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Abstract

This article reviews some results, as well as open questions, on global behavior of general
solutions for nonlinear dispersive equations, with an emphasis on transitions of solutions
around solitons with respect to time evolution and initial perturbation.
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1. Introduction

Nonlinear dispersive equations describe space-time evolution of waves in various
physical phenomena, which are governed mainly by dispersion and nonlinear interactions of
waves. A representative example is the nonlinear Schrödinger equation (NLS)

i Pu � �u D �juj
p�1u; u.t; x/ W R1Cd

! C; (1.1)

where d 2 N, p > 1, and � 2 R are constants. Depending on the balance or competition
between the dispersion and interaction, which differs equation by equation, as well as the
initial data, the solutions of each equation exhibit a wide range of behavior in space-time.
The three major types of solutions are

• scattering solutions which are dominated by dispersion—spreading waves with
decaying amplitude;

• blow-up solutions which are dominated by nonlinearity—focusing waves with
diverging amplitude;

• solitons for which dispersion and nonlinearity are in balance to keep a fixed shape
of the wave.

Most of the equations are in the Hamiltonian form. For example, NLS may be written as

Pu D iE 0
S .u/; ES .u/ WD

Z
Rd

jruj2

2
�

�jujpC1

p C 1
dx; (1.2)

where E 0
S .u/ denotes the Fréchet derivative. The Hamiltonian or energy ES is well defined

on H 1.Rd / if the nonlinear part is controlled by the Sobolev inequality, namely d � 2 or
p C 1 �

2d
d�2

DW 2?. Then it is natural to consider solutions in the energy space H 1.Rd /,
where the energy ES .u/ is conserved.

Nonlinear dispersive equations have been intensively studied since the late 20th cen-
tury, so that we have by now a fair amount of knowledge on the fundamental questions from
the PDE viewpoint, such as the unique existence of local solutions with wide range of regular-
ity, of solutions with typical behavior, as well as their qualitative and quantitative properties,
including asymptotic profiles.

In this century, there has been more progress in the study on large solutions for
long time, in which the dispersion and nonlinearity have stronger and more complicated
interplay, generating more diverse solutions. It is, however, in most cases too difficult to
look at all general solutions and their long-time behavior, as there are so many possibilities
while our method of analysis is still quite limited. Then the solitons are the natural first target
to attack among all the solutions, as they are expected to indicate the balance or the threshold
of dominance between the dispersion and nonlinearity. The soliton resolution conjecture has
been the major slogan to promote this direction of study, which roughly asserts that: Generic
global solutions are asymptotic to a superposition of solitons getting away from each other
and a dispersive decaying wave as t ! 1. In the case of NLS (for appropriate p), the
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asymptotic formula should take the form

u.t/ �

NX
nD1

ei�n.t/'n

�
x � cn.t/

�
� v.t/ ! 0; (1.3)

in the energy space H 1.Rd / as t ! 1, for some soliton profiles 'n 2 H 1.Rd / with some
�n W R ! R and cn W R ! Rd satisfying jcm.t/ � cn.t/j ! 1 for m 6D n, and some dispersive
component v.t; x/ solving the free equation i Pv D �v.

On the one hand, the conjecture is a natural extension from the case of completely
integrable equations (e.g., d D 1 and p D 3 for NLS), where solitons are very stable and
rigid: they are unchanged both by initial perturbation and collisions, up to a change of the
parameters. The genericity condition in the conjecture is to eliminate some exceptional solu-
tions, such as breathers, which appear already in the integrable case.

On the other hand, most of the nonlinear dispersive equations are not integrable,
where most of solitons are unstable with respect to initial perturbations. Although this insta-
bility makes it more difficult to capture and maintain the solitons in reality and numerics,
it does not diminish the importance of solitons in the study of global dynamics, especially
regarding the role of a threshold. In fact, in the space of solutions or initial data, typically in
the energy space, instability means that the soliton is a limit point of other types of solutions,
while stability means that there is no nearby solution with much different behavior. Hence
unstable solitons are naturally expected to play more distinct roles in classifying the other
solutions. Even if the solitons are unstable, the threshold between different types of solutions
should be clearly observed both in numerics and experiments, as one looks at a collection
of solutions rather than the individual ones. Such structures among solutions may well be
stable and robust with respect to perturbations of the equation, even if the behavior of each
solution is changed.

