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Abstract

This note is a summary of the contributions of the authors to the variational viewpoint
on homogenization. After providing a broad context, two recent projects are discussed in
detail: one concerning the large-scale behavior of quasicrystals, and the other involving
phase transitions in periodically heterogeneous media.
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1. Introduction

Homogenization, a subject with a long and rich history, deals with the macrobehav-
ior of a medium as a large-scale average of its microscopic properties. The earliest inves-
tigations seeking such effective models, appear to go back to Maxwell [76], Lord Rayleigh
[84], and others, around the start of the 20th century. For instance, in [84] Lord Rayleigh con-
siders an arrangement of cylindrical rods of constant thermal conductivity in a rectangular
array within an otherwise uniform medium. Assuming that the conductivity of the rods is
significantly different from that of the background medium, the subject of homogenization
addresses questions such as: on length-scales much larger than the period of the arrangement
of the rods, can one approximate the heat distribution in the composite material, by instead
studying an effective, homogeneous material? Remarkably, in [84] Lord Rayleigh discovers
an explicit formula for the effective conductivity in the case of the above planar arrangement.

The study of homogenization has witnessed immense growth in the last half century,
and continues to flourish. As it supplies tools for analysis of situations that involve multi-
ple spatio-temporal scales, it is not surprising that homogenization plays an important role
in such diverse fields as materials science [2, 88], fluid mechanics and mixing [54], climate
modeling [35], biology [15, 16, 68], machine learning and data science [91]. The ubiquity of
homogenization, on the one hand, and the intractability of direct computational approaches
for large, multiscale problems, on the other, renders the analytical study of homogenization
vitally important. The goal of this survey is to report progress, and the state-of-the-art, in
one segment of this vast subject, focusing on the contributions of the authors to variational
methods in homogenization. In particular, we do not discuss the recent burst of activity
in stochastic homogenization [8, 69], applications of homogenization to study discrete and
possibly random structures such as point clouds [89], optimal control theory and numerical
analysis associated with homogenization [91].

The main thrust of this article is on variational methods. As a concrete example, we
consider the benchmark problem in homogenization8̂<̂
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Here, � � RN is a bounded Lipschitz domain, a W RN ! .0;1/ is a given periodic,
measurable, bounded, uniformly elliptic, symmetric matrix field, 0 < " � 1 represents the
length-scale of the heterogeneities, and g 2 L2.@�/ is a given Dirichlet datum. Homoge-
nization seeks to find an “effective” constant matrix a that is independent of the domain �
and of the boundary condition g, such that the limit of solutions ¹u"º" to (1.1) exists (call it
u0), and solves the “homogenized” partial differential equation (PDE)8<: �r � aru D 0 in �;

u D g on @�:
(1.2)

It is, of course, of interest to also study quasiperiodic, or random choices of a. Early works
that addressed the question of justification of the formal two-scale asymptotic expansion
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led to the development of important functional analytic tools that rely on the structure of the
PDE. These include [14], methods of compensation compactness [87], G- and H-convergence
[48], Bloch decomposition [34], among others. When the matrix field a is symmetric, the
problem (1.1) has a variational formulation. Indeed, solutions to (1.1) are the unique mini-
mizers to the sequence of variational problems

min
uj@�Dg

E".u/ WD
1

2

ˆ
�

�
a

�
x

"

�
ru � ru

�
dx: (1.3)

The notion of �-convergence is well suited for the study of the " ! 0C asymptotics of the
energies E" in (1.3). This notion of convergence of a family of functionals defined on a
Banach space was introduced by De Giorgi in 1975 (see [49]). As such, along with appro-
priate compactness, this scheme of convergence of functionals is the weakest notion that
ensures that global minimizers of the approximating functional converge to a global mini-
mizer of the limiting functional. In the example in (1.3) above, the limiting energy takes the
form

E0.u/ WD
1

2

ˆ
�

haru;rui dx:

�-convergence is stable under continuous perturbations, and is therefore well adapted to the
multiscale analysis of nonlinear problems that have variational structure. More crucially, it is
sufficiently robust to allow for the limiting problem to be defined on a different space than the
approximating problems (see Section 4 for an example). Being based on soft compactness
and lower-semicontinuity arguments, approaches based on �-convergence are particularly
well-suited when fine information that is uniform in the small parameter (such as a spec-
tral gap) is difficult or even impossible to obtain. There is, however, a price to pay using
�-convergence techniques in that the underlying arguments do not often yield rates of con-
vergence.

2. An overview of contributions to homogenization

In [60], Fonseca and Francfort consider a quasistatic model aiming at understanding
the interaction between damage and fracture. To prove that a certain incremental problem
at a fixed time step is well posed, they state and use a homogenization conjecture (see [60,

Conjecture 3.15]), known at the time to be true in some important convex examples (cf. [60,
Remark 3.16]). This conjecture was then proved to be true in the general convex case in [10],
while the nonconvex case, including the quasiconvex one, remains open.

In [20], Fonseca, Bouchitté, and Mascarenhas introduced the so-called global method
for relaxation, which is central to the study of minimization problems via the direct method
in the calculus of variations. This method provides a unified pathway to identify the integral
representation of the lower-semicontinuous envelope of certain functionals that naturally
arise in several applications, such as in phase transitions, fracture mechanics, plasticity, and
image segmentation. Moreover, as an application of their methodology, they address in [20,

Section 4.3] a homogenization problem associated with integral energies coupling bulk and
surface terms, which generalized several results in the literature, including [23].
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In [24], Fonseca, Braides, and Francfort study dimension reduction problems for
heterogeneous thin domains in the context of nonlinear elasticity. The domains considered
are of the type

�" WD
®
.x0; x3/ 2 R2

� R W x0
2 !; jx3j < "h".x

0/
¯
;

where ! � R2 is a bounded domain and h" is a smooth "-dependent profile, while the elastic
integral energy of the system involves a p-growth Carathéodory function f" � f".x

0; x3I �/.
As one of the main applications of their general asymptotic analysis, they consider the
homogenization problem corresponding to the case where the profile h" is assumed to be
periodic, and the elastic density f" is assumed to be independent of x3 and periodic with
respect to x0, with the same period as h". They obtain an integral representation for the
effective energy on the middle section !.

Another contribution to the study of minimization problems via the direct method
in the calculus of variations is that of Fonseca and Müller in [63], where they address the
study of lower semicontinuity and relaxation of functionals of the type

.u; v/ 7!

ˆ
�

f
�
x; u.x/; v.x/

�
dx;

where, for N , m, d 2 N, � � RN is an open and bounded domain, u W � ! Rm, and
v W�! Rd satisfies a partial differential constraint of the type AvD 0. Here, A is a constant-
coefficient linear partial differential operator of the form

Av WD

NX
iD1

A.i/ @v

@xi

with A.i/
2 Rl�d for all i 2 ¹1; : : : ; N º and some l 2 N (2.1)

(see Section 3 for a more detailed description of these operators). In the literature, this context
is nowadays referred as the A-free setting. A typical example of such operators is A D curl,
in which case v D rw for some potential w. In particular, for w D u we are led to the
so-called gradient case, where the integral energies take the form

u 7!

ˆ
�

f
�
x; u.x/;ru.x/

�
dx:

Though relevant in many applications, the curl case does not cover some important ones in
which v must satisfy other linear partial differential constraints, such as Maxwell’s equations
in the case of electromagnetism, or, in the case of linear elasticity, v is the symmetric part of
a gradient. Therefore, the A-free fields setting offers a unified abstract approach to several
of these PDE constraints.

In [25], besides further developing the analysis in [63], Fonseca, Braides, and Leoni
address an homogenization problem in the A-free setting. More precisely, they characterize
the effective behavior of integrals energies of the form

v 7!

ˆ
�

f

�
x

"
; v.x/

�
dx subjected to Av D 0;

where " > 0 is the usual homogenization small parameter, and the integrand f is periodic
in the first variable and satisfies certain continuity, p-growth, and coercivity conditions.
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The periodic homogenization result in [25] was generalized by Fonseca and Krömer
[61] by working under weaker continuity assumptions and, most importantly, without assum-
ing coercivity on f . Moreover, they extended the widely used two-scale convergence method
(see [1,82]) to the A-free setting.

