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Abstract

We review recent results on functional inequalities for systems of orthonormal functions.
The key finding is that for various operators the orthonormality leads to a gain over a
simple application of the triangle inequality. The operators under consideration are either
related to Sobolev-type inequalities or to Fourier restriction-type inequalities.
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1. Introduction

For more than four decades, Lieb–Thirring inequalities have played an important
role in various areas of mathematical physics and analysis. The progress that has been made
towards the conjectures in the area and many extensions and generalizations of the original
inequalities have been reviewed in the surveys [5,19,38,42,43,49], the textbooks [51,52], as well
as in the forthcoming book [27]. In order to avoid too large an overlap with these existing
works, the present contribution, which was invited by the organizers of the International
Congress of Mathematicians 2022, to whom the author is most grateful, focuses only on one
single aspect of these inequalities. Namely, we will consider Lieb–Thirring inequalities from
the point of view of Sobolev-type inequalities for systems of orthonormal functions, and we
discuss recent extensions, in particular, to the Strichartz and Stein–Tomas inequalities from
harmonic analysis. We will also briefly comment on selected applications of these newly
obtained bounds.

1.1. The general setup
Let H be a (typically complex) Hilbert space with norm denoted by k � k and let X

be a measure space, with measure denoted simply by dx and with corresponding Lebesgue
spacesLq.X/. Assume that T is a bounded linear operator from H toLq.X/ for some q > 2.
That is, for all f 2 H , Z

X

jTf j
q dx . kf k

q : (1.1)

As a consequence, if f1; : : : ; fN are normalized in H , thenZ
X

 
NX

nD1

jTfnj
2

!q=2

dx . N q=2:

This is a consequence of (1.1) and the triangle inequality in Lq=2. The power N q=2 is best
possible, as can be seen by taking all fn to be equal.

The question that interests us here is whether for a given operator T there is a power

˛ < q=2

such that for all N and all f1; : : : ; fN 2 H satisfying the orthonormality constraint

.fn; fm/ D ın;m for all 1 � n;m � N

one has Z
X

 
NX

nD1

jTfnj
2

!q=2

dx . N ˛: (1.2)

As explained, for instance, in [19,50,52], such bounds, if true, have important consequences
in the mathematical physics of large fermionic quantum systems, density functional theory,
and the theory of nonlinear evolution equations. Their study is also interesting from a purely
analytical point of view and reveals aspects of the underlying operator T which go beyond
its boundedness.
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At the moment there is no general principle that determines the exponent ˛ directly
from the operator T . Rather, inequalities of the form (1.2), if true, have been verified on a case
by case basis. Most of the existing results concern the case whereT is (at least approximately)
translation invariant. Finding a regime of orthonormal functions f1; : : : ; fN with N ! 1

where the power ˛ in the bound (1.2) is saturated often relies on techniques of semiclassical
and microlocal analysis.

1.2. Example: the HLS inequality
The above principle is most clearly illustrated on the example of the Hardy–Little-

wood–Sobolev (HLS) inequality, also know as the weak Young inequality or the theorem of
fractional integration; see, e.g., [51, Theorem 4.3]. A particular case of this inequality states
that for 0 < s < d=2 the operator of convolution with jxj�dCs is bounded from L2.Rd / to
Lq.Rd / with q D 2d=.d � 2s/.

Its extension to systems of orthonormal functions is due to Lieb [48] and reads as
follows.

Theorem 1. Let 0 < s < d=2. Then, if f1; : : : ; fN are orthonormal in L2.Rd /,Z
Rd

 
NX

nD1

ˇ̌
jxj

�dCs
� fn

ˇ̌2!d=.d�2s/

dx . N:

Remarks 2. (a) The power 1 of N on the right side is best possible.

(b) The bound is equivalent (in a certain weak sense) to the Cwikel–Lieb–Rozen-
blum (CLR) bound

N
�
.��/s C V

�
.
Z

Rd

V d=.2s/
� dx

on the number N..��/s C V / of negative eigenvalues of the generalized
Schrödinger operator .��/s C V in L2.Rd /. Here V.x/� D max¹�V.x/; 0º.
The meaning of “equivalent” will be explained in the next subsection. It is a
“weak” form of equivalence, because this argument does not mean that the
sharp constant in Theorem 1 is in one-to-one correspondence with the sharp
constant in the CLR bound. This is in contrast to a form of duality that we will
encounter later.

(c) The proof of Theorem 1 in [48] proceeds by reducing it to Cwikel’s theorem
[11]. Alternative, direct proofs of Theorem 1 were given in [17,58]. We present
a different, unpublished proof in Subsection 1.5 below.

