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Abstract

In this article we present some of the main ideas in our recent work on the asymptotic
stability of shear flows and vortices among solutions of the Euler equations in two dimen-
sions. More precisely, we discuss the following results:

(1) a theorem on the nonlinear asymptotic stability of a large class of shear flows
.b.y/; 0/ in the finite channel T � Œ0; 1�, defined by strictly increasing Gevrey
smooth functions b, which are linear outside a compact subset of the interval
.0; 1/ and satisfy suitable spectral conditions;

(2) a theorem on the nonlinear asymptotic stability of point vortex solutions of
the Euler equation in R2;

(3) heuristic analysis showing that the mechanism of inviscid damping is unlikely
to work to produce global solutions of the ˛-generalized SQG equation in two
dimensions, for any parameter ˛ > 0.
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1. Introduction

In this paper we present some of our recent results on the asymptotic stability of
solutions of the two-dimensional incompressible Euler equation.More precisely, we consider
solutions u W Œ0;1/ � D ! R2 of the equation

@tuC u � ruC rp D 0; divu D 0; (1.1)

where the domain D is either the entire plane D D R2 or the finite channel D D T � Œ0; 1�.
Letting ! WD �@yu

x C @xu
y denote the vorticity field, equation (1.1) can be written as

@t! C u � r! D 0; u D r
? D .�@y ; @x /; � D !: (1.2)

In the case of the finite channel D D T � Œ0; 1�, we impose also the boundary conditions

 .x; 0/ � 0;  .x; 1/ � C0; (1.3)

where C0 is a constant preserved by the flow.
The two-dimensional incompressible Euler equation is globally well posed for

smooth initial data, by the classical result of Wolibner [48]. The long-time behavior of gen-
eral solutions is, however, very difficult to understand, due to the lack of a global relaxation
mechanism. A more realistic goal is to study the global nonlinear dynamics of solutions
that are close to steady states of the 2D Euler equation. Coherent structures, such as shear
flows and vortices, are particularly important in the study of the 2D Euler equation, since
numerical simulations and physical experiments, such as those of [2,3,9,21,34,35,40,41], show
that they tend to form dynamically and become the dominant feature of solutions.

The main topic in this article is the study of asymptotic stability of shear flows and
vortices. This is a classical subject and a fundamental problem in hydrodynamics. Early
investigations were started by Rayleigh [38], Kelvin [27], Orr [37], Taylor [44], among many
others, with a focus on mode stability. More detailed understanding of general spectral prop-
erties and suitable linear decay estimates were obtained later, see, for example, [8,10,17,42].
In the direction of nonlinear results, Arnold [1] proved a general stability theorem, using the
energy method, but this does not give asymptotic information on the global dynamics.

The full nonlinear asymptotic stability problem has only been investigated in recent
years, starting with the work of Bedrossian–Masmoudi [7], who proved nonlinear stability in
the simplest case of perturbations of the Couette flow, i.e., showing that small perturbations
of the Couette flow on the infinite cylinder T � R converge weakly to nearby shear flows.
This result was extended by the authors [23] to the finite channel T � Œ0; 1�, in order to
be able to consider solutions with finite energy. In [24] the authors also proved asymptotic
stability of point vortex solutions inR2, showing that small perturbations converge to a radial
profile, and the position of the point vortex stabilizes rapidly at the center of the final radial
profile. Finally, in [25] the authors proved nonlinear asymptotic stability of a large family
of monotonic shear flows (a similar theorem was proved slightly later and independently by
Masmoudi–Zhao [33]). In this article we discuss the main ideas of our papers [23–25].

The linearized equations around other stationary solutions were also investigated
intensely in the last few years, and linear inviscid damping and decay was proved in many
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cases of physical interest, see, for example, [4, 15, 20,45–47,49, 50]. However, it also became
clear that there are major conceptual difficulties in passing from linear to nonlinear stability,
such as the presence of “resonant times” in the nonlinear problem, which require refined
Fourier analysis techniques, and the fact that the final state of the flow is determined dynam-
ically by the global evolution and cannot be described in terms of the initial data.

Nonlinear inviscid damping is a very subtle mechanism of stability that has only
been established in 2 dimensions and for Euler-type equations. In fact, the heuristic analysis
we present in Section 3 of this article suggests that this mechanism fails to produce global
solutions of the ˛-generalized SQG equation in 2 dimensions, for any parameter ˛ > 0.

The Euler equations can also be viewed as the limiting case of the Navier–Stokes
equations with small viscosity � > 0. In the presence of viscosity, one can have much more
robust stability results, both in 2 and 3 dimensions, for initial data that is sufficiently small
relative to �. See the recent papers [5,6,12,18] and references therein.

We note also that the problem of nonlinear inviscid damping is connected to the
well-known Landau damping effect for the Vlasov–Poisson equations. We refer to the cele-
brated work of Mouhot–Villani [36] for the physical background and more references.

1.1. Monotonic shear flows
We consider a perturbative regime for the Euler equation (1.1), with velocity field

given by .b.y/; 0// C u.x; y/ and vorticity given by �b0.y/ C !. We define the Gevrey
spaces G �;s.T � R/ as the spaces of L2 functions f on T � R defined by the norm

kf kG �;s.T�R/ WD


e�hk;�is

Qf .k; �/




L2
k;�

< 1; s 2 .0; 1�; � > 0: (1.4)

In the above .k; �/ 2 Z � R and Qf denotes the Fourier transform of f in .x; y/. More
generally, for any interval I � R we define the Gevrey spaces G �;s.T � I / by

kf kG �;s.T�I/ WD kEf kG �;s.T�R/; (1.5)

where Ef .x/ WD f .x/ if x 2 I and Ef .x/ WD 0 if x … I . The use of Gevrey spaces is
necessary in the context of inviscid damping, mainly due to loss of regularity during the
flow.

We will assume that the background shear flow b 2 C1.R/ satisfies the following:

(A) For some #0 2 .0; 1=10� and ˇ0 > 0

#0 � b0.y/� 1=#0 for y 2 Œ0; 1� and b00.y/� 0 for y … Œ2#0; 1� 2#0�;

(1.6)
and

kbkL1.0;1/ C


b00




G ˇ0;1=2 � 1=#0: (1.7)

(B) The associated linear operator Lk W L2.0; 1/! L2.0; 1/, k 2 Zn¹0º, given by

Lkf D b.y/f � b00.y/'k ; where @2
y'k � k2'k D f; 'k.0/ D 'k.1/ D 0;

(1.8)
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has no discrete eigenvalues and, therefore, by the general theory of Fredholm
operators, the spectrum of Lk is purely continuous spectrum Œb.0/; b.1/� for
all k 2 Zn¹0º.

For any functionH DH.x;y/ W T � R ! C, let hH i D hH i.y/ denote the average
ofH in x. Our main result in [25] is the following theorem:

Theorem 1.1. Assume that ˇ0; #0 > 0 and b satisfies the assumptions above. Then there are
constants ˇ1 > 0 and " > 0 such that the following statement is true:

Assume that !0 has compact support in T � Œ2#0; 1 � 2#0�, and satisfies

k!0kG ˇ0;1=2.T�R/ D " � ";

Z
T
!0.x; y/ dx D 0 for any y 2 Œ0; 1�: (1.9)

Let ! W Œ0;1/ � T � Œ0; 1� ! R denote the global smooth solution to the Euler equation8<: @t! C b.y/@x! � b00.y/@x C u � r! D 0;

u D .ux ; uy/ D .�@y ; @x /; � D !;  .t; x; 0/ D  .t; x; 1/ D 0;

(1.10)
with initial data !0. Then we have the following conclusions:

(i) For all t � 0, supp!.t/ � T � Œ#0; 1 � #0�.