Therefore, in studying the global dynamics, it is not sufficient to know merely that
a soliton is unstable, we should investigate in which directions the instability appears, and
in what types of behavior of solutions. In other words, we should look at all solutions in
a neighborhood of solitons. Note that stability is an answer to this question, but instability
(negation of stability) may not be a complete answer by itself. Determining the stability is,
of course, the most important starting point, which has a vast amount of literature, but there
has been more recent progress in getting to the next stage.

Instability means that some solutions starting nearby a soliton become eventually
very different or far from the soliton in the solution space. While those solutions are still
near the soliton, their behavior may be well approximated by the linearized operator, which
is well described in terms of its spectrum. However, after the solutions go far away from the
soliton, which is often the case, then the linearized operator tells little about their behavior.
To see the essential features of those solutions, and thus the threshold nature of the unstable
soliton, it is necessary to look at those solutions after they get far from the soliton. The recent
research is getting also into this stage of study.

Also in practice, the solutions at t D 1 do not have so much meaning, but the
asymptotic descriptions as t ! 1 should be regarded as an approximation for what hap-
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pens in finite time. However, if the solitons are unstable, the asymptotic decomposition into
them is useless by itself for a finite-time approximation, since unstable solitons may keep
disappearing and appearing along the evolution. Hence we should look at the behavior of
solutions not only as t ! 1, but also for all intermediate t 2 R. The oscillatory scenario is
an obstruction also in studying the asymptotic behavior, but the investigation for all time is
even more demanding. Nevertheless, the recent research is getting also into this stage.

In short, to investigate the global dynamics of nonlinear dispersive equations, it is
desired to describe the solutions for all time and for all initial data in a neighborhood of
unstable solitons. The main interest is on transitions of behavior both in time evolution and
for initial perturbations. The purpose of this article is to review a few results in this direction,
as well as open questions.

2. Ground states as the dynamical threshold

Among all the solitons, the most important ones are those with the least energy,
namely the ground states, as its energy is the necessary amount to produce the balance
between the dispersion and nonlinearity. This article is mostly focused on the ground states
and their variants, even though some of them will be called excited states. For a concrete
explanation, we take the nonlinear Klein–Gordon equation (NLKG)

Ru � �u C mu D juj
p�1u; u.t; x/ W R1Cd

! R; (2.1)

where d 2 N, p > 1, and m � 0 are constants. It is the Hamiltonian flow with the energy

EK

�
Eu.t/

�
WD

Z
Rd

j Puj2 C jruj2 C mjuj2

2
�

jujpC1

p C 1
dx; (2.2)

similar to NLS in (1.2); in the energy space

Eu.t/ WD
�
u.t; x/; Pu.t; x/

�
2 H WD H 1.Rd / � L2.Rd /: (2.3)

In the case m D 0 of the nonlinear wave equation (NLW), H 1 should be replaced with the
homogeneous Sobolev space PH 1. The ground state Q 2 H 2.Rd / is a nontrivial stationary
solution of

��Q C mQ D jQj
p�1Q (2.4)

with the least energy. Its study has a long history for the stationary equation and the evo-
lution equations, including the NLS case and the heat equation. By the existence result of
Strauss [56] and the uniqueness result of Kwong [37], the entire set of the ground states is
¹˙Q.x � c/ºc2Rd for a unique radial positive function Q.x/ D Q.jxj/ > 0. In the massless
case (NLW), the Pohozaev identity [54] implies that the ground state exists if and only if
d � 3 and the nonlinear power is p C 1 D

2d
d�2

DW 2?, namely the energy-critical exponent,
and the ground state Q is the explicit Aubin–Talenti function [2,57], maximizing the Sobolev
inequality for PH 1.Rd / � L2?