Also in the context of periodic homogenization in the general A-free framework,
Fonseca and Davoli consider in [42, 43] operators with variable coefficients, which is not a
straightforward extension of the constant coefficient case. More precisely, these two papers
are devoted to the study of the effective behavior, as " ! 0, of integral energies of the form

v 7!

ˆ
�

f

�
x;
x

"˛
; v.x/

�
dx; (2.2)

subject to periodically oscillating differential constraints of the type

A"v WD
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�
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"ˇ

�
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@xi

! 0 strongly in W �1;p.�I Rl / (2.3)

or, in divergence form,

A"v WD

NX
iD1

@

@xi

�
Ai

�
�

"ˇ

�
v

�
! 0 strongly in W �1;p.�I Rl /; (2.4)

where p 2 .1;C1/, Ai .x/ 2 Rl�d for all x 2 RN and i 2 ¹1; : : : ;N º, ˛;ˇ > 0 are param-
eters, and f is assumed periodic in the second variable. Different asymptotic regimes are
expected according to the ratio between ˛ and ˇ. The case in which ˇ > 0 and ˛ D 0 with
f independent of the first two variables (f .x; y; �/ � f .�/) is addressed in [43] under the
A-constraint (2.4). Also, Fonseca and Davoli consider in [43] the ˛ > 0 and ˇ > 0 case
under the A-constraint (2.3). The remaining cases are announced in [42,43] to be treated in
forthcoming works.

In [59], Fonseca, Ferreira, and Venkatraman initiated a similar research project to
that of Fonseca and Davoli [42,43] but, in contrast with the works mentioned above, outside
of the periodic setting. In a nutshell, [59] addresses the effective behavior, as "! 0, of integral
energies as in (2.2), with A as in (2.1), assuming a quasicrystalline assumption on the second
variable of f in place of periodicity, which poses new challenges. We refer to Section 3 for
a more detailed motivation and description of this work.

Next, we mention some authors’ contributions concerning the gradient case,
A D curl, or related cases. In [66], Fonseca and Zappale consider first and second order-
derivatives in the multiscale case aimed at composites that may feature periodic properties
at more than one microscale. The integral energies are of the form

u 7!

ˆ
�

f

�
x

"
;
x

"2
;Dsu.x/

�
dx;

where s 2 ¹1; 2º, and f is assumed to be convex in the last variable and continuous. Besides
considering general convex energies in the multiscale setting, one of the main novelties of
[66] is the characterization of multiscale limits of second-order derivatives. Prior to [66], this
characterization was only known for first-order derivatives.
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Later, Fonseca and Baía [11] address the effective behavior, as " ! 0, of integral
energies of the form

u 7!

ˆ
�

f

�
x;
x

"
;ru.x/

�
dx

without assuming any convexity-type condition on f . This work extends those in the litera-
ture by not requiring uniform continuity in space.

In [57,58], Fonseca and Ferreira revisit the multiscale framework in the case where
f grows at most linearly. These studies fall within the realm of the space of functions of
bounded variation, BV, and are aimed at identifying effective energies for composite mate-
rials in the presence of fracture or cracks. Precisely, they generalize in [58] the notion of
two-scale convergence for sequences of Radon measures with finite total variation in [3] to
the case of multiple periodic length scales of oscillations. The main result concerns the char-
acterization of the multiscale limit of ¹.u"LN

b�;Du"b�/º" � M.�I Rd / � M.�I Rd�N /

whenever ¹u"º" is a bounded sequence in BV.�I Rd /, where M.�I Rm/ with m 2 N is
the Banach space of bounded Radon Rm-valued measures, endowed with the total varia-
tion norm j � j. This result requires considerable modifications of the single microscale case
treated in [3], and is based on fine analytical and measure-theoretic arguments. Using this
characterization, Fonseca and Ferreira treat in [57] multiscale homogenized problems in the
space BV of functions of bounded variation of the form

u 7!

ˆ
�

f

�
x

%1."/
; : : : ;

x

%n."/
;ru.x/

�
dx

C

ˆ
�

f 1

�
x

%1."/
; : : : ;

x

%n."/
;

dDsu

djDsuj
.x/

�
d
ˇ̌
Dsu

ˇ̌
.x/

for u 2 BV.�I Rd /. Here, the distributional derivative of u, Du, is decomposed into its
absolutely continuous part with respect to theN -dimensional Lebesgue measure, ruLN

b�,
and its singular part,Dsu. Moreover, f 1.y1; : : : ;yn; �/ WD lim supt!1 f .y1; : : : ;yn; t�/=t

is the recession function of a function f W RnN � Rd�N ! R, separately periodic in the
first n variables, and %1; : : : ; %n are positive functions on .0;1/, representing the length-
scales, such that for all i 2 ¹1; : : : ; nº and j 2 ¹2; : : : ; nº, lim"!0 %i ."/ D 0, lim"!0 %j ."/=

%j �1."/ D 0. In the case of one microscale, Fonseca and Ferreira recover the result in [3]

under more general conditions, as well as the results in [19,45]. For two or more microscales,
they obtain new results in the literature.

In [28], Fonseca and Bufford extend toL1.�/ the paramount two-scale compactness
property, which asserts that from every bounded sequence, one can extract a subsequence
that two-scale converges, with the average over the periodic cell coinciding with the usual
weak two-scale limit. This L1-extension is obtained under an equiintegrability condition on
the sequence, and is proved in [28] using three different approaches: an adaptation of the Lp

case with p > 1, a measure-theoretic argument, and the periodic-unfolding method.
In [27], Fonseca, Bufford, and Davoli address a multiscale homogenization prob-

lem in the context of dimension reduction in nonlinear elasticity, aiming at characterizing
effective energies for thin, elastic plate-type composites. The energies considered are of the
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form
u 7!

1

h

ˆ
�h

f

�
x0

".h/
;
x0

"2.h/
;ru.x/

�
dx DW Fh.u/

for u 2 W 1;2.�hI R3/, where�h WD ! � .� h
2
; h

2
/ � R2 � R, x D .x0; x3/ 2 ! � .� h

2
; h

2
/,

h > 0, f is periodic in its first two arguments, and satisfies both common assumptions in
nonlinear elasticity and a nondegeneracy condition in a neighborhood of the set of proper
rotations. The main result in [27] concerns the characterization of the effective energy asso-
ciated with the rescaled energies 1

h2Fh.�/ depending on the values of

1 WD lim
h!0

h

".h/
and 2 WD lim

h!0

h

"2.h/
;

where limh!0 ".h/D limh!0 "
2.h/D 0. This rescaling of the energies corresponds to Kirch-

hoff’s nonlinear bending theory for plates, and the values of 1 and 2 represent the relative
ratios between the thickness parameter h and the two homogenization length-scales, " and "2.
These authors obtain different limit models depending on these ratios. Their results extend
those in [72, 90] to the multiscale case, and a key and nontrivial step in [27] is the charac-
terization of the three-scale limit of the sequence of linearized elastic stresses. Indeed, the
presence of three scales increases the technicality of the problem in all scaling regimes.

Very recently, in [36, 37], Fonseca, Cristoferi, Hagerty, and Popovici study a vari-
ational model for fluid–fluid phase transitions with small scale heterogeneities in the case
where the small heterogeneities are of the same order of the scale governing the phase tran-
sition, and characterized by a small parameter " > 0. The main result is the limit behavior,
as " ! 0, of integral energies of the form

u 7!

ˆ
�

�
1

"
W

�
x

"
; u.x/

�
C "

ˇ̌
ru.x/

ˇ̌2
�

dx;

whereW W RN � Rd ! Œ0;C1/ is a double-well potential that is periodic in the first variable
and has two zeros. This limit behavior is given not by an isotropic interfacial energy as one
might expect given the isotropy of the surface energy penalization, "jruj2, but instead it
has an anisotropic interfacial energy. This anisotropy results from the intricate interaction
between homogenization and the phase transitions, and is encoded in the limit cell problem.
In [32], the authors study fine properties on the minimizers of the family of problems defining
the asymptotic cell formula obtained in [36, 37]. They also obtain bounds for the limiting
anisotropic surface tension in terms of the large-scale behavior of the distance function to
hyperplanes in certain periodic Riemannian metrics. This work, along with a discussion of
[36], is the content of Section 5.2.

