
n ; �

�; E�/j� .
The entropy condition is nothing but the second law of thermodynamics, and states

that the entropy �S , which in view of (1.3) satisfies the conservation law @t .�S/ C r �

.�uS/ D 0 as long as the solution is smooth, must increase in the presence of a shock
singularity. With the above choice of orientation of the normal vector n, the mass flux
j D �.un � Psjnj�1/ is negative, mass is passing across the shock from �C.t/ into ��.t/,
and so the physical entropy condition becomes

ŒŒS�� > 0: (3.2)

1 To be precise, this first singularity is called a preshock only for one-dimensional problems,
or in the presence of azimuthal symmetry, discussed here. For d � 2, in the absence of any
symmetry, this first singularity occurs at a single point in spacetime, the point-shock. The
point-shock is the intersection of the preshock with the time slice ¹t D T1º.
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Remark 3.1 (The physical entropy condition and the geometric Lax entropy conditions).
The negativity of the mass flux j D �.un � Psjnj�1/ immediately gives

u�
� n < Ps; uC

� n < Ps: (3.3)

The Lax geometric entropy conditions are given by (3.3) along with

uC
� n C cC < Ps < u�

� n C c�; (3.4)

where c� and cC are the sound speeds behind and in front of the shock. Condition (3.4)
states that the shock discontinuity is supersonic relative to the state in front (the “C” phase)
and subsonic relative to the state behind (the “�” phase) the shock. It turns out that for an
ideal gas, and under the assumption that .u; �; E/ has a weak shock, i.e.,

sup
t2ŒT1;T2�

ˇ̌��
u.t/

��ˇ̌
C

ˇ̌��
�.t/

��ˇ̌
C

ˇ̌��
E.t/

��ˇ̌
� 1;

the physical entropy condition (3.2) is equivalent to the Lax geometric entropy conditions.
Moreover, in this setting one may show that the Rankine–Hugoniot jump conditions imply

ŒŒS�� D O
�
ŒŒp��3

�
; (3.5)

with a positive prefactor; it follows that the entropy production postulated in (3.2) implies
the positivity of the jumps ŒŒp�� > 0, ŒŒ��� > 0, andŒŒun�� > 0. See Landau and Lifshitz [17,

Chapter IX] or [1, Section 2] for details.

Having defined the Rankine–Hugoniot conditions (3.1) and the entropy condi-
tion (3.2), we are now ready to define the physically relevant notion of solution to the
development problem for (1.1), evolving from the preshock data.

Definition 3.2 (Regular shock solution). We say that .u; �; E/ and a shock front � is a
regular shock solution on Rd � ŒT1; T2� if the following conditions hold:

• .u; �; E/ is a weak solution of (1.1) and � � �min > 0;

• the shock front � � Rd � ŒT1; T2� is an orientable codimension 1 hypersurface;

• .u; �; E/ are Lipschitz continuous in space and time on the complement of the
shock surface .Rd � ŒT1; T2�/ n � ;

• .u; �;E/ have discontinuities across the shock which satisfy the Rankine–Hugo-
niot jump conditions (3.1);

• entropy is produced at the shock, so that (3.2) holds.

Remark 3.3 (Regular shock solutions cannot be isentropic). Definition 3.2 shows that one
cannot study the physical shock development problem within the isentropic Euler model
(S � 0). Indeed, while the isentropic Euler system is perfectly justifiable prior to the first
singularity since S jtDT0 D 0 implies by (1.3) that S.�; t /D 0 for all t 2 ŒT0; T1�, as soon as a
shock front develops entropy must be generated according to (3.5). That is, the flow becomes
nonisentropic in order to satisfy the Rankine–Hugoniot jump conditions, or equivalently, in
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order for .u; �; E/ to be a weak solution of the Euler system (1.1). Consistency with the
production of entropy (3.2) is a secondary condition, which is meant to rule out the physically
incorrect weak solutions.

4. Azimuthal symmetry

In the regions of spacetime where the fields .u; �; E/ are differentiable, the diver-
gence form of the Euler equations (1.1) is equivalent to a more symmetric version, in which
the conservation of the energy is replaced by the transport of specific entropy S , and the
conservation of mass is replaced by the evolution of the rescaled sound speed � , defined as

� D
1

˛

p
@p=@� D

1

˛
e

S
2 �˛; where ˛ D


 � 1

2
: (4.1)

With this notation, the ideal gas equation of state (1.2) becomes p D
˛2



��2, while the Euler

equations (1.1), as a system for .u; �; S/, are given by

@tuC .u � r/uC ˛�r� D
˛

2

�2

rS; (4.2a)

@t� C .u � r/� C ˛� divu D 0; (4.2b)

@tS C .u � r/S D 0: (4.2c)

Note that the system (4.2) is valid away from the shock surface, and that the Rankine–
Hugoniot conditions need to be determined from the conservation law form of the Euler
equations (1.1). Additionally, we note that the Rankine–Hugoniot jump conditions, defined
in terms of the jumps of normal velocity, density, and energy (3.1), may be translated into
jump conditions for the variables .u; �;E/, by appealing to (4.1) andE D

1
2
�juj2 C

˛
2

��2.

A fundamental quantity to the analysis of (4.2) is the vorticity, defined as!D r? � u

for d D 2 and ! D r � u for d D 3. Then, the specific vorticity � D
!
�

solves

@t� C .u � r/� D

8<: ˛



�
�

r?� � rS; d D 2;

.� � ru/C
˛



�
�

r� � rS; d D 3;
(4.3)

and the analysis of (4.3) is of fundamental importance to our works [1–4].

Remark 4.1 (Regular shock solutions generically create vorticity). The baroclinic torque
term on the right side of (4.3) shows that a misalignment of density and entropy gradients
creates vorticity. Combining this observation with Remark 3.3, it is thus expected that even
when one starts the shock formation process with isentropic irrotational flow, as soon as
the shock surface is formed, generically not just entropy is created, but vorticity is created as
well. Thus, for generic smooth initial data, the shock development problem cannot be studied
in the class of irrotational flows. The only two exceptions we are aware of are d D 1 or the
conceptually equivalent situation d � 2 under the reduction of radial symmetry, when there
is no vorticity to speak of in the first place.