.Rd /.
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2.1. Below the ground states
The instability of Q follows from its min–max property:

EK. EQ/ D min
'2H 1.Rd /n¹0º

max
�>0

EK.� E'/

D min
®
EK. E'/ j ' 2 H 1.Rd / n ¹0º; K.'/ D 0

¯
; (2.5)

where EQ WD .Q; 0/, and the Nehari functional [50] is defined by

K.'/ WD
d

d�

ˇ̌̌̌
�D1

EK.� E'/ D

Z
Rd

jruj
2

C mjuj
2

� juj
pC1dx: (2.6)

A similar characterization is given by using the dilation '.�x/, leading to Derrick’s the-
orem [11]. Another option is the L2-invariant scaling �d=2'.�x/, which yields the virial
functional (see [28] for their relations including the dynamics). Thus the energy space below
the ground state is split into two open sets,

H< WD
®
' 2 H j EK.'/ < EK. EQ/

¯
D H C

< [ H �
< ;

H C
< WD

®
' 2 H< j K.'1/ � 0

¯
; H �

< WD
®
' 2 H< j K.'1/ < 0

¯
: (2.7)

It is easy to see that H C
< is bounded and H �

< is unbounded. Since EK.Eu/ is conserved and
H ˙

< are separated from each other, both regions H ˙
< are invariant with respect to the NLKG

flow. Then all the solutions in H C
< are global in time as soon as the Cauchy problem is

locally well posed in H with a uniform lower bound on the existence time (which is the case
for p C 1 < 2? by Ginibre–Velo [25]).

Payne–Sattinger [52] proved (in the bounded domain case) that all solutions in H �
<

blow up in finite time for NLKG, as well as for the heat equation. Thus all the solutions
with the energy below the ground state are split into the cases of global existence and blow-
up, as two disjoint open sets in H , which are distinguished by the initial data explicitly by
sign K.u.0//. The openness means that both properties are stable, and the ground states are
the joint boundary of the two regions®

˙Q.x � c/
¯

c2Rd D H C
< \ H �

< : (2.8)

More recently, Kenig–Merle [31, 32] proved this type of dichotomy in the energy-
critical case p C 1 D 2? (d � 3) for NLW, as well as for NLS (in the radial case), proving
moreover that all the solutions in H C

< are scattering as t ! ˙1, namely

lim
t!˙1

Eu.t/ � Ev˙.t/


H
D 0 (2.9)

for some v˙ solving the free equation Rv � �v D 0. Their method has been applied to
many other equations, including NLKG [28,33] and NLS [12,13,21,27,34,35] with the energy-
(sub)critical and mass-(super)critical power, namely for 2 C

4
d

� p C 1 � 2?.

2.2. Above the threshold
Although the dichotomy into scattering and blow-up is a very simple, explicit, and

complete classification of the global dynamics, there seems to be no intrinsic reason in the
equations to restrict the solutions below the ground states EK.Eu/ < EK. EQ/, as those ground
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states are not local extrema, but rather saddle points for the energy. It also seems impossible
to impose such a strict condition (inequality) both in numerical experiments and in physical
ones. It is therefore more natural to impose a condition of the form

EK.Eu/ < EK. EQ/ C " (2.10)

for some small " > 0, which includes in particular a full neighborhood of the ground states.
As soon as the energy is above the ground state, however, the topological separation