(d) Just like the HLS inequality, the bound in Theorem 1 is conformally invariant.
This leads to a natural conjecture for its optimal constant [17].

1.3. The duality argument
Let us return to the general setting described in Subsection 1.1 and consider a

bounded operator T W H ! Lq.X/ for some q > 2. By Hölder’s inequality, this bound-
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edness is equivalent to having, for any W 2 L2q=.q�2/.X/ and any f 2 H ,Z
X

jW j
2
jTf j

2 dx . kW k
2
2q=.q�2/kf k

2;

which, in turn, is equivalent to the boundedness of the operatorW T from H to L2.X/ with
norm

kW T k . kW k2q=.q�2/:

Here, as usual, we do not distinguish in the notation between the functionW and the operator
of multiplication by W . Moreover, k � k on the left side denotes the operator norm.

Let us now reformulate the desired inequality (1.2) in terms of the operator W T .
We assume that ˛ < q=2. Again by Hölder’s inequality, we see that (1.2) is equivalent to

NX
nD1

Z
X

jW j
2
jTfnj

2 dx . N 2˛=q
kW k

2
2q=.q�2/: (1.3)

In order to state this previous inequality succinctly, we recall the notion of Schatten
spaces. Background can be found, for instance, in [36,62]. For a compact operatorK between
two Hilbert spaces, we denote by .sn.K//n2N the sequence of its singular values, that is,
the square roots of the eigenvalues of the operator K�K in nonincreasing order, repeated
according to multiplicities. Then, by definition, for any 0 < r < 1, the Schatten class �r

consists of all compact operators K with s�.K/ 2 `r . This is a normed linear space with
respect to

kKkr WD

�X
n2N

sn.K/
r

�1=r

:

Also, we will need the weak variant of this space, �r
weak, consisting of all compact K with

s�.K/ 2 `r
weak. For 2 < r < 1, the following norm will appear naturally in our analysis:

kKkr;w WD sup
N 2N

N�1=2C1=r

 
NX

nD1

sn.K/
2

!1=2

:

It follows from the variational principle for sums of eigenvalues that
NX

nD1

sn.K/
2

D sup

´
NX

nD1

kKfnk
2

W f1; : : : ; fN orthonormal

µ
:

From this and the triangle inequality in RN it follows that k � kr;w defines, indeed, a norm. It is
also easy to see that k � kr;w is equivalent to the more standard quasinorm in �r

weak defined by

kKk
0
r;w WD sup

n2N
n1=rsn.K/:

The constants in this equivalence depend on r > 2 and their explicit values can be found, for
instance, in [17, Lemma 2.3], where another expression for kKkr;w is used.

Returning to the above setting, we now see that (1.3) is equivalent to the fact that
W T belongs to the weak Schatten class �

2q=.q�2˛/
weak with

kW T k2q=.q�2˛/;w . kW k2q=.q�2/: (1.4)
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To summarize, we have seen that the desired inequality (1.2) is equivalent to a quantitative
compactness property of the operatorW T , expressed in terms of a weak Schatten norm. The
exponent ˛ in (1.2) is in one-to-one correspondence with the Schatten exponent. What we
have gained through this reformulation is, for instance, that we can use interpolation methods
to prove trace ideal properties of the operators T W .

At this point we can present Lieb’s proof of Theorem 1. Namely, Cwikel’s theorem
[11] says that, for 2 < p < 1,a.X/b.�ir/

p;w . kakpkbkp;w: (1.5)

Here a.X/ denotes the operator of multiplication by a function a 2 Lp.Rd / in position
space and b.�ir/ denotes the operator of multiplication by a function b 2 L

p
weak.R

d / in
momentum space. The operator T relevant for Theorem 1 is convolution with jxj�dCs which
corresponds to multiplication by (a constant times) j�j�s in Fourier space. The latter function
belongs toLd=s

weak.R
d /. Thus, (1.5) implies (1.4) with˛D 1 and qD 2d=.d � 2s/, as claimed.

The proof of Cwikel’s theorem in [17] goes in some sense the other way around.
Namely, first Theorem 1 (or rather a slight generalization of it) is established, using the
method of [58], and then the above duality argument is used to deduced (1.5).

We can now also explain the notion of weak equivalence in Remark 2 (b). Namely,
by the Birman–Schwinger principle, the bounds there for negative eigenvalues of generalized
Schrödinger operators are the same as bounds on the operatorW.��/�s=2 in the quasinorm
k � k0

d=s;w, whereas by the above argument the bound in Theorem 1 is the same as a bound
on this operator in the norm k � kd=s;w.

