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ABSTRACT

Mean field game theory was initiated a little more than 15 years ago with the aim of sim-
plifying the search for Nash equilibria in games with a large number of weakly interacting
players. Since then, a lot has been done. Numerous equilibrium existence results have
been obtained, using different characterizations and in various contexts. The analysis of
the master equation, which describes the evolution of the value of the game, has also seen
significant progress, which has, for example, allowed establishing in certain cases the con-
vergence of games with a finite number of players. However, mean field games remain of
a complex nature. For instance, the typical lack of uniqueness of solutions raises selection
issues that are still poorly understood. The objective of the note is to present some of the
latest advances, as well as some avenues to address further challenging questions.
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The theory of mean field games (MFG) aims at providing an asymptotic description
of differential games with a large number of interacting players. The number of applications
of the theory is huge, ranging from macroeconomics to crowd motions, and from finance
to power grid models. In all these models, each player controls his/her own dynamical state
which evolves in time according to a deterministic or stochastic differential (or difference
if the state space is at most countable) equation. The individual goal is to minimize some
cost depending on his/her own control but also on the behavior of the whole population of
agents, which is described through the empirical distribution of their states. In this setting, the
central concept is the notion of Nash equilibria, which explains how agents play in an optimal
way by taking into account the others’ strategies. The MFG theory is precisely intended to
simplify the search for these Nash equilibria. In this respect, the key idea is to postulate that,
asymptotically, the single theoretical (and not empirical) statistical distribution of the states
is sufficient to compute the individual goal of each player.

The MFG theory was introduced and largely developed by Lasry and Lions through
a series of papers around 2005 and during the famous lectures of Lions at the College de
France [85-88]. At about the same time, Caines, Malhamé, and Huang discussed similar
models under the terminology of “Nash certainty equivalence principle” [73,74]. The MFG
theory is also reminiscent of the so-called heterogenous agent models developed in eco-
nomics at the end of the 1990s by Aiyagari [7] and by Krusell and Smith [79] or, more recently,
by Lucas and Moll [91]. One of the main achievements of the MFG theory—though not dis-
cussed here—is a better formulation and understanding of these models (see, for instance,
Achdou et al. [1]). After a decade and a half of research, the theory has answered—at least
partially—several important questions and has developed a number of mathematical tech-
niques and tools for this purpose. A large part of the material can be found in the monographs
or in the surveys [6,15,25,35,36,71].

From a mathematical perspective, the MFG theory lies at the intersection of proba-
bility and partial differential equations (PDEs). The connection between games with finitely
many players and MFGs is addressed by means of statistical averaging arguments, which are
made possible by the symmetric structure of the interactions. This approach is, of course,
reminiscent of the very typical issues and techniques underpinning the standard mean field
theory and the related propagation of chaos properties for large weakly interacting parti-
cle systems (see [76,92] for the earliest papers in the field and [1e1] for a review). However,
unlike the standard mean field theory, in which the interacting particles obey a given dynam-
ics, the dynamics of the agents is not given a priori in the MFG theory but rather is obtained
after an optimization procedure. This seemingly innocuous difference dramatically increases
the level of complexity of the problem, as it introduces several nonlinearities in the equa-
tions describing the mean field models. These nonlinearities manifest themselves in several
ways, depending on the formulation used to characterize the equilibria and, implicitly, on
the approach chosen to manage the optimization step in the definition of these equilibria.
In this respect, let us say that both probabilistic and PDE arguments have been successfully
developed. In short, the probabilistic approach aims at following the dynamics of a reference
player in the population, while the PDE one aims at following the dynamics of the statistical
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state of the whole population. The key feature is that both approaches lead to the study of a
form of forward—backward system that couples either two stochastic differential equations or
two PDE:s: the probabilistic system is usually referred to as a forward—backward McKean—
Vlasov system and the PDE system is usually known as the “MFG system.” Regardless of the
system, the strong coupling between the forward and backward components therein raises
many issues. Obviously, one knows in general how to pass from one approach to the other
and, generally speaking, PDE tools are useful to obtain better regularity of the solutions. Very
importantly, these two systems can be regarded as the characteristics of a common infinite-
dimensional PDE of hyperbolic type set on the space of probability measures. It is called the
“master equation.” This master equation has become a challenging object in the field and has
attracted much attention in analysis, probability, and calculus of variation. At present, it is
only well-understood in certain cases where the solutions are known to be regular. A theory
allowing less regular solutions and thus covering a wider scope is totally lacking. Needless
to say, this is a very exciting area of research.

In addition to the analysis of mean field games themselves, the study of the conver-
gence problem, namely the convergence of games with a finite number of players to a mean
field game, is another challenge, which has also required the development of appropriate
arguments. As already mentioned, this asks for a nontrivial adaptation of the existing results
on the convergence of weakly interacting particle systems. Among others, a key idea is to
test classical solutions of the master equation onto the equilibria of the games with finitely
many players. The main contributions in this direction are presented in the notes, but many
questions remain open. To wit, solutions to mean field games are typically nonunique and
identifying those that are selected by taking the limit in large games is a fascinating, but
really difficult question.

Before presenting the rest of the contents of these notes in a more exhaustive way, we
insist on the fact that the MFG theory provides a concept that has proven to be effective in the
analysis of some typical examples of game theory. However, the same concept can be applied
to many other cases. We give an overview of some of them at the very end of the notes. For
example, mean field games with common noise is an extension of the original concept that
has stimulated many recent works. In short, this corresponds to the case where the state of
the population itself is random. Understanding the precise impact of noise on equilibria is
another challenge in the field. To emphasize the importance of this research direction, we
have therefore decided to write these notes by systematically including common noise in the
models we present. We hope that this will help the reader to grasp the essence of it.

Contents. After a short presentation of the PDE formulation of MFGs in Section 1, we
concentrate ourselves on the following three fundamental aspects of the theory:

1) The analysis of the convergence problem, which, as we have said, investigates
how Nash equilibria in differential games with finitely many players converge
to MFG equilibria. This point is essential to justify the MFG models and is
one of the main mathematical achievement of the MFG theory. We provide an
overview in Section 2, which includes a presentation of the master equation.
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2) The long time behavior of the MFG equilibria. Since time-dependent models are
difficult to handle and to approximate numerically, the analysis of “stationary
models” and their robustness is essential in both theory and application. For
instance, economists often concentrate on these stationary solutions. We present
the main results in Section 3.

3) The regularizing aspect of the common noise in MFG. Since the MFG equilib-
ria are in general not unique, it is crucial to understand the extent to which a
common noise can force uniqueness. This question is addressed in Section 4.

We complete the notes by providing in the final Section 5 a general overview of other topics
from MFG theory that are not discussed in the first four sections. We give some references
that may be useful for the reader and we provide some open problems.

Notation. We denote by $,(R¢) the set of Borel probability measures on R? with a
finite second order moment, endowed with the Wasserstein distance (see, for instance, [9]).
If x € R?, we denote by §, the Dirac mass at x. For X a random variable, we denote by
£(X) the law of X.

1. THE MFG EQUILIBRIA

In this section we introduce the main problems of the MFG theory. The simplest for
this is to start with a game with a large number of players and then to pass (at least formally)
to the limit as the number of players tends to infinity.

1.1. The N -player problem
The N -player game. Let N € N, with N > 1 being the (large) number of players. Player
(where i € {1,..., N}) controls her own state X, which is an element of R? and evolves in
time according to the stochastic differential equation (SDE)

dX! = a! + 2dB! + V2ed W,

for prescribed initial conditions (Xé),':l ~. Here the processes ((B;)tzo),'=1

..........

(W:)s=0 are independent d -dimensional Brownian motions. The noise (B!),, which affects
only the dynamics of player i, is called the idiosyncratic (or the individual) noise. The Brow-
nian motion (W;),, on the contrary, impacts all the dynamics and is called the common noise;
the nonnegative real € denotes (up to the square root) the intensity of the effective common
noise that is felt by all the players. The initial conditions (X (i,)izl are independent and iden-
tically distributed (i.i.d.) random variables with common distribution n1¢ € J’Z(Rd). We

assume that the random variables (X("))izl ~ and the Brownian motions ((Bf) t)i=1,..N

.....

and W are independent. Player i chooses a bounded control (), that takes values in R4
and that is adapted to the filtration (F, = o{X!,B] W, s <t, j=1,....,N}).
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The cost of player i is given by

P Trr ; i ; i
N (o () 2i) =E[/O (§|0‘5|2+F(Xl’mg’,))d’+G(X’Tvm§’r)}’

where X; = (X}, ..., XtN) and mz’: = ﬁ ijl ..... N.j#i 8le. To fix the ideas, we work
here with a finite-horizon problem (where 7" > 0 is the horizon) and we assume the maps
F:R?x P,(R%) — Rand G : R? x £5(R%) — R to be continuous and bounded. Here
we make the assumption that the running cost of player i depends only on her own control,
her own position, and on the distribution of the other players’ positions, while the terminal
cost depends only on her position and on the distribution of the other players’ positions at
terminal time. The important point is the symmetry of the problem: for a player, the other
players play exactly the same role. The specific form of the cost and dynamics is made here

for simplicity.

Nash equilibria. In that setting, a natural notion of equilibrium is the the notion of Nash
equilibrium. We say that a family (&', ..., &") of (time-dependent stochastic) controls is a
Nash equilibrium of the N -player game if, for any i € {1,..., N} and any control o,
g (@ @)jp) < gV (@ @);5).

We are intentionally fuzzy in the definition of what a control is. There are actually many
possibilities and we feel better to restrict ourselves to two of them. The controls can be
either (i) open-loop, which means that they are regarded as adapted functions of the initial
conditions (X 6) ; and of the noises ((B ;) ¢)i and W, or (ii) closed-loop controls, in which case
they are considered as adapted functions of the trajectories ((X?);); (when the closed-loop
structure is Markov, the dependence just occurs through the current states of the players).
The main difference between the two notions is as follows: when one player deviates, the
function underpinning the definition is kept fixed. As such, the controls played by the other
players remain the same in the open-loop case while they change in the closed-loop case.
In the rest of the note, we always mean Markov closed-loop control when speaking about a
closed-loop control.

The Nash system. A key fact with games involving closed-loop controls is that they have
a PDE interpretation, in the form of a system of equations for the equilibrium value of the
game. In our setting, one can show that if vV : [0, 7] x (R?)Y — R is the classical solution
to the following backward parabolic system (called here the Nash system)

N N
) ) . 1 )
N, N, N, N,i|2
—0,v; ’—ZAxJ.v, "—e Z Tr(D3 v ") + §|Dxiv, ‘|
j=1 Jk=1
+ Y Dyv Dyv = Flx.md) in(0.7) x RN, i e{l.....N},
J#i
ot (x) = G(x;, miT) in RHN, ie{l,....N},

(1.1)
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.....

closed-loop form. Here, the notation x stands for an N-tuple (x1,...,xy), in which case x;
is the entry number 7 in x. The existence and uniqueness of the solution to the above system,
called the Nash system, is classical under suitable assumptions on F' and G and discussed,
for instance, in [84]. Under similar assumptions on F and G, this equilibrium can be shown
to be unique (within the class of bounded Markov closed-loop controls); see, for instance,
[36, CHAPTER 6].

The main question raised by MFG theory is the characterization of the limit, as N
tends to infinity, of the Nash equilibria of the game (or of the Nash system) and the analysis
of the resulting limit.

1.2. The MFG equilibria

In this part we derive from the N -player problem several (equivalent) formulations
of an MFG equilibrium. The derivation is formal at this stage, but will be justified more
rigorously in Section 2.