(ii) There exists F1.x; y/ 2 G ˇ1;1=2 with suppF1 � T � Œ#0; 1 � #0� such that

!�
t; x C tb.y/Cˆ.t; y/; y

�
� F1.x; y/




G ˇ1;1=2.T�Œ0;1�/

.ˇ0;#0;�

"

hti

(1.11)

for all t � 0, where

ˆ.t; y/ WD

Z t

0

˝
ux

˛
.�; y/ d�: (1.12)

(iii) We define the smooth functions  1; u1 W Œ0; 1� ! R by

@2
y 1 D hF1i;  1.0/ D  1.1/ D 1; u1.y/ WD �@y 1.y/: (1.13)

Then the velocity field u D .ux ; uy/ satisfies the bounds

˝
ux

˛
.t; y/ � u1.y/




G ˇ1;1=2.T�Œ0;1�/

.
"

hti2
(1.14)

and

hti


ux.t; x; y/ �

˝
ux

˛
.t; y/




L1.T�Œ0;1�/

C hti2


uy.t; x; y/




L1.T�Œ0;1�/

. ":

(1.15)

1.1.1. Remarks
The simplest case b.y/ D y (the Couette flow) was treated earlier in [7, 23]. We

discuss now some of the assumptions and conclusions of our main theorem.
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(1) Equation (1.10) for the vorticity deviation is equivalent to the original Euler
equations (1.1)–(1.3). The condition

R
T !0.x; y/ dx D 0 can be imposed without loss of

generality, by replacing the shear flow b.y/ with the nearby shear flow b.y/C hux
0i.y/.

(2) The assumption on the compact support of !0 is likely necessary to prove scat-
tering in Gevrey spaces. Indeed, Zillinger [49] showed that scattering does not hold in high
Sobolev spaces unless one assumes that the vorticity vanishes at high order at the bound-
ary. This is due to what is called “boundary effect,” which is not consistent with inviscid
damping. Investigating the boundary effect in the context of asymptotic stability of Euler or
Navier–Stokes equations is an interesting topic by itself, but we will not address it here.

(3) The assumption on the support of b00 is necessary to preserve the compact
support of !.t/ in T � Œ#0; 1� #0�, due to the nonlocal term b00.y/@x in (1.10). Assump-
tion (1.6) on the uniform monotonicity of the function b is also important for our proof, to
ensure a uniform rate of inviscid damping. It is an open question to investigate what happens
in the case of nonmonotone shear flows which are linearly stable, such as Kolmogorov or
Poiseuille flows.

(4) There is a large class of shear flows b satisfying our assumptions, for instance,
functions b.y/ satisfying b0.y/ � 1 and jb000.y/j < 1, y 2 Œ0; 1�.

(5) The Gevrey regularity assumption (1.9) on the initial data !0 is likely sharp.
See the recent construction of nonlinear instability of Deng–Masmoudi [16] for the Couette
flow in slightly larger Gevrey spaces, and the more definitive counterexamples to inviscid
damping in low Sobolev spaces by Lin–Zeng [30].

(6) The most important statement in Theorem 1.1 is (1.11), which provides strong
control on the “profile” of the vorticity and fromwhich the other statements follow easily.We
note that the convergence (1.11) of the profile for vorticity holds in a slightly weaker Gevrey
space, since ˇ1 < ˇ0. This is connected with the use of energy functionals with decreasing
time-dependent weights to control the profile, and is a reflection of the phenomenon that
“decay costs regularity” in inviscid damping.

(7) At the qualitative level, our main conclusion (1.11) shows that the vorticity !
converges weakly to the function hF1i.y/. This is consistent with a far-reaching conjecture
regarding the long-time behavior of solutions of the 2D Euler equation, see [43], which
predicts that for general generic solutions the vorticity field converges, as t ! 1, weakly
but not strongly in L2

loc to a steady state. Proving such a conjecture for general solutions is,
of course, well beyond the current PDE techniques, but the nonlinear asymptotic stability
results we have so far in [7,23–25] are consistent with this conjecture.

(8) One can gain some intuition and explain the more technical conclusions in The-
orem 1.1 by examining a simple explicit case, corresponding to the Couette flow b.y/ D y.
In this case b00.y/ D 0 and the linearization of the main equation (1.10) is

@t! C y@x! D 0; (1.16)

which was studied by Orr in a pioneering work [37]. To simplify the discussion, assume
that x 2 T , y 2 R (to avoid the boundary issue which is not our main concern here). By
direct calculation, we have !.t; x; y/ D !0.x � yt; y/. The stream function is given by
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� .t; x; y/ D !.t; x; y/ for .x; y/ 2 T � R, so in the Fourier space we have the formulas

e!.t; k; �/ D f!0.k; � C kt/; e .t; k; �/ D �
f!0.k; � C kt/

k2 C j�j2
: (1.17)

We remark that the conclusions in the full nonlinear Theorem 1.1 are consistent with these
explicit formulas. Indeed, if !0 is smooth, so f!0.k; �/ decays fast in .k; �/, then:

(i) The main contribution comes from the frequencies � D �kt C O.1/, there-
fore e .t; k; �/ decays like jkj�2hti�2 if k ¤ 0. Similarly, since ux D �@y 

and uy D @x , we see that fux decays like jkj�1hti�1 and fuy decays like
jkj�1hti�2, as claimed in (1.15).

(ii) It can be seen from (1.17) that the functions !.t; x; y/ and  .t; x; y/ are not
uniformly smooth as t ! 1, in the coordinates x;y. To identify smooth “pro-
files,” we need to make changes of coordinates, i.e., we define

z D x � tv; v D y; F.t; z; v/ D !.t; x; y/; �.t; z; v/ D  .t; x; y/:

(1.18)
Notice that F.t; z; v/ D !0.z; v/ (independent of t ), while �.t; z; v/ is uni-
formly smooth for all t provided that !0 is smooth. Taking the Fourier trans-
form in z; v, we have the formula

e�.t; k; �/ D �
f!0.k; �/

k2 C j� � kt j2
: (1.19)

An important observation of Orr is that for k ¤ 0 and large �, the normalized
stream function � (as well as the velocity field) experiences a transient growth
as t approaches the “critical time” tc D �=k before decaying to zero. This can
be seen easily from the formula (1.19). This transient growth on the linearized
level turns out to be crucial for the nonlinear analysis as well, and leads to the
high regularity assumptions (Gevrey spaces) that are required for the nonlinear
perturbation theory.

1.2. Point vortices
Vortices (radial functions) are stationary solutions of the Euler equation in R2 in

vorticity formulation (1.2). The stability of vortices is a major open problem for 2D Euler
equations, which is challenging even at the linear level as shown in [4] in the case of radially
decreasing vortices.