1.4. A generalization
There is a far reaching generalization of Theorem 1. Namely, if X is a sigma-finite

measure space and A is a nonnegative operator in L2.X/ with heat semigroup satisfying,
for some � > 2, exp.�tA/


L2!L1 . t��=4 for all t > 0;

then for all u1; : : : ; uN 2 domA1=2 satisfying .A1=2un;A
1=2um/D ın;m for 1 � n;m � N ,Z

X

 
NX

nD1

junj
2

!�=.��2/

dx . N:

This is shown in [17], improving earlier results in [30, 45] that require nonnegativity of the
heat kernel.

This more general result reduces to Theorem 1 withAD .��/s and un D a constant
times .��/�s=2fn. Another application concerns the case where A is the Laplace–Beltrami
operator on certain noncompact manifolds. For a compact manifold, the above assumption
on the semigroup is not satisfied because of the zero eigenvalue, but one can add a positive
constant to the Laplace–Beltrami operator.
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1.5. Appendix: proof of Theorem 1
We present here an unpublished proof of Theorem 1. It is neither the most elemen-

tary one, nor one giving particularly good constants, but we think it is conceptually rather
clear and might allow for interesting generalizations. In view of the previous subsection it
provides an alternative proof of the CLR inequality and is based on some ideas of Conlon [9].

By the duality argument in Subsection 1.3, we need to prove (1.4) with T equal
to convolution with jxj�dCs , ˛ D 1, and q D 2d=.d � 2s/. Since the weak Schatten norm
of W T equals that of .W T /� D TW , it suffices to consider the latter operator. We have,
using

R
jx � zj�dCsjz � yj�dCs dz D const jx � yj�dC2s and the Fefferman–de la Llave

decomposition [13],

kTW f k
2

D const
“

Rd �Rd

f .x/W.x/W.y/ f .y/

jx � yjd�2s
dx dy

D const
Z

Rd

da

Z 1

0

dr

r2dC1�2s

“
Br .a/�Br .a/

f .x/W.x/W.y/ f .y/ dx dy:

We apply this with f D fn for some orthonormal fn in L2.Rd / and sum over n. For fixed
a and r , we estimate the double integral over x and y in two different ways. First, since the
operator  with kernel

P
n fn.x/fn.y/ has operator norm one, we haveˇ̌̌̌

ˇ NX
nD1

“
Br .a/�Br .a/

fn.x/W.x/W.y/ fn.y/ dx dy

ˇ̌̌̌
ˇ D

ˇ̌
.W 1Br .a/; W 1Br .a//

ˇ̌
�

Z
Br .a/

ˇ̌
W.x/

ˇ̌2
dx

. rd
�
M
�
jW j

2
��
.a/;

where M is the maximal function. Second, since  � 0,ˇ̌̌̌
ˇ NX
nD1

fn.x/fn.y/

ˇ̌̌̌
ˇ �

p
�.x/

p
�.y/; where �.x/ WD

NX
nD1

ˇ̌
fn.x/

ˇ̌2
;

so ˇ̌̌̌
ˇ NX
nD1

“
Br .a/�Br .a/

fn.x/W.x/W.y/ fn.y/ dx dy

ˇ̌̌̌
ˇ �

�Z
Br .a/

p
�.x/

ˇ̌
W.x/

ˇ̌
dx

�2

. r2d
�
M
�
jW j

p
�
��
.a/2:

Inserting this into the above formula, we find
NX

nD1

kTW fnk
2 .

Z
Rd

da

Z 1

0

dr

r2dC1�2s
min

®
rd
�
M
�
jW j

2
��
.a/; r2d

�
M
�
jW j

p
�
��
.a/2

¯
D const

Z
Rd

da
�
M
�
jW j

p
�
��
.a/2.1�2s=d/

�
M
�
jW j

2
��
.a/2s=d

� const
�Z

Rd

�
M
�
jW j

p
�
��
.a/2d=.dC2s/da

�1�.2s=d/2

�

�Z
Rd

�
M
�
jW j

2
��
.a/d=.2s/ da

�.2s=d/2

:
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By the boundedness of the maximal function on Lp , 1 < p < 1, this is bounded by a
constant times�Z

Rd

jW j
2d=.dC2s/�d=.dC2s/da

�1�.2s=d/2�Z
Rd

jW j
d=s da

�.2s=d/2

�

�Z
Rd

jW j
d=s da

�2s=d�Z
Rd

� da

�1�2s=d

:

To summarize, we have shown that
NX

nD1

kTW fnk
2 . kW k

2
d=sN

1�2s=d :

If we take the fn to be the eigenfunctions of W T 2W corresponding to its N largest eigen-
values, the previous inequality becomes

NX
nD1

sn.TW /
2 . kW k

2
d=sN

1�2s=d :

This is the claimed bound on TW in the Schatten space �
d=s
weak.