MFG equilibria without common noise (¢ = 0). The are several ways to guess and write
the limit of the Nash equilibrium or of the Nash system as N tends to infinity. We start with
the problem without common noise, which is easier to grasp. As players are symmetric, one
can expect, using classical ideas of mean field theory [1e1], that the in-equilibrium trajec-
tories ((Yﬁv’l)t) i associated with the Nash equilibrium identified right above become more
and more decorrelated as N increases and eventually become asymptotically independent.

In this case the empirical measure mﬁ,’v should become asymptotically deterministic and,
t

as N gets larger and larger, the impact of the deviation of a player over m%}v should be neg-

t .
ligible. Therefore players can solve their own optimization problem as if m; v were given

and independent of i. Implementing this idea, one finds the notion of MFG etquilibrium in
its probabilistic formulation:

Probabilistic formulation of the MFG equilibrium (¢ = 0). One searches for a pair
(m, @), where m = (m;); € C°([0, T], P»(R?)), and @ = (e;); is a control such that

(i) « is optimal for the control problem
T
inf E / (Elﬂtl2 + F(Xﬁ,m,))dz +G(XE.mr)|, (2
0

where the infimum is taken over the controls 8 = (), (that are (X, (B}),)-
progressively measurable) and where X # is the solution to
dx? = g.dt + V2dB}!, xP = xl. (1.3)
(ii) Forany ¢ € [0, T], the law of X is m;.

Other probabilistic formulations of MFG equilibria are possible: Carmona and
Delarue discuss in [34] a formulation involving the stochastic maximum principle. Mainly,
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the optimizers in item (i) are described by means of a forward-backward stochastic differen-
tial equation depending on the input (m,),. Under the fixed point condition (ii), this input is
identified with the marginal law of the solution of the forward equation, which gives rise to a
so-called forward—backward system of McKean—Vlasov type. While Pontryagin’s principle
provides the dynamics of an equilibrium feedback along a corresponding equilibrium tra-
jectory, an alternative approach is to provide a representation of the equilibrium value. This
approach is usually known as the weak formulation as it may rely on a convenient change of
noise in the dynamics. In short, it provides another form of the forward—backward system of
McKean—Vlasov type, see Carmona and Lacker [39] and [35, cHAPTER 3]. The latter is useful
for proving existence results. In comparison, the stochastic Pontryagin principle provides, in
general, only sufficient conditions satisfied by an arbitrary equilibrium.

PDE formulation of the MFG equilibria: the MFG system (¢ = (). Another character-
ization of the MFG equilibria goes through a forward—backward system of PDEs known as
the MFG system: the unknown are (1, m) where u corresponds to the value function asso-
ciated with the optimal control problem described in the probabilistic formulation while m
solves the Kolmogorov equation satisfied by the marginal law of the equilibrium. It reads
therefore

—0sus(x) — Aug(x) + %|Du,(x)|2 = F(x,m;) in(0,T)x R4,
demy(x) — Amy(x) — div(my(x)Dus(x)) =0  in(0,7) x R, (1.4)
mo(x) =g, ur(x) = G(x,mr) in R9.

This system is unusual: the first equation (a Hamilton—Jacobi equation) is backward in time,
while the Kolmogorov equation is forward in time. The main issue is that both equations are
strongly coupled, in the sense that each of the two unknowns shows up in the other equation.
Since the two equations are set in opposite time directions, this creates a conflict which
makes the spice of the analysis. The existence of a solution has been proved by Lasry and
Lions [85-87] under suitable assumptions on the coupling functions F and G (regularity and
growth conditions). In general, there is no uniqueness: this is a typical feature of equilibria in
game theory (in contrast, uniqueness holds in the finite game because of the smoothing effect
of the Laplacians in the related Nash system (1.1); we will come back to this observation in
Section 4). However, the solution of (1.4) is unique if the following monotonicity condition,
introduced in [85-87], is satisfied:

/ (F(x,m)— F(x,m"))(m —m')(dx) > 0,

R (1.5)
/ (G(x,m) — G(x,m))(m —m")(dx) > 0.

R4

There is by now a huge literature on the MFG system, including different types of coupling
functions, different types of boundary conditions, etc. We briefly present some aspects of
this literature in Section 5.1.
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The MFG equilibria with common noise (¢ > 0). In the presence of common noise, the
heuristic analysis of the limit problem is more subtle. Indeed, even if the players do not take
into account the idiosyncratic noises of the other players, their dynamics are perturbed by
the common noise (W;);. Therefore, the limit (m,), (if it exists) of the marginal empirical

measure (m%,f, )¢ associated with the equilibrium trajectories ((Yt / )¢)j i becomes random
t
and is typically expected to be adapted to the Brownian motion (W;); (very much as before,

this limit is expected to be independent of 7).

Probabilistic formulation of the MFG equilibrium with common noise (¢ > 0). One
searches for a pair (m, ), where the stochastic process (m;), is adapted to (W;); and takes
values in C°([0, T], P>(R?)) and o = (a;); is a control such that

(i) o is optimal for the control problem
T
infE / (5|ﬁt|2+F(Xﬂ,mt))dz+G(Xﬂ,mr>, (1.6)
0

where the infimum is taken over the controls B = (B;); (that are (X,
(B}, Wy),)-progressively measurable) and where X B is the solution to

dx? = B.dt + V2dB} + V2ew,, xP = xl. (1.7)
(if) Forany ¢ € [0, T'], the (conditional) law of X given (W) is m;.

In general, it is difficult to prove the existence of MFG equilibria because the fixed-
point condition (ii) is defined, in the presence of common noise, on a very wide space. To
overcome this issue, a possible path is to discretize the common noise into a noise with
finitely many outcomes (see [38]). In that case, it is much easier to adapt the arguments used
when € = 0. However, much may be lost when passing to the limit over the discretization
of the common noise. Very similar to weak solutions to stochastic differential equations,
equilibria that are obtained in this way may no longer be adapted with respect to the original
common noise (W;),. This requires a relevant notion of weak MFG equilibria, in which the
flow of measures (m;), is adapted to a larger filtration than that generated by (W;);. When
the monotonicity property (1.5) is in force, it can be proved that these weak solutions are in
fact strong, i.e., they are adapted with respect to (W;);.

PDE formulation of the MFG equilibria with common noise: the stochastic MFG
system (e > 0). In the probabilistic formulation of the MFG equilibria with a common
noise, the optimal control problem (1.6)—(1.7) (which is solved by a reference player in the
population) is driven by random coefficients (because (m;); is random). The associated
value function is no longer deterministic. Following Peng [96], it should be regarded as the
solution of a backward stochastic Hamilton—Jacobi equation. Moreover, the Kolmogorov
equation satisfied by the random flow (m;), is stochastic. The resulting MFG system there-
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fore reads:

1
du; = |:—(1 + €)Au; + §|Dut|2 — F(x,my) —2¢ div(vt)i|dt

T+ v, - 2ed W, in (0, T) x R?, (18)

dm; = [(1 + €)Am; + div(m, Du,)|dt — div(m,~/2ed W) in (0, T) x R¥,

mo(x) = rig,  ur(x) = G(x,mr) in R4,

Note that now the unknown is the triplet (u, v, m). As explained in Peng [96], the role of the
random field v is to ensure the solution u to the backward Hamilton—Jacobi equation to be
adapted to the common noise (W;);. The existence of a solution for (1.8) is subtle and has
been achieved, under suitable conditions on F and G including monotonicity, in [25] (see
also [36]).

2. THE MASTER EQUATION AND THE CONVERGENCE OF THE NASH

SYSTEM

In this part we address the rigorous derivation of the MFG equilibria and the con-
vergence of the Nash system. This analysis requires the introduction of a new equation,
the master equation, which is a nonlinear equation stated on the infinite-dimensional space
P>(R?). In order to restrict the technicality of the exposition, we will often be fuzzy in the
assumption and in the statement of the results and refer to [25,36], that we follow closely, for
details.

2.1. Derivatives of maps defined on the space of probability measures

There are several notions of derivatives for a map U : P, (R?) — R: we refer, for
instance, to [8,9,25,35] and the references therein for several possible notions together with
an overview of the connections between all of them. Here we mostly discuss an idea of Lions
which consists in lifting the map U to a suitable space of random variables.

Let us consider the space L? := L2((Q,F,P), R?) of square-integrable random
variables on Rd, with € being a Polish space, I its Borel o-algebra, and P an atomless
probability measure. The space L2 is endowed with the usual Hilbert scalar product. It is
known that, for any m € £, (R%), there exists a random variable X with law m.

Given amap U : $£»(R?) — R, we lift U to L? by setting

U(X)=U(£(X)) VX el

Definition 2.1 (The L-derivative). We say that U is L-differentiable at m € £, (R¢) if there
exists a random variable X € L2 with law m such that U is Fréchet differentiable at X (we
denote by VU (X) its gradient).

Theorem 2.1 (Structure of the L-derivative). Assume that U is L-differentiable at
m € P>(R?). Then there exists a map D, U(m,-) : R? — R¥ which is Borel measurable
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and such that
VU(X) = D,yU(m, X)

for any random variable X with £(X) = m. We call the map D,,U(m, -) the L-derivative
of U at m.

The first version of this result goes back to Lions [88]. The version given here is due
to Gangbo and Tudorascu [65], who also explain the connection with the notion of subdiffer-
ential introduced in [9].

Finite dimensional projection. A key principle to establish the link between the Nash
system and the master equation is to associate with any function defined on %, (R?) a finite
dimensional projection, whose definition is as follows.

Given a continuous map U : £, (R¢) — R and a nonzero integer N, we define the
projection U¥ of U as the map UV : (R4)Y — R defined by

N
1
UN(x1,....,x§) = U(miv), wheremiv = NZS"“ x =(x1,...,Xxy§) € (Rd)N.
i=1
The following statement clarifies the meaning of the derivative D,,:

Proposition 2.2. Assume that U is L-differentiable with a Lipschitz-continuous derivative.
Then U™ is of class C' and

1
Dxl.UN(xl, Lo XN) = NDmU(miV,xi),
for (x1....,xn) € RN,

One can, of course, introduce higher-order derivatives of a map U : $»(R?) — R
in a similar way and extend Proposition 2.2 to higher-order derivatives, see [35, CHAPTER 5].

It6’s formula along a flow of conditional measures. The following It6’s formula, needed
in the proofs below and of independent interest, is a generalization of Itd rule for flows of
measures and functions defined on the space of measures. Let (X;);>o be an Itd process of
the form

dX, = b,dt + 0,dB; +0)dW,, >0, 2.1
with a given (possibly random) initial condition Xy, where (B;); and (W;); are two
d-dimensional Brownian motions, X, (B;);, and (W;); being independent. Above, (b;);,
(0¢)¢, and (6?), are progressively-measurable processes with respect to the filtration gener-
ated by Xy, (B¢):, and (W;),, with values in (respectively) R4, R9*d  and R9*4,
For simplicity, we assume that that the probability space is given in a product form
(o x Q21,Fy ® F1,Py ® Py), where (29, Fo, Pg) supports W, while (21, F;, P;) supports
(Xo, B). We denote by E° the expectation with respect to P? and by E! the expectation with
respect to P1. We assume that

T
IE|:|X0|2 +/ (16> + |oe]* + |0,°|4)dt} < 400,
0

where E = EOE1.
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The following result is taken from [36] (see also [2e,45]).