The above remark motivates our introduction of the class of solutions to the Euler
equations with azimuthal symmetry. This class of solutions may be defined for d D 2 by
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the requirement that the velocity and sound speed are linear functions of r with nonlinear
dependence of .�; t/, while the entropy is only a function of .�; t/. Here .r; �/ are the polar
coordinates on R2. This class of solutions is formally maintained under the Euler evolu-
tion (1.1). These solutions have nonzero vorticity, both velocity components are nontrivial
and strongly affect the shock formation and development, and the system has three distinct
wave-speed families. As such, we view azimuthal symmetry as a multidimensional interme-
diary case between one-dimensional problems, and multidimensional problems without any
symmetry. More precisely, by introducing the unknowns .a; b; c; k/ via

.ur ; u� ; �; S/.r; �; t/ DW
�
ra.�; t/; rb.�; t/; rc.�; t/; k.�; t/

�
; (4.4)

and canceling all powers of r , the Euler system (4.2) becomes

.@t C b@� /aC a2
� b2

C ˛c2
D 0; (4.5a)

.@t C b@� /b C ˛c@�c C 2ab D
˛

2

c2@�k; (4.5b)

.@t C b@� /c C ˛c@�b C 
ac D 0; (4.5c)

.@t C b@� /k D 0: (4.5d)

For smooth initial data .u0; �0;E0/ or .u0; �0; S0/ at t D T0 which has azimuthal symmetry,
one may define via (4.4) suitable initial data .a0; b0; c0; k0/ for the system (4.5). Then, solv-
ing (4.5) gives a unique solution .a; b; c; k/ on a maximal time interval ŒT0; T1/ on which the
solution remains smooth. On this time interval, the unique solution .u; �; S/ to (4.2) is then
given by the identification (4.4). That is, as long as solutions remain smooth, the azimuthal
symmetry of the data is preserved, and systems (1.1), (4.4), and (4.5) are all equivalent. As
we shall see below, we may in fact continue the solution .a; b; c; k/ of (4.5) past t D T1

in a unique way as a physical shock solution by translating the Rankine–Hugoniot jump
conditions (3.1) and the entropy condition (3.2) into corresponding azimuthal jump/entropy
conditions. The resulting solution .u; �; S/ (or equivalently .u; �;E/) obtained via the iden-
tification (4.4) can be shown to be a regular weak solution of the full Euler system (4.4)
(equivalently (1.1)) in the sense of Definition 3.2. The uniqueness of this regular weak solu-
tion to (1.1) is only known to hold if we assume that the solution has azimuthal symmetry.

4.1. Riemann-like variables in azimuthal symmetry
For simplicity of presentation, for the remainder of this review, as was done in [1],

we shall work with the adiabatic exponent


 D 2; or equivalently ˛ D
1

2
: (4.6)

We also note that it is convenient to rescale time, letting

t D
3

4
Qt ; so that @t 7!

4

3
@Qt ; (4.7)

and for notational simplicity, we continue to write t for Qt . More importantly, it is convenient
for the subsequent analysis to work with Riemann-like variables w and z which symmetrize
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(in a certain sense) the b and c evolutions (4.5). These Riemann variables are defined by

w D b C c; z D b � c; (4.8)

so that b D
1
2
.w C z/ and c D

1
2
.w � z/. We shall refer to w as the dominant Riemann

variable, and to z as the subdominant Riemann variable.
With the adiabatic exponent from (4.6), the temporal rescaling (4.7), and using the

Riemann variables from (4.8), the system (4.5) can be equivalently written as

@tw C �3@�w D �
8

3
aw C

1

24
.w � z/2@�k; (4.9a)

@tz C �1@�z D �
8

3
az C

1

24
.w � z/2@�k; (4.9b)

@tk C �2@�k D 0; (4.9c)

@taC �2@�a D �
4

3
a2

C
1

3
.w C z/2 �

1

6
.w � z/2: (4.9d)

where the three distinct wave speeds are given by

�1 D
1

3
w C z; �2 D

2

3
w C

2

3
z; �3 D w C

1

3
z: (4.10)

The Cauchy problem for (4.9) is considered with initial conditions given by
.w0; z0; a0; k0/.�/ D .w; z; a; k/.�; T0/. We shall henceforth refer to (4.9)–(4.10) as the
azimuthal Euler system.

Remark 4.2 (Specific vorticity in azimuthal symmetry). Using the azimuthal symmetry
ansatz (4.4), the specific vorticity � may be written as

�.r; �; t/ D $.�; t/ D
�
4.w C z � @�a/c

�2ek
�
.�; t/; (4.11)

and we may show that it solves the evolution equation

@t$ C �2@�$ D
8

3
a$ C

4

3
ek@�k: (4.12)

Remark 4.3 (Motivation for the choice of 
 in (4.6)). The choice of adiabatic exponent

 D 2 was made in order to emphasize that the shock wave produces not just entropy, but it
also generates the subdominant Riemann variable z. In order to clearly emphasize this, for
the shock formation process we choose initial data at time t D T0 which satisfies

k.�; T0/ D 0; and z.�; T0/ D 0: (4.13)

The entropy transport (4.9c) ensures that for any t 2 ŒT0; T1�, where T1 is the time of the
first singularity, we have k.�; t / D 0. The Rankine–Hugoniot conditions (cf. (4.16) below)
guarantee that entropy must be produced at the shock, resulting in k.�; t/ > 0 in a certain
region of points .�; t/ 2 T � .T1; T2�. The choice of k0 D 0 in (4.13) emphasizes the pro-
duction of entropy in the clearest possible way. The choice 
 D 2 (˛ D

1
2
) is related to the

evolution of the subdominant Riemann variable z. Since we have that k � 0, the right-hand
side of (4.9b) simplifies to �

8
3
az, but we note that for general values of 
 , this term would

simplify to �
3C2˛
1C˛

az �
1�2˛
1C˛

aw. As such, even if z0 D 0, the term �
1�2˛
1C˛

aw would ensure
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that z 6� 0 for t > T0. For ˛ D
1
2
, this term, however, does not exist, and so the choice of

k0 D 0 in (4.13) ensures that z.�; t / D 0 for all t 2 ŒT0; T1�. The remarkable fact is that the
Rankine–Hugoniot conditions (cf. (4.16) below) imply that we must have z < 0 for a certain
region of points .�; t/ 2 T � .T1; T2�. Thus, the choice z0 D 0 is made in order to most
clearly emphasize the breaking of the symmetry b D c at the shock.