2. Sobolev-type inequalities for orthonormal functions

Before turning to the more recent bounds related to Fourier restriction, in this section
we review some classical inequalities for orthonormal functions that are related to Sobolev
inequalities. Those include, in particular, the classical Lieb–Thirring inequality in Theorem 4
below.

2.1. Bessel-potential bounds
The bounds in Theorem 1 concern jxj�dCs � f , which is a constant multiple of the

Riesz potential .��/�s=2f . We present a generalization, due to Lieb [48], of these bounds
to the Bessel potentials .��Cm2/�s=2f with m > 0.

Theorem 3. Let s > 0 and let8̂̂<̂
:̂
2 � q � 1 if s > d=2;

2 � q < 1 if s D d=2;

2 � q � 2d=.d � 2s/ if s < d=2:

Then, if f1; : : : ; fN are orthonormal in L2.Rd /, NX
nD1

ˇ̌�
��Cm2

��s=2
fn

ˇ̌2
q=2

. md�2s�2d=qN 2=q :

The bound for q D 2d=.d � 2s/ if s < d=2 follows as before using Cwikel’s theo-
rem (1.5). The remaining bounds follow similarly, but using the simpler bounda.X/b.�ir/

p
� .2�/�d=p

kakpkbkp (2.1)
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for 2� p � 1. The latter bound is due to Kato, Seiler, and Simon (see, e.g., [62, Theorem 4.1])
and can also be inferred from the Lieb–Thirring matrix inequality [54].

Since (2.1), in contrast to (1.5), involves a strong instead of a weak Schatten norm,
a generalization of the bound in Theorem 3 to sums of the form

P
n �nj.��Cm2/�s=2fnj2

is possible provided, if s > d=2, q < 2d=.d � 2s/. We discuss this in the next section.
Using bounds due to Solomyak [64] (and their natural extension to odd dimensions)

it seems plausible that in the case s D d=2 there is an endpoint bound in the Orlicz space
expL in the spirit of a Moser–Trudinger inequality. For instance, the bounds in [24] can be
dualized to yield that, if � � R2 is open and of finite measure, then for any u1; : : : ; uN 2

H 1
0 .�/ satisfying

R
�

run � rum dx D ın;m for all 1 � n;m � N ,Z
�

A

 
.CLN /

�1

NX
nD1

junj
2

!
dx � j�j;

where A.t/ D et � 1 � t , LN D
PN

nD1 n
�1, and where C is a universal constant.

2.2. The Lieb–Thirring inequality
The original LT inequality in its form for orthonormal functions reads as follows.

Theorem 4. Let d � 1 and s > 0. Then, if u1; : : : ; uN 2 H s.Rd / are orthonormal in
L2.Rd /,

NX
nD1

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx &

Z
Rd

 
NX

nD1

junj
2

!1C2s=d

dx:

Remarks 5. (a) The main point is that the implicit constant can be chosen inde-
pendently of N .

(b) The bound is equivalent to the boundX
j

jEj j .
Z

Rd

V 1Cd=.2s/
� dx

on the sum of the negative eigenvalues (counted with multiplicities) of the gen-
eralized Schrödinger operator .��/s C V in L2.Rd /. This equivalence is, for
instance, in the sense that the sharp constants in the two inequalities are in one-
to-one correspondence.

(c) It is important in applications that the inequality in Theorem 4 extends to density
matrices, namely, for any sequence 0 � � 2 `1,X

n

�n

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx &

�
sup

n
�n

��2s=dZ
Rd

 X
n

�njunj
2

!1C2s=d

dx:

(d) Theorem 4 in d D 3 with s D 1 is due to Lieb and Thirring [53] and was the
crucial ingredient in their proof of stability of matter; see also [52]. Their proof
of Theorem 1 in [54] for s D 1 extends to general s. Alternative proofs are due
to [59], [56] and [61].
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(e) Lieb and Thirring [54] made a famous conjecture about the optimal constant in
the inequality in Theorem 4 for s D 1; see, for instance, [19] for details. This pre-
dicts, in particular, that there is a fundamental difference between dimensions
d � 2 and d � 3. This conjecture is open in any dimension.

(f) The currently best constants in Theorem 4 are due to [23]. A bound with
“almost” the semiclassical constant and a gradient remainder term appears
in [57].