Theorem 2.3. Let (X;); be as in (2.1) and, for any t > 0, let m; be the conditional law of
X, given (Wy)s. Then, for U : P>(R%) — R a sufficiently smooth mapping on P>(R%),

UGn,) = UGmo) + /0 B[ Dy Umy, Xo) - byds] + /O "B [(0%)" Dulmy, X,)] - AW,

t
+ %/ E'Tr(Dy D U(mg, X5) (0505 + 0d(0)*)]ds
0

t
+ %/0 E'E'Tr(DZU(my, Xy, X,)0d(62)*)]ds,

where X and 6s0 are independent copies of Xs and OSO defined on €2y x Q1 for a copy Q
of Q1 equipped with the expectation EL

Briefly, Dy Dy, U is the y-derivative of the function y — D,,U(m, y) for a fixed m.
Similarly, D2 is the m-derivative of the function m + D,,U(m, y) for a fixed y, which
implies that D2 U can be written in the form (m, y, y') = D2,U(m, y, y’). Under the reg-
ularity assumptions mentioned in the statement, all these derivatives exist implicitly and
are jointly continuous. They also satisfy appropriate growth conditions that permit giving a
meaning to the various expectations appearing in the expansion. The symbol Tr is for the
trace.

Potential games. We feel it useful to provide another application of the derivative D,,.
There is indeed one special class of mean field games, for which the corresponding MFG
system coincides with the first-order condition (or equivalently, with the Pontryagin system)
of a control problem. Such games are called potential games, and the control problem lying
above a potential game is usually called a mean field control problem. The connection
between both can be thus formulated in this way: The minimizers to the mean field control
problem are equilibria of the corresponding potential game. This was noted in the earlier
articles by Lasry and Lions [85-87], see also [88].

The potential structure turns out to be very useful in practice for the simple reason
that it might be easier to work with minimizers than with Nash equilibria. We provide a
longer discussion in Section 4 about possible applications to the selection of equilibria when
there is no uniqueness.

In the simple framework of (1.2)—(1.4), the potential game typically requires that
the cost coefficients F and G derive from a potential, namely

oxF(x,m) = D, ¥ (m,x), 0,G(x,m)= D,&(m,x), 2.2)

for two smooth functionals # and & on £, (R¢). With the trajectory (X ,ﬂ ): asin (1.3), we
can associate the cost

T
H(Bonsrzr) = [ (F(200) + JENAP ) dr +5(20xn),

The following statement may be found under more precise assumptions in
[35, CHAPTER 6]:
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Proposition 2.4. Under suitable regularity properties on ¥ and §, and for given ini-
tial distribution g € P> (R?) for Xo in (1.3), the optimal trajectories of § with respect
to (Xo, (By)¢)-progressively measurable controls (B;); are solutions of the mean field
game (1.2)—(1.3).

When (8;); is identified with a feedback function f : [0, T] x R? — R%, equa-
tion (1.3) becomes a stochastic differential equation whose marginal law solves the Kol-
mogorov equation

a;my — Amy + div(B,m;) =0,

with mg = my. It is then possible to write J as

T | 5
I((Boosi<r) = /0 (f(m,) s /R (i) m,<dx))dt + (m),

which is more in line with the formulation (1.4) of the mean field game. Although the result-
ing class of controls is obviously smaller when restricted to feedback controls, the infimum
of ¢ is the same, see Lacker [82].

2.2. The master equation

The master equation was first derived by Lions in [88] as the formal limit of the Nash
system (1.1). It is a PDE with unknown U : [0, T] x R x £,(R?) — R (with U writing
(t,x,m) — U(t, x,m)) and reads

(i) —3:U; — (14 e) AU
43U + [ DyUittx.m.y) - DuUie,ymm(dy)
—(1+4+e¢) [I;d divy, (D, U, (t, x,m, y))m(dy)
~2e /ﬂ; dive (DUt xm, y))m(dy) 2.3)
—e /R g T DR Usle o m. .y m(dy)m(dy) = F(x,m)

in (0, 7) x R? x 2,(RY),

(i) Ur(x,m)= G(x,m) inR?x ?Z(Rd).

This is a kind of hyperbolic equation stated on the infinite-dimensional space % (R?).
Indeed, when F and G are monotone (recall (1.5)), the solution can be (at least formally)
built by the method of characteristics. To ease the presentation, let us explain this when there
is no common noise (¢ = 0). Let (t9, m¢) € [0, T) x P>(R?) and (u;, m;); be the unique
solution of the MFG system (1.4) stated on (zy, T') X R4 with initial condition my, = mo. Let
us set Uy, (x, mg) = uz(x). Assuming that U is sufficiently smooth, one can easily check
that U solves (2.3) by expanding it along the path (m;); (see [25]). The main issue is to
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prove that U is indeed smooth. When there is a common noise (¢ > 0), similar ideas can be
implemented, using the stochastic MFG system (1.8) instead of the deterministic one.
Let us loosely summarize the main result concerning (2.3) (see [25,36]).

Theorem 2.5. Assume that F and G are smooth enough and are monotone in the sense
of (1.5). Then there exists a unique classical solution to (2.3).

By “a classical solution,” we mean a map U for which all the derivatives in (2.3)
exist, are bounded and globally Lipschitz continuous. This strong notion of solution is needed
below for the convergence results.

Itis known that, if one removes the monotonicity condition, then the solution of (2.3)
exists on a short time interval but may develop a discontinuity after a while. Most formal
properties of the master equation have been introduced and discussed by Lions in [88], who
also introduced the so-called Hilbertian approach (lifting the equation to the space of random
variables). The actual proof of the existence of a solution of the master equation is a tedious
verification that the map U, as defined above from the MFG system, actually gives rise to a
classical solution. This required several steps in the literature before the proof was completed:
The first paper in this direction is [2e], where the classical solutions to the linear Kolmogorov
equation associated with a standard Fokker—Planck equation are studied; Gangbo and Swiech
[64] address the master equation in short time and without any diffusion term; Chassagneux
et al. [45] obtain the existence and uniqueness for the master equation without common noise;
Cardaliaguet et al. [25] establish the existence and uniqueness of solutions for the master
equation with common noise under the monotonicity condition (see also [36]). Since then,
there have been many works on the subject. We provide some references in Section 5.1.

2.3. Convergence of the Nash system
One key feature of the master equation is that it allows building approximate solu-
tions of the Nash system (1.1) whose regularity is independent of the number of players.

Proposition 2.6. Assume that U is a classical solution of (2.3) and let (uN’i),-e(l,_”,N} be
its finite-dimensional projections:

. . , 1
uﬁv”(xl,...,xN) = U,(x,-,miv”), where miv” = 1 Z Ox; -

Then u™ almost solves the Nash system (1.1):

2

N N
) . . 1 )
N, N, N, N,
—dup "t — Zijut e Z Tr(D3 ) + §|Dxiu, '
j=1 Jk=1
+ ) D Dup’ = Flaom) + i (x)
J#i
in(0,T)x RHN, i e{l,....,N},

ulll () = G, m¥y in RHN, ie{l,...,N},
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where
- 1 1 Y
N,i .
r (x)| < v (1+—N i=21|x, x]|).

The proof relies on Proposition 2.2 and on its extension to higher-order derivatives.
Note, however, that the result does not show directly that u® is close to the solution v
of (1.1) because each u™> solves (1.1) only up to an error term of size 1/N while the system
counts exactly N equations.

The main convergence result of [25] and [36] is the following:

Theorem 2.7. Let vV be the solution of the Nash system and assume that U is a classical
solution of (2.3) with bounded derivatives. Then there exists a constant C > 0 such that, for
alli €{1,...,N}andall (t,x) € [0, T] x (RN,

c LN 1/2
|Us (i my — o ()| < N(l + |xil* + NIX; |Xj|2) .

Theorem 2.7 provides an obvious comparison between the equilibrium values of
the finite game and of the mean field game. Even though it is not obvious at first sight, the
statement is in fact reminiscent of earlier results on the convergence of classical mean field
particle systems to Fokker—Planck equations. An alternative strategy to the standard coupling
argument for proving propagation of chaos (see [101]) consists indeed in studying the action
of the semigroup generated by the McKean—Vlasov equation onto the marginal empirical
measure of the particle system (see Kolokoltsov [78] and the works of Mouhot, Mischler,
and Wennberg [94]). In comparison, the game setting involves an additional optimization
step, which makes the analysis really difficult. In order to account for this optimization step,
we work instead with forward—backward McKean—Vlasov equations, following the approach
developed in [34,36]. We describe the main lines below.

Sketch of the proof of Theorem 2.]. The first step is to provide a probabilistic representa-
tion of the solution v" of the Nash system. This goes through the representation of the
equilibrium paths. To this end, we recall that (&’ (¢, x) := —DxivN’i(t, x))i=1,.. n is the
Nash equilibrium of the N-player game in closed-loop form. For a given starting point
x =(x1,...,XN) € (Rd)N, the equilibrium trajectories XNV = (X*N’i)ie{l,...,N} asso-
ciated to the Nash equilibrium are the solutions to the system

dXN = —p wN (XNt + V2dBE + 2ed W,

. 2.4
XJN’Z = Xj.

Adopting a Lagrangian point of view, we may then follow the evolution of the cost and of
the control along the system, which prompts us to let

N = o).z = D (X,
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Classical Itd’s formula, combined with the form of the Nash system, leads to the following
expansion:

. 1 . .
dy;Ni = _(5|z;‘"”‘=’|2 + F(X;M m X*N))dt + IZZ NET(aB] + edwWy).

Jj=
2.5

In order to test, as suggested before, the action of the solution U to the master equation
(which is somehow the analogue of the semigroup generated by a McKean—Vlasov equation
but in the nonlinear setting induced by the game structure) on the Nash equilibrium of the
N -player game, we need to perform a similar computation, but for the processes

YN = ulNie, x V), ZiV = Doul (XN, 1 eo,T],
with (u™V'); being as in Proposition 2.6. In fact, Proposition 2.6 now permits expanding
YNy, We get

«N,i Ly an,ii *N,i *N,i
dy;™ :—(§|Z,N”|2+F(X,N )+ (XN))dt

X*N
N P P .. N P .
+ Y MM — Ny + V2 ZiN (B + ed Wh).

Jj=1 J=1

Importantly, the two processes (Y,*N’i), and (y*N i)t satisfy the same boundary conditions
at time T, namely YN = YN = ¢(x2NF, My N ), which prompts us to address the

*Nz

difference process (Yt*N’l Jo<t<T- We get

d(yt*N’i _ YI*N’i) _ _ (E‘ZrN,i,i |2 _ 5’ZI*N,i,i ‘2 + rtN,i (XjN’i))dt

N
+ Z Z:(Nals.] . (Z’:N,J,] _ Z:‘Nslsl)dt
Jj=1

N
+ V23 @V = 2N (@B + Jed ). (2.6)
=1

The last term yields a stochastic integral. If there were no d¢-term in the right-hand side, then
the simple fact that the terminal condition is equal to 0 would say that the stochastic integral

is also null. In turn, this would say that Z:"""/ — Z*N-J

= 0 for any ¢. In other words,
the noise provides a strong form of stability in the above equation. This is consistent with
the fact that, in the Nash system, the Laplace operator dissipates the energy when time runs
backwards. The sum on the second line is also challenging, at least at first sight. However,
Proposition 2.2 says that, except when j = i, all the terms are of order 1/ N, which guaran-
tees that the whole sum is of order 1. On the first line of the right-hand side, the remainder

rtN " is also known to be of order 1 /N on compact sets. In the end, we are thus left with a
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backward stochastic differential inequation of the form

d(y;kN,i _ Yt*N,i) - _ [%‘ZjN’i’iP _ %|Z:<N,i,i’2
1 1 «i,N *j,N
+ 0 N—FWZ‘X} - X; | dt
i,j=1