3. Homogenization of quasicrystalline functionals via

two-scale-cut-and-project convergence

The work [59] addresses a homogenization problem aimed at understanding com-
posites with a quasicrystalline microstructure. Such composites have been playing a central
role in materials science and other areas of engineering [9,18,53,70,73,74,81,93]; for example,
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Al–Cu–Fe quasicrystalline materials in polymer-based composites have significantly shown
to improve wear-resistance to volume loss, and a two-fold increase in the elastic moduli. The
2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for the striking discovery of
quasicrystals, which was announced in the early 1980s.

A key feature of a quasicrystalline structure is that its properties are ordered but
are neither periodic nor random. In particular, the mathematical study of quasicrystalline
composites does not fit within the classical periodic homogenization theory, while almost-
periodic and stochastic homogenization approaches do not take full advantage of the quasi-
crystalline feature of the problem, often leading to asymptotic formulas that pose compu-
tational difficulties and are not stable under perturbations. Instead, in [59], a homogeniza-
tion procedure based on the two-scale-cut-and-project convergence, introduced in [21] and
recently revisited in [92], is adopted and further developed. This two-scale-cut-and-project
homogenization procedure leads to a more tractable (even if higher-dimensional) cell prob-
lem.

To describe the problem and the results in [59], we first recall the cut-and-project
method to model quasicrystals. This method was introduced by de Bruijn [44] and further
developed by Duneau and Katz [52], and extends Penrose’s ideas of aperiodic tilings of the
plane [83] to higher dimensions (also see [21]). Roughly speaking, we can model anN -dimen-
sional quasicrystalline patterns by cutting periodic tilings in an m-dimensional space, with
m > N , through an N -dimensional subspace with irrational slope. To be precise, given an
N -dimensional quasicrystal R and representing by �R W Rn ! R a constitutive property
ofR, we can findm 2 N, withm>N , a Y m-periodic function � W Rm ! R with Y m � Rm

a parallelotope, and a linear map R W Rn ! Rm such that

�R.x/ D �.Rx/: (3.1)

In the homogenization literature, the structural condition (3.1) is referred to as quasi-
periodicity [30, 75]. We refer to [21, 59] for relevant examples of such linear maps R. Here,
and in the sequel, we do not distinguish the linear map from its associated matrix in Rm�N ,
and denote both by R. Also, we do not distinguish between the transpose matrix and the
adjoint of R, and denote both by R�.

In general, there are multiple choices for m, � , and R (see [21]). However, the
homogenization analysis in this cut-and-project setting does not depend on R provided it
satisfies the following diophantine condition

R�k 6D 0 for all k 2 Zm
n¹0º; (3.2)

where R� denotes the transpose of R. This condition implies that some entries of R must
be irrational, justifying the expression irrational slope used above.

In [59], we address the homogenization problem of characterizing the asymptotic
behavior, as " ! 0C, of integral energies of the form

F".u/ WD

ˆ
�

fR

�
x;
x

"
; u.x/

�
dx (3.3)
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for u 2 Lp.�I Rd / satisfying Au D 0, where p 2 .1;1/ and

Au WD

NX
iD1

A.i/ @u

@xi

with A.i/
2 Rl�d for all i 2 ¹1; : : : ; N º:

The precise meaning of the preceding condition Au D 0, in which case we say that u is
A-free, is by duality, i.e., ˆ

�

u � A�� dx D 0

for all � 2C 1
c .�IRl /, where A� is the formal adjoint of A with A�� WD �

PN
iD1.A

.i//T @�
@xi

.
As usual within studies involving A-free vector fields, we assume that A satisfies

the constant-rank property [63,80,87]; that is, there exists r 2 N such that for allw 2 Rn n ¹0º,
we have

rank A.w/ D r; (3.4)

where A W Rn ! Rl�d denotes the symbol of A, and is defined by A.w/ WD
PN

iD1 A
.i/wi

for w 2 Rn.
A key step to study the asymptotic behavior of the integral energies in (3.3) via

the two-scale-cut-and-project convergence is the characterization of the two-scale-cut-and-
project limits (or, for brevity, R-two-scale limits) associated with Lp-bounded sequences
of A-free vector fields. As we mentioned before, this method has the benefit of taking full
advantage of the quasicrystalline feature of the problem and, in contrast with the random
homogenization case, leads to a simple and more tractable cell formula (see (3.13) below).
Before stating our main homogenization result associated with the integral energies in (3.3),
Theorem 3.9 below, we revise the main definitions and results regarding the cut-and-project-
two-scale convergence obtained in [59], which are of interest on their own.

The notion of R-two-scale convergence was introduced in [21] (also see [92]) as an
extension of the usual notion of two-scale convergence [1,82] to enable the study of compos-
ites whose underlying microstructure has a quasicrystalline feature. In [21, 92], the authors
consider sequences in L2 and their arguments are based on Fourier analysis, relying heavily
on Parseval’s and Plancherel’s identities. Also, in [21] the authors characterize the R-two-
scale limit of bounded sequences in W 1;2, while in [92] the authors characterize the limit
associated with bounded sequences inL2 that are divergence-free or curl-free. In [59], besides
generalizing these results to the more general setting of Lp with p 2 .1;1/, we provide a
unified approach to all the previous cases by considering bounded sequences in Lp that are
A-free, in the spirit of [61] concerning the periodic case.

We start by introduction the definition of R-two-scale convergence. In what fol-
lows, we assume that " takes values on an arbitrary sequence of positive numbers that
converges to zero. Moreover, we use the subscript # within function spaces to highlight an
underlying periodicity, in which case the domain indicates the periodicity cell. For instance,
C#.Y

m/ D ¹u 2 C.Rm/ W u is Y m-periodicº and, for a parallelotope in Rn, … � Rn,
L

p
# .…/D ¹u 2L

p
loc.R

n/ W u is …-periodicº. Also, given a Lebesgue measurable setB � Rk ,
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with k 2 N, we use the average notation
ffl

B
� in place of 1

Lk.B/

´
B

�, where Lk.B/ denotes
the k-dimensional Lebesgue measure of B .

Definition 3.1 (R-two-scale convergence). A sequence ¹u"º" � Lp.�I Rk/ is said to
R-two-scale converge to a function u 2 Lp.� � Y mI Rk/, and we write u"����*

R-2sc
����* u if

for all ' 2 Lp0

.�IC#.Y
mI Rk// we have

lim
"!0C

ˆ
�

u".x/ � '

�
x;

Rx

"

�
dx D

ˆ
�

 
Y m

u.x; y/ � '.x; y/ dx dy: (3.5)

The next proposition states some basic properties of R-two-scale convergence in
Lp.�I Rk/, and we refer to [59, Remarks 3.2 and 3.3 and Propositions 3.4 and 3.5] for its
proof.

Proposition 3.2. Let ¹u"º" �Lp.�IRk/, u2Lp.�� Y mIRk/, and Nu2Lp.�IRk/. Then,

(i) (uniqueness of R-two-scale limits) There exists at most a function
Qu 2 Lp.� � Y mI Rk/ such that u"����*

R-2sc
����* Qu.

(ii) (on the test functions) If ¹u"º" is bounded in Lp.�I Rk/, then u"����*
R-2sc
����* u if

and only if (3.5) holds for all ' 2 C1
c .�IC1

# .Y mI Rk//.

(iii) (R-two-scale and weak limits) If u"����*
R-2sc
����* u, then u" * Nu0 weakly in

Lp.�I Rk/, where Nu0.�/ WD
ffl

Y m u.�; y/dy. In particular, ¹u"º" is bounded in
Lp.�I Rk/.

(iv) (R-two-scale and strong limits) If u" ! Nu in Lp.�I Rk/, then u"����*
R-2sc
����* Nu.

The next proposition provides an important example of sequences that R-two-scale
converge, which is at the core of several homogenization results using the R-two-scale con-
vergence. In particular, it is used to prove the compactness property with respect to the
R-two-scale convergence stated in Proposition 3.4.