(g) As a step towards the Lieb–Thirring conjecture, one can study the best constant
in the inequality in Theorem 4 with fixedN . For s D 1, it is shown in [20] that in
dimensions d � 3 this constant is always strictly less than the optimal constant
that works for arbitraryN . This is consistent with the Lieb–Thirring conjecture.
For further results in this direction, see also [21,22].

In the spirit of the generalization discussed in Subsection 1.4, Theorem 4 has been
extended to abstract operators satisfying certain heat kernel bounds or Sobolev inequalities;
see [30].

2.3. A more general Lieb–Thirring inequality
The following theorem provides a Sobolev inequality with exponent q less than

2.1C 2s=d/, the exponent in Theorem 4. The bound is deduced in [55] via a duality argument
from a bound of Lieb and Thirring [54]. Note that the functions here are orthogonal, not
necessarily orthonormal.

Theorem 6. Let d � 1, s > 0 and 2 < q < 2.1C 2s=d/. Then, if u1; : : : ; uN 2 H s.Rd /

are orthogonal in L2.Rd /,
NX

nD1

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx

&

 
NX

nD1

kunk

2.2d�.d�2s/q/
2dC4s�dq

2

!�
2dC4s�dq

d.q�2/
 Z

Rd

 
NX

nD1

junj
2

! q
2

dx

! 4s
d.q�2/

:

Remarks 7. (a) The implicit constant can be chosen independently of N .

(b) The bound is equivalent to the boundX
j

jEj j
 .

Z
Rd

V Cd=.2s/
� dx

on the sum of the negative eigenvalues (counted with multiplicities) of the
generalized Schrödinger operator .��/s C V in L2.Rd /. Here  > 1 and
q < 2.1C 2s=d/ are related by

q D
2. C

d
2s
/

 C
d
2s

� 1
;  D

2d � .d � 2s/q

2s.q � 2/
:
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(c) For s D 1, Lieb and Thirring [54] made a famous conjecture about the optimal
constant in the eigenvalue inequality in (b), which translates into a conjecture
for the constant in Theorem 4. This conjecture was proved by Laptev and Weidl
[44] for  � 3=2, that is, q � 2.d C 3/=.d C 1/.

(d) The analysis mentioned in Remark 5 (f) concerning truncated versions of the
inequality is applicable as well in the situation of Theorem 6 with s D 1; see
[20–22].

3. Fourier restriction inequalities for orthonormal

functions

We now turn to inequalities for systems of orthonormal functions that are mathe-
matically related to the question of restricting the Fourier transform to hypersurfaces. Such
a restriction is possible under certain curvature assumptions on the hypersurface and has
important applications to partial differential equations.

3.1. Strichartz inequality for orthonormal functions
The Strichartz inequality [39,66] concerns solutions eit� of the free Schrödinger

equation and quantifies their dispersive behavior. It states that if d � 1, 2 � q � 1 if d D 1,
2 � q < 1 if d D 2, and 2 � q � 2d=.d � 2/ if d � 3, and 2=p C d=q D d=2, then for
all  2 L2.Rd /, Z

R

�Z
Rd

ˇ̌
eit� 

ˇ̌q
dx

�p=q

dt . k k
p
2 : (3.1)

Here is a version of this inequality for systems of orthonormal functions.

Theorem 8. Let d � 1, 2 � q < 2.d C 1/=.d � 1/ and 2=p C d=q D d=2. Then, if
 1; : : : ;  N 2 L2.Rd / are orthonormal in L2.Rd /,Z

R

 Z
Rd

 
NX

nD1

ˇ̌
eit� n

ˇ̌2!q=2

dx

!p=q

dt . N p.qC2/=.4q/:

Remarks 9. (a) The power of N is best possible, as can be deduced from [28].

(b) The bound in Theorem 8 can be slightly improved, namely, for any sequence
0 � � 2 `2q=.qC2/,Z

R

�Z
Rd

�X
n

�n

ˇ̌
eit� n

ˇ̌2�q=2

dx

�p=q

dt .
�X

n

�2q=.qC2/
n

�p.qC2/=.4q/

:

The bound in the theorem corresponds to the case �n 2 ¹0; 1º and is equivalent
to a bound for � in the Lorentz space `2q=.qC2/;1. It is remarkable that, while
in the extension of the bound in Theorem 1 the Lorentz space `s;1 is optimal,
here it can be improved to the space `s . The assumption � 2 `2q=.qC2/ cannot
be relaxed to � 2 `s for any s > 2q=.q C 2/ [28].
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(c) Theorem 8 appears in [28] for q � 2.d C 2/=d and in [31] in the full range. The
proof in [31] uses a duality argument, similarly to that in Subsection 1.3. In fact,
it is slightly simpler, since the duality between �r and �r 0 is more straightfor-
ward than that between �r

weak and the Lorentz space �r 0;1, which is at the core of
Subsection 1.3. On the other hand, the fact that here we work in a mixed norm
space Lp=2

t L
q=2
x does not really complicate the argument.