As noted in Remark 4.3, the choice of initial datum in (4.13) implies that during the
shock formation process, we have that k � 0 and z � 0, so that the system (4.9) becomes

@tw C w@�w D �
8

3
aw; (4.14a)

@taC
2

3
w@�a D �

4

3
a2

C
1

6
w2: (4.14b)

The preshock, which will be shown to be smooth away from a unique blowup point �� 2 T ,
inherits the property that k.�;T1/ and z.�;T1/ vanish on T , but these symmetries are broken
instantaneously during the shock development process. The presence of a shock necessitates
that we supplement the system (4.9) with Rankine–Hugoniot jump and entropy conditions.

4.2. Rankine–Hugoniot jump and entropy conditions
In azimuthal symmetry, with the adiabatic exponent from (4.6) and the temporal

rescaling (4.7), the shock hypersurface is given as

� D
®
.r; �; t/ W s.t/ � � D 0

¯
:

The spatial normal to this hypersurface is n D
1
r

Ee� . We have that Ps > 0 and so the shock is
moving from left to right when the angular variable � is viewed as being defined on Œ��;�/.
To see this, note that since zD 0 by (4.8) we have thatwD 2c, and since we wish to stay away
from vacuum, we must have c � cmin > 0 on T ; therefore, w is strictly positive on T , which
implies that the three wave speeds defined in (4.10) are all strictly positive, and ordered as
�1 < �2 < �3 on T � ŒT0; T1� (by continuity this also holds on T � .T1; T2� if T2 � T1 � 1).
The negativity of the mass flux in (3.3) then yields Ps > 0. According to the orientation of
n, we denote by .wC; zC; aC; kC/.t/ the limiting values on the shock curve s.t/ from the
right (or front) of the shock, and by .w�; z�; a�; k�/.t/ the limiting values from the left
(or back) of the shock. As discussed in [1, Remark 2.5], the Lax geometric entropy inequal-
ities (3.3)–(3.4) imply that the characteristics of the three wave speeds ¹�i º

3
iD1 in front of

the shock (the “C” phase) impinge on the shock front, carrying with them the data from the
¹t D T1º Cauchy hypersurface. In particular, since k.�; T1/ D z.�; T1/ D 0, this implies that
during the development process we have

kC.t/ D zC.t/ D 0; for all t 2 .T1; T2�; (4.15)

so that ŒŒk�� D k� and ŒŒz�� D z�. Using (4.15) and the observation that u˙
n D rb˙.s.t/; t/

the Rankine–Hugoniot jump conditions (3.1) may be shown to be equivalent to a system of
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two equations which are used to determine the values of z� and k� in terms of wC and w�

.ek� � 1/.w� � z�/
4
�
3w2

Ce
k� � .w� � z�/

2
�

D
�
.w� � z�/

2
� ek�w2

C

�3
; (4.16a)�

.w� � z�/
2.w� C z�/

2
C
1

8
.w� � z�/

4
�
9

8
ek�w4

C

��
.w� � z�/

2
� ek�w2

C

�
D

�
.w� � z�/

2.w� C z�/ � ek�w3
C

�2
; (4.16b)

and an evolution equation for Ps given by

Ps.t/ D
2

3

e�k�.w� � z�/
2.w� C z�/ � w3

C

e�k�.w� � z�/2 � w2
C

: (4.16c)

To summarize, the values of the dominant Riemann variable, wC in the front and w� in the
back of the shock, determine the values of z� and k� via (4.16a)–(4.16b), which in turn
allows one to compute the location of the evolving shock front. We note that the dominant
Riemann variable w travels according to the fastest wave-speed in the system (4.9), namely
�3. Thus, the values of wC and w� are carried from the ¹t D T1º Cauchy hypersurface via
the characteristics of �3, which impinge on the shock front from the left and right.

Remark 4.4 (The entropy condition in azimuthal symmetry). The system of three
equations (4.16) is in one-to-one correspondence with the Rankine–Hugoniot jump condi-
tions (3.1). So the natural question is: What is the equivalent of the physical entropy condi-
tion (3.2) in azimuthal symmetry? To answer this question, we first note that (4.16a)–(4.16b)
are a coupled system of sixth-order polynomials in the variableswC;w�; z�; e

k� . The second
observation is that at the preshock we have wC.T1/ D w�.T1/ and z�.T1/ D k�.T1/ D 0,
which solves (4.16a)–(4.16b). The natural question then is whether in the weak shock regime
0 < ŒŒw�� D w� �wC � 1, with hhwii D

1
2
.w� CwC/ > 0, the system (4.16a)–(4.16b) has

a unique solution or not. For the sixth-order equations with real coefficients, the presence of
one real solution implies the presence of at least one more solution. Indeed, one may verify
that in the weak shock regime the system (4.16a)–(4.16b) has exactly two real solutions with
jz�j C jk�j � 1, the other roots being complex. The remarkable fact is that only one of
these two solutions is entropy producing, k� > 0. Thus, the role of the physical entropy con-
dition (3.2), which is equivalent in view of (4.15) to k� > 0, is to select the unique physically
relevant root of the system of equations (4.16a)–(4.16b).