N
1 * S"' * 9'5' ,',‘ ,-5‘
+O<N]E=1|Z’N]J _ZtNJ]|+}Z>;NH —Z:Nll|)dl

N
+ V2 (Z N - ZpN )y (dB] + edW).
j=1

Above, the symbol O(-) is used for the Landau notation, the underlying constant being (in
our setting) deterministic and independent of N and ¢. Obviously, the goal is to provide a
stability analysis of this equation. Needless to say, the main difficulty in this regard is the
difference of the two quadratic terms on the first line of the right-hand side. Invoking Propo-
sition 2.2 once again and using the fact that the solution to the master equation is assumed to
have bounded derivatives, it is pretty easy to get L°°-bounds on the process (ZfN’i’i’) +, inde-
pendently of i and N. However, there are no similar inequalities for the process (Z; N’i’i’),.
This is in fact the main challenge in this proof: Known estimates on the regularity of vV,
and in particular on its gradient, depend on N . Accordingly, most of the analysis relies on the
sole properties of the solution U to the master equation. In words, there is no easy way here to
linearize the difference of the two quadratic terms in the backward equation. The idea is then
to adapt some of the tricks that have been developed in the literature on backward stochas-
tic differential equations with a quadratic dependence on the martingale representation term
(here denoted by (ZfN’i’j A Noi.j )¢)- In the analysis of the well-posedness of a backward
stochastic differential equation, quadratic growth (with respect to the same martingale rep-
resentation term) is indeed known to be a threshold. This is consistent with the results on
nonlinear parabolic PDEs: quadratic growth in the gradient of the solution is also known to
be a threshold. Noticeably, the unknown in the backward equation should be in fact regarded
as being multidimensional since it comprises all the coordinates (y,* Ni Y,*N ’i),-zlj,,,, N-
In general, this is known to render the analysis in the quadratic case even more challeng-
ing. Anyway, the symmetric structure of the equation here is very helpful and somehow
permits thinking as if the equation were set in dimension 1. In the end, a suitable form of
exponential transform (very much inspired from the Cole—Hopf transform in the analysis of
Hamilton—Jacobi—Bellman equations, see [36, CHAPTER 6] for the details) allows transforming
the quadratic equation into a linear one, and then concluding by using standard stability argu-
ments from the theory of backward stochastic differential equations. Essentially, the size of
the difference terms ((Zy,* Ni_ Yt*N ’i)t)i:h_,,, n is dictated by the remainder in the equation
and is thus of order 1/N. It then remains to observe that that, at time ¢ = 0,

N,i N,i N,i N,i N N,
Yot =Yy =up (x) —vp ' (x) = Up(xi,my ') — vy (x).
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Our sketch of proof hence shows that the left-hand side is of order 1/N. In fact, a careful
inspection would permit tracking the dependence on the initial conditions and recovering the
same rate as in the statement. |

2.4. Propagation of chaos for the N -player game

In fact, the proof of Theorem 2.7 kills two birds with one stone. Indeed, it also per-
mits addressing the large- N behavior of the equilibrium trajectories of the N-player game.
Recall indeed from (2.4) that these equilibrium trajectories solve the system of stochastic
differential equations

dX;N = =Dy o (XNt + V2dB] + V2ed Wi, @7)

for a given choice of initial conditions. In order to state propagation of chaos in a proper
manner, we assume, as in our preliminary description of a mean field game in Section 2,
that these initial conditions are given as independent samples X!,..., X év from a common
distribution 7779 € P> (R?).

Noticeably, the drift in (2.7) may be rewritten in terms of the notations introduced in
the proof of Theorem 2.7. Indeed, this drift is nothing but (—Z ;kN’i’i)()gST, which is a key
quantity in the proof of Theorem 2.7. It is then worth emphasizing that stability arguments
for backward stochastic differential equations like those we used in this proof provide more
than what is eventually contained in the result. They also provide a similar bound on the
quadratic variation (or, equivalently, on the energy) of the martingale representation term
in (2.6). Using the fact that 11 is square-integrable, we end up with the fact that

T Nii Niil2 C
IE/ | Z; M =z e < —
0

=Nz
for a constant C that is independent of N . Implicitly, the constant C depends on 719 through

its second-order moment. Moreover, it is worth recalling that, on the left-hand side, Zt*N’i’i =

-D U (X] Ni , mﬁj ~ ). In turn, this says that, up to an error of order 1/N, we can replace

the drift in (2.7) by =D, U, (X, N mg ; ~)- Equivalently, by using the regularity properties

of D, U, we have

- . c
sup IE[ sup |X;kN" — XN 2] =Nz (2.8)

where
d XN = =D U (6N ml ) de + V2dBE + N2ed W,
| | : (2.9)
Xh=Xp.

Very differently from (2.7), whose structure is made intricate by the presence of v, (2.9) is
a standard weakly interacting particle system. As such, it is known to converge to the solution
of the conditional McKean—Vlasov equation

d X! = —D Uy (X!, £(XHW))dt + ~2d B! + V2ed W,
Xi = Xp.
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The analysis of the above equation is standard. Under our standing assumptions on U, it fol-
lows from a classical contraction argument. In particular, uniqueness for the above equation
implies that the conditional law £ ()| W) that appears in the dynamics is in fact indepen-
dent of i. Sznitman’s coupling argument [161] then allows estimating the distance between the
solution of (2.9) and the solution of the above conditional McKean—Vlasov equation. We get

Theorem 2.8. For any n > 0, there exists a constant Cy > 0 such that, for all N > 1 and
foralli e {1,...,N},
]E[ sup iX*N,i _ X;|] < CnN—l/max{d,2+77}_
t€l0,T]
When d > 3, we can choose n = 0.

Noticeably, the rate in Theorem 2.8 is much weaker than the rate in (2.8). In fact, the
bound in Theorem 2.8 is the same as the bound for the mean 1-Wasserstein distance between
a probability distribution in P> (R?) and the empirical law of an independent sample of it.
We refer to Fournier and Guillin’s idea [62] for a complete review of the subject.

Some bibliographical comments on the propagation of chaos in Nash equilibria are
now in order. The first results concerning this question are due to Fischer [61] and Lacker
[81] for open-loop controls (in which players observe only the initial states and the Brownian
motions) in problems without common noise: Lacker [81], in particular, identified completely
the possible limits, which are always MFG equilibria (in a weak form, with a notion of weak
solution similar to [38]). The question of convergence of closed-loop equilibria is more subtle.
As shown in a counterexample in [36, 1.7.2.5] (inspired from [56]), this convergence does not
hold in full generality. At present, the minimal conditions to obtain it are still not clear.
Theorem 2.8, proved first in the periodic setting in [25] and then extended to the Euclidean
framework in [35], shows that the convergence holds if there exists a classical solution (with
bounded derivatives) to the master equation (which implies that equilibria are unique) and
if the idiosyncratic noise is nondegenerate (which implies that it is not null). In the same
framework (and with R4 as state space), Delarue et al. [51] and [5e] established a central
limit theorem and a large deviation principle, using the same idea as in the proof of Theo-
rem 2.8: the main point is to show that the fluctuations and the deviations in the convergence
of the N -player game equilibria are mainly due to the fluctuations and the deviations in the
convergence of the standard particle system (2.9). In a beautiful work, Lacker [83] extended
the result by establishing convergence without assuming the existence of the master equa-
tion or any monotonicity property (but keeping the assumption that the idiosyncratic noise
is nondegenerate): the limit points are weak MFG equilibria. The main difference with The-
orem 2.8 is that [83] is based on a compactness argument (obtained by using the theory of
relaxed controls, in which controls are regarded as being measure-valued) and provides no
convergence rate. The result relies on the fact that, in some average sense, the deviation of
a player barely affects the distribution of the players when N is large. Heuristically, this is
due to the presence of the noise, which prevents the players to guess if another has deviated
or not. However, in Lacker’s approach, there might be a lot of (weak) MFG equilibria, apart
from the monotone case where they are unique. This raises subtle questions of selection since
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only some of these equilibria may be selected when passing to limit: this is what happens in
the examples discussed in Bayraktar and Zhang [14], Cecchin, Dai Pra, Fischer, and Pelino,
[44], and Delarue and Foguen [52]. We provide more details in Section 4. Let us underline
another limitation: The result presented above, as well as Lacker’s approach, rely in a crucial
way on the presence of a nondegenerate idiosyncratic noise and, to date, nothing is known
outside this framework.

Finally, it is important to note that, historically, another approach was first imple-
mented to relate the N -player and mean field games. In short, any solution to the mean field
game gives rise to an approximate Nash equilibrium to the N -player game, with an accuracy
that gets better and better as N increases. This idea dates back to the earliest papers in the
field [73,75]. We refer to [36, CHAPTER 6] for a complete review.

3. THE LONG-TIME BEHAVIOR

In this section we discuss the behavior of MFG equilibria (without common noise)
as the time horizon T tends to infinity. This is an interesting question both in terms of theory
and applications: for instance, in economics, it is related to the existence of stationary equi-
libria or business cycles. On the other hand, the answer is not obvious because the MFG
system has two boundary conditions, one at the initial time and one at the terminal time.
One can therefore expect that convergence holds only far from the initial and terminal times.
In order to perform this analysis, it is necessary to require that the solution of the stochastic
control problem remains confined in an appropriate sense: the simplest setting in which this
is possible is the spatially periodic one. We make this assumption here: we set T¢ :=R¢ /74
and denote by # (T ?) the set of Borel probability measures on T¢ endowed with the corre-
sponding 2-Wasserstein distance. We consider the solution (u”,m”) = (u?, m?)0§t§T of
the MFG system (1.4), now stated on (0, T') X T4, in which F,G : T4 x J’(Td) — T are
“smooth.”

3.1. The ergodic MFG system
As explained by Lions in [88], the limit of the MFG system (1.4), as the time horizon
T tends to infinity, is expected to be given by the ergodic MFG system

- 1
A — Ail + §|Dﬁ|2 = F(x,m) in T¥,
—Am — div(m Dit) = 0 in T4, (3.1

Jpam =1, [psu=0.

Here the unknowns are ()_t, u,m), where A € R is the so-called ergodic constant. The inter-
pretation of the system is the following: each player wants to minimize her ergodic cost

1 (71
J(x,) := inflimsup ]E[—/ {§|05t|2+F(Xt,l’;l)}d[i|
0

% T—+too T
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where (X;);>o is the solution to

dX[ = Oltdt + \/EdB[,

X():)C.

The measure m in (3.1) is then understood as the invariant ergodic measure associated to the
optimal trajectory (the existence of which is much easier to prove in the periodic setting). The
solution to (3.1) is known to exist under fairly general assumptions on F' and to be unique
when the coupling function F' is monotone (i.e., satisfies (1.5)); see [85,87].

3.2. The convergence in the monotone setting

In this part we assume that F' is smooth and monotone. Under this monotonicity
assumption, one can show that the “long-time stability” takes the form of a turnpike pattern;
namely, the solution (u”,mT) of (1.4) becomes nearly stationary for most of the time. The
strongest way to formulate this type of behavior is the following exponential estimate:

Theorem 3.1. There exist K, w > 0 such that for (uT,mT) and (i1, m) solving respec-
tively (1.4) and (3.1),

|m™ (&) —m|  + |DuT () - Dit| , < K™ +eT™D), Vie(0,T). (32)

The reader may notice that the initial condition /71 for m” and the terminal condition
G for uT are lost at the limit (as ()_t, u, m) does not depend on 7i1g or G). This result was
first stated in Cardaliaguet, Lasry, Lions, and Porretta [29] when the coupling F is monotone
and local and in [3e] when this coupling is monotone and regularizing. The proof is based
in a crucial way on uniform (in # and T') semiconcavity estimates for u” and on the energy
identity established by Lasry and Lions [87]:

T 1 T _ T — 2
/ /T E(M’ —l—m)(x)‘Duz (x)—Du(x)‘ dtdx
0 d
T
= —/ f (F(x,ml) — F(x,m))(m! —m)(x)dtdx
o JT4
_/Td((;(x,mi)—u(x))(mg—rh)(x)dx +/Td(”°T — @) (x)(mI —m)(x)dx.