is lost between K.u/ > 0 and K.u/ < 0, or between the scattering and blow-up, which enables
a transition between different types of behavior. One may expect that this transition could
make the global dynamics very complicated and even chaotic, as it can possibly happen for
many times. Nakanishi–Schlag [47, 49] showed that it is not the case, and the complication
remains minimal for small " > 0, at least for NLKG with d D p D 3, which has been extended
to NLS and NLW in [36,48]. That is because the transition is allowed only for one time for
each solution from the scattering region to the blow-up region (or vice versa), taking place
only in a small neighborhood of the ground states, and described well by the linearized
equation around the ground states. The behavior of solutions away from the ground states is
essentially the same as in the case below the ground state, in the sense that both the scattering
and blow-up are characterized by monotonicity of the virial identity. Thus all the solutions
with EK.Eu/ < EK. EQ/ C " are classified into 9 D 3 � 3 sets of global behavior, depending
whether it is scattering, blowing-up, or asymptotic to the ground states in t > 0 and t < 0.
In the simple case of NLKG with p D d D 3 under the radial symmetry, the classification
reads as follows. For any ' 2 H and X � H , let '� WD .'1; �'2/ and X� WD ¹'� j ' 2 Xº

denote the time inversion.

Theorem 2.1 ([47]). Let p D d D 3, m > 0, and

H";r WD
®
'.x/ D '.jxj/ 2 H j EK.'/ < EK. EQ/ C "

¯
(2.11)

for " > 0. If " > 0 is small enough, then there is a C 1-manifold M � H";r of codimension 1

with the following properties: H";r n .M [ �M/ is a union of two domains � and B. Let
u be any solution of (2.1) with Eu.0/ 2 H";r . If Eu.0/ 2 � , then u is scattering as t ! 1. If
Eu.0/ 2 B, then u blows up in finite time for t > 0. If Eu.0/ 2 M, then u � Q is scattering as
t ! 1. Moreover, M and M� intersect transversely, while M� \ .�M/ D ¿.

The transversal intersection of M \ M� implies that all the 9 D 3 � 3 combina-
tions of behavior in t > 0 and t < 0 are nonempty. The above result clarifies the important
role of the center-stable manifold M and the center-unstable manifold M� of the ground
states ˙Q, which had been constructed by Bates–Jones [3], while the scattering on the man-
ifolds to the ground states had been established by Schlag [55] and Beceanu [4] for NLS. The
key ingredient for the above classification is the fact that the transition cannot happen more
than once, which is called the one-pass theorem. It may be regarded as a small perturbation
from the threshold dynamics on EK.Eu/ D EK. EQ/, in particular the nonexistence of a homo-
clinic orbit for the ground states, which had been established by Duyckaerts–Merle [19] for
the energy-critical NLS, and extended to other cases [18, 20]. More precisely, the one-pass
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theorem prohibits solutions from reentry into a small neighborhood of the ground states
after escaping from there. If we distinguish between the positive ground states Q and the
negative �Q, then the number of classification sets is 14 D 4 � 4 � 2, as follows:

��
\ � ; B�

\ B; ˙.M�
\ M/; .˙M�/ \ � ; .˙M�/ \ B;

��
\ .˙M/; B�

\ .˙M/; ��
\ B; B�

\ � ;
(2.12)

The subtraction of �2 from 4 � 4 is due to the absence of .˙M�/ \ .�M/, namely con-
necting orbits between Q and �Q, which is also precluded by the one-pass theorem.

2.3. Higher energy
The next question is what if the energy is much bigger than the ground state, namely

EK.Eu/ > EK. EQ/ C ". Actually, the more general statement of the above result in the
nonradial case [49], taking account of the Lorentz invariance and conserved momentum
P.Eu/ WD

R
Rd Purudx, is in a bigger region�

EK.Eu/2
�
ˇ̌
P.Eu/

ˇ̌2�1=2
< EK. EQ/ C "

�
Œz�˛ WD jzj

˛�1z
�
; (2.13)

which includes the ground state solitons of any traveling speed (slower than the light), but
the classification is essentially the same as above. The main interest is how and where the
dynamics change essentially.