We conclude this section by revisiting the notion of a regular shock solution, as
defined in Definition 3.2, in the context of the azimuthal Euler equations. During the
formation part of our result, i.e., for t 2 ŒT0; T1/, we have that the solution .w; z; k; a/
of (4.9)–(4.10) is smooth, so that the notion of solution is the classical one: the system (4.9) is
satisfied in the sense of C 1-functions of space and time. On the time interval ŒT1; T2�, which
covers the development part of our result, the notion of regular shock solution becomes:

Definition 4.5 (Regular azimuthal shock solution). We say that .w;z;k;a/ and a shock front
parametrized as � D ¹s.t/ D �º is a regular azimuthal shock solution on T � ŒT1; T2� if
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• .w; z; k; a/ are C 1
�;t

smooth, and $ is C 0
�;t

smooth, on the complement of � ;

• on the complement of the shock curve, .w;z;k;a/ solve the equations (4.9)–(4.10)
pointwise, and $ solves (4.12) pointwise;

• .w; z; k/ have jump discontinuities across the shock curve which satisfy the alge-
braic equations (4.16a)–(4.16b);

• the shock location s W ŒT1; T2� ! T is C 1
t smooth and solves (4.16c);

• entropy is produced at the shock so that ŒŒk��.t/ > 0 for t 2 .T1; T2�.

5. Main results

The main result of [1] is stated first in terms of the azimuthal variables .w; z; k; a/.
The result may be best visualized by inspecting Figures 1, 2, 3, 4. A condensed statement is
as follows; for details, see [1, Theorems 3.2, 5.5, 6.1].

Figure 1

The initial conditions .w; z; k; a/jtDT0
satisfying (4.13) are represented in (red, green, blue, orange) as functions

of the angular variable � 2 Œ��; �/. The function w.�; T0/ is strictly positive and has has a nondegenerate most
negative slope of size � �

1
" at a unique point in T . The function a.�; T0/ is O.1/ in C 4.T /.

Figure 2

At the time of the first singularity, the functions .w; z; k; a/jtDT1
are sketched in the figure on the left, using the

same color scheme as in Figure 1. In the image on the right, we have plotted the function @�a, which also develops
a singularity at t D T1. More precisely, the shock formation process for the system (4.14) results in the formation
of the preshock at time T1, manifested as a C

1
3 cusp at a unique distinguished angle �� 2 T for the functions w

and @�a. At T1 we have that z and k remain equal to 0.
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Figure 3

Three distinct families of singularities instantaneously emerge from the the preshock located at .��; T1/. Across
the classical shock curve s the fields .w; z; k; @�a/ jump, and the Rankine–Hugoniot conditions are satisfied. A
weak rarefaction singularity develops across the curve s2 which travels along characteristics of �2. Here the
quantities .w; z; k/ have regularity C 1;1=2 and no better. A weak contact singularity forms across the curve s1

which travels with the characteristics of �1. Here the function z has regularity C 1;1=2 and no better. The functions
z and k are equal to 0 on the left-hand side of s1 and on the right-hand side of s.

Figure 4

On the left-hand side, we have a schematic representation of the functions .w; z; k; a/jtDT2
using the color scheme

from Figure 1. On the right-hand side, a schematic representation of the functions .@�w; @�z; @�k; @�a/jtDT2
is

given. In both images, the vertical lines represent the location of s1.T2/ < s2.T2/ < s.T2/ using the color
scheme from Figure 3. The image on the left emphasizes that all quantities except for a jump across the shock, and
that z and k remain equal to 0 on T n Œs1.T2/;s.T2/�. The image on the right emphasizes that the one-sided
cusps form at the weak contact and weak rarefaction, and that @�a jumps across the shock.

Theorem 5.1 (Main result in azimuthal symmetry). From smooth isentropic initial data at
time T0 with vanishing subdominant Riemann variable, as described in the first paragraph
of Section 6, there exist smooth solutions to the azimuthal Euler system (4.9) that form a pre-
shock singularity, at a time T1 > T0. The first singularity occurs at a single point in space,
��, and this first singularity is shown to have an asymptotically self-similar shock profile
exhibiting a C 1=3 cusp in the dominant Riemann variable and a C 1;1=3 cusp in the radial
velocity. A series expansion for w.�; T1/ in terms of .� � ��/

1=3 may be computed explicitly.
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After the preshock is formed, the solution to (4.9)–(4.10) is continued uniquely for
a short time .T1; T2� as a regular azimuthal shock solution (cf. Definition 4.5) with the fol-
lowing properties:

• Across the shock curve s, for all t 2 .T1; T2�, the state variables jump

ŒŒw�� � .t � T1/
1
2 ; ŒŒ@�a�� � .t � T1/

1
2 ; ŒŒz�� � .t � T1/

3
2 ; ŒŒk�� � .t � T1/

3
2 :

• Across the characteristic s2 emanating from the preshock and moving with the
fluid velocity, the Riemann variables and the entropy makeC 1;1=2 cusps approach-
ing from the right. Limiting from the left, these variables are C 2 smooth.

• Across the characteristic s1 emanating from the preshock and moving with the
sound speed minus the fluid velocity, the entropy is zero while the subdominant
Riemann variable makes a C 1;1=2 cusp from the right. Limiting from the left, all
fields are C 2 smooth.

We note that the proof of Theorem 5.1, which is the bulk of our paper [1], applies
with minor modifications to the case of the Euler equations for d D 1, or in the case of radial
symmetry d � 2. In fact, as mentioned already in Remark 4.1, these two cases are simpler
than the azimuthal symmetry considered here, since the vorticity vanishes identically.

Via the identification (4.4), Theorem 5.1 implies the following result for the Euler
system in terms of hydrodynamic variables. We only state a condensed result here, and refer
the interested reader to [1, Theorems 1.2, 7.1, 7.2] for details. The pictorial representation of this
result is given in Figure 5 below.

Figure 5

Values of the density written in polar coordinates �.r; �; t/, and plotted for r 2 Œ1; 2�. The image on the left
represents the smooth data at time T0. The center image shows the preshock formed at time T1, at one specific
value of the angular coordinate; we marked the corresponding line in red. The image on the right represents the
density at time T2, where we have represented in red the line along which the shock discontinuity occurs, in blue
the line containing the weak contact, and in green the line corresponding to the weak rarefaction.
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Theorem 5.2 (Main result for 2D Euler). For smooth isentropic initial data at time T0 with
azimuthal symmetry, there exist smooth solutions to the 2D Euler equations (1.1) that form a
preshock singularity at a time T1 > T0. The first singularity occurs along a half-infinite ray
and the blowup is asymptotically self-similar, exhibiting a C 1=3 cusp in the angular velocity
and mass density, and a C 1;1=3 cusp in the radial velocity. Moreover, the blowup is given by
a series expansion whose coefficients are computed as a function of the initial data.