This energy identity shows the role of the monotonicity property (1.5) in the analysis.
A consequence of the exponential estimate (3.2) is the existence of a constant C
such that
u” (t,x) —ii(x) = MT —1)| < C.

Following ideas of weak KAM theory (see, for instance, the ICM proceeding by Fathi
[6e] in the calculus of variation framework), one could expect the existence of a limit for
uT(t,x) — M(T — 1) as T tends to oo; moreover, this limit should be given (up to an addi-
tive constant) by u. However, this heuristic is not completely correct and the description
of the asymptotic behavior of u” (eventually established in the paper by Cardaliaguet and
Porretta [33]) happens to be more subtle.
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To overcome the difficulty that the MFG system is forward—backward, a possible
path (towards a long-time expansion of u”) is to use the master equation (2.3), which is
just backward in time. One of the main results of [33] states that the solution of the master
equation converges to the solution of the following ergodic master equation:

1
A—Axy(x,m) + §|Dx)((x,m)|2 _ / ) divy (D x(x.m, y))dm(y)
T
+/ Dpx(x,m,y)- Dxy(y,m)dm(y) = F(x,m) inT?xP(T9). (33)
Td
Concerning the existence of (3.3), the following result holds:

Theorem 3.2. There is a unique constant A € R for which the master cell problem (3.3)
has a (weak) solution. The constant A coincides with the unique constant A for which the
ergodic MFG problem (3.1) has a solution. Besides, if x is a solution to (3.3), then x(-,m)
is of class C? (in space) for any m € P(T?) and

Dy y(x,m) = Du(x) Vxe T,
where (4, m) is the solution to (3.1).

As in many constructions of a solution to an ergodic problem, the first step consists
in building solutions to approximating compact problems and then in proving uniform esti-
mates on these solutions. Here, the compact problems are discounted master equations which
can be solved by a method of (infinite-dimensional) characteristics (as for (2.3)). The main
issue is to prove estimates on these solutions, independently of the discount rate. In contrast
with standard constructions in this area (see Lions—Papanicolau—Varadhan [9e] or [6e], which
analyze the ergodic behavior of (pure) Hamilton—Jacobi equations with a coercive Hamilto-
nian), the proof of these estimates cannot rely on the coercivity properties of the equation,
but must use in a very strong way the bound (3.2), which describes the long-time behavior
of the characteristics.

We are now ready to discuss the convergence, as ¢ — —oo, of the solution U of
the master equation (2.3) (now defined in the time interval (—oo, 0] with terminal condition
U0, x,m) = G(x,m)).

Theorem 3.3. Let y be a weak solution to the master cell problem (3.3). Then, there exists
a constant ¢ € R such that

lim U(r, x,m) + At = x(x,m) + ¢,
t—>—00

uniformly with respect to (x,m) € T4 x P(T?).
Moreover, we also have that D, U(t, x,m) — Dy x(x,m) as t — —o0, uniformly
with respect to (x,m).

This result looks like an extension of the famous Fathi’s result on the convergence
of the Lax—Oleinik semigroup in weak-KAM theory [6e]. This parallel is not completely cor-
rect since the master equation is not a Hamilton—Jacobi equation in an infinite-dimensional
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setting: the comparison principle does not hold, for instance. One has to rely instead on the
energy identity described above.

From Theorem 3.3 one can derive the full convergence of the solution (u”,mT) of
the MFG system:

Corollary 3.4. Let ¢ be the constant given in Theorem 3.3. For T > 0 and iy € P(T?),
let (uT, mT) be the solution to (1.4). Then, for anyt > 0,

li T(t,x) = MT —1)) = y(x,m(t :
lim (7130 = AT 1) = g(x.m(0) + ¢
where the convergence is uniform in x and m solves

d;m — Am — div(me)((x,m)) =0, m(0) = my.

In the recent paper [47], Cirant and Porretta managed to show the above corollary
without relying on the master equation.

Among many open problems in this area, let us point out the following ones: we
have explained in Section 2 that the master equation can be obtained as the limit of the
Nash system (1.1). Now that we understand the behavior of the master equation on long time
intervals, it would be interesting to see if this convergence holds uniformly in time. Similar
results have been obtained, for instance, by Mischler and Mouhot [93] in the framework of
kinetic theory. Another very intriguing issue is the long-time behavior of the MFG system in
the presence of a common noise: the existence of stationary measures is a completely open
problem.

3.3. The long-time behavior without monotonicity
The long-time behavior of the MFG equilibria when the coupling is not monotone
is poorly understood and only partial results are known.

The potential case. When the MFG is potential (see (2.2)), then one can extend weak-KAM
theory to the infinite-dimensional setup and describe the possible w-limit sets of the solution
of the time-dependent MFG system minimizing a natural energy in terms of a “Mather set.”
The main point is that this set may not contain an ergodic MFG equilibrium (i.e., an m €
P (T4) for which there exists (4, i) such that (X, i, ) solves (3.1)): this shows that the w-
limit set of the solutions of the time-dependent MFG system (1.4) that additionally minimize
the natural energy may not contain an MFG ergodic equilibrium. In other words, the ergodic
MFG system (3.1) may not describe the long-time behavior of these trajectories.

Periodic solutions. The existence of a periodic solution to the MFG system is a fascinating
topic on which little is known. The main result in that direction is the analysis by Cirant [46]
of a class of examples. It relies on local and global bifurcation methods based on the analysis
of eigenfunction expansions of solutions to a suitable linearized problem. Note, however, that
the stability of these solutions is not known.

Traveling waves. Intimately related to the notion of equilibria and to periodic solutions,
the question of traveling waves has been discussed in the framework of an MFG problem
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of knowledge growth, first introduced in economics by Lucas and Moll [91]. In this setting
the construction of a traveling wave solution is crucial (it is called a balanced-growth path
solution in economics) and has been documented by Papanicolaou, Ryzhik and Velcheva
[95] and by Porretta and Rossi [98]. The convergence of the solution of the time-dependent
problem to this solution remains an open problem.

4. SMOOTHING EFFECT OF THE COMMON NOISE

A natural question is to address the impact of the common noise on the well-
posedness of a mean field game. It is indeed useful to observe that, most often, standard mean
field games (without common noise) have multiple solutions. In this respect, condition (1.5)
is rather restrictive. Just as an additive Brownian motion can restore uniqueness of differ-
ential equations driven by nonsmooth vector fields, we can then wonder whether a form of
common noise could force equilibria to be unique in a fairly large class of mean field games.

4.1. The linear—quadratic case as a warm-up

It is pretty clear that the form of common noise that is inserted into (1.8) is cer-
tainly not sufficient to reach such an aim in full generality. Indeed, the noise is just finite-
dimensional whereas the model is infinite-dimensional because of the mean field struc-
ture. For sure, we could think of some hypoelliptic structure that could allow the finite-
dimensional noise to be transmitted to all the components of the space of probability mea-
sures, but this looks a very challenging question. A much easier (but much less ambitious)
alternative is to restrict oneself to mean field games whose equilibria are a priori known to
live in a finite-dimensional subset or, using a standard concept from statistics, to belong to
a parametric model of statistical distributions. The typical example in this direction is the
class of linear—quadratic mean field games, which has been studied with a lot of attention (see
Bardi [1e], Bensoussan, Sung, Yam and Yung [16], Carmona, Delarue, and Lachapelle [37],
and the works [73,75] by Caines, Huang, and Malhamé for a tiny example). In short, it cor-
responds to the case when F and G in (1.8) have the form

2

F(x,m) = %|Qx + f(m)\z, G(x,m) = %|Rx + g(m) .1)

where Q and R are matrices of size d x e (with e being another integer), f, g are Borel
functions from R? to R¢ and 77 is the mean of m, i.e., 71l = Jra xdm(x) (which implicitly
requires m to have a finite first moment). Referring back to Section 1.2, we see that the con-
trol problem (1.2)—(1.3) ((1.6)—(1.7) in the presence of common noise) becomes a stochastic
control problem with linear—quadratic coefficients depending on the (possibly random) path
(m:): € C°([0, T, P»(R?)) injected into the coeflicients. The key point is that this stochas-
tic control problem has a unique solution (depending on (m;);), with the optimal feedback
being affine (regardless of the value of the intensity of the noises). In turn, this implies that
the equilibrium trajectories must be Gaussian processes (conditional on the initial condition
whenever the latter is random). Therefore, for the above choice of F and G, the equilibria
are necessarily Gaussian (once again, conditional on the initial condition). Even more, since
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the volatility coefficient is prescribed in the state dynamics, the variances of the marginal
conditional laws of the equilibria given the initial condition are also fixed. In the end, only
the means count for determining the equilibria: As expected, the model is parametric. It
is then an interesting question to address the impact of the common noise in this specific
framework and to see whether the existing well-posedness results can be improved under the
action of (W;),. A very convenient approach is to use the Pontryagin principle, which pro-
vides, under the standing x-convex structure of F' and G, a characterization of the equilibria
in the form of a forward—backward system of the McKean—Vlasov type. Standard computa-
tions (see the aforementioned references together with [35, cHAPTER 3]) then show that, for a
given (W;),-adapted path (m,),; with values in C°([0, 7], P> (R%)), the optimal control in
the stochastic control problem described in (1.6)—(1.7) has the following feedback form:

where (7;); is the solution of an autonomous deterministic Riccati equation (the form of
which is completely independent of the input (7)) and (%;), solves the finite-dimensional
backward stochastic differential equation

T T
he = Rg@mn) + [ [01 @) ~nhilds— [ kaw. .1l @3
t t

Obviously, this equation should be regarded as a finite-dimensional version of the backward
equation in (1.8) when the value function therein is sought in a quadratic form.

Forcing uniqueness. Inserting the relationship (4.2) for the optimal feedback into the
dynamics (1.7), taking the conditional mean of (X;); (with the exponent * being used
to denote the optimal trajectory) given the common noise (W;);, and then identifying
E[X/|(W;)s] with i, (in full consistency with the probabilistic fixed-point formulation
of a mean field game), we end up with the following forward—backward system (which is
now the finite-dimensional analogue of the whole system (1.8)):

dm[ = —(Yhm[ + ht)d[ + LY, 26d W[, moy = E(X()),

4.4

dhe = =(QV f () = nehe)dt + kedWe. hr = RTg(mr).
Similar to (v;); in (1.8), the (W;);-adapted process (k;); is here designed to render the
solution (h;); (Wy),-adapted. Remarkably, system (4.4) just involves the conditional expec-
tation (7, ),. This is in line with the fact that equilibria are known to belong to a parametric
model. It then remains to interpret the forward—backward system (4.4) as the system of char-
acteristics of a parabolic PDE. We obtain

hy = 0;(m;y),
where 6 solves
30, (x) + €A20,(x) — (nex + 0:(x)) - Vi (x) + OT f(x) — 00, (x) =0,  (4.5)
for (t,x) € (0, T) x R, with the terminal condition 67 (x) = g(x). This PDE is a finite-

dimensional version of the master equation (2.3). Obviously, it is much easier to solve.
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In particular, when € > 0, the sole presence of the Laplacian forces the existence of a clas-
sical solution when f and g are bounded and regular coefficients. In turn, this forces the
well-posedness of the system of characteristics (4.4) (see Foguen [1082] or [36, CHAPTER 3]):

Proposition 4.1. Let the cost coefficients F and G be of the same form as in (4.1), with f
and g therein being bounded and sufficiently regular coefficients. Then, for any € > 0, the

mean field game has a unique solution.