Proposition 3.3. Let  2 L1.�I C#.Y
mI Rk//, and assume that R satisfies (3.2). Then

¹ .�; R �

"
/º" is an equiintegrable sequence in L1.�I Rk/ such that �

�;
R �

"

�
L1.�IRk/

6 k kL1.�IC#.Y mIRk// D

ˆ
�

sup
y2Y m

ˇ̌
 .x; y/

ˇ̌
dx (3.6)

and
lim

"!0C

ˆ
�

 

�
x;

Rx

"

�
dx D

ˆ
�

 
Y m

 .x; y/ dx dy: (3.7)

In particular, if  2 Lp.�IC#.Y
mI Rk//, then ¹ .�; R �

"
/º" is a p-equiintegrable sequence

in Lp.�I Rk/ that R-two-scale converges to  .

The proof of Proposition 3.3 can be found in [59, Proposition 3.7 and Corollary 3.8],
while the proof of the following compactness result can be found in [59, Proposition 3.9].

Proposition 3.4. Let ¹u"º" � Lp.�I Rk/ be a bounded sequence, and assume that R satis-
fies (3.2). Then, there exist a subsequence "0 � " and a function u 2 Lp.� � Y mI Rk/ such
that u"0����*

R-2sc
����* u.
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As shown in [21, Remark 2.8], this compactness property may fail in the case in which
R does not satisfy (3.2).

To characterize the R-two-scale limits associated with Lp-bounded sequences of
A-free vector fields, we recall below the notion of .A;Ay

R�/-free vector fields introduced in
[59] (see [59, Definition 3.7 and Remark 3.6]).

Definition 3.5 (.A; A
y

R�/-free fields). Let w 2 Lp.�I L
p
# .Y

mI Rd //, and define
Nw0 2 Lp.�I Rd / and Nw1 2 Lp.�I L

p
# .Y

mI Rd // by setting Nw0 WD
ffl

Y m w.�; y/ dy and
Nw1 WD w � Nw0. We say that w is .A;Ay

R�/-free if the two following conditions hold:

.i/ for all � 2 C 1
c .�I Rl /, we have

ˆ
�

w0 � A�� dx D 0, (3.8)

.ii/ for a.e. x 2 � and for all  2 C 1
# .Y

m
I Rl /,

we have
ˆ

Y m

Nw1.x; y/ � A�
R .y/ dy D 0, (3.9)

where

A�
WD �

NX
iD1

.A.i//T
@

@xi

and A�
R WD �

NX
iD1

mX
mD1

.A.i//T Rmi

@

@ym

:

For brevity, we write A Nw0 D 0 and A
y

R� Nw1 D 0 to mean (i) and (ii), respectively.

Next, we state our main result regarding the characterization of the limits of bounded
sequences in Lp that are A-free.

Theorem 3.6. Let R 2 Rm�n satisfy (3.2). A function u 2 Lp.� � Y mI Rd / is the R-two-
scale limit of an A-free sequence ¹u"º" � Lp.�I Rd / if and only if u is .A;Ay

R�/-free in
the sense of Definition 3.5, that is,

A Nu0 D 0 and A
y

R� Nu1 D 0 (3.10)

in the sense of (3.8) and (3.9), respectively, where Nu0 WD
ffl

Y m u.�; y/ dy and Nu1 WD u � Nu0.

The proof of Theorem 3.6 in [59] uses similar arguments to those in [61] concerning
the periodic case (see [61, Theorem 2.12]). The sufficient part in Theorem 3.6, which guaran-
tees that (3.10) fully characterizes the R-two-scale limits, is new in the literature even for
p D 2 and A WD curl or A WD div treated in [21,92]. Furthermore, in [59, Section 5], we give
an alternative proof of Theorem 3.6 for the A WD curl case using arguments based on Fourier
analysis that differ from those in [21,92] because Parseval’s and Plancherel’s identities do not
hold for p 6D 2. This alternative proof provides the equivalent alterative characterization for
the R-two-scale limit of bounded sequences inW 1;p in Theorem 3.7 below, and we believe
it provides useful arguments to study homogenization problems involving quasicrystalline
functionals in the A WD curl case.

Theorem 3.7. Let R 2 Rm�n satisfy (3.2) and letY m � Rm be a parallelotope. Then, a func-
tion v 2Lp.�� Y mIRn/ is the R-two-scale limit of a sequence ¹rv"º" with ¹v"º" bounded
in W 1;p.�/ if and only if there exist v0 2 W 1;p.�/ and v1 2 Lp.�I G

p
R
/ such that

v D rv0 C v1;
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where

G
p
R

WD
®
w 2 L

p
# .Y

m
I Rn/ W Owk D �kR�k for some ¹�kºk2Zm � C with �0 D 0

¯
(3.11)

with Owk WD
ffl

Y m w.y/e
�2�ik�y dy, k 2 Zm, denoting the Fourier coefficients of w.

Remark 3.8. We recall that if u" 2 Lp.�I Rn/ is curl-free in Rn with� simply connected,
then there exists v" 2W 1;p.�/ such that u" D rv". Thus, in terms of the notations in the two
previous results with d D N , we have Nu0 D rv0 and Nu1 D v1. In particular, (3.11) provides
an alternative characterization of AR� - and A

y

R� -free vector fields (see Definition 3.5) in
the A WD curl case (also see [59, Remark 5.7] for a more detailed analysis).

Finally, we state the main homogenization result in [59] associated with the
integral energies in (3.3), proved under the following assumptions on the Lagrangian,
fR W � � Rn � Rd ! Œ0;1/:

(H1) (quasicrystallinity) there existm 2 N, withm > N , a matrix R 2 Rm�n sat-
isfying (3.2), and a continuous function f W � � Rm � Rd ! Œ0;1/ such
that the function f .x; �; �/ is Y m-periodic for each .x; �/ 2�� Rd , with Y m

denoting a parallelotope in Rm, and

fR.x; z; �/ D f .x;Rz; �/

for all .x; z; �/ 2 � � Rn � Rd .

(H2) (growth) there exist p 2 .1;1/ and C > 0 such that

0 6 fR.x; z; �/ 6 C
�
1C j�jp

�
for all .x; z; �/ 2 � � Rn � Rd .

For the proof in [59] of the �-liminf inequality in Theorem 3.9 below, we require, in addition,

(H3) (convexity) for all .x; y/ 2 � � Rm, the function � 7! f .x; y; �/ is convex
and C 1.

Theorem 3.9. Let�� Rn be an open and bounded set, let fR W�� Rn � Rd ! Œ0;1/ be
a function satisfying (H1)–(H3), let F" be the functional introduced in (3.3), and assume
that (3.4) holds. Then, the sequence ¹F"º" �-converges on UA WD ¹u 2 Lp.�I Rd / W

Au D 0º as " ! 0C, with respect to the weak topology in Lp.�I Rd /, to the functional
Fhom defined, for u 2 UA, by

Fhom.u/ WD inf
w2WA

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dx dy;

where

WA WD

²
w 2 Lp

�
�IL

p
#

�
Y m

I Rd
��

W w is
�
A;A

y

R�

�
-free in the sense of Definition 3.5,

with
ˆ

Y m

w.�; y/ dy D 0

³
:

(3.12)
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Precisely, given an arbitrary sequence ¹"nºn2N � RC converging to 0, the following pair
of statements holds:

(1) (�-liminf inequality) Let ¹unºn2N � UA be a sequence such that un * u in
Lp.�I Rd / for some u 2 Lp.�I Rd /. Then, u 2 UA and

lim inf
n!1

F"n.un/ > Fhom.u/:

(2) (recovery sequence) For every u 2 UA, there exists sequence ¹unºn2N � UA

such that un * u in Lp.�I Rd / and

lim sup
n!1

F"n.un/ 6 Fhom.u/:

Moreover, for all u 2 UA, we have

Fhom.u/ D

ˆ
�

fhom
�
x; u.x/

�
dx;

where
fhom.x; �/ WD inf

v2VA

 
Y m

f
�
x; y; � C v.y/

�
dy (3.13)

with

VA WD

²
v 2 L

p
# .Y

m
I Rd / W v is AR� -free in the sense of (3.9) and

ˆ
Y m

v.y/ dy D 0

³
:

(3.14)

Remark 3.10 (On the hypotheses of Theorem 3.9, cf. [59, Remark 1.2]). (i) In the homog-
enization literature, measurability of f with respect to the fast-variable is often preferred
over continuity. As we discuss in [59, Section 2], measurability of fR requires, in general,
Borel-measurability of f . A common approach to deal with lack of continuity is to com-
bine periodicity with Scorza–Dragoni’s-type results that, up to a set of small measure, allow
reducing the problem to the continuity setting. Here, however, we cannot use such an argu-
ment because a set of smallm-dimensional Lebesgue measure, the ambient space for the fast
variable in terms of (the periodic function) f , may not have smallN -dimensional Lebesgue,
the ambient space for the fast variable in terms of (the quasicrystalline function) fR. (ii) The
nonconvex case raises nontrivial difficulties in the quasicrystalline setting, and will be the
subject of a forthcoming work. (iii) In the Sobolev setting, homogenization of integral ener-
gies of the form (3.3) under nonperiodic assumptions was undertaken in [22, 41, 71] in the
A WD curl case, assuming coercivity. Within the quasicrystalline framework, Theorem 3.9
extends these results to the general A-free setting and without coercivity.

The proof in [59] of Theorem 3.9, which we sketch next, is based on �-convergence
and on two-scale convergence adapted to the quasicrystalline setting, also called two-scale-
cut-and-project convergence.

Proof of Theorem 3.9. We refer to [59] for a detailed proof of the assertions in Theorem 3.9.
Here, we only present a sketch of the proof. Let ¹"nºn2N � RC be an arbitrary sequence
converging to 0.
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Step 1. Fix u 2 UA and assume that w 2 WA \ C 1.�I C 1
# .Y

mI Rd //. For
.x; y/ 2 � � Y m, define

 .x; y/ WD f
�
x; y; u.x/C w.x; y/

�
:

Using (H1), (H2), the continuity of f , and the regularity of w, we conclude that
 2 L1.�IC#.Y

m//. Then, by Proposition 3.3, we have

lim
n!1

ˆ
�

fR

�
x;
x

"n

; wn.x/

�
dx D

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx; (3.15)

where, for x 2 �,
wn.x/ WD u.x/C w

�
x;

Rx

"n

�
:

It can be checked that
¹wnºn2N is a p-equiintegrable sequence in Lp.�I Rd /;

wn * u weakly in Lp.�I Rd /; Awn ! 0 in W �1;p.�I Rl /:

Then, using an A-free periodic extension lemma established in [63, Lemma 2.15] (also see [61,

Lemma 2.8] and [59, Lemma 2.3]), we can find a sequence ¹unºn2N � Lp.�I Rd / such that

¹unºn2N is p-equiintegrable; Aun D 0 in Lp.�I Rl /; un � wn ! 0 in Lp.�I Rd /:

(3.16)

In particular, un * u weakly in Lp.�I Rd /. Moreover, from (3.15) and a continuity-type
result for fR under (3.16) proved in [59, Lemma 4.2], we have

lim
n!1

ˆ
�

fR

�
x;
x

"n

; un.x/

�
dx D lim

n!1

ˆ
�

fR

�
x;
x

"n

; wn.x/

�
dx

D

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx:

Using the preceding arguments and a density argument, we can show that for each
ı > 0, u 2 UA, and w 2 WA, there exists a sequence ¹unºn2N � UA such that un * u

weakly in Lp.�I Rd / as n ! 1, and

lim
n!1

ˆ
�

fR

�
x;
x

"n

; un.x/

�
dx 6

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx C ı: (3.17)

Hence, taking the infimum over w 2 WA first, and then letting ı ! 0 in (3.17), we get

�- lim sup
n!1

F"n.u/ 6 Fhom.u/;

where

�- lim sup
n!1

F"n.u/ WD inf
°

lim sup
n!1

F"n.u"/ W un * u in Lp.�I Rd / as n ! 1;

Aun D 0 for all n 2 N
±
:

Step 2. Here, we prove the �-liminf inequality. Let ¹unºn2N � UA be a sequence
such that un * u in Lp.�I Rd / for some u 2 Lp.�I Rd /.

Because un 2 UA for all n 2 N and convergence un * u in Lp.�I Rd /, we have
u 2 UA. Moreover, by the sufficient part in Theorem 3.6 and by Proposition 3.2, we have
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un����*
R-2sc
����* v for a vector-field v that is .A;Ay

R�/-free in the sense of Definition 3.5, with´
Y m v.�; y/ dy D u.�/. In particular, we have the decomposition

v D uC v1; v1 2 Lp
�
�IL

p
# .Y

m
I Rd /

�
; A

y

R�v1 D 0;

ˆ
Y m

v1.�; y/ dy D 0:

Let ¹ j ºj 2N � Cc.�I C#.Y
mI Rl // be a sequence converging to v in

Lp.� � Y mI Rd / and pointwise in � � Y m. By (H3), we have, for all n; j 2 N,

f

�
x;

Rx

"n

; un.x/

�
> f

�
x;

Rx

"n

;  j

�
x;

Rx

"n

��
C
@f

@�

�
x;

Rx

"
;  j

�
x;

Rx

"

��
�

�
un.x/ �  j

�
x;

Rx

"

��
:

Integrating this estimate over � and passing to the limit as n ! 1, Proposition 3.3 and
(H2)–(H3) yield

lim inf
n!1

F"n.un/ D lim inf
n!1

ˆ
�

f

�
x;

Rx

"n

; un.x/

�
dx

>
ˆ

�

 
Y m

f
�
x; y;  j .x; y/

�
dx dy

C

ˆ
�

 
Y m

@f

@�

�
x; y;  j .x; y/

�
�
�
v.x; y/ �  j .x; y/

�
dx dy (3.18)

for all j 2 N. Letting j ! 1 in this inequality, we obtain from Fatou’s lemma and (H1)
that

lim inf
n!1

F"n.un/ >
ˆ

�

 
Y m

f
�
x; y; v.x; y/

�
dy dx

D

ˆ
�

 
Y m

f
�
x; y; u.x/C v1.x; y/

�
dy dx

> inf
w2WA

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dx dy D Fhom.u/:

Step 3. From Steps 1 and 2, we conclude that for all u 2 UA, we have

Fhom.u/ D �- lim inf
n!1

F"n.u/ D �- lim sup
n!1

F"n.u/; (3.19)

where

�- lim inf
n!1

F"n.u/ WD inf
°

lim inf
n!1

F"n.un/ W un * u in Lp.�I Rd / as n ! 1;

Aun D 0 for all n 2 N
±
:

Formula (3.19) asserts that ¹F"º" �-converges as "! 0C, with respect to the weak topology
inLp.�IRd /, to Fhom on UA, and is equivalent to proving that both the �-liminf inequality
and the recovery sequence properties in Theorem 3.9 hold (see [39]).

Step 4. Fix u 2 UA, and let w 2 WA. It can be checked that

x 2 � 7! fhom
�
x; u.x/

�
(3.20)

is a measurable map. Moreover, for a.e. x 2 �, we have w.x; �/ 2 VA. Thus, for a.e. x 2 �,

inf
v2VA

 
Y m

f
�
x; y; u.x/C v.y/

�
dy 6

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy:
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Integrating this estimate over �, and then taking the infimum over w 2 WA, we conclude
that ˆ

�

fhom
�
x; u.x/

�
dx 6 Fhom.u/:

The proof of the converse inequality makes use of a measurable selection criterion
proved in [61, Lemma 3.10] (also see [31]), and we refer to [59, Proposition 4.6] for the details.

4. Phase transitions in heterogeneous media

Heterogeneous media abound in nature, ranging from biological tissues [68] to geo-
logical formations [4]. An essential thermodynamic feature of such systems is phase transi-
tions. The presence of heterogeneities during phase transformations is, in general, expected
to lead to complex interactions such as pinning and depinning phenomena of interfacial
structures, and stick–slip behaviors for possibly anisotropic interface motion [17]. In [36],
Fonseca, Cristoferi, Hagerty, and Popovici initiate a project to understand the interaction of
the dynamics of phase transitions with heterogeneities. Further progress is made in [32], and
the goal of this section is to outline these developments.