(d) It is conjectured in [28] that Theorem 8 remains valid for q D 2.d C 1/=

.d � 1/. At the same time it is shown there that the strengthening in (b) with the
`2q=.qC2/-norm fails at q D 2.d C 1/=.d � 1/. This conjecture was disproved
in [2] in dimension d D 1, but is still open for d � 2.

(e) There is a “semiclassical” version of the inequality where the Schrödinger equa-
tion is replaced by a transport equation for densities on the phase space. The
proof in [28] can be adapted to this setting, as shown in [1]. For more on the
connection between the two equations, see [60]. The disproof of the conjecture
mentioned in (d) for d D 1 was by disproving the corresponding conjecture
in this simpler setting. It uses the existence of a Kakeya set of arbitrary small
measure. The validity of this analogue conjecture for d � 2 is still open.

(f) There is a natural “one-particle constant,” namely the sharp constant in (3.1).
This was determined in the diagonal case q D p in [14] for d D 1; 2. Besides,
there is a semiclassical constant related to the inequality in (e). To which extent
these two constants play a role for the sharp constant in Theorem 8, in analogy
with the Lieb–Thirring conjecture, has not been investigated.

The restriction q < 2.d C 1/=.d � 1/ in Theorem 8 is not present for the single
function inequality (3.1). It is known that for orthonormal functions the case q � 2.d C 1/=

.d � 1/ behaves differently, but there are several open questions. The following is known.

Theorem 10. Let d � 2, 2.d C 1/=.d � 1/ � q < 2d=.d � 2/, and 2=p C d=q D d=2.
Let ˇ < 2q=.d.q � 2//. Then, if  1; : : : ;  N 2 L2.Rd / are orthonormal in L2.Rd /,Z

R

 Z
Rd

 
NX

nD1

ˇ̌
eit� n

ˇ̌2!q=2

dx

!p=q

dt . N p=.2ˇ/:

Remarks 11. (a) It is known that the bound in the theorem does not hold with an
exponent ˇ > 2q=.d.q � 2//, as can be deduced from [33], but it is not known
whether or not it holds with exponent ˇ D 2q=.d.q � 2//.

(b) Similarly as in the case of Theorem 8, the bound in Theorem 10 can be slightly
improved, namely, for any sequence 0 � � 2 `ˇ with ˇ < 2q=.d.q � 2//,Z

R

�Z
Rd

�X
n

�n

ˇ̌
eit� n

ˇ̌2�q=2

dx

�p=q

dt .
�X

n

�ˇ
n

�p=.2ˇ/

:

The bound is known to fail, in general, if � 2 `ˇ for ˇ > 2q=.d.q � 2// [33].
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(c) Theorem 10 appears in [33] (see the discussion there after Proposition 1). It is
obtained by interpolation between Theorem 8 with q near 2.d C 1/=.d � 1/

and the bound (3.1) with q near its maximal value 2d=.d � 2/.

(d) If the conjecture mentioned in Remark 9 (d) is true, an interpolation argument
(at least in dimensions d � 3) might yield Theorem 10 with ˇD 2q=.d.q � 2//.

(e) Let us discuss the endpoints q D 2d=.d � 2/ in d � 3 and q D 1 in d D 1,
which are excluded in Theorem 10. At the endpoint q D 2d=.d � 2/ in d � 3, it
is known that there is no gain due to orthonormality over the triangle inequality,
that is, the bound in (b) holds with ˇ D 1 and not with any larger power [33]. At
the endpoint q D 1, in d D 1 it is known that the bound in (b) does not hold
for ˇ � 2 (see [28] and also [33, Proposition 1]) and one may wonder whether it
holds for ˇ < 2. In [3] it is shown that the bound holds for ˇ � 4=3 and that the
slightly weaker inequality with the L2;1

t L1
x -norm instead of the L2

tL
1
x -norm

holds for all ˇ < 2.

Strichartz inequalities for orthonormal system have been proved for more general
operators than �� (see, e.g., [4,31]) and for more regular functions (see, e.g., [2–4]).

One application of the Strichartz inequality for orthonormal functions concerns the
nonlinear, time-dependent Hartree equation for infinite quantum systems. (Here “infinite”
means that the initial data are allowed to have infinite trace.) Using Theorem 8, one can
show global well-posedness and, for small initial data, dispersion for large time; see [31,60].
For the more involved case of a positive background density, see [46,47].