In [24]we initiated the rigorous study of the full nonlinear asymptotic stability prob-
lem for vortices of the Euler equation in R2. We consider the simplest class of vortices,
called point vortices, which are ı-functions centered at points in R2. Such solutions (and
more generally the so called N -vortex solutions) are models of general solutions with vor-
ticity concentrated sharply in small neighborhoods, and have been studied by many authors.
See, for instance, the classical work of Kirchhoff [28], C. C. Lin [29], and the book of Majda–
Bertozi [31] for more references.
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To state our main conclusions, consider solutions of the form

vorticity field D � ı
�
P.t/

�
C !; velocity field D r

?��1ı
�
P.t/

�
C u; (1.20)

where � 2 Rn¹0º is the strength of the point vortex, ı.P.t// is the Dirac mass centered at
P.t/ D .P1.t/; P2.t// 2 R2. We assume that P.t/ is not in the support of !, which will be
satisfied as part of our analysis. Then the perturbation ! satisfies the equation

@t! C U � r! C u � r! D 0; for .x; y; t/ 2 R2
� Œ0;1/; (1.21)

where
U D r

?��1ı
�
P.t/

�
D

�

2�
r

? log
ˇ̌
.x; y/ � P.t/

ˇ̌
: (1.22)

The velocity field u and the stream function  are determined through

u D r
? D .�@y ; @x /;

� D !; lim
j.x;y/j!1

²
 .x; y/ �

c0

2�
log

ˇ̌
.x; y/

ˇ̌³
D 0;

(1.23)

where
c0 WD

Z
R2

!.t; x; y/dxdy (1.24)

is a constant preserved by the flow for all times (as long as the support of !.t/ is away from
P.t/). In addition, the center P.t/ satisfies the transport ODE

P 0.t/ D r
? 

�
t; P.t/

�
: (1.25)

Equations (1.21)–(1.25) can be derived rigorously when the vortex P.t/ lies outside of the
support of !.t/, see, for example, [32]. In our case, this support condition is propagated
dynamically by the flow, as a consequence of the proof of stability.

In [24] we prove axisymmetrization around a point vortex. More precisely, we prove
that small, Gevrey smooth, and compactly supported perturbations symmetrize around the
point vortex whose location changes in time and converges fast as t ! 1.

Theorem 1.2. Assume that � 2 Rn¹0º, � 2 .0;1/,M 2 .1;1/, and!0 2C1
0 .R2/ satisfies

the support property supp!0 � ¹x 2 R2 W jxj 2 Œ1=M;M�º. Assume thatZ
R2

e�h�;�i1=2 ˇ̌f!0.�; �/
ˇ̌2
d�d� � "2; (1.26)

for a sufficiently small constant " � ".�;M; �/, where f!0 denotes the Fourier transform of
!0. Then there is a unique smooth global solution .!; P / of the system (1.21)–(1.25) such
that P.t/ stays outside of the support of !.t/ for all t � 0. Moreover,ˇ̌

P.t/ � P1

ˇ̌
. " e�chti1=2

for all t � 0; (1.27)

for some P1 2 R2 and c D c.�;M; �/ > 0, and the vorticity !.t/ converges weakly to a
Gevrey-2 regular function !1 2 C1.R2/ which is radial with respect to P1, as t ! 1.
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1.2.1. Adapted polar coordinates and precise results
To understand the mechanism of convergence in Theorem 1.2, we need to analyze

the Euler equations in the polar coordinates, recentered around themoving point vortexP.t/.
Let

.x; y/ D P.t/C r.cos �; sin �/: (1.28)

In .r; �/ coordinates, we set the functions u0
r , u0

�
,  0, !0 as follows:

!0.t; �; r/ D !.t; x; y/;  0.t; �; r/ D  .t; x; y/;

u0
r .t; �; r/er C u0

� .t; �; r/e� D u.t; x; y/;
(1.29)

where er WD .cos �; sin �/, e� WD .� sin �; cos �/. Equation (1.21) can be rewritten as

@t!
0
�

�
P 0.t/; er

�
@r!

0
�
1

r

�
P 0.t/; e�

�
@�!

0
C

�

2�r2
@�!

0
�
@� 

0@r!
0 � @r 

0@�!
0

r
D 0;

(1.30)
where the stream function  0.t; �; r/ can be calculated through

@2
r 

0
C
1

r
@r 

0
C
1

r2
@2

� 
0
D !0; lim

r!1

²
 0.t; r; �/ �

c0

2�
log r

³
D 0: (1.31)

In the above,

P 0.t/ D
1

2�

Z 1

0

Z 2�

0

.sin �;� cos �/ !0.t; �; r/d�dr; (1.32)

and .P 0.t/; er /, .P 0.t/; e� / denote the scalar products between the vectors P 0.t/, er , and e� .
The velocity field .u0

�
; u0

r / can be calculated according to the formulas

u0
� .t; �; r/ D @r 

0; u0
r .t; �; r/ D �.1=r/@� 

0: (1.33)

The following theorem is the full quantitative version of our main result in [24]:

Theorem 1.3. Assume that ˇ0; #0 2 .0; 1=8�, � 2 .0;1/, and assume !0
0 is smooth initial

data, satisfying the support condition supp!0
0 � T � Œ#0; 1=#0� and the smallness condition

!0

0




G ˇ0;1=2.T�R/

D " � "; (1.34)

where " D ".ˇ0; #0; �/ > 0 is sufficiently small and the Gevrey spaces G ˇ0;1=2.T � R/ are
defined as in (1.4). We have the following conclusions:

(i) (global regularity) There exist ˇ1 D ˇ1.ˇ0; #0; �/ > 0 and a unique global
solution !0 2 C.Œ0;1/ W G ˇ1;1=2.T � R// of the system (1.30)–(1.32) with
initial data !0.0/D !0

0 such that supp!0.t/� T � Œ#0=2; 2=#0� and jP.t/j<

#0=100 for any t 2 Œ0;1/.

(ii) (asymptotic stability)There exist�1 2G ˇ1;1=2.T �R/ andP1 D.P 1
1;P

2
1/2

R2 with supp�1 � T � Œ#0=2; 2=#0� and jP1j � #0=100 such that

!0
�
t; � C �t=

�
2�r2

�
Cˆ.t; r/; r

�
��1.�; r/




G ˇ1;1=2.T�R/

. "hti�1;

(1.35)ˇ̌
P.t/ � P1

ˇ̌
. " e�ˇ1t1=2

; (1.36)
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for any t � 0. Here

ˆ.t; r/ WD

Z t

0

hu0
�
i.�; r/

r
d� D

Z t

0

h@r 
0i.�; r/

r
d�: (1.37)

(iii) (control of the velocity field) The velocity field u0 satisfies the asymptotic
bounds 

˝

u0
�

˛
.t; r/ � u0

1.r/




G ˇ1;1=2.R/
. "hti�2; (1.38)

hti


u0

� .t; �; r/ �
˝
u0

�

˛
.t; r/




L1.T�R/

C hti2


u0

r .t; �; r/




L1.T�R/
. ";

(1.39)
where the function u0

1 2 G ˇ1;1=2.R/ is defined by

@r

�
ru0

1.r/
�

D r�1.r/; u0
1.r/ D

8<: 0 if r � #0=2;

c0=.2�/ if r � 2=#0:

1.2.2. Remarks
(1) We notice the similarities between Theorem 1.1 (in the Couette case b.y/ D y)

and Theorem 1.3. In the point vortex case, the inviscid damping is generated by the term
�

2�r2 @�!
0 in (1.30), � ¤ 0. Indeed, at the linearized level, equation (1.30) is

@t!
lin

C
�

2�r2
@�!

lin
D 0; (1.40)

with the explicit solution

! lin.t; �; r/ D ! lin
0

�
� � �t=.2�r2/; r

�
: (1.41)

Using now (1.31), we can express  lin
k
, k 2 Zn¹0º, as

 lin
k .t; r/ D

Z
R
Gk.r; �/!

lin
0;k.�/e

�ik�t=.2��2/ d�; (1.42)

where  lin
k

and ! lin
0;k

denote the kth Fourier modes of the functions  lin and ! lin
0 in � and

Gk is the associated Green function for the operator @2
r C @r=r � k2=r2. These formulas

and integration by parts in � lead to pointwise decay in time for the velocity field ulin D

.ulin
�
; ulinr / D .@r 

lin;�@� 
lin=r/, consistent with the bounds (1.39). In other words, the

main conclusions of Theorem 1.3 can be verified for the linearized flow as a consequence of
the explicit formulas (1.41)–(1.42), as expected.

(2) The main difference between Theorems 1.1 and 1.3 comes from the global shift
caused by the movement of the vortex P.t/. It is very important to prove that the point
vortex stabilizes rapidly, according to (1.36), which gives just the right amount of decay to
compensate for the loss of regularity caused by changes of variables and mixing.

(3) Finally, we note that the assumption that the point vortex lies outside the support
of the perturbation is necessary for inviscid damping in Gevrey spaces. This is analogous to
the “boundary effect” discussed earlier in the context of shear flows.
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1.3. Organization
The rest of this paper is organized as follows: in Section 2 we discuss the main

ideas in the proofs of Theorems 1.1 and 1.3. In Section 3 we discuss the limitations of the
mechanism of inviscid damping, showing that it cannot be used to prove global regularity of
solutions of the generalized SQG equations.

2. Main ideas

In this section we discuss some of the main ideas involved in the proofs of The-
orems 1.1 and 1.3. Most of our discussion will be focused on the harder case of general
monotonic shear flows, but some of the key ideas apply also in the case of point vortices.

2.1. Renormalization and the new equations
We introduce now a nonlinear change of variables and define the main quantities

we need to control uniformly in time. We need to unwind the transportation in x. Assume
that ! W Œ0; T � � T � Œ0; 1� is a sufficiently smooth solution of the system (1.10),

@t! C b.y/@x! � b00.y/@x C u � r! D 0;

.ux ; uy/ D .�@y ; @x /; � D !;  .t; x; 1/ D  .t; x; 0/ D 0; (2.1)

which is supported in T � Œ#0; 1 � #0� at all times t 2 Œ0; T �, satisfying kh!i.t/kH 10 � 1.
We make the nonlinear change of variables

v D b.y/C
1

t

Z t

0

˝
ux

˛
.�; y/ d�; z D x � tv: (2.2)

The point of this change of variables is to eliminate two of the nondecaying terms in the
evolution equation in (2.1), namely the terms b.y/@x! and huxi@x!. The change of variable
y ! v is crucial for our analysis, and it allows us to link the renormalized stream function �
to the profile F using the elliptic equation (2.7). The point is that this equation has constant
coefficients at the linear level, so it is compatible with Fourier analysis.

Then we define the functions

F.t; z; v/ WD !.t; x; y/; �.t; z; v/ WD  .t; x; y/; (2.3)

V 0.t; v/ WD @yv.t; y/; V 00.t; v/ WD @yyv.t; y/; PV .t; v/ WD @tv.t; y/; (2.4)

B 0.t; v/ WD @yb.y/; B 00.t; v/ WD @yyb.y/: (2.5)

The evolution equation in (2.1) becomes

@tF � B 00@z� � V 0@vP¤0� @zF C . PV C V 0@z�/ @vF D 0; (2.6)

where P¤0 is projection off the zero mode, P¤0H.t; z; v/ D H.t; z; v/ � hH i.t; v/. The
renormalized vorticity � satisfies the elliptic-type equation

@2
z� C .V 0/2.@v � t@z/

2� C V 00.@v � t@z/� D F; (2.7)
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The functions V 0, V 00, B 0, B 00, PV also satisfy suitable evolution or elliptic equations
in the new variables .t; v/, which can be derived from (2.1) and the definitions, such as

@tB
0.t; v/C PV @vB

0.t; v/ D @tB
00.t; v/C PV @vB

00.t; v/ D 0; (2.8)

@t .V
0
� B 0/C PV @v.V

0
� B 0/ D H=t; (2.9)

@t H C PV @vH D �H=t � V 0
h@vP¤0� @zF i C V 0

h@z� @vF i; (2.10)

where
H .t; v/ WD tV 0.t; v/@v

PV .t; v/ D B 0.t; v/ � V 0.t; v/ � hF i.t; v/: (2.11)

Equations (2.6)–(2.11) are the main equations we analyze in our proof.

2.2. Energy functionals and imbalanced weights
Themain idea is to control the regularity ofF for all t � 0, as well as other quantities

such as �, V 0, V 00, B 0, B 00, PV , using a bootstrap argument involving energy functionals and
space-time norms. These norms depend on families of weightsAk.t; �/,ANR.t; �/,AR.t; �/,
k 2 Z, � 2 R, which have to be designed carefully to control the nonlinearities.

To identify the main issue and motivate the choice of weights, assume first that F
and � satisfy the simplified closed system

@tF � @vP¤0� @zF D 0; @2
z� C .@v � t@z/

2� D F; (2.12)

for .z; v; t/ 2 T � R � Œ0;1/. Compared to the original equations (2.6)–(2.7), we assume
that b00 � 0 (the Couette flow) and keep only one nonlinear term, the “reaction term”
@vP¤0� � @zF . We would like to control, uniformly in time, an energy functional of the
form

E.t/ WD

X
k2Z

Z
R
A2

k.t; �/
ˇ̌

QF .t; k; �/
ˇ̌2
d�; (2.13)

where QF denotes the spacial Fourier transform of F , for a suitable weight Ak.t; �/ which
decreases in t . Let Z� D Z n ¹0º and notice that

B@vP¤0�.t; k; �/ D �
i�

k2

QF .t; k; �/

1C jt � �=kj2
1Z�.k/: (2.14)

When j�j � k2, the factor �=k2 in (2.14) indicates a loss of one full derivative in v in the
resonant region ¹.t; k; �/ W jt � �=kj � j�j=k2; k2 � j�jº. This is a major obstruction to
proving stability, which cannot be removed by standard symmetrization techniques.