Past the preshock, the solution is continued on .T1; T2�, as an entropy-producing
regular shock solution (cf. Definition 3.2) of the full 2D Euler equations (1.1). The solution
is unique in the class of entropy producing weak solutions with azimuthal symmetry, with a
certain weak shock structure and suitable regularity off the shock (see the space X" defined
in (7.8) below). The following properties are established for t 2 .T1; T2�:

• Across the classical shock hypersurface, all the state variables jump:

ŒŒu� �� � .t � T1/
1
2 ; ŒŒ��� � .t � T1/

1
2 ;

ŒŒ@�ur �� � .t � T1/
1
2 ; ŒŒS�� � .t � T1/

3
2 :

• Across the characteristic emanating from the preshock and moving with the fluid
velocity, the entropy, density, and radial velocity all have a C 1;1=2 one-sided cusp
from the right, while from the left, they are all C 2 smooth. The second derivatives
of the angular velocity and pressure are bounded across this curve, justifying the
name weak rarefaction.

• Across the characteristic emanating from the preshock and moving with sound
speed minus the fluid velocity, the entropy is zero while the angular velocity and
density have C 1;1=2 one-sided cusps from the right, while from the left, they are
C 2 smooth. The second derivative of the radial velocity is bounded across this
curve, justifying the name weak contact singularity.

Theorem 5.2 yields a full propagation of singularities result for regular shock solu-
tions of the Euler equations, capturing both the jump discontinuity and the weak singularities
emanating from the initial cusp in the preshock. This gives an answer to the problem raised
by Landau and Lifschitz in [17, Chapter IX, §96], at least in the context of flows with azimuthal
symmetry (or one-dimensional flows).

Remark 5.3 (Anomalous entropy production). Theorem 5.2 provides an example of an
entropy producing weak solution .u; �; E/ 2 L1

t .BV \ L1/loc � L1
t .B

1=p
p;1/loc, for all

p � 1. This regularity class encodes the emergence of a regular shock, obtained by continu-
ing the past the first singularity. This proves that the Onsager-criterion proven by the second
author and Eyink in [12, Theorem 3], which states that if .u; �; E/ 2 L1

t .B
1=3C

3;1 \ L1/loc

then there is no entropy production, is in fact sharp.

Remark 5.4 (Uniqueness and entropy). Theorem 5.2 establishes the uniqueness of solutions
in a class of weak solutions with azimuthal symmetry, with weak shock structure, and which
have regularity consistent with the fact that they emanate from a C 1=3 preshock (cf. (7.8)

3650 T. Buckmaster, T. D. Drivas, S. Shkoller, and V. Vicol



below), which in turn is the generic regularity that should be expected to arise at the first
singularity from a smooth initial datum. The role of the entropy condition in establishing this
uniqueness was explained in Remark 4.4. We contrast our uniqueness statement to the ill-
posedness of the Euler system within the class of bounded, entropy-producing weak solutions
emanating from 1D Riemann data, cf. Klingenberg et al. [15] and references therein.

6. Outline: the formation of the preshock

Fix a constant �0 > 1 sufficiently large and let " > 0 be sufficiently small. Consider
the azimuthal Euler system (4.9)–(4.10) with initial data given at time T0 D �", satisfy-
ing (4.13), and with w.�; T0/ and a.�; T0/ which lie in a certain open subset of C 4.T /

described roughly as follows. The initial data for the radial velocity is taken to satisfy
ka.�;�"/kL1 � ", k@�a.�;�"/kL1 . 1

20
�0, and k@n

�
a.�;�"/kL1 . 1 for 2� n� 4. The initial

data for the dominant Riemann variable is described in detail in [1, Equations (4.17)–(4.25)].
The most important property is thatw.�;�"/ 2 C 4.T / has a nondegenerate global minimum
at a single point of T , labeled for convenience by 0, where it holds that

w.0;�"/ D �0; @�w.0;�"/ D �"�1; @2
�w.0;�"/ D 0; @3

�w.0;�"/ D 6"�4: (6.1)

Other conditions are that 7
8
�0 � w.�;�"/ �

9
8
�0 which ensures that the density is bounded

away from vacuum, that w.�;�"/ � �0 is compactly supported B"1=2.0/, and that the func-
tion W.y/ WD "�1=2.w.y"3=2;�"/ � �0/ lies in a certain "-dependent open ball in the C 4

topology centered at the stable global self-similar solution of the 1D Burgers equation, W ,
which is defined implicitly as the analytic solution of W .y/CW .y/3 C y D 0.

For such datum, the formation of the first gradient singularity for (4.9)–(4.10) was
previously established in [3]. This singularity is characterized as a stable asymptotically self-
similar C 1=3

�
cusp for the dominant Riemann variable w, the so-called preshock, which

occurs at a precisely computable spacetime location .��; T1/, with �� � �0" and T1 D

O."3/. The subdominant Riemann variable z and entropy � remain identically equal to 0 on
T � Œ�";T1�, while radial velocity and specific vorticity satisfy a 2 L1.�";T1IC 1;1=3.T //

and $ 2 L1.�"; T1IC 0;1.T //. From here, one may show that asymptotically as � ! ��:

w.�; T1/ D � � b.� � ��/
1
3 C o

�
.� � ��/

1
3
�
; (6.2a)

a.�; T1/ D a0 C a1.� � ��/C a2.� � ��/
4
3 C o

�
.� � ��/

4
3
�
; (6.2b)

for suitable constants computable constants b � 1, ai , and � such that j� � �0j . "2.
While the description of the preshock given by (6.2) would be likely sufficient to

describe the classical shock singularity s emerging from the preshock, in order to rigorously
capture the formation of higher order characteristic singularities emerging along the curves
s1 and s2 in Figure 3, a much finer understanding of the dominant Riemann variable w at
the preshock is required. This information is not available in [3], and it is the subject of the
analysis in [1, Section 4]. In particular, [1, Theorem 4.1] proves that

w.�; T1/ D � � b.� � ��/
1
3 C c1.� � ��/

2
3 C c2.� � ��/C O

�
.� � ��/

4
3
�

(6.3)
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holds for all � in an "-dependent ball around ��, for explicitly computable constants ci . More
importantly, we prove that the fractional series expansion (6.3) holds in aC 3 sense, meaning
that the first three derivatives of the left-hand side in (6.3) equal to the first three derivatives
of the expansion on the right-hand side, with error bounds stable under differentiation.