Another application of the Strichartz inequality for orthonormal functions concerns
Besov-space improvements of inequality (3.1) for single functions; see [31, Corollary 9].
While these bounds can be derived using deep results from bilinear restriction theory, it is
interesting to note that the proof via Theorem 8 is much more elementary.

3.2. Stein–Tomas inequality for orthonormal functions
The Fourier restriction problem is whether the Fourier transform of a function on

Rd has a well-defined restriction to a hypersurface and, if so, to establish corresponding
Lp bounds. Sometimes it is helpful to study the equivalent, adjoint problem of Fourier
extensions. From a harmonic analysis perspective, the Strichartz inequality corresponds to
a Fourier extension inequality for the hypersurface ¹.�;�j�j2/ W � 2 Rd º in RdC1 endowed
with a natural measure. Another paradigmatic case concerns the Fourier extension for the
sphere. The corresponding result, due to Tomas [67] and Stein [65], states that, if f 2

L2.Sd�1/, thenZ
Rd

ˇ̌̌̌Z
Sd�1

ei!�xf .!/ d!

ˇ̌̌̌2.dC1/=.d�1/

dx . kf k
2.dC1/=.d�1/

L2.Sd�1/
: (3.2)

The inequality extends trivially to exponents greater than 2.d C 1/=.d � 1/ on the left side,
but a counterexample due to Knapp shows that 2.d C 1/=.d � 1/ is the smallest possible
exponent. Here is a version for orthonormal functions.
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Theorem 12. Let d � 2. Then, if f1; : : : ; fN are orthonormal in L2.Sd�1/,Z
Rd

 
NX

nD1

ˇ̌̌̌Z
Sd�1

ei!�xfn.!/ d!

ˇ̌̌̌2!.dC1/=.d�1/

dx . N d=.d�1/:

Remarks 13. (a) The power of N is best possible, as can be deduced from [31].

(b) Similarly as Theorem 8, the bound in Theorem 12 can be slightly improved,
namely, for any 0 � � 2 `.dC1/=d ,Z

Rd

�X
n

�n

ˇ̌̌̌Z
Sd�1

ei!�xfn.!/ d!

ˇ̌̌̌2�.dC1/=.d�1/

dx .
�X

n

�.dC1/=d
n

�d=.d�1/

:

The assumption � 2 `.dC1/=d cannot be relaxed to � 2 `r for any r > .d C 1/=d

[31].

(c) Theorem 12 appears in [31], where it is proved using a duality argument similarly
as in Subsection 1.3.

(d) In analogy to Remark 9 (f), the optimal constant in (3.2) is only known for
d D 3 [15]; see also [29] for a connection between the optimal constants in (3.2)
and (3.1). As far as we know, a “semiclassical inequality” corresponding to that
in Theorem 12 has not been investigated.

One application of Theorem 12 concerns trace ideal bounds for the scattering matrix
for Schrödinger operators ��C V in L2.Rd / [31]. These bounds are universal in the sense
that they only depend on the “energy” parameter and an Lp norm of V , and the trace ideal
exponent is shown to be optimal.

To motivate the discussion in the following subsection, we note that by the duality
argument in Subsection 1.3 and by scaling, the bound in Theorem 12 (or rather in Remark 13
(b)) can be written as

kRkW k2.dC1/ . k
d�1

2.dC1/ kW kdC1;

where Rk denotes restriction of the Fourier transform to the sphere ¹j�j D kº. Integrating this
bound with respect to k between � and �C 1, we obtain, in terms of the spectral projection
…� D 1.�2 � �� � .�C 1/2/ with � � 1,…�jW j

2…�


dC1

D kW…�W kdC1 �

Z �C1

�

kWRkW kdC1 dk . �
d�1
dC1 kW k

2
dC1:

Dualizing back, we find that if .fn/ are orthonormal in L2.Rd / and satisfy supp Ofn � ¹� �

j�j � �C 1º with � � 1 and if 0 � � 2 `.dC1/=d , then�Z
Rd

�X
n

�njfnj
2

� dC1
d�1

dx

� d�1
dC1

. �
d�1
dC1

�X
n

�
dC1

d
n

� d
dC1

: (3.3)
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3.3. Spectral cluster bounds
As shown by Sogge [63], the version (3.3) of the Stein–Tomas inequality has a

generalization to closed manifolds. Here is a generalization of this theorem to the case of
orthonormal functions from [32].