The study of pattern formation in equilibrium configurations phase separation is an
extremely complex phenomenon, which has attracted the interest of many mathematicians.
In the case of homogeneous substances, variational models such as the Modica–Mortola
functional (see [78, 79,86]) and its vectorial (see [12,65]), anisotropic (see [13,64]), and non-
isothermal variants (see [38]), have been proven capable of describing the stable configura-
tions observed in experiments. For composite materials, it has been realized experimentally
(see [17]) that the microscopic scale heterogeneities can affect the macroscopic equilibrium
configurations, as well as the dynamics of interfaces. Therefore, physics requires the math-
ematical models to include these microscopic effects.

In this paper, we consider a variational approach to the study of phase transitions in
heterogeneous media in the case where the scale of the heterogeneities is the same as those
at which the phase transitions phenomenon takes place. In particular, we study a Modica–
Mortola like phase field model where the heterogeneities are modeled by oscillations in the
potential. To be precise, let d; N > 1, fix an open bounded set � � RN with Lipschitz
boundary and, for " > 0, define the energy F" W H 1.�I Rd / ! Œ0;1� as

F".u/ WD

ˆ
�

�
1

"
W

�
x

"
; u.x/

�
C "

ˇ̌
ru.x/

ˇ̌2
�

dx: (4.1)

Here u 2 H 1.�I Rd / represents the phase field variable. The assumptions that the double-
well potential W W RN � Rd ! Œ0;1/ has to satisfy differ according to the questions
addressed, and therefore we will present them in each section.

We are interested in understanding what is the sharp interface limit as the parameter
" ! 0. Local minimizers of this limit under a mass constraint will describe equilibrium
configurations.
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Previous investigations on models related to the one considered in this paper have
been undertaken by several authors. In particular, in [6] (see also [5]) Ansini, Braides, and
Chiadò Piat considered the case where oscillations are in the forcing term f .ru/ (which gen-
eralizes jruj2), while in [50] and [51] by Dirr, Lucia, and Novaga investigated the interaction
of the fluid with a periodic mean zero external field. Moreover, in [26], Braides and Zeppieri
studied the � expansion of the scalar one-dimensional case, allowing the zeros of the poten-
tial to jump in a specific way. Finally, the case of higher-order derivatives is examined in [67]

by Francfort and Müller.

5. Phase field model

In this section, we present the results obtained in [32,33,36,37].

5.1. Sharp interface limit
In order to study the sharp interface limit of the energy (4.1), we assume that the

double-well potential W W RN � Rd ! Œ0;1/ satisfies the following properties:

(A1) For all p 2 Rd , x 7! W.x; p/ is Q-periodic, where Q WD .�1=2; 1=2/N ;

(A2) W is a Carathéodory function, i.e.,

(i) for all p 2 Rd , the function x 7! W.x; p/ is measurable,

(ii) for a.e. x 2 Q, the function p 7! W.x; p/ is continuous;

(A3) There exist z1; z2 2 Rd such that, for a.e. x 2 Q,W.x; p/ D 0 if and only if
p 2 ¹z1; z2º,

(A4) There exists a continuous function eW W Rd ! Œ0;1/, vanishing only at
p D z1 and at p D z2, such that eW .p/ 6 W.x; p/ for a.e. x 2 Q;

(A5) There exist C > 0 and q > 2 such that
1

C
jpj

q
� C 6 W.x; p/ 6 C

�
1C jpj

q
�

for a.e. x 2 Q and all p 2 Rd .

Remark 5.1. Assumption (A2)(i) above is the strongest we can ask when modeling peri-
odic inclusions of different materials. Indeed, when each cell Q is composed of k different
inclusions of materials each in a region E1; : : : ; Ek � Q, the potential W takes the form

W.x; p/ WD

kX
iD1

Wi .p/�Ei
.x/;

whereWi W Rd ! Œ0;1/ are continuous functions with quadratic growth at infinity and such
that Wi .p/ D 0 if and only if p 2 ¹z1; z2º. Therefore the function W in the first variable
is, in general, only measurable. Moreover, the continuity of W in the second variable, the
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nondegeneracy of the potential (A4), and the growth at infinity in the second variable (A5)
are compatible with what is usually assumed in the physical literature.

The limiting functional will be an interfacial energy whose energy density is defined
via a cell formula as follows.

Definition 5.2. For � 2 SN �1, let u0;� W RN ! Rd be the function

u0;�.x/ WD

8<: z1 if x � � 6 0;

z2 if x � � > 0;

and denote by Q� the family of cubes centered at the origin with unit length sides and having
two faces orthogonal to �. For T > 0,Q� 2 Q� , and � 2C1

c .B.0;1//with
´

RN �.x/dx D 1,
where B.0; 1/ is the unit ball in RN , consider the class of functions

C.�;Q� ; T / WD
®
u 2 H 1.TQ� I Rd / W u D u0;� � � on @.TQ�/

¯
:

We define the function � W SN �1 ! Œ0;1/ as

�.�/ WD lim
T !1

g.�; T /;

where, for each � 2 SN �1 and T > 0,

g.�; T / WD
1

T N �1
inf

²ˆ
TQ�

�
W

�
y; u.y/

�
C jruj

2
�
dy W Q� 2 Q� ; u 2 C.�;Q� ; T /

³
:

The main properties of the function � W SN �1 ! Œ0;1/ that are relevant for our
study are collected in the following result. For the proof, see [36, Lemma 4.1, Remark 4.2,

Lemma 4.3, Proposition 4.4].

Lemma 5.3. The following hold:

(i) For every � 2 SN �1, the quantity �.�/ is well defined and finite;

(ii) The value of �.�/ does not depend on the choice of the mollifier �;

(iii) The map � 7! �.�/ is upper semicontinuous on SN �1;

(iv) The infimum in the definition of g.�; T / may be taken with respect to one fixed
cube Q� 2 Q� , i.e., given � 2 SN �1, for any Q� 2 Q� it holds

�.�/D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
W

�
y;u.y/

�
C jruj

2
�
dy W u 2 C.�;Q� ; T /

³
:

We are now in position to introduce the limiting functional.

Definition 5.4. Define the functional F0 W L1.�I Rd / ! Œ0;1� as

F0.u/ WD

8<:
´

@�A
�.�A.x// dH N �1.x/ if u 2 BV.�I ¹z1; z2º/;

C1 else;
(5.1)

where A WD ¹u D z1º, and �A.x/ denotes the measure theoretic external unit normal to the
reduced boundary @�A of A at the point x.
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Figure 1

The source of anistropy for the limiting functional. If �A.x/ is oriented with a direction of periodicity of W , the
(local) recovery sequence would simply be obtained by using a rescaled version of the recovery sequence for
�.�A.x// in each yellow cube and by setting z1 in the green region, and z2 in the pink one. If, instead, �A.x/ is
not oriented with a direction of periodicity of W , the above procedure does not guarantee that we recover the
desired energy, since the energy of such functions is not the sum of the energy of each cube.

Remark 5.5. Note that by Lemma 5.3 (i), it holds that F0.u/<1 for allu2 BV.�I¹z1;z2º/,
and, by Lemma 5.3 (ii), the definition does not depend on the choice of the mollifier �.

Theorem 5.6. Let ¹"nºn2N � .0; 1/ be a sequence such that "n ! 0C as n ! 1. Assume
that (A1), (A2), (A3), (A4), and (A5) hold.

(i) If ¹unºn2N � H 1.�I Rd / is such that

sup
n2N

F"n.un/ < C1

then, up to a subsequence (not relabeled), un !u inL1.�IRd /, for some func-
tion u2 BV.�I ¹z1; z2º/.

(ii) The functional F0 is the �-limit in the L1 topology of the family of functionals
¹F"nºn2N .

Remark 5.7. The most interesting aspect of the above result is the anisotropic character
of the limiting functional. This might come as a surprise since the initial functional F" is
isotropic in its penalization of gradients, but there is a hidden anisotropy: the possible mis-
match between the directions of periodicity of W and the local orientation of the limiting
interface @�A (see Figure 1).