The proof of (6.3) is based on a fully-Lagrangian characterization of the preshock,
and a subtle interplay between the characteristics of the speeds �3 Dw and �2 D

2
3
w present

in (4.14), and which are defined by

@t� D �3

�
�.x; t/; t

�
D w

�
�.x; t/; t

�
; �.x;�"/ D x;

@t� D �2

�
�.x; t/; t

�
D
2

3
w

�
�.x; t/; t

�
; �.x;�"/ D x:

By (4.14a), it is clear that � is the natural flow of the w evolution, while (4.14b) and (4.12),
which simplify here to @t$ C

2
3
w@�$ D

8
3
a$ , show that � is the natural flow for a and$ .

The first and most important observation is that the spacetime location of the first
singularity .��; T1/ is characterized by �� D �.x�; T1/, where .x�; T1/ are the unique
Lagrangian label and the first time, respectively, which simultaneously solve the system

@x�.x�; T1/ D @xx�.x�; T1/ D 0: (6.4)

In fact, as part of the proof it is crucial that we establish

@x�.x; t/ D
�
1C O."

1
2 /

�
"�1.T� � t /C

�
3C O."

1
8 /

�
"�3.x � x�/

2;

@xx�.x; t/ D .T� � t /O."�2/C
�
6C O."

1
8 /

�
"�3.x � x�/;

@xxx�.x; t/ D
�
6C O."

1
8 /

�
"�3;

for all labels jx � x�j � "2 and all t 2 Œ�";T1�. This asymptotic description of the Lagrangian
flow may be traced back to the initial datum assumption (6.1).

The second ingredient in the proof is that the fields �, w ı �, a ı �, $ ı � remain
C 4 smooth as functions of the Lagrangian label x, uniformly in time on the interval Œ�";T1�.
Roughly speaking, this is achieved by appealing to the identities

�.x; t/ D x C

Z t

�"

w ı �.x; s/ds; (6.5a)

w ı �.x; t/ D w.x;�"/e� 8
3

R t
�" aı�.x;s/ds; (6.5b)

which show that the regularity of a ı � implies the regularity of � and w ı �, and to the
one-derivative gains provided by the relations @�a D w �

1
16
w2$ and

@x�.x; t/ D

�
w.x;�"/

w ı �.x; t/

�2

e� 16
3

R t
�" aı�.x;s/ds;

$ ı �.x; t/ D $0.x;�"/e
8
3

R t
�" aı�.x;s/ds;

which in turn allows us to establish the desired higher order regularity of a and $ .
The third ingredient in the proof concerns the invertibility of the map x 7! �.x;T1/.

Using (6.4) and a Taylor series expansion justified by the regularity of �, we have that

� D �.x; T1/ D �� C
1

6
@xxx�.x�; T1/.x � x�/

3
C

1

24
@xxxx�. Nx; T1/.x � x�/

4;
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where �� D �.x�;T1/, and Nx is a point between x� and x. As such, with‚D � � �� andX D

x � x�, we are left to invert the quartic polynomial‚D g1X
3 C g2X

4, where g1 � "�3 > 0

and jg2j D O."�4/. This inversion via a Newton iteration results in a fractional power series
X D f1‚

1=3 C f2‚
2=3 C f3‚ C O.‚4=3/, with explicitly computable real coefficients fi .

This fractional power series is then directly translated into a power series expansion for the
inverse map ��1.�; T1/ in powers of .� � ��/

1=3, valid for � sufficiently close to ��. At last,
we insert this expansion into (6.5b), to obtain

w.�; T1/ D w
�
��1.�; T1/;�"

�
e� 8

3

R T1
�" aı�.��1.�;T1/;s/ds :

Using the known expansion for ��1.�; T1/ and the regularity of a ı �, we deduce (6.3).

7. Outline: the development of shocks and weak

singularities

We next turn to the development problem, within the class of regular azimuthal
shock solutions, cf. Definition 4.5. The initial datum for this development problem are the
functions .w; z; k; a/ at which we have arrived in the formation process at time T1. For
simplicity of the presentation, let us shift the preshock location .��; T1/ to .0; 0/, and let us
denote the values of the azimuthal fields at the preshock by .w0; z0;k0;a0/. By the analysis in
Section 6, we have that z0 � k0 � 0 on T , a0 2C 1;1=3.T /with ka0kW 1;1 . �0,$0 2 Lip.T /
with 1 < �0$0.�/ . 1, and the dominant Riemann variable is given by

w0.�/ D � � b�
1
3 C c1�

2
3 C c2� C O.�

4
3 /; (7.1)

equality which holds in a C 3 sense, with � � �0 > 1, b � 1, and c D O."1=2/. The shock
development problem from this initial data is solved on the interval Œ0; "�, i.e., T2 D T1 C "

in the language of Theorem 5.1, for a " which is sufficiently small in terms of the data. The
detailed analysis is carried out in [1, Sections 5 and 6], and here we only give the main ideas.

Given a smooth shock curve sW Œ0; "� ! T , we shall denote the spacetime comple-
ment of the shock as D" D .T � Œ0; "�/ n .s.t/; t/t2Œ0;"�, and for any function f W D" ! R

we denote the left and right traces at the shock by f˙.t/D lim�!s.t/˙ f .�; t/, and the jump
and mean across the shock as ŒŒf ��.t/ D f�.t/ � fC.t/ and hhf ii.t/ D

1
2
.f�.t/C fC.t//,

respectively. Note that since " is chosen to be sufficiently small, we have that t � 1 is a small
parameter.