It must be stressed that the statement becomes false when € = 0 (see the same
references for explicit examples). One must then assume more about the coefficients f
and g to force uniqueness. For instance, it is easy to reformulate the monotonicity con-
dition (1.5) in terms of f and g: The point is then to require QT f and RTg to satisfy
QT f(x") — 0T f(x)) - (x' —x) = 0 for any x, x’ € R¥, and similarly for Rfg. Regarding
the explicit conditions of regularity that f and g must satisfy in Proposition 4.1, a typical
instance is to assume that f is bounded and Hélder continuous on the whole space and g,
together with its first and second-order derivatives, are bounded and Holder continuous on
the whole space.

4.2, Finite-state mean field games

Another obvious manner to get a parametric model is to force the state space to be
finite, in which case the space of probability measures itself becomes finite-dimensional.
This requires, however, a modicum of care since the state dynamics can no longer be formu-
lated as in (1.3)—(1.7). In particular, the common noise cannot be chosen in a mere additive
fashion.

Games without common noise. When the state space is finite (and is thus chosen as a finite
set E), the dynamics of the reference player are usually postulated in the form of a Markov
controlled process taking values in E. Typically, the transition rates are explicitly prescribed
as functions of the control (see Gomes, Mohr, and Souza [66,67] and Guéant [7e]). A simple,
but convenient, choice is then to identify the control with the entire transition matrix. In that
case, using the same notation (X; ), as in (1.3) to denote the trajectory of the reference player,
the transition probabilities read (with P being implicitly identified with P! since there is no

common noise at this stage of the discussion)
P(Xipar = j|Xe = i) =B’ dt +o(dr). i# ] ws)
P(Xiyar =i|X; =) = 1 + B dt + o(d1),

with ((ﬂi’j )i,jeE): standing for a deterministic path with values in the set of E-indexed
matrices satisfying the following two standard prescriptions:

B =0, i#]
== B

This formulation is reminiscent of (1.3) in the sense that the transitions do not depend on the

%))

choice of the environment (m;), that underpins the cost functional (1.2). In particular, the
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Fokker—Planck equation for the marginal law of the (8;);-controlled process (X;),; can be
written as d

Epi =Y plBl. tel0.T]. i€k, (4.8)

j€E

with p;' being understood as P(X; = i). As for the cost functional, we may choose it as
in (1.2) provided that the functions F and G are now defined on E x P (E), with (F)
denoting the space of probability measures (which can be obviously identified with the sim-
plex of dimension | E| — 1). To give a clear account that the state space is finite, we will write
(in this subsection) F*(m) and G*(m) instead of F(x,m) and G(x, m). Of course, there is
another slight difference with (1.2), which lies in the interpretation of (8;);. In (1.2), B; is
implicitly chosen as a control in feedback form: Loosely speaking, we write ,3~ +(X;) for a
d-dimensional vector field ,5 +; In other words, the quadratic cost in (1.2) is calculated from
the pointwise value of the feedback function at X;. Differently, 8; in (4.7) encodes the entire
feedback function: Somehow, it coincides with the entire function B ;. In this framework, the
cost functional (1.2) should read

T .
Bl [ (5 2 18P+ P om0 Jar+ 6 nr)|

J#X:
r i 1 i,j |2 i i i
=S| [ P52 18P + Fromo )dr + prGlone)
icE 0 Ji
= J((ﬁt)t; (Pz)z; (mt)t)» 4.9)
for a given continuous (and here deterministic) path (m,), with values in P (E).

It it then quite standard to compute the corresponding HIB equation. Since E is
finite, it becomes a mere ordinary differential equation. Accordingly, the MFG system (1.4)

becomes
, 1 , . .
—0suy + 3 Z(u’, —u))2 = F'(m,),
S (4.10)
dym’ — Z[m,’(u{ —uy)y —mi(u, —u})y]| =0, i€E, te[0T].
JEE

Once the system (4.10) is solved, the optimal feedback is given by ai’j = (ui — u{ )y, i FEJ.
Consistently with the notation introduced in (4.8), the probability measure m, is identified
with the collection of nonnegative weights (m‘,;),- cE , with the latter satisfying » JEE m) =1.

Adding a common noise. Differently from (1.4), (4.10) is a finite-dimensional forward—
backward system. The question is then how to find a suitable form of finite-dimensional
common noise that forces existence and uniqueness. Although it is very similar to the ques-
tion addressed in Section 4.1 for linear—quadratic quadratic mean field games, the problem
is in fact formulated in a different way. Indeed, the analysis carried out in Section 4.1 mostly
relies on the probabilistic formulation of the mean field game or, equivalently, on the equa-
tion for the dynamics of the reference player. Instead, we want to use here the equation for
the dynamics of the population, as it is more adapted to the model in hand. This raises some
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subtle issues on the structure of the common noise as we want the resulting Fokker—Planck
equation to preserve the simplex. In other words, we want to find a form of simplex-valued
diffusion process. A very famous instance is the so-called Wright-Fisher process, origi-
nally introduced in stochastic models for population genetics (see Kimura [77]). Recast in
our framework (the analysis of which is taken from Bayraktar, Cecchin, Cohen, and Delarue
[13]), it leads to the following stochastic version of the MFG system (4.10):

doty = (% Doy —ul)y = Fi(my) = Ve )~ \/mim] (v — vi’”))dr

JjeE JEE

i,j.k Jjik
+ Zj,keE Uy th ’

dmy =y [mf (ul —ui) —miuy —ul)]de + Ve Yy mimid W' — W],
JEE JjEE

4.11)

fori € E and t € [0, T]. In the above, (W;); = ((Wti’j)oftfr)(i,j)eEz is a collection of
independent Brownian motions. Following the notations introduced in the statement of
Theorem 2.3, it is very useful to distinguish the space carrying (W;); from the space carrying
the idiosyncratic noise underpinning the transition rates (4.6): The former will be denoted
by (29, Fo, Pg) and the latter by (21,1, P1). Accordingly, the expectations are respectively
denoted by Eq and E;. The product measure on the product space is denoted by P and the
corresponding expectation by E. Intuitively, the process (v;); in the above backward equa-
tion plays the same role as the process (v;); in (1.8). In particular, it is worth observing that,
in both cases, the process (v;); appears in the dt term of the backward equation.

Before we provide the interpretation of the above system in terms of a mean field
game, we write down the resulting form of the master equation (see again [13]):

0, U (m) +€ Y (m;8jx —mjmp)dy, ,, Ul (m)

Jj.keE
+ > pe(UF(m) — U/ (m)) | (0m; U} (m) — 0y, U/ (m))
Jj.keE
. ) 1 . .
+2¢ 3 pj (I, Uf (m) = 0, U (m) = 5 3~ (U] (m) = U/ ()
JjEE JEE

with the boundary condition U} (m) = g'(m). The terms induced by the common noise are
those featuring the prefactor €. In particular, the master equation without common noise is
obtained by letting ¢ = 0. The main impact of the common noise is to generate the second-
order differential operator

€ D (mi8jk —mime)dy, . (4.13)

Jj.keE

which is called a (purely second-order) Kimura operator on the simplex of dimension
|E| — 1. In both (4.12) and (4.13), the derivatives should be formally regarded as intrin-
sic derivatives on the simplex, with gradients being of dimension |E| — 1. However, it is
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also possible to assume that U has a smooth extension to an |E|-dimensional subset of
the simplex and then to consider the derivatives as standard | E |-dimensional derivatives. It
is worth noticing that the resulting derivative used in (4.12) and (4.13) does not coincide
with the derivative D,, introduced in Theorem 2.1. The infinite-dimensional analogue of
the derivative used in (4.12) and (4.13) is the so-called flat, or linear, functional derivative.
In short, it is the restriction, to the space of probability measures, of the derivative on the
space of signed measures. It is a potential of the derivative D,,.

Forcing uniqueness. A key feature of the Kimura operator (4.13) lies in the structure of the
diffusion matrix: it degenerates near the boundary of the simplex. This is somehow the price
to pay to construct a diffusion process that does not leave the simplex. As an issue, it makes
much more difficult any attempt to prove smoothing properties (which are precisely what
we need in order to force uniqueness to the system (4.11), in full analogy with the result
stated in Proposition 4.1). However, a relevant form of Schauder’s theory was established
in the monograph by Epstein and Mazzeo [59]. In short, it says that linear equations driven
by Kimura operators have classical solutions (with a suitable behavior at the boundary) if
the first-order and source terms are just Holder continuous in time and space. This is, how-
ever, not sufficient to get similar results for the nonlinear equation (4.12), as the first-order
term therein is driven by the solution itself. As U is easily shown to be bounded from a
straightforward application of the maximum principle, the next step to fill the gap is thus to
prove the following form of a priori estimate: For some Holder exponent, the Holder norm
of a classical solution to a homogeneous parabolic equation driven by a Kimura operator is
bounded in terms of the L °°-norm of the solution and the Holder norm of the initial condition
(if the equation is set forward) or of the terminal condition (if the equation is set backward
as (4.12) is). Nevertheless, it is not possible to prove this in full generality. In short, the best
results that are known require the presence in (4.13) of a first-order term with strictly positive
components along inward normal directions to the boundary. When applying this principle
to (4.12), we are led to consider the following modified version of the master equation:

0, U (m) +€ Y (m;8jp —mjmi)dy, ,, Ul (m)

Jj.keE

+ > pi[elm) + (Uf (m) — U/ (m)) ] (0m; U} (m) — 0, U/ (m))
Jj.keE
. . 1 . .
+2€ ) my (3, U (m) = 8, Uf () = 2 3 (U} (m) = U7 (m)
JEE jeE
+ Fim) + Y @(m;)(U{ (m) — Ul (m)) = 0, (4.14)
JEE

with the terminal condition U} (m) = g* (m), for a smooth function ¢ from [0, co) into itself
that is nonzero in the neighborhood of 0. This function ¢ should be regarded as a penalty:
when inserted in the transition rates (4.6), it forces the corresponding solution to the Fokker—
Planck equation (4.8) to leave the boundary of the simplex (here and below, the notions of
boundary and interior of the simplex are understood when P (E) is regarded as a subset of

3687 SELECTED TOPICS IN MEAN FIELD GAMES



RIEI=1). Notice that this additional penalty ¢ appears in the first-order term on the second
line, which is consistent with our preliminary discussion, but also in the zeroth-order term
on the last line, which is necessary to have a relevant interpretation of (4.14) as the master
equation of a mean field game (see Definition 4.1 below).

The next statement is also taken from [13]:

Theorem 4.2. We can find a threshold ko > 0, only depending on € (¢ > 0), || F|loo» |G || 0o»
and T, such that, if 9(0) > ko, and if F and G are smooth enough, then equation (4.14) has a
classical solution, with first-order derivatives in space that are bounded on the whole domain
and second-order derivatives in space that are bounded on [0, T] x K, for any compact
subset KX included in the interior of P (E).

The existence of a classical solution is then shown to force uniqueness to the cor-
responding system of characteristics. Due to the presence of the penalty @, this system does
not exactly fit (4.11). The right-version is

douy = (5 Doy —ul)i = Flmy) — e ) yJmimi (v — vé””))dt

JEE JjEE

=Y emD] —ul) + Y vy awiE,

JeE jkeE (4.15)
dim' = Z[m{ (@Omi) + (u] —ub) i) —mi(e(m]) + (s —ul)1)]dr
JEE
e X i alwi —w),
JjeE

fori € E and ¢ € [0, T]. In line with Theorem 4.2, we have (see again [13]):

Theorem 4.3. We can find a threshold ko > 0, only depending on € (¢ > 0), || F | oo> |G || 0os
and T, such that, if ¢(0) > ko, and if F and G are smooth enough, then the forward—
backward system (4.15) has a unique solution when the initial condition my = (mf))ie E

is prescribed in the interior of the simplex.