There are at least two obvious candidates for the next energy level. One is the other
stationary solutions, namely the excited state, and the other is multisolitons. Note that the
excited states have at least twice the ground state energy EK.Eu/ > 2EK. EQ/, because they
have to be sign-changing due to the uniqueness of positive solutions by Gigas–Ni–Nirenberg
[24] and Kwong [37], then both the positive and negative parts must have more energy than
EK. EQ/ due to the characterization (2.5). On the other hand, if a solution u is asymptotic
to a sum of N 2 N ground states moving away from each other, as in the soliton resolution
conjecture, then EK.Eu/ � NEK. EQ/, where the equality EK.Eu/ D NEK. EQ/ happens only
if the asymptotic speeds of the solitons are all zero. Asymptotic multisolitons were con-
structed by Martel–Merle [39] for NLS with positive speeds in the stable case, which has
been extended to the unstable case [6], as well as to NLKG [9], and with zero speed for NLS
[51] and NLKG [1]. Therefore, in view of the soliton resolution conjecture, it is natural to
expect that the classification in Theorem 2.1 should extend up to EK.Eu/ < 2EK. EQ/, at least
concerning the asymptotic behavior.

If one looks at the full-time dynamics, however, there is another candidate for an
essential change of the dynamics. It is a heteroclinic orbit connecting the two distinct ground
states Q and �Q in a weak sense: more precisely, a solution u satisfying

lim
t!˙1

Eu.t/ ˙ EQ � Ev˙.t/


H
D 0 (2.14)

for some free solutions v˙, which may be called heteroscattering. The one-pass theorem
precludes such solutions for EK.Eu/ < EK. EQ/ C ", which is M� \ .�M/ D ¿, but it is
not difficult to construct such a solution with the energy close to 2EK. EQ/, by superposing
in space-time two heteroscattering solutions, from Q to 0, and from 0 to �Q, respectively.
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A simple numerical experiment indicates that such solutions appear at a much lower energy
level than 2EK. EQ/. Then it seems natural to conjecture that there is a threshold energy
E� 2 .EK. EQ/; 2EK. EQ// such that for EK.Eu/ < E� the 14-set classification (2.12) is valid,
while for EK.Eu/ > E� there are solutions satisfying (2.14), increasing the number of solution
sets to 4 � 4 D 16 at least. Related questions are if there is heteroscattering between Q and
�Q with the minimal energy E�, and what the complete classification of dynamics is for
EK.Eu/ < E� C ", or for EK.Eu/ < 2EK. EQ/.

A remarkably successful method to go to higher energy is the channel-of-energy by
Duyckaerts–Kenig–Merle [16], which settled the soliton resolution conjecture for the energy-
critical NLW in the radial 3D case, including the blow-up solutions with a bounded energy
norm. It has recently been extended to the higher odd dimensions [17], as well as to the 4D
case [15] and to the wave maps under rotational symmetry. Without the rotational symmetry,
there are also similar results [14] along time sequences. It seems, however, that this method
depends heavily on the special property of the wave equation, that is, the single speed of
propagation, while dispersive equations in general have wide ranges of group velocity. It is
a challenging and important problem to extend the method or find a similar one for the more
dispersive equations such as NLKG and NLS.

3. Transition between solitons

Since solitons are the key junctions of global dynamics for nonlinear dispersive
equations, it is an important problem to understand the behavior of the solutions migrating
from a neighborhood of one soliton to another. In fact, when the equation has both stable and
unstable solitons, it is generally expected that solutions starting near the unstable ones will get
away from them and eventually approach some of the stable ones. However, the conservation
laws prohibit the solutions to approach the latter solitons in the energy norm, unless the two
solitons happen to be close to each other in the conserved quantities. In general, the approach
should be only in the weak or local topology, where the excessive energy is radiated away in
a dispersive wave component.

This type of transition from one soliton to another should happen also between
unstable solitons. Trying to include such a behavior into a classification as above seems
still a bit too ambitious, as the complete classification for NLKG or NLS is yet much below
all the excited state solitons. However, we can make a model problem by adding some spatial
inhomogeneity, which is an easy way to create standing waves. Specifically, the nonlinear
Schrödinger equation with a potential (NLSP)

i Pu � �u C V u D juj
2u; u.t; x/ W R1C3

! R; (3.1)

is a good model to consider a classification of solutions including two different solitons,
both stable and unstable ones. The standing waves for NLSP are solutions in the form
u.t; x/ D e�it!'.x/ for some ! 2 R, for which the equation is reduced to