The key original idea of Bedrossian–Masmoudi [7] is to use imbalanced weights
Ak.t; �/ to absorb this derivative loss, taking advantage of the favorable structure of the
nonlinearity that does not allow for contributions to the resonant region to come from bilinear
interactions of small frequencies and frequencies in the resonant region (due to the factor
@zF in the reaction term). More precisely, the weights have to satisfy the unusual property

A`.t; �/

Ak.t; �/
�

ˇ̌̌̌
�

`2

ˇ̌̌̌
1

1C jt � �=`j
; (2.15)
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when k ¤ `, `¤ 0, � D �CO.1/, k D `CO.1/, and 1C jt � �=`j � j�j=`2. In addition,
these weights have to decrease in time, in the quantitative form,

�
@tA`.t; �/

A`.t; �/
&

1

ht � �=ki
; (2.16)

if k 2 Zn¹0º, ht � �=ki . j�j=k2, and j`j � h�i, in order to be able to control some of the
nonlinear terms using the Cauchy–Kowalevski terms coming from time differentiation of the
energy functional E . This leads to loss of regularity of the profile F during the evolution,
which is the price to pay to prove nonlinear decay of the stream function �.

2.2.1. The weights ANR , AR , Ak

For the sake of completeness, we summarize here the construction of our main
imbalanced weights AR, ANR, Ak in [23–25]. Given ı0 D ı0.ˇ0; #0/ > 0, we define first
the decreasing function � W Œ0;1/ ! Œı0; 3ı0=2� by

�.0/ D
3

2
ı0; �0.t/ D �

ı0�
2
0

hti1C�0
; (2.17)

for small positive constant �0 (say �0 D 0:01). Then we define

AR.t; �/ WD
e�.t/h�i1=2

bR.t; �/
e

p
ıh�i1=2

; ANR.t; �/ WD
e�.t/h�i1=2

bNR.t; �/
e

p
ıh�i1=2

; (2.18)

Ak.t; �/ WD e�.t/hk;�i1=2

�
e

p
ıh�i1=2

bk.t; �/
C e

p
ıjkj1=2

�
; (2.19)

where ı > 0 is a small constant and k 2 Z.
To construct the main functions bk , bNR, bR that appear in (2.18)–(2.19), we start by

defining two functions wNR;wR W Œ0;1/ � R ! Œ0; 1�, which distinguish between resonant
and nonresonant regions and play a key role in the analysis. Resonance is measured in terms
of the size of the denominators ht � �=ki, which appear in formula (2.14). The intervals Ik;�

defined below, where this factor is small are called “resonant” intervals. Notice the imbalance
in (2.24) between the weights wR.t; �/ and wNR.t; �/, especially around the center of the
resonant intervals, consistent with the loss of derivative discussed earlier.

Assume that ı > 0 is small, ı � ı0. For j�j � ı�10, we define simply

wNR.t; �/ WD 1; wR.t; �/ WD 1: (2.20)

For � > ı�10, we define k0.�/ WD b
p
ı3�c. For l 2 ¹1; : : : ; k0.�/º, we define

tl;� WD
1

2

�
�

l C 1
C
�

l

�
; t0;� WD 2�; Il;� WD Œtl;�; tl�1;��: (2.21)

Notice that jIl;�j � �=l2 and

ı�3=2p
�=2 � tk0.�/;� � � � � � tl;� � �=l � tl�1;� � � � � � t0;� D 2�:

We define

wNR.t; �/ WD 1; wR.t; �/ WD 1 if t � t0;� D 2�: (2.22)
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Then we define, for k 2 ¹1; : : : ; k0.�/º,

wNR.t; �/ WD

8̂̂̂<̂
ˆ̂:

�
1Cı2jt��=kj

1Cı2jtk�1;���=kj

�ı0

wNR.tk�1;�; �/ if t 2 Œ�=k; tk�1;��;�
1

1Cı2jt��=kj

�1Cı0

wNR.�=k; �/ if t 2 Œtk;�; �=k�:

(2.23)

We define also the weight wR by the formula

wR.t; �/ WD

8<:wNR.t; �/
1Cı2jt��=kj

1Cı2�=.8k2/
if jt � �=kj � �=.8k2/;

wNR.t; �/ if t 2 Ik;�; jt � �=kj � �=.8k2/;
(2.24)

for any k 2 ¹1; : : : ; k0.�/º and notice that for t 2 Ik;� ,
@twNR.t; �/

wNR.t; �/
�
@twR.t; �/

wR.t; �/
�

ı2

1C ı2jt � �=kj
: (2.25)

For small values of t D .1 � ˇ/tk0.�/;� , ˇ 2 Œ0; 1�, we define wNR and wR by the formulas

wNR.t; �/ D wR.t; �/ WD
�
e�ı

p
�
�ˇ
wNR.tk0.�/;�; �/

1�ˇ : (2.26)

If � < �ı�10, then we define wR.t; �/ WD wR.t; j�j/, wNR.t; �/ WD wNR.t; j�j/,
and Ik;� WD I�k;�� . To summarize, the resonant intervals Ik;� are defined for .k; �/ 2 Z � R

satisfying j�j > ı�10, 1 � jkj �
p
ı3j�j, and �=k > 0.

Finally, we define the weights wk.t; �/ by the formula

wk.t; �/ WD

8<:wNR.t; �/ if t 62 Ik;�;

wR.t; �/ if t 2 Ik;�:
(2.27)

If particular, wk.t; �/ D wNR.t; �/ unless j�j > ı�10, 1 � jkj �
p
ı3j�j, �=k > 0, and

t 2 Ik;� .
The functions wNR, wR, and wk have the right size but lack optimal smoothness in

the frequency parameter �, mainly due to the jump discontinuities of the function k0.�/. This
smoothness is important in symmetrization arguments (energy control of the transport terms)
and in commutator arguments. To correct this problem, we fix ' W R ! Œ0; 1� an even smooth
function supported in Œ�8=5; 8=5� and equal to 1 in Œ�5=4; 5=4�, and let d0 WD

R
R '.x/ dx.

For k 2 Z and Y 2 ¹NR;R; kº, let

bY .t; �/ WD

Z
R
wY .t; �/'

�
� � �

Lı 0.t; �/

�
1

d0Lı 0.t; �/
d�;

Lı 0.t; �/ WD 1C
ı0h�i

h�i1=2 C ı0t
; ı0

2 Œ0; 1�:

(2.28)

The length Lı 0.t; �/ in (2.28) is chosen to optimize the smoothness in � of the functions
bY .t; �/, while not changing significantly the size of the weights. The parameter ı0 is fixed
sufficiently small, depending only on ı.

These definitions can be used to prove the key properties (2.15)–(2.16), as well as
many other properties needed in the nonlinear analysis. We notice also that

e�.t/h�i1=2

� ANR.t; �/ � AR.t; �/ � e�.t/h�i1=2

e2
p

ıh�i1=2

;

e�.t/hk;�i1=2

� Ak.t; �/ � 2e�.t/hk;�i1=2

e2
p

ıhk;�i1=2

;
(2.29)
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for any k 2 Z, t � 0, and � 2 R. Finally, to prove commutator estimates in the context of
our problem, we need to know that the weights vary sufficiently slowly in � . In our case the
weights satisfy the key inequalitiesˇ̌

Ak.t; �/ � Ak.t; �/
ˇ̌

.
�

C.ı/

hk; �i1=2
C

p
ı

�
max

®
Ak.t; �/; Ak.t; �/

¯
(2.30)

if h� � �i . 1 � min¹hk; �i; hk; �iº. Such bounds are suitable to control the commutators
by letting ı small enough, due to the gain of

p
ı at large frequencies.