To be fair, we should mention that uniqueness holds within a class of solutions with
suitable integrability properties. We refer to [13] for the complete version of the statement.
As for the constraint on the initial condition, it says that ma > Oforanyi € E. The resulting
solution (m;); is then shown to stay away from the boundary (which is helpful since the
diffusion coefficient in the dynamics of (1), becomes singular on the boundary). Implicitly,
all the statements below are also limited to initial conditions in the interior of the simplex.

It now remains to provide an interpretation of the two systems (4.11) and (4.15) in
terms of a mean field game. This goes through the following definition:

Definition 4.1. We say that a (W;),-adapted continuous stochastic process (m;)o<s<7 With
values in the interior of & (E) is a solution to the mean field game with common noise of
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intensity /€ (and without the penalization @) if (my)o<¢<T satisfies an equation of the form

dmy =Y mial'dt + ey \mimldW} — W), teo.T]. (4.16)

JEE JEE

for a bounded (W;);-progressively-measurable process ((oz, )l JEE)t satlsfylng (4.7) and,
for any other bounded (W;),-progressively-measurable process ((8;”)i jer): satisfy-
ing (4.7), the solution of the equation

dpi =" plp! dz+fp,z d(W” W/, 1 el0,T]. 4.17)
JEE JEE

satisfies the inequality

]EO[J((IBt)t; (po)e (mt)t)] = ]EO[J((“t)ti (m¢)es (mt)z)],
with J being defined as in (4.9).

A similar definition holds for the mean field game with common noise of intensity
/€ in the presence of the penalization ¢. It suffices to replace (a{ ’i) ¢ by (p(mi) + oz,j ’i) P
in (4.16) and (B7"); by (¢(p}) + B7")s in (4.17).

In fact, Definition 4.1 is rather subtle. Differently from the formulation (1.6)—(1.7)
used for continuous state spaces, the current one does not provide an explicit formulation of
the (private) dynamics of the reference player within the population. In short, Definition 4.1
is missing an equation similar to (1.7). Instead, equation (4.17) should be regarded as a form
of Fokker—Planck equation for some marginal statistics of the reference player given the
common noise. Actually, it can be proven that there exists a stochastic process (X;, Y;)o<:<T
with values in the space £ x R4 such that

p; = El[Ytl{thi}], IS [0, T], iek,

with (Y;), satisfying E°E![Y,] = 1. In this formulation, X, should be regarded as the phys-
ical state, at time ¢, of the reference player, with the latter being also assigned a mass Y;.
The mass of the tagged particle is in fact a density on the entire probability space carrying
both types of noise. It is a density accounting for the way the reference player perceives the
world. In this respect, it is important to note that the process (p;); does not take values in
the simplex, but only in the orthant (R 1 )!£!. This follows from the linear structure of equa-
tion (4.17) (with (p;); as unknown). The linear structure, here with stochastic coefficients,
is consistent with the linear structure of the Fokker—Planck equation (4.8). In order to obtain
solutions in a relevant space, integrability conditions on these stochastic coefficients are thus
necessary, whence the assumption that ((ai’j)i,_ieE)t and ((ﬁi’j),-,jeE)t are bounded.

4.3. Vanishing viscosity

Following the latter two subsections, a natural question is to address the vanish-
ing viscosity limits of the solutions to the mean field game with common noise and to the
corresponding parabolic master equation. Both for linear quadratic mean field games and
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finite state mean field games, uniqueness of the equilibria may be lost in the framework of
Proposition 4.1 and Theorem 4.3 when the common noise is removed. This is the same for
the corresponding master equation: Classical solutions may cease to exist and, accordingly,
weaker notions of solutions are needed; Uniqueness is then a challenging question.

For sure, we could think of other methods for selecting equilibria. For instance,
we could think of returning back to the game with N players and then identifying which
equilibria coincide with a limit point of the N -equilibrium as N tends to infinity. This is,
however, a very difficult road. As easily seen from the uniformly parabolic structure of the
system (1.1), the N-player game (at least in the form studied there) satisfies a form of non-
degeneracy that is asymptotically lost when N tends to infinity. The study of the large-N
limit thus combines two difficulties at the same time: The whole system becomes more and
more degenerate (this is a vanishing viscosity limit) and, meanwhile, some propagation of
chaos is expected to occur (this is the mean field limit). In contrast, taking the small noise
limit in a mean field game with common noise just raises one of these two issues since the
mean field limit has already been taken.

Earlier selection results can be found in Bayraktar and Zhang [14], Cecchin, Dai Pra,
Fischer, and Pelino, [44] and Delarue and Foguen [52]. Generally speaking, they are stated
for mean field games whose equilibria are known to belong to a one-dimensional parametric
model. This covers the following two examples: Linear—quadratic mean field games of the
same type as in Section 4.1, but with d therein being equal to 1 (which implies in particular
that, conditional on the initial state, the equilibria follow Gaussian distributions with a known
variance but an unknown mean); Finite state mean field games on a set E containing two
elements only (in which case the simplex is one-dimensional). In all these aforementioned
works, selection is directly proved by taking the large- N limit in the finite game. Basically,
this is possible thanks to the totally ordered structure of R. Moreover, the master equation
then reduces to a scalar conservation law and the selected solution is the entropy solution.

When the effective dimension of the model is greater than or equal to 2, things
become much more challenging. A way to make the problem simpler is to address the so-
called potential case. As explained in Proposition 2.4, potential games are a special kind of
mean field games that coincide with the first-order condition of a mean field control problem.
When the state space E is finite, this corresponds to the case where F' and G satisfy

Fi(x,m) = 0, F(m), G'(x,pt) = 0, &(m), i€E, (4.18)

for two real-valued functions ¥ and § defined on & (E). In words, F and G are identified
with (respectively) the gradient of ¥ and the gradient of ¥. The identification is, however,
a bit subtle since, formally, these two gradients should be identified with vectors of dimen-
sion |E| — 1. In turn, this says that the above condition could be slightly relaxed: In short,
it would suffice to identify the projections of F' and G onto the orthogonal complement
of (1,...,1) (which should be regarded as the tangent space to the simplex) with the cor-
responding intrinsic gradient. Anyway, given ¥ and &, we can consider the deterministic
optimal control problem

(g,l;ft F((B)ost<t).
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associated with the cost functional

T
1 itz o
HBoozzr) = (5 X BT+ 50 )dr+50n. @)
0 i jeE:it]
and with the dynamics (4.8) (for a given initial condition (p});cg), the function (B;), satis-
fying the constraint (4.7) at any time. Then, very similar to Proposition 2.4, we have

Proposition 4.4. Let my = (mf))ieE be an initial condition in the interior of the sim-
plex. Under condition (4.18), any bounded minimizer ((,Bi’j)i,jeE)OstsT of the cost func-
tional (4.19), with (pé),-eE = (mB)ieE as initial condition in (4.8), yields a solution to the
mean field game (4.9).

The proof follows from a standard application of the Pontryagin principle. The
adjoint variable then identifies with (u’;),-e g in the system (4.10). In the statement, the
two constraints on ( p(i))ie E (which is required to have strictly positive coordinates) and
on ((ﬂﬁ’j )i,jeE)o<t<T (which is required to be bounded) force the corresponding trajec-
tory (4.8) to stay away from the boundary of the simplex (when the latter is viewed as an
open subset of dimension of |E| — 1). This guarantees that, along the trajectory (4.8), the
extended Hamiltonian has a unique minimizer, as required in the application of the Pontrya-
gin principle.

Selection of equilibria. Obviously, there is no converse to Proposition 4.4: The set of equi-
libria of a potential mean field game may be strictly larger than the set of minimizers to the
corresponding mean field control. In this respect, a natural selection principle would consist
in ruling out the equilibria that are not minimizers of the corresponding mean field control.
Very interestingly, this principle is consistent with the results mentioned above when the
state space FE is of cardinality 2. Indeed, any mean field game on a finite state space with two
elements is potential. As such, it derives from a mean field control problem. In particular,
a natural question is to ask whether the solutions to the mean field game that are selected by
taking the large- N limit in the finite game associated with (4.8)—(4.9) are also minimizers of
the corresponding mean field control problem. The answer is yes. The same result remains
open when |E| > 3. However, a simpler (but still interesting) question is to ask whether,
under the same property (4.18) as before, the vanishing viscosity limits of the mean field
game with common noise, as defined in Section 4.2, are minimizers of the corresponding
mean field control problem. Formulated in this way, this question is also open. The main
issue is that, in the presence of the common noise (and of the additional penalization ¢ that
is necessary to guarantee the conclusion of Theorem 4.3), the mean field game is no longer
potential. In order to get a potential form in (4.15), an additional penalization is necessary.
Once the game with common noise is potential, it is pretty easy to take the vanishing vis-
cosity limit in the mean field control problem that lies above. The following result is taken
from Cecchin and Delarue [43]:
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Theorem 4.5. Let mg = (mf)),-e E be an initial condition in the interior of the simplex. For
any € > 0, we can find two functions @€ : [0, +00) — [0, +00) and (F' : P(E) — R);cg,
with @€ converging to 0 uniformly on any compact subset of (0, +00), such that:

(1) The system (4.11) obtained by replacing (F, @) by (F€, ¢¢) is uniquely solvable,
the solution of the forward equation being denoted by ((m§" )o<¢<T)icE;

(2) Any weak limits of the sequence of the laws of the processes ((m?’i),)ieE has
a support included in the set of minimizers of & in (4.19) (with the same initial
condition);

(3) There exists a family of positive reals (8¢)e, satisfying lime_.g 8¢ = 0, such
that the trajectories ( (mj’i),)ie E form (8¢)c-approximate solutions of the mean
field game with common noise of intensity /€ and with penalty ¢¢, as defined
in Definition 4.1. In clear, if (p})o<i<T)icE solves (4.17) (with (ﬁ,” M)t
being replaced by (¢¢(pt) + ﬂ{’i ,m$); and with the prescription that (B;); is
bounded by a fixed constant), then

EOZUO p;F‘(mj)dl:|—EOZ|:/(; p;FG”(mi)dt]

icE icE

< Ge.

Obviously, item (3) says that the additional penalization in the definition of F€ has
a limited impact: The solution to the mean field game associated with the cost functional
driven by F€ is almost a solution of the same mean field game but associated with the cost
functional driven by F. For sure, the notion of approximated solution is here consistent
with the standard notion of approximated Nash equilibria: when the reference player in the
population chooses a feedback function different from that chosen by the others, the best
possible improvement (in the cost functional) tends to 0 with €.

Interestingly, uniqueness of the minimizers (and thus of the limit points) in the
second item of Theorem 4.5 is in fact the typical situation. Indeed, standard control theory
says that the control problem (4.19)—(4.8) has in fact a unique minimizer at any point in
time and space where the corresponding value function, which we denote by V, is differen-
tiable (see [23]). However, it is a standard exercise to prove that 'V is Lipschitz continuous,
hence the fact that uniqueness holds for almost every starting point (in time and space) when
the simplex is equipped with the (|E| — 1)-dimensional Lebesgue measure. Obviously, in
the formulation (4.19)—(4.8), the initial time is O, but there is no difficulty in adapting the
definition to any other time ¢ € [0, T'].