We would like to comment on the main ideas behind the proof of Theorem 5.6. Com-
pactness follows by using classical arguments (see [65]), since the nondegeneracy assumption
(A4) allows reducing to the case of a nonoscillating potential

F"n.un/ >
ˆ

�

�
1

"n

eW �
un.x/

�
C "n

ˇ̌
rnu.x/

ˇ̌2
�

dx:
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The liminf inequality (see [36, Proposition 6.1]) is based on a standard blow-up argu-
ment (see [62]) at a point x0 2 @�A to reduce to the case where the limiting function is u0;�

and the domain isQ� 2 Q� , where � D �A.x0/. Then, a technical lemma (see [36, Lemma 3.1])
in the spirit of De Giorgi’s slicing method (see [46]) allows modifying the given sequence
¹unºn2N � H 1.Q� I Rd / into a new sequence ¹vnºn2N � H 1.Q� I Rd / with vn ! u0;� in
L1 such that

lim inf
n!1

F"n.un/ > lim sup
n!1

F"n.vn/;

and vn D �n � u0;� on @Q� , where �n.x/ WD "�N
n �.x="n/. The required inequality then fol-

lows by using a change of variable, and the definition of �.�/ together with Lemma 5.3 (iv).
The main challenges are related to the proof of the limsup inequality (see [36, Propo-

sition 7.1]) for a function u 2 BV.�; ¹a; bº/, which requires new geometric arguments. The
idea is first to prove the result for functions u 2 BV.�I ¹a; bº/, whose outer normals to
the reduce boundary have rational coordinates, and then use the density of this class of
functions in BV.�I ¹a; bº/ together with Reshetnyak’s upper semicontinuity theorem (by
Lemma 5.3 (iii) the function � 7! �.�/ is upper semicontinuous on SN �1) to conclude in
the general case. In order to tackle the first step, we use a general strategy developed by De
Giorgi, which can be seen as a sort of reverse blow-up argument: we consider the localized
�-limsup as a map on Borel sets and we prove that it is indeed a Radon measure �. This is
done by using a simplification of the De Giorgi–Letta coincidence criterion for Borel mea-
sures (see [47]) by Dal Maso, Fonseca, and Leoni (see [40, Corollary 5.2]). Next, we show that
� is absolutely continuous with respect to the measure � WD H N �1

b@�A. The result follows
by proving that the density of � with respect to � at a point x0 2 @�A is bounded above by
�.�A.x0//. It is in this step that we exploit the fact that �A.x0/ 2 SN �1 \ QN �1. Indeed,
by using the fact that W is periodic (with a different period) also as a function on any cube
Q whose faces are normal to directions in SN �1 \ QN �1, we can estimate the energy of a
configuration similar to that in Figure 1 on the left.

Remark 5.8. The strategy used to prove the above result is robust enough to be easily
adapted to prove the analogous result when a mass constraint is enforced. Moreover, as a
consequence of the �-limit result, we get that the function � W SN �1 ! Œ0;1/ is continu-
ous, and its 1-homogeneous extension is convex.

The upshot of the foregoing result is that microscopic heterogeneities during phase
transitions result in anisotropic surface tensions at the macroscopic level. Natural follow-up
questions are:

(1) Beyond convexity, what can one say about the effective surface tension �? What
functions � are attainable as effective surface tensions of phase transitions in
periodic media?

(2) Considering the gradient flow dynamics of an energy as in (4.1), what are the
" ! 0 asymptotics? Does one indeed obtain a suitable weak formulation of
anisotropic mean curvature flow, by analogy with the isotropic setting? Further-
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more, what happens to the asymptotics of the gradient flow when the length-
scales of homogenization and phase transitions differ?

In [32], we provide partial answers to the first question above, by relating it to a geometry
problem. In the sequel, we assume the product form of the potential W :

W.y; �/ WD a.y/.1 � u2/2; y 2 RN ; u 2 R: (5.2)

Here a W RN ! R is Q-periodic, and nondegenerate in the sense that

� 6 a.y/ 6 ‚; y 2 RN ; (5.3)

for some 0 < � < ‚ < 1. Note that assumptions (A1)–(A5) of Section 5.1 are satisfied
with z1 D �1, z2 D 1, and eW .p/ WD .1 � p2/2. The fact that u is scalar-valued is crucial
for a number of the results proven in [32, 33] since we use arguments based on the maxi-
mum principle. However, this is not the case of all the results, and we will indicate this as
appropriate.

5.2. Bounds on the anisotropic surface tension �

5.2.1. A geometric framework
Consider the periodic Riemannian metric on RN that is conformal to the Euclidean

one, defined as follows: given points x; y 2 RN , we set

dp
a.x; y/ WD inf



ˆ 1

0

p
a..t/

ˇ̌
P.t/

ˇ̌
dt;

where the infimum is taken over Lipschitz continuous curves  W Œ0; 1� ! RN such that
.0/ D x, .1/ D y. It is easily seen that the formula defining dp

a is independent of the
parameterization of the competitor curves  . Furthermore, standard arguments via the Hopf–
Rinow theorem imply that RN with the metric dp

a is a complete metric space. Equivalently,
geodesically complete: given any pair of points x;y 2 RN there exists a distance-minimizing
geodesic joining them, whose length is equal to dp

a.x; y/ (see [86] for details). Now fix a
direction � 2 SN �1, and consider the plane †� through the origin with normal �,

†� WD
®
y 2 RN

W y � � D 0
¯
:

Next, define the signed distance function in the dp
a-metric to the plane †� , via

h�.y/ WD sgn.y � �/ inf
z2†�

dp
a.y; z/;

where the signum function is defined as

sgn.t/ WD

8<: 1; t > 0;

�1; t < 0:

It can be shown (see [32, Lemma 2.2]) that h� is Lipschitz continuous, withˇ̌
rh�.y/

ˇ̌
D

p
a.y/ at a.e. y 2 RN : (5.4)
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These observations, together with (5.3), yield
p
�.y � �/ 6 h�.y/ 6

p
‚.y � �/; y � � > 0;

p
‚.y � �/ 6 h�.y/ 6

p
�.y � �/; y � � < 0:

(5.5)

In order to explain the relationship that the dp
a-metric bears with the anisotropic surface

tension � , it is useful to revisit the case a � 1, and the celebrated Modica–Mortola example.
Then,

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
W

�
u.y/

�
C jruj

2
�

W u 2 C.�;Q� ; T /

³
:

Elementary algebraic manipulations that effectively boil down to completing the square,
yield that the infimum above is asymptotically reached by the one-dimensional profile satis-
fying equipartition of energy. In the model case of (5.2), this entails that the optimal cost is
achieved by the choice u.y/ D q ı .y � �/, where q WD tanh. The associated cost is given by

�.�/ � �0 WD

ˆ 1

�1

�
W

�
q ı .y � �/

�
C

ˇ̌
r

�
q ı .y � �/

�ˇ̌2�
d.y � �/ D 2

ˆ 1

�1

p
W.s/ ds:

(5.6)

To make the connection to the
p
a-metric, we begin by noting that when a � 1 we have

h�.y/ � y � �. Our main motivation, then, is to obtain a similar formula that is exact when
a is nonconstant, or at least supplies reasonable bounds for the nonconstant � 7! �.�/. We
do so by encoding the heterogeneous effects of a into the geometry of the underlying space,
i.e., by working in the

p
a-metric. We turn to making these comments precise.