2.3. The auxiliary nonlinear profile
In the case of general shear flows, an essential new difficulty that is not present in the

Couette case, is the additional linear term B 00@z� in (2.6). This linear term cannot be treated
as a perturbation if b00 is not assumed small. On the linearized level, one can understand
the evolution by using spectral analysis, especially the regularity analysis of generalized
eigenfunctions corresponding to the continuous spectrum. However, it is still a challenge
to combine the linear spectral analysis with the more sophisticated Fourier analysis tools
needed for controlling the nonlinearity. We deal with this basic issue in two steps: first, we
define an auxiliary nonlinear profile F �.t/ given by

F �.t; z; v/ D F.t; z; v/ �

Z t

0

B 00.0; v/@z�
0.s; z; v/ ds: (2.31)

Thus F � takes into account the linear effect accumulated up to time t and can be bounded
perturbatively, using the methods outlined in the previous subsection. The function �0 is a
small but crucial modification of �, defined as the unique solution to the elliptic equation

@2
z�

0
C .B 0

0/
2.@v � t@z/

2�0
C B 00

0 .@v � t@z/�
0
D F;

�0
�
t; b.0/

�
D �0

�
t; b.1/

�
D 0;

(2.32)

onT � Œb.0/; b.1/�. This equation is obtained by freezing the coefficients of the main elliptic
equation (2.7) at time t D 0 to gain additional smoothness.

On a heuristic level, we expect that the full evolution of F consists of two contri-
butions: the main, linear evolution that changes the size of the profile most significantly,
and a small but rough (compared with the linear evolution) nonlinear correction. We can
view (2.31) as a bounded linear transformation in both space and time from F to F � which
takes into account the bulk linear evolution. The key point is that this transformation can be
inverted to get bounds on the full profile F from bounds on F �.

2.4. Control of the full profile
We still need to recover the bounds on F and the improved bounds on F � F �.

This is a critical step where we need to use our main spectral assumption and the precise
estimates on the linearized flow. To link F � F � with the linearized flow, we define an aux-
iliary function ��, which can be approximately viewed as a stream function associated with
F �, and set g D F � F �, ' WD �0 � ��. The functions g and ' satisfy the inhomogeneous
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linear system with trivial initial data

@tg � B 00
0 .v/@z' D H; g.0; z; v/ D 0;

B 0
0.v/

2.@v � t@z/
2' C B 00

0 .v/.@v � t@z/' C @2
z' D g.t; z; v/;

(2.33)

where .t; z; v/ 2 Œ0;1/ � T � Œb.0/; b.1/�. The functions B 0
0.v/ D B 0.0; v/ and B 00

0 .v/ D

B 00.0; v/ are time-independent, very smooth, and can be expressed in terms of the original
shear flow b. The source termH is given byH D B 00

0 .v/@z�
�.

The function �� is determined by the auxiliary profile F �. Since we have already
proved quadratic bounds on the profile F �, we can use elliptic estimates to prove quadratic
bounds on ��, and then on the source termH . Therefore, we can think of (2.33) as a linear
inhomogeneous system with trivial initial data, and adapt the linear theory to our situation.

Decomposing in modes, conjugating by e�ikvt , and using Duhamel’s formula, we
can further reduce to the study of the homogeneous initial-value problem

@tgk C ikvgk � ikB 00
0'k D 0; gk.0; v/ D Xk.v/e

�ikav;

.B 0
0/

2@2
v'k C B 00

0 .v/@v'k � k2'k D gk ; 'k

�
b.0/

�
D 'k

�
b.1/

�
D 0:

(2.34)

for .t; v/ 2 Œ0;1/ � Œb.0/; b.1/�, where k 2 Z n ¹0º and a 2 R.

2.5. Analysis of the linearized flow
Equation (2.34) was analyzed, at least when aD 0, by Wei–Zhang–Zhao in [45] and

by the second author in [26]. We follow the approach in [26]. The main idea is to use the
spectral representation formula and reduce the analysis of the linearized flow to the analysis
of generalized eigenfunctions corresponding to the continuous spectrum.

More precisely, using general spectral theory, we can express the stream function
as an oscillatory integral of the spectral density function (which depends both on the phys-
ical and the spectral variables). As a consequence, given data Xk smooth and satisfying
suppXk � Œb.#0/; b.1 � #0/� we find a representation formulaegk.t; �/ D fXk.� C kt C ka/ (2.35)

C ik

Z t

0

Z
R

fB 00
0 .�/

f…0
k.� C kt � � � k�; � C kt � �; a/ d� d�

for the solution gk of the linear evolution equation (2.34), where…0
k
.�;�;a/ can be expressed

in terms of a family of generalized eigenfunctions. As proved in [26], these eigenfunctions
cannot be calculated explicitly, but can be estimated very precisely in the Fourier space,

�

jkj C j�j
�
Wk.�C ka/f…0

k.�; �; a/




L2
�;�

.ı



Wk.�/fXk.�/




L2
�
; (2.36)

for any a 2 R, for a large family of weightsWk that satisfy a slow variation property similar
to (2.30). This leads to suitable control on the functions gk D Fk � F �

k
, which allows us to

close the bootstrap argument.
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2.6. Energy functionals and the bootstrap proposition
We are now ready to summarize our main argument: given a solution ! W Œ0; T � �

T � Œ0; 1� ! R of equation (2.1), we define first the functions F , �, V 0, V 00, PV , B 0, B 00, H

as in (2.3)–(2.5) and (2.11). To construct useful energy functionals, we need to modify the
functions V 0, B 0, B 00 which are not “small,” so we define the new variables

B 0
0.v/ WD B 0.0; v/ D .@yb/

�
b�1.v/

�
; B 00

0 .v/ WD B 00.0; v/ D .@2
yb/

�
b�1.v/

�
;

V 0
� WD V 0

� B 0
0; B 0

� WD B 0
� B 0

0; B 00
� WD B 00

� B 00
0 :

(2.37)

Our main goal is to control the functions F and �. For this we need to consider two
auxiliary functions F � and �0, defined as in (2.31)–(2.32). Then we define the renormalized
elliptic profiles

‚.t; z; v/ WD
�
@2

z C .@v � t@z/
2
��
‰.v/ �.t; z; v/

�
;

‚�.t; z; v/ WD
�
@2

z C .@v � t@z/
2
��
‰.v/

�
�.t; z; v/ � �0.t; z; v/

��
;

(2.38)

where ‰ W R ! Œ0; 1� is a Gevrey class cut-off function, satisfying

keh�i3=4 e‰.�/kL1 . 1;

supp‰ �
�
b.#0=4/; b.1 � #0=4/

�
; ‰ � 1 in

�
b.#0=3/; b.1 � #0=3/

�
:

(2.39)

Our bootstrap argument is based on controlling simultaneously energy function-
als and space-time integrals. For this we need carefully chosen weights ANR, AR, and Ak ,
defined as in Section 2.2.1. Let PAY .t; �/ WD .@tAY /.t; �/ � 0, Y 2 ¹NR;R; kº, and define,
for any t 2 Œ0; T �,