Theorem 14. Let .M; g/ be a smooth compact Riemannian manifold without boundary of
dimension d � 2. Denote by ��g the Laplace–Beltrami operator onM and, for any � � 1,
let…� WD 1.�2 � ��g < .�C 1/2/. Then, if .fn/�…�L

2.M/ are orthonormal inL2.M/

and if .�n/ � Œ0;1/,X
n

�njfnj
2


Lq=2.M/

. �2s.q/

�X
n

�˛.q/
n

�1=˛.q/

;

where 8<: s.q/ WD d.1
2

�
1
q
/ �

1
2
; ˛.q/ D

q.d�1/
2d

if 2.dC1/
d�1

� q � 1;

s.q/ WD
d�1

2
.1

2
�

1
q
/; ˛.q/ D

2q
qC2

if 2 � q �
2.dC1/

d�1
:

Remarks 15. (a) If there is a single nonzero �n, the bound in Theorem 14 reduces
to Sogge’s bound [63]. Therefore, according to known results about this inequal-
ity, for each .M; g/ the exponent 2s.q/ of � is best possible. As shown in [32],
for each .M; g/ the exponent ˛.q/ is also best possible. Moreover, on S2 with
its standard metric it can be shown that the inequality can be saturated even with
�n 2 ¹0; 1º and an arbitrary prescribed sequence #¹n W �n D 1º [32].

(b) The proof of Theorem 14 relies on Schatten norm bounds for oscillatory integral
operators satisfying the Carleson–Sjölin condition, which are of independent
interest, but somewhat technical to state. They imply, for instance, Theorem 12.

3.4. Kenig–Ruiz–Sogge inequalities
In this final subsection we discuss resolvent bounds that are close in spirit to the

Stein–Tomas theorem. The original result due to Kenig, Ruiz, and Sogge [40] states that, if
2d=.d C 2/ � p � 2.d C 1/=.d C 3/ (and p > 1 if d D 2), then for all z 2 C n Œ0;1/,.�� � z/�1f


p0 . jzj�d=2Cd=p�1

kf kp: (3.4)

For the case d D 2, see, e.g., [16]. We mention that similar inequalities are valid also on
Riemannian manifolds; see, e.g., [8,12,34]. A notable feature of the bounds (3.4) is that they
do not deteriorate as z approaches the positive real half-line and, for that reason, they are also
known as “uniform” Sobolev inequalities. Note that the endpoint exponent p D 2.d C 1/=

.d C 3/ is the dual of the exponent in the Stein–Tomas Fourier extension inequality (3.2)
and, in fact, (3.2) is an easy consequence of (3.4).

For p greater than this exponent, the uniformity is lost, in general. It can be restored,
up to p D 2d=.d C 1/ by using mixed norms involving an L2-norm over angular variables
[35]. A nonuniform inequality valid for 2.d C 1/=.d C 3/ < p � 2 is.�� � z/�1f


p0 . jzj

�. 1
p � 1

2 / dist.z;RC/
�1C.dC1/. 1

p � 1
2 /

kf kp:
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This bound follows by interpolation between the case p D 2.d C 1/=.d C 3/ and the triv-
ial bound at p D 2. It appeared in an equivalent, dual form in [18]. Remarkably, it is best
possible [41].

Inequality (3.4) is somewhat different from the others treated in this paper since it
does not involve a Hilbert space norm and, since the operator .�� � z/�1 for z 62 .�1; 0�

is not positive definite, it cannot be rewritten in such a form. Consequently, we cannot state
a version for orthonormal functions, but we will directly state trace ideal bounds, similar to
what is behind the proofs of the other bounds in this paper. The following two theorems are
from [31] and [18], respectively.

Theorem 16. Let d � 2 and let 8=3 � q � 3 if d D 2 and d � q � d C 1 if d � 3. Then,
for all z 2 C n Œ0;1/,W1.�� � z/�1W2


.d�1/q=.d�q/

. jzj�1Cd=q
kW1kqkW2kq :

Theorem 17. Let d � 1 and let q > d C 1. Then, for all z 2 C n Œ0;1/,W1.�� � z/�1W2


q

. jzj�1=q dist
�
z; Œ0;1

�
/�1C.dC1/=q

kW1kqkW2kq :

The trace ideal exponent in Theorem 16 is best possible, as follows from the cor-
responding result for the Stein–Tomas inequality [31]. The optimal form of Theorem 16 for
d D 2 and 2 < q < 8=3 is not known and we refer to [31] for some partial results.

The main application of Theorems 16 and 17 is to Lieb–Thirring inequalities for
eigenvalues of Schrödinger operators with complex-valued potentials; see, e.g., [18,31]. This
is an active area of research with many open question and we refer, for instance, to [6, 7, 10,

25,26,37] for more on this.
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