To leading order in 0 < t � 1 and for j� j � 1, the intuition behind the shock devel-
opment problem is as follows. First, from the Rankine–Hugoniot jump conditions one has
that to leading order the speed of propagation of weak shock waves (relative to the fluid) is
equal to the sound speed, which in the context of azimuthal symmetry means that

Ps � b C c D w � w0 C .small error for t � 1/

� � C .small error for j� j � 1/C .small error for t � 1/:

Thus, to leading order we may expect that s.t/ � �t .
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Second, we note that although entropy k and the subdominant Riemann variable z
are strictly positive for t > 0, for short time they are expected to be small. As such, to leading
order one may expect that the evolution of the dominant Riemann variablew (cf. (4.9a)) may
be approximated as

@tw C .w C small error/@�w D .small errors involving entropy gradients/;

w0 D � � b�
1
3 C .small error near for j� j � 1/:

Thus, we may hope to view the dominant Riemann variable w as being a perturbation of an
inviscid Burgers solution wB with associated Lagrangian �B, namely

wB.�; t/ D w0

�
�B

�1.�; t/
�
; �B.x; t/ D x C tw0.x/: (7.2)

Here we denote Eulerian space variable by � and the Lagrangian label by x. There is an
important caveat in the standard-looking definition (7.2). Since the initial data w0 is a
preshock (recall (7.1)), the map �B

�1.�; t/ is not well defined for � which is very close
to s.t/; indeed, in this region the map is two-valued. This is natural since these characteris-
tics are expected to impinge upon the shock from either the left or the right, which ensures
that the Lax entropy conditions (3.4) are satisfied. To overcome this, given any t 2 .0; "�, and
given a shock curve s.t/, we compute two Lagrangian labels x˙.t/ D �B

�1.s.t/˙; t / such
that the associated particle trajectories �B.x˙.t/; s/ fall into the shock exactly at time s D t .
This allows us to define �B

�1.�; t /WT n ¹s.t/º ! T n Œx�.t/;xC.t/� as a bijective map, giving
a meaning to (7.2). Note that to leading order one may compute �B.x; t/� xC �t � .bt /x1=3,
and since to leading order s.t/ � �t , we deduce that x˙.t/ � .bt /3=2. It follows that we
may expect the jump of the dominant Riemann variable across the shock curve to be given,
to leading order in t , by

ŒŒw��.t/ � ŒŒwB��.t/ D w0

�
x�.t/

�
� w0

�
xC.t/

�
� 2b

3
2 t

1
2 : (7.3)

Third, in analogy to how (3.5) was derived, we may show that in the weak shock
regime jŒŒw��j � 1 (justified in view of (7.3)) the smallest root (in absolute value) of the
system of equations (4.16a)–(4.16b) (which were derived from the azimuthal form of the
Rankine–Hugoniot conditions) is given to leading order by

ŒŒz��.t/ � �
9ŒŒw��.t/3

16hhwii.t/2
� �

9b
9
2

2�2
t

3
2 and ŒŒk��.t/ �

4ŒŒw��.t/3

hhwii.t/3
�
32b

9
2

�3
t

3
2 : (7.4)

Just as (7.3), (7.4) may be shown to hold in a C 2
t sense. The jump relations show that posi-

tive entropy and negative subdominant Riemann variable must be produced instantaneously
along the shock in order for mass, momentum, and energy not to be lost.

Fourth, we need to carefully analyze the three characteristic families present in the
azimuthal Euler equations (4.9)–(4.10). These flows are defined naturally as

@t� D �3 ı �; @t� D �2 ı �; @t D �1 ı  ; .�; �;  /.x; 0/ D x:

Our heuristics indicate that to leading order in t � 1 and jxj � 1 we have that

�.x; t/ � �B.x; t/ � x C �t � .bt /x
1
3 ; �.x; t/ � x C

2�

3
t;  .x; t/ � x C

�

3
t;

(7.5)
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which confirms our intuition that the �3 characteristic � impinges on the shock curve s.t/�

�t only after we look at the next order term in t and x, and also that the �2 and �1 character-
istics � and  are transversal to the shock. Note that the two characteristic surfaces of weak
singularities are nothing but the images under these slow flows of the point-shock

s2.t/ D �.0; t/ �
2�

3
t; s1.t/ D  .0; t/ �

�

3
t:

The transversality of characteristic families mentioned above plays a crucial role in our
analysis: it may be combined with the fact that we stay away from the vacuum state in
order to interchange a space derivative with a time derivative in terms which are composed
with � or  . For example, it allows us to heuristically replace the statements ŒŒz�� � �t3=2

and ŒŒk�� � t3=2 from (7.4), with asymptotic descriptions z.�; t/ � �.� � s1.t//
3=2 and

k.�; t/� .� � s2.t//
3=2 asymptotically as � ! s1.t/

C and � ! s2.t/
C, respectively. Thus,

the jump relations (7.4) and transversality imply that the fields z and k form C 1;1=2 cusps at
s1 and s2, when approaching from the right.

Besides determining the location of the weak singularities, the flows �; �;  also
paint a detailed picture as to how information is carried from the ¹t D 0º initial data surface,
respectively how information about the jumps at the shock are propagated through the fluid
in spacetime. A schematic description is provided by Figure 6 below.

Figure 6

The three distinct wave families �, �, and  are represented in red, blue, and respectively green, for various initial
labels. The most interesting such labels are marked with black dots: these do not lie on the time-slice ¹t D 0º, but
instead they lie on the shock curve s at various values of time; at these points the values of k� and z� are
computed according to (7.4). To leading order, the entropy k is propagated off the shock curve along the �2

characteristics �, while the subdominant Riemann variable z is also propagated off the shock curve s, but along
the �1 characteristics  . The �3 characteristics � initiated at ¹t D 0º, represented in red, impinge on the shock
curve from the left side, determining w in terms of w0 on both sides of the shock.