Ef .t/ WD

X
k2Z

Z
R
A2

k.t; �/
ˇ̌

Qf .t; k; �/
ˇ̌2
d�; f 2

®
F;F �

¯
;

Bf .t/ WD

Z t

1

X
k2Z

Z
R

ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

ˇ̌
Qf .s; k; �/

ˇ̌2
d�ds;

(2.40)

EF �F �.t/ WD

X
k2Z�

Z
R

�
1C hk; �i=hti

�
A2

k.t; �/
ˇ̌ C.F � F �/.t; k; �/

ˇ̌2
d�;

BF �F �.t/ WD

Z t

1

X
k2Z�

Z
R

�
1C hk; �i=hsi

�ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

ˇ̌ C.F � F �/.s; k; �/
ˇ̌2
d�ds;

(2.41)

Eˆ.t/ WD

X
k2Z�

Z
R
A2

k.t; �/
jkj2hti2

j�j2 C jkj2hti2

ˇ̌ê.t; k; �/ˇ̌2
d�; ˆ 2

®
‚;‚�

¯
;

Bˆ.t/ WD

Z t

1

X
k2Z�

Z
R

ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

jkj2hsi2

j�j2 C jkj2hsi2

ˇ̌ê.s; k; �/ˇ̌2
d�ds;

(2.42)

Eg.t/ WD

Z
R
A2

R.t; �/
ˇ̌
Qg.t; �/

ˇ̌2
d�; g 2

®
V 0

�; B
0
�; B

00
�

¯
;

Bg.t/ WD

Z t

1

Z
R

ˇ̌
PAR.s; �/

ˇ̌
AR.s; �/

ˇ̌
Qg.s; �/

ˇ̌2
d�ds;

(2.43)
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EH .t/ WD K2

Z
R
A2

NR.t; �/
�
hti=h�i

�3=2 ˇ̌
QH .t; �/

ˇ̌2
d�;

BH .t/ WD K2

Z t

1

Z
R

ˇ̌
PANR.s; �/

ˇ̌
ANR.s; �/

�
hsi=h�i

�3=2 ˇ̌
QH .s; �/

ˇ̌2
d�ds;

(2.44)

where Z� WD Z n ¹0º and K � 1 is a large constant that depends only on ı.
Our main bootstrap proposition is the following:

Proposition 2.1. Assume T � 1 and! 2C.Œ0;T � W G 2ı0;1=2/ is a sufficiently smooth solution
of the system (2.1), with the property that !.t/ is supported in T � Œ#0; 1 � #0� and that
kh!i.t/kH 10 � 1 for all t 2 Œ0; T �. Define F , F �, ‚, ‚�B 0

�, B 00
� , V 0

�, H as above. Assume
that "1 is sufficiently small (depending on ı),X

g2¹F; F �; F �F �; ‚; ‚�; V 0
�; B 0

�; B 00
� ; Hº

Eg.t/ � "3
1 for any t 2 Œ0; 1�; (2.45)

and X
g2¹F; F �; F �F �; ‚; ‚�; V 0

�; B 0
�; B 00

� ; Hº

�
Eg.t/C Bg.t/

�
� "2

1 for any t 2 Œ1; T �: (2.46)

Then for any t 2 Œ1; T �, we have the improved boundsX
g2¹F; F �; F �F �; ‚; ‚�; V 0

�; B 0
�; B 00

� ; Hº

�
Eg.t/C Bg.t/

�
� "2

1=2: (2.47)

Moreover, we also have the stronger bounds for t 2 Œ1; T �, namelyX
g2¹F; ‚º

�
Eg.t/C Bg.t/

�
.ı "

3
1: (2.48)

This proposition is the main ingredient in the proof of Theorem 1.1 in [25]. Its proof
is based on implementing the steps outlined in Sections 2.2–2.5. It is important to control
not only the main variables F , ‚, F � and ‚�, but also the variables V 0

�, B 0
�, and B 00

� which
are connected to the change of variables y ! v. These variables appear in many nonlinear
terms, so it is important to control their smoothness precisely, as part of a combined bootstrap
argument, in a way that is consistent with the smoothness of the functions F and ‚.

The functionH plays a different role, as it is the only variable that decays in time and
encodes the convergence of the system as t ! 1. This function decays at a rate of hti�3=4,
in a weaker topology, which shows that the function @v

PV decays fast at an integrable rate of
hti�7=4, again in a weaker topology.We remark also that the bootstrap control on the variable
F � F � is slightly stronger than on the variables F and F � separately, which is needed to
compensate for the lack of symmetry in some of the transport terms.

3. An unstable model: the generalized SQG equation

We consider now the generalized surface quasigeostrophic equations (gSQG)8<: @t� C u � r� D 0; .t; x/ 2 Œ0; T / � D ;

u D �r?.��/�1C˛=2�;
(3.1)
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where ˛ 2 Œ0; 2� and D is a domain in R2. The case ˛ D 1 corresponds to the surface quasi-
geostrophic (SQG) equation, introduced by Constantin–Majda–Tabak [13] as a model for the
full 3D Euler equations. Notice that the case ˛ D 0 corresponds to the 2D incompressible
Euler equations and the case ˛ D 2 produces stationary solutions.

These are the so-called active scalar equations, which have been analyzed exten-
sively both in the setting of smooth solutions � and in the setting of the so-called ˛-patches,
which are solutions for which � is a step function. The local regularity theory is generally
well understood: as expected, suitable initial data lead to local in time unique solutions that
propagate the regularity of the initial data, both in the smooth and the patch setting (see, for
example, [13,19,22,39] for regularity results of this type).

The construction of nontrivial global solutions for the gSQG equations is a very
challenging open problem for all parameters ˛ 2 .0; 2/, both in the smooth and in the patch
case (the construction of solutions that blow up in finite time is also a challenging open prob-
lem, but we will not discuss it here). In fact, the only known nonstationary global solutions of
finite energy, both in the smooth and the patch setting, are special rotating solutions, periodic
in time. See the recent work [11] for the construction of such solutions in the harder smooth
case, and more references. See also [14] for the construction of a stable class of global solu-
tions in the patch case, using the mechanism of dispersion, but which have infinite energy.