Fix � 2 SN �1. Then, the cell formula defining �.�/, proven in [36,37] and specialized
to our setting, reads (see Lemma 5.3 (iv))

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy W u 2 H 1.TQ�/;

u D � � u0;� on @.TQ�/

³
:

Here, we recall that u0;�.y/ WD sgn.y � �/ and � is any standard smooth normalized mollifier
(it is shown in Lemma 5.3 (ii) that �.�/ is independent of this choice). A preliminary step is
to observe, by De Giorgi’s slicing method (see [32, Lemma A.1]), that, equivalently,

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy W u 2 H 1.TQ�/;

u D q ı h� along @.TQ�/

³
: (5.7)

For each fixed T � 1, by the direct method of the calculus of variations, the variational
problem inside the limit has a minimizer. Such a minimizer is, perhaps, not unique, but
for each T we select one, and call it uT . We discuss various properties of uT below in
Section 5.2.2. In light of (5.7), it is clear by energy comparison that

�.�/ 6 lim inf
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy:
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Towards proving the opposite bound, we introduce the function � W R ! R, by

�.z/ WD 2

ˆ z

0

p
W.s/ ds:

This function plays a fundamental role in the Modica–Mortola analysis corresponding to
a � 1. For any T � 1, using (5.4) and completing squares, we find
1

T N �1

ˆ
TQ�

�
a.y/W.uT /C jruT j

2
�
dy

D
2

T N �1

ˆ
TQ�

rh� �
p
W.uT /ruT dy C

1

T N �1

ˆ
TQ�

ˇ̌
ruT �

p
W.uT /rh�

ˇ̌2
dy

>
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT /

�
dy

D
1

T N �1

ˆ
TQ�

rh� � r
�
�.q ı h�/

�
dy C

1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

jrh� j
2�0.q ı h�/q

0.h�/ dy

C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

2a.y/W.q ı h�/ dy C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2 �
dy

C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy; (5.8)

where in the last line we used the fact that the function q ı h� achieves equipartition of
energy. Indeed, by the definition of h� , we haveˇ̌

r.q ı h�/.y/
ˇ̌2

D .q0
�
h�.y/

�2 ˇ̌
rh�.y/

ˇ̌2
D a.y/W.q

�
h�.y/

�
:

Provided we can control the error term

lim sup
T !1

ˇ̌̌̌
1

T N �1

ˆ
TQ�

rh�.y/ � r
�
�.uT / � �.q ı h�/

�
dy

ˇ̌̌̌
WD �0.�/;

we observe that the test function q ı h� gives two-sided bounds on �.�/. Controlling the term
�0 is complicated by the fact that it couples a product of weakly converging sequences (on
expanding domains). Indeed, rescaling using y D T x in order to work in a fixed domainQ� ,
the two weakly converging factors making up the above product are

(1) the oscillatory factor: by (5.4) and (5.3), the term ¹rh�.T �/ºT , which is
bounded in L1, converges weakly-*; and

(2) the concentration factor: the terms r�.uT .T �// and r�.q ı h�.T �/ converge
weakly-* to measures (see Section 5.2.2 for precise statements).

In particular, as one of the factors converges to a measure, standard tools such as compen-
sated compactness, used traditionally to pass to the limit in products of weakly converging
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sequences, are unavailable, and we must control this term “by hand.” In Section 5.2.2 below,
we obtain fine information on the concentration effects, and in Section 5.2.3 we deduce par-
tial results concerning the oscillatory effects. Finally, we put these together in Section 5.2.4,
where we obtain bounds on �0.�/.

5.2.2. Structure of minimizers of the cell formula
For fixed T � 1, let uT 2 C 2.TQ�/ (by elliptic regularity) a minimizer of the

energy ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy;

among competitors that equal q ı h� along the boundary @.TQ�/, and set

vT .x/ WD uT .T x/; x 2 Q� :

which minimizes the energy.

Lemma 5.9. The functions vT converge in L1 to u0;� W Q� ! ¹˙1º.

The proof of this lemma (see [32, Lemma 3.1]) is a nice application of the convexity
of the one-homogeneous extension of � (see Remark 5.8), using Jensen’s inequality. The
argument, without any changes, holds in the complete generality of the setting of [36] on
the potential (vectorial, coupled, measurable dependence on the fast variable), and does not
rely on the specific structure requested in (5.2). Combining Lemma 5.9 with the results of
Caffarelli–Cordoba [29], we find that the level sets of vT , for T sufficiently large, converge
uniformly to †� \Q� .

Restricting ourselves to the scalar setting of (5.2), an argument using the strong
maximum principle yields that, for all T < 1, we have

�1 < uT .y/ < 1;

(see [32, Lemma 3.2]). In particular, wT WD
1p
2

tanh�1 uT is well defined, finite, and smooth
in TQ� . Further, the function wT verifies the elliptic boundary value problem8<:�wT D

4p
2

tanhwT .jrwT j2 � a.y//; y 2 TQ� ;

wT .y/ D h�.y/; y 2 @.TQ�/:

Proposition 5.10. Let wT be as above, and let T � 1. There exist universal constants ˛0

and �0 > 0 such that the following holds:8<:
p
‚.y � �/ � ˛0 > wT .y/ >

p
�.y � �/ � �0; if wT .y/ > 0;

�
p
�.y � �/C �0 > wT .y/ > �

p
‚.y � �/C ˛0; if wT .y/ < 0:

(5.9)

Proposition 5.10 asserts that, up to universal constants, the function wT satisfies
exactly the same growth rates as the function h� , see (5.5). To prove Proposition 5.10, con-
sider, for instance, the lower bound in the first of the two inequalities in (5.9). The main
observation is that the function y 7! �T .y/ WD

y��
wT .y/C�0

satisfies an elliptic PDE that ver-
ifies a maximum principle. The remaining inequalities follow from similar arguments, and
we refer the reader to [32, Proposition 3.4] for details.
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5.2.3. The planar metric problem
Our results on the distance function h� concern its large-scale behavior. The bounds

on � that we discuss in Section 5.2.4 below, depend solely on the large-scale behavior of the
distance functions h� for which one can readily invoke efficient numerical algorithms, for
example fast marching and sweeping methods [85].

A natural question concerns the large-scale homogenized behavior of h� , i.e., the
characterization of the limit

lim
T !1

h�.Ty/

T
; y 2 RN ;

in a suitable topology of functions. We completely answer this question.

Theorem 5.11. Let � 2 SN �1. There exists a real number c.�/ 2 Œ
p
�;

p
‚� such that for

each K � RN compact, we have

lim
T !1

sup
y2K

ˇ̌̌̌
1

T
h�.Ty/ � c.�/.y � �/

ˇ̌̌̌
D 0:

Moreover, for all compact subsets K of RN n†� , we have

lim
T !1

sup
y2K

ˇ̌̌̌
1

T .y � �/
h�.Ty/ � c.�/

ˇ̌̌̌
D 0:

We can interpret Theorem 5.11 as a homogenization result for the eikonal equation
in half-spaces. Indeed, it is well known (see, for example, [77]) that for each fixed � 2 SN �1,
the functions kT .y/ WD T �1h�.Ty/ and `.y/ WD c.�/.y � �/ are the unique viscosity solu-
tions to8<: jrkT j D

p
a.Ty/ in ¹y � � > 0º;

kT D 0 on †� ;
and

8<: jr`j D c.�/ in ¹y � � > 0º,

` D 0 on †� :
(5.10)

Theorem 5.11 shows that viscosity solutions of the heterogeneous eikonal equations, i.e.,
kT in (5.10), converge locally uniformly to `. A viscous and stochastic version of these equa-
tions (termed the “planar metric problem”) was introduced by Armstrong and Cardaliaguet
[7], and studied by others [55, 56] in the context of stochastic homogenization of geomet-
ric flows. Small modifications of our arguments, in fact, yield homogenization theorems for
first order Hamilton–Jacobi equations in almost periodic media in half-spaces, with Lipschitz
dependence on the fast variable, and convex dependence on the gradient variable.

5.2.4. Bounds on the anisotropic surface tension
As explained in the string of inequalities (5.8), the function q ı h� provides tight

upper and lower bounds for the effective anisotropy �.�/. To be precise, we have

Theorem 5.12. Let � W SN �1 ! Œ0;1/ be the anisotropic surface energy as in (5.2). Let
q W R ! R be defined by

q.z/ WD tanh.z/; z 2 R:
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For � 2 SN �1, define

�.�/ WD lim inf
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy;

�.�/ WD lim sup
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy:

There exist ƒ0 > 0 and �0 W SN �1 ! Œ0;ƒ0� such that

�.�/ � �0.�/ 6 �.�/ 6 �.�/:

We remark that in general, �0.�/ is never zero, unless a � 1.
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