Selection of solutions to the master equation. In fact, V plays an even more important role
in the analysis of the vanishing viscosity limit as it also permits characterizing the limit of
the solutions to the second-order master equation (4.14) associated with the common noise
of intensity +/€, with the penalty ¢ and with the penalization F¢ (for the same choices ¢¢
and F€ as in the statement of Theorem 4.5). The next statement result is also taken from [43]:
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Theorem 4.6. With the same notation as in the statement of Theorem 4.5 and with U€ denot-
ing the solution to equation (4.14) when ¢ = @€ and F = F€ therein, the limit

lim [U€(1.q) = U (1.9)] = m; V(t.q) — O, V(2. 9)
€—

holds for almost-every (t,q) € [0, T] x P (E) and for any i, j € E, where 'V is the value
function of the control problem (4.19)—(4.8).

As we have already explained, the gradient of the value function exists almost-
everywhere in time and space. It also important to note that the argument in the limit is
not the solution of the master equation itself but the finite differences of it. In short, the limit
of the master equation is just identified in dimension | E| — 1, which is fully consistent with
the fact that the gradient of 'V is a vector of dimension |E| — 1. Alternatively, the above
statement provides the limiting form of the feedback function used in the mean field game
with a common noise of intensity /€. The | E|-dimensional limit of the function U¢ itself
can be found by computing the minimal in cost (4.9) when the environment (im;), therein is
the solution of the control problem (4.19)—(4.8).

In accordance with the program outlined above, it is a natural question to ask
whether the limit established in Theorem 4.6 can be characterized in terms of the orig-
inal master equation itself (i.e., the master equation (4.12) but with € = O therein). The
answer is positive. As shown in [43], the master equation can be written in a conservative
form. Following earlier results of KruZkov [8e] and Lions [89], this conservative form has a
unique solution that is bounded and satisfies a weak one-sided Lipschitz condition in space.
It coincides the gradient of the value function V. This recovers the existing results when
|E| = 2.

4.4. Complements and open problems

Even when the state space is finite, the extension of the above results to the nonpo-
tential case is a highly difficult problem.

Another interesting problem is to extend the same results to mean field games
on continuous state spaces. The main issue is to define a suitable form of common noise.
In short, this requires addressing stochastic processes with values in the infinite-dimensional
space P> (R?) and with sufficiently strong smoothing properties, which is known to be a chal-
lenging problem in the literature. There are earlier results in this direction, but they are not
sufficient to handle the nonlinearities that make the spice of mean field games: We refer, for
instance, to Stannat [1ee] for smoothing estimates of the Fleming—Viot process, which is an
infinite-dimensional version of the Wright—Fisher noise underpinning the forward—backward
system. In short, the Dirichlet form of the Fleming—Viot process is driven by the aforemen-
tioned linear-functional derivative (which provides a potential of the derivative D,,). In the
meantime, the construction of a process with a Dirichlet form associated with the deriva-
tive D, has been addressed in a series of works initiated in von Renesse and Sturm [103],
but no canonical definition has yet been given. Another strategy in order to force unique-
ness consists in embedding the problem in some L? space: following the idea underpinning
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Definition 2.1, we can indeed see the unknown in a mean field game as a flow of random
variables and not as a flow of probability measures. This makes it possible to use noises in
Hilbert spaces. However, this destroys the mean field structure of the problem. We refer to
Delarue [49] for results in this direction.

From another perspective, it is important to note that common noises in finite state
mean field games can be defined a manner different from (4.11). We refer in particular to
Bertucci, Lasry, and Lions [19], the key idea of which is to force the finite-player system to
have many simultaneous jumps at some random times prescribed by the common noise. The
reader may also have a look at [6], which provides a discrete point of view on the system (1.8).
As far as the formulation (4.11) is concerned, a study of the convergence problem, very much
in the spirit of Theorem 2.7, is available in [12].

5. FURTHER PROSPECTIVES AND RELATED OPEN PROBLEMS

We will now briefly review some aspects of the theory that we have not covered so
far. This is only a summary presentation which demonstrates (if needed) that the field has
diversified into many active branches.

5.1. Analysis of the MFG system and of the master equation
The MFG system. In the last two decades there has been a large amount of research on
MFG systems of the type (which generalize (1.4)):

(i) —drus(x) — Auy(x) + H(r,x, Duy(x),m;) =0 in (0, 7) x R?,
(ii) d;me(x) — Am,(x) —div(m,(x)Dp H (t, x, Du,(x),m;)) =0 in (0,T) x R?,
(iii) mo(x) =mo(x), u(T,x)=g(x,mr) in R?,

and of more general (fully nonlinear) MFG systems (where D, H is the derivative of the
Hamiltonian H (¢, x, p, m) with respect to p). It is impossible to give a complete overview
of this literature: we refer to the survey [6] and to the references therein for a general pre-
sentation of this literature. The question of the existence and regularity of the solutions has
been investigated in several frameworks: When the dependence of the Hamiltonian is local
(depending on the pointwise value of the density), existence of classical solutions is dis-
cussed, for instance, by Cardaliaguet, Lasry, Lions, and Porretta in [29] and by Gomes,
Pimentel, and Voskanyan in [68]; Porretta introduced in [97] a notion of a weak solution
for these problems and proved uniqueness in this framework. The MFG system can also
be set with other boundary conditions: for instance, Neumann boundary condition (Bardi
and Cirant [11]), optimal stopping (Bertucci [17]), state constraints (Cannarsa, Capuani, and
Cardaliaguet [22]). Mean field games can be also stated in networks (Camilli and Marchi
[21] or Achdou, Dao, Ley, and Tchou [3]). Problems with congestion or with density con-
straints are discussed by Lions [88], Achdou and Porretta [5] and Cardaliaguet, Mészaros,
and Santambrogio [32].
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Variational aspects. In general, the analysis of the MFG system relies on fixed point tech-
niques. In some frameworks (the local coupling case, for instance) it is possible to use
variational methods. This turns out to be very useful for problems in which the diffusion
is degenerate and for which this approach allows building weak solutions; see, for instance,
the papers by Cardaliaguet and Graber [26] (first-order problems with a local coupling) and
by Cardaliaguet, Graber, Porretta, and Tonon [27] (for degenerate second-order problems
with a local coupling). Refining earlier result by Lions [88], Santambrogio [99] combined
variational techniques with ideas from optimal transport to obtain nice regularity results of
first-order MFG systems (system without diffusion). Many other references and results can
be found in the survey by Santambrogio in [6].

The master equation. The analysis of the master equation has attracted some attention in
the recent years, refining the earlier results [25,36,45, 64,88]. Without trying to be exhaustive,
one can quote the recent papers: Bertucci [18] for a notion of a weak solution under mono-
tonicity conditions; Cardaliaguet, Porretta, and Cirant [24] for the construction of solutions to
general master equations (with common noise or for a major player, see the paragraph below)
on short time intervals using a kind of Trotter—Kato scheme; Gangbo, Mészaros, Mou, and
Zhang [63] for the existence of a classical solution to the master equation outside the classical
monotone framework, obtained by using instead conditions related with displacement con-
vexity. Let us underline that a suitable notion of weak (discontinuous) notion of solution for
the master equation is still missing (see, however, Section 4 and [43] by Cecchin and Delarue
in the finite-state framework and for potential problems).

MFG problem with a major player. In general, mean field games address problems with
a single homogeneous population. It is, of course, not the only interesting configuration.
Among the many possible generalizations, one can mention the MFG problems with a major
player, in which a controller (the major player) interacts with a population. This problem, first
introduced by Huang [72], has been studied (among many other references) by Carmona and
Zhu [42] by a probabilistic approach, and in [24] using the master equation. It is related with
the principal-agent problems with one principal and infinitely many agents, as explained by
Elie, Mastrolia, and Possamai [57].

5.2. Mean field games of control

Mean field games of controls (sometimes also called extended mean field games)
are mean field games in which players interact through the joint distribution of their positions
and their controls. Many models in economics are of this type (for instance, agents interact
through the price of a good that depends directly on their collective decisions to buy or sell).
This kind of problem was first discussed by Gomes and Voskanyan [69]. Weak solutions have
been built through a probabilistic approach by Carmona and Lacker [39]. In [35, CHAPTER 4],
Carmona and Delarue pointed out the specific structure of the corresponding MFG system,
which involves two fixed point problems (the classical one and a static one used to build
the distribution of positions and controls from the distribution of positions and the control
feedback). This MFG system was also studied in Cardaliaguet and Lehalle [31] (existence

3695 SELECTED TOPICS IN MEAN FIELD GAMES



of weak solutions for problems with degenerate diffusions) and in Achdou and Kobeissi [4]
(classical solution in the diffusive case and with very general interactions). Very recently
Dijete [54] proved the convergence of open-loop Nash equilibria for the N -player game as N
tends to infinity.

5.3. Numerical methods and learning

The fixed-point nature of MFG equilibria makes them difficult to approximate and
implement in practice. In the work by Achdou and Capuzzo Dolcetta [2], the authors explain
how to reproduce numerically the forward—backward nature of the MFG system in order to
obtain convergent numerical schemes, thus starting a series of works of the subject. An up-to-
date literature on the numerical methods for mean field games, including effective methods
for decoupling the two equations, can be found in Achdou’s survey on this topic [6]. Recently,
other works have also demonstrated the possible efficiency of tools from machine learning
within this complex framework: standard equations for characterizing the equilibria may be
approximately solved by means of a neural network; see, for instance, Carmona and Lauriere
[40,41].

Intimately related to the numerical approximation, the intriguing question of learn-
ing (“how do the MFG equilibria actually appear?”’) has attracted some attention. One of
the first results in this direction is the transposition to MFG games of the classical fictitious
play by Cardaliaguet and Hadikhanloo [28]: assuming that players know the model and that
the MFG problem is potential, the method explains how players could converge to an MFG
equilibrium after playing the game many times. Elie, Pérolat, Lauriere, Geist, and Pietquin
[58] study the effects of diverse reinforcement learning algorithms for agents with no prior
information on an MFG equilibrium and learn their policy through repeated experiments.
The very recent paper Delarue and Vasileiadis [53] shows that common noise may also serve
as an exploration noise for learning the solution of a mean field game.

5.4. Mean field control

Mean field control (MFC) is a distinct theory from mean field games, but both theo-
ries are connected in many ways. For instance, potential games are a typical instance of mean
field games that are solved by the minimizers of an MFC problem, see Proposition 2.4. The
very aim of MFC theory is to address minimization problems set over Kolmogorov equations
(when formulated by means of PDEs) or over McKean—Valsov equations (when formulated
in a probabilistic fashion). From a particle point of view, MFC problems provide an asymp-
totic description of large systems of weakly interacting controlled agents who cooperate
in order to minimize some common cost. Therefore, in contrast with MFGs, the agents no
longer compete, and the solutions of the two problems are different. As such, this asks for a
new proof of the corresponding convergence problem. We refer, for instance, to Lacker [82]
for a proof based on compactness arguments, and to Djete [55] for a similar result but for
models including the law of the control in the mean field interaction. As for the analysis of
MFC themselves, the related value function satisfies a form of Hamilton—Jacobi equation.
Similar to the master equation, the Hamilton—Jacobi equation is set on the space of prob-
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ability measures, but Lions’ lifting procedure allows lifting it onto an L? space (see [88]).
This observation can be used in order to adapt the notion of viscosity solutions and thus to
handle less regular solutions. We refer to [65] for a recent contribution in this direction in the
first-order case, namely when the dynamics of the players are deterministic. In the presence
of an idiosyncratic noise in the dynamics (so-called second-order case), the theory is still in
progress and a complete theory of existence and uniqueness of viscosity solutions has not
yet been achieved. We refer to Cosso and Pham [48] for an overview of the stakes.
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