It is tempting to try to use the mechanism of inviscid damping to construct families
of nontrivial global solutions of the gSQG equations, at least for some parameters ˛ 2 .0; 2/,
by perturbing around stationary solutions. The easiest would be to perturb around shear
flows on the finite channel domain D D T � Œ0; 1�, in particular around the Couette flow
corresponding to �.t; x; y/ D �1. The fractional Laplacian .��/�1C˛=2 on the domain
D D T � Œ0; 1� can be defined using explicit spectral theory. The vorticity deviation ! D

� C 1 W Œ0; T � � T � Œ0; 1� ! R satisfies the system

@t! C @ya.y/@x! � @y @x! C @x @y! D 0;

 D �.��/�1C˛=2!;  .t; x; 1/ D  .t; x; 0/ D 0;
(3.2)

where a D a.y/ is given by .�@2
y/

1�˛=2a.y/ D �1, a.0/ D a.1/ D 0. Notice that if ˛ D 0

this is the same as the Euler equation (2.1) for the Couette flow b.y/D y � 1=2, as expected.
At first glance it seems plausible to adapt the ideas described in Sections 2.1–2.2

to prove global regularity of the system (3.2), at least for some ˛ > 0 small. One can still
perform a nonlinear change of variables and derive a system of equations for a profile F , as
in Section 2.1. A simplified version of this system is the closed equation

@tF � @vP¤0ˆ@zF D 0; AP¤0ˆ.t; k; �/ D
QF .t; k; �/

Œk2 C .� � tk/2�1�˛=2
1Z�.k/ (3.3)

for the smooth function F W Œ0; T �� T � R ! R, which is analogous to the simplified equa-
tion (2.12) considered in Section 2.2.
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Surprisingly, our analysis (in collaboration also with Javier Gómez-Serrano) reveals
that the system (3.3) is unstable, for any ˛ > 0. To see this, let

EF .t/ WD

X
k2Z�

Z
R
W 2

k .t; �/
ˇ̌

QF .t; k; �/
ˇ̌2
d�;

BF .t/ WD

X
k2Z�

Z t

0

Z
R

ˇ̌
PWk.s; �/

ˇ̌
Wk.s; �/

ˇ̌
QF .s; k; �/

ˇ̌2
d�;

(3.4)

where Z� D Z n ¹0º. We will show below that it is not possible to find a family of weights
Wk , decreasing in t and compatible with nonlinear analysis, for which one could control the
energy functional EF for uniformly all times.

Indeed, we calculate
d

dt
EF .t/ D

X
k2Z�

Z
R
2 PWk.t; �/Wk.t; �/

ˇ̌
QF .t; k; �/

ˇ̌2
d�

C 2<
X

k2Z�

Z
R
W 2

k .t; �/@t
QF .t; k; �/ QF .t; k; �/ d�: (3.5)

Therefore, since @tWk � 0, for any t 2 Œ1; T �, we have

EF .t/C 2BF .t/ D EF .0/C

Z t

0

²
2<

X
k2Z�

Z
R
W 2

k .s; �/@s
QF .s; k; �/ QF .s; k; �/ d�

³
ds:

(3.6)

Using equation (3.3), the cubic term on the right-hand side of (3.6) is equal to

C

ˇ̌̌̌
ˇ2<

´ X
k;`2Z�

Z t

0

Z
R2

W 2
k .s; �/i�

ê.s; `; �/i.k � `/ QF .s; k � `; � � �/ QF .s; k; �/ d�d�ds

µˇ̌̌̌
ˇ

D C

ˇ̌̌̌
ˇ2<

´ X
k;`2Z�

Z t

0

Z
R2

W 2
k .s; �/

� QF .s; `; �/ QF .s; k; �/

Œ`2 C .� � s`/2�1�˛=2
.k � `/

� QF .s; k � `; � � �/ d�d�ds

µˇ̌̌̌
ˇ

D C

ˇ̌̌̌
ˇ X
k;`2Z�

Z t

0

Z
R2

�
�W 2

k
.s; �/

Œ`2 C .� � s`/2�1�˛=2
�

�W 2
`
.s; �/

Œk2 C .� � sk/2�1�˛=2

�
� QF .s; `; �/ QF .s; k; �/.k � `/ QF .s; k � `; � � �/ d�d�ds

ˇ̌̌̌
ˇ; (3.7)

where in the last identity we use symmetrization in .k; �/ and .`; �/, based on the fact that
F is real-valued.

We restrict ourselves to the range

�; � D N CO.1/; k D 2; ` D 1; (3.8)

whereN is very large. This corresponds to the main “reaction term” in the original equation
(3.3), where the frequency of ˆ in the nonlinearity is large and the frequency of F is small.
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To estimate the right-hand side of (3.6) using the bulk term BF defined in (3.4), we need
that the weights satisfy the inequalityˇ̌̌̌

�W 2
2 .s; �/

Œ1C .� � s/2�1�˛=2
�

�W 2
1 .s; �/

Œ4C .� � 2s/2�1�˛=2

ˇ̌̌̌
.

q
j PW2.s; �/jW2.s; �/

q
j PW1.s; �/jW1.s; �/; (3.9)

for all �; � D N CO.1/ and s 2 Œ0;1/.
Assume that we are further restricting to a neighborhood of the largest resonant time

s DN CO.1/. We notice that in this case the two terms on the left-hand side of (3.9) cannot
have a meaningful cancelation because the denominator of the first term varies uniformly
between 1 and C if � and s are fixed and � D N CO.1/, while all the other numerators and
denominators vary much less. So we would need

�W 2
2 .s; �/

Œ1C .� � s/2�1�˛=2
C

�W 2
1 .s; �/

Œ4C .� � 2s/2�1�˛=2

.
q

j PW2.s; �/jW2.s; �/

q
j PW1.s; �/jW1.s; �/;

for all �; �; s D N CO.1/. In other words, the symmetrization performed in (3.7) does not
help in the resonant case �; �; s D N CO.1/. In particular, for all �; s D N CO.1/,

NW 2
2 .s; �/CN�1C˛W 2

1 .s; �/ . W2.s; �/W1.s; �/

s
j PW2.s; �/j

W2.s; �/

j PW1.s; �/j

W1.s; �/
: (3.10)

Using the mean inequality twice, this can only be satisfied if

N ˛=2 .
j PW2.s; �/j

W2.s; �/
C

j PW1.s; �/j

W1.s; �/
; if s; � D N CO.1/: (3.11)

Unfortunately, it is not possible to find suitable weights that satisfy a bound like
(3.11), for any ˛ > 0. This is because the weights also need to satisfy basic bounds like

Wk.s; �/ � Wk.s; �/ (3.12)

for any s 2 Œ0;1/, k 2 ¹1; 2º, and �; � 2 R, j� � �j � 1. These bounds are essential in order
for the weights to be compatible with nonlinear analysis. LettingWk.s; �/D e�k.s;�/, k 2 Z,
and �D �1 C �2, it follows from (3.11)–(3.12) that � W Œ0;1/� R ! Œ0;1/ is a decreasing
function in s satisfying

h�i˛=2 .
ˇ̌
.@s�/.s; �/

ˇ̌
;

ˇ̌
�.s; �/ � �.s; �/

ˇ̌
. 1 (3.13)

if � � 1, j� � sj � 2, and j� � �j � 2. We use these inequalities with s D � D N � 1 and
recall that ˛ > 0 to see that

�.N � 1;N � 1/ � �.N;N /C cN ˛=2: (3.14)

We can then apply this inductively to conclude that �.N � n;N � n/ � �.N;N /C cnN ˛=2

for nD 1; : : : ;N=2. In particular, �.N=2;N=2/� cN 1C˛=2, which would force �.0;N=2/�

cN 1C˛=2 (since � is decreasing in s). However, this is not compatible with the bounds (3.12)
when s D 0, giving the final contradiction.

3795 On the nonlinear stability of shear flows and vortices



Notice that most of this argument applies in the Euler case ˛ D 0, except that (3.13)
does not imply (3.14) (in fact, our weights Ak constructed in Section 2.2.1 satisfy (3.13) but
not (3.14)). To summarize, these calculations show that the main construction used in the
proof of global stability of the Couette flow for the 2D Euler equations does not extend to
any more singular generalized SQG equations.
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