Fifth, we note that according to (4.9d) and (4.12), the fluid velocity �2 and its associ-
ated characteristic � are the natural ones for carrying information about the radial velocity a
and the specific entropy$ . In particular, since � is transversal to s, we are able to use (4.12)
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in order to show that the specific vorticity is continuous across the shock curve. As such,
the relation (4.11) implies that it is @�a and not a which has a jump discontinuity at s, and,
moreover, to leading order we have

ŒŒ@�a��.t/ � ŒŒw��.t/ � 2b
3
2 t

1
2 : (7.6)

Sixth, concerning the characterization of the higher order singularities across the
curves s1 and s2, the intuition regarding the precise regularity of the fields .w; z; k; a/ stems
from the jump relations (7.3), (7.4), (7.6), a detailed description of the Lagrangian flows �
and similar to (7.5), and the structure of the forcing terms in (4.9) and (4.12). For instance,
we have already mentioned in the paragraph below (7.5) that the transversality of � and  to
s, along with the jump relations (7.4) allow us to precisely compute the regularity of z and k
approaching s from the left. This matter is, however, more subtle near s1 and s2. To see this,
we may inspect Figure 6 and note that an Eulerian point .�; t/ with 0 < � � s2.t/ � 1 is
traced backwards in time along the blue characteristics � to a point which lies on the shock
curve at some time T.�; t/ � � � s2.t/ � 1 (shock-intersection times are defined precisely
in [1, Definitions 5.15 and 5.16]). Thus, singular information about the derivatives of the jumps
of k at a time T.�; t/ � t is carried via the � characteristics to the point .�; t/, resulting in
infinite terms as � ! s2.t/

C.
An additional difficulty in analyzing the higher-order singularities is that, if we

naively consider the evolution equations for @�w or @�z, cf. (4.9a) and respectively (4.9b),
we note the emergence of the forcing term 1

24
.w � z/2@��k, resulting in what seems to be a

derivative loss. In order to overcome this issue, we introduce the good unknowns

qw
WD @�w �

1

4
c@�k; qz

WD @�z C
1

4
c@�k;

which satisfy the evolution equations

.@t C �3@� /q
w

C

�
@��3 C

8

3
a

�
qw

D �
8

3
@�aw C

�
4

3
ac C

1

6
c@��2

�
@�k; (7.7a)

.@t C �1@� /q
z

C

�
@��1 C

8

3
a

�
qz

D �
8

3
@�az �

�
4

3
ac C

1

6
c@��2

�
@�k: (7.7b)

The remarkable feature of the system (7.7) is that the second derivatives of k do not appear in
the equations, allowing us to close estimates. The unknowns qw and qz are useful because
they involve only the first derivative of the entropy, @�k, and this term makes a C 1

2 cusp
along the curve s2. On the other hand, the natural flows in the system (7.7) are � and  ,
respectively, which are transversal to the flow � along which the singularities of k are carried
through the flow. This geometric structure of (7.7) and of the good unknowns qw and qz

analytically result in a one-derivative regularization effect, which is not apparent if we were
to inspect (4.9)–(4.12) directly. Another outcome of this derivative gain is that qw C qz D

@�z C @�w D
2
3
@�u� is smoother than the naive expectation C 1

2 because the @�k terms
cancel. This translates into at least C 2 regularity for the angular velocity u� along the curve
s2; in contrast, the entropy S , the density � and the radial velocity ur are precisely C 1;1=2

across s2, which justifies the name weak contact singularity.
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In closing, we note that making the six-step heuristic outlined in this section rigorous
requires a good functional framework and a number of analytical tricks for the analysis of
Lagrangian flows. In broad terms, we proceed as follows. We build an iteration scheme in
which we start with a C 2 smooth shock curve s with js.t/ � �t j . t2, use it to construct a
Burgers solution wB adapted to this particular shock curve (as described in Step 2), and then
use a contraction mapping principle to build a solution .w; z; k; a/ of the azimuthal Euler
equations (4.9)–(4.12) which has jump discontinuities across s that satisfy the algebraic
system (4.16a)–(4.16b) resulting from the Rankine–Hugoniot jump conditions, and such that
the regularity of the solution is consistent with the fact that the solution emanates from aC 1=3

preshock. More precisely, there exists a sufficiently small " such that the solution lies in the
functional space

X" D
®
.w; z; k; a/ 2 C 1

�;t .D"/ W .w; z; k; a/jtD0 D .w0; 0; 0; a0/;ˇ̌̌̌ˇ̌
.w � wB; z; k; a/

ˇ̌̌̌ˇ̌
"

� 1
¯

(7.8)

where the norm jjj.v; z; k; a/jjj" is defined byˇ̌̌̌ˇ̌
.v; z; k; a/

ˇ̌̌̌ˇ̌
"

D sup
.�;t/2D"

max
®
m1t

�1
ˇ̌
v.�; t/

ˇ̌
;m2

�
b3t3 C

�
� � s.t/

�2� 1
6
ˇ̌
@�v.�; t/

ˇ̌
;

m3t
� 3

2

ˇ̌
z.�; t/

ˇ̌
;m3t

� 1
2

ˇ̌
@�z.�; t/

ˇ̌
;m4t

� 3
2

ˇ̌
k.�; t/

ˇ̌
;

m4t
� 1

2

ˇ̌
@�k.�; t/

ˇ̌
;m5

ˇ̌
a.�; t/

ˇ̌
;m5

ˇ̌
@�a.�; t/

ˇ̌¯
where mi are sufficiently large constants. In particular, we note that the space X" encodes
precisely how close w is to the Burgers solution wB.

So far, we have thus defined a map s 7! .w; z; k; a/, but we are missing one key
ingredient: the shock curve was just a given curve with js.t/ � �t j . t2, it did not satisfy
the evolution equation (4.16c) imposed by the Rankine–Hugoniot jump conditions. This,
however, gives us a natural way of updating the shock curve: we solve for Qs the ODE (4.16c)
with data Qs.0/ D 0 and fields .wC; w�; z�; k�/ given by the restrictions of .w; z; k; a/ on
the old curve s. Then, we prove that Qs is C 2 smooth and satisfies j Qs.t/ � �t j . t2. Lastly,
we prove that above described iteration s 7! Qs is in fact a contraction in C 2, resulting in a
unique fixed point which is the desired shock curve. Associated to this curve, we also prove
that there is a unique regular azimuthal shock solution .w; z; k; a/ 2 X", as soon as " > 0 is
sufficiently small. This completes the proof of Theorem 5.1.
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