��u C !u C V u D juj
2u: (3.2)
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More precisely, let V W R3 ! R be “nice” enough, e.g., a radial Schwartz function, such that
the linear Schrödinger operator �� C V has only one eigenvalue, denoted by e0 < 0. Let
�0 2 H 2.R3/ be the corresponding eigenfunction or the ground state of �� C V , normal-
ized in L2.R3/. Let EV be the Hamiltonian of NLSP, defined by

EV .u/ WD ES .u/ C

Z
R3

V juj2

2
dx: (3.3)

Then one may construct two different types of standing waves for NLSP. One family is gen-
erated from the linear ground state �0 by bifurcation, which is small and stable with negative
energy in the asymptotic form (see [26])

ˆŒz� D z
�
�0 C O

�
jzj

2
��

in H 1.R3/; !Œz� D e0 C O
�
jzj

2
�
;

EV

�
ˆŒz�

�
D e0jzj

2=2 C O
�
jzj

4
�
; M

�
ˆŒz�

�
D jzj

2=2 C O
�
jzj

4
�
;

(3.4)

with a small parameter z D .ˆŒz�j�0/ 2 C, where

M.u/ WD

Z
Rd

juj2

2
dx (3.5)

denotes the conserved mass. The other family is generated from the scaling limit of the
ground state Q of NLS (V D 0), which is large and unstable with positive energy, in the
asymptotic form (see [45])

‰Œ�� D �Q.j�jx/ C O
�
j�j

�3=2
�

in H 1.R3/; !Œ�� D j�j
2;

EV

�
‰Œ��

�
D j�jES .Q/ C O

�
j�j

�1
�
; M

�
‰Œ��

�
D j�j

�1M.Q/ C O
�
j�j

�3
�
;

(3.6)

with a large parameter � 2 C. Since both the families converge to 0 in L2.R3/ in the limits
z ! 0 and � ! 1, respectively, the asymptotic regimes are contained in the small mass
region M.u/ � 1. We can prove that for each fixed M.u/ � 1, there is a unique jzj � 1

such that ˆŒz� are the least energy standing waves, namely the ground states for the prescribed
mass M.u/, and also there is a unique j�j � 1 such that ‰Œ�� are the second least energy
ones, or the first excited states.

Actually, both of them are the ground state solutions of (3.2) for the corresponding
! > 0, which may be obtained by the min–max variational argument. From the dynamical
viewpoint, however, it seems more appropriate to compare them in terms of the energy and
mass, without fixing parameter !, which is not intrinsic in the equation.

Gustafson–Nakanishi–Tsai [26] proved the scattering to the ground states ˆ for small
solutions in H 1.R3/, that is,

lim
t!˙1

u.t/ � ˆ
�
z.t/

�
� v˙.t/


H 1 D 0; (3.7)

for some free solutions v˙ and some function z W R ! C with convergent jz.t/j as t ! ˙1.
The exceptional case jz.t/j ! 0 is also included. This result has been extended by Nakanishi
[45, 46] to the energy slightly above the first excited solitons ‰ under the radial symmetry
restriction (which was not imposed in [26]), with a classification of the global dynamics
similar to Theorem 2.1, or more closely to the NLS case in [48].
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More precisely, let EV .�/ D EV .‰Œ��/ be the first excited energy for the mass
M.‰Œ��/ D �. Then for sufficiently small " > 0, all the radial solutions with

M.u/ < "; EV .u/ � EV

�
M.u/

�
C "=M.u/; (3.8)

are classified into 9 D 3 � 3 sets characterized by their behavior in t > 0 and t < 0, either scat-
tering to the ground states ˆ as in (3.7), blowing-up, or staying around the excited states ‰.
Moreover, the solutions in the last case make the center-stable manifold of ‰ for t > 0, and
the center-unstable manifold for t < 0.

Note that the restriction M.u/ < " may be removed if V D 0, trivially by using the
scaling invariance. Then the above result is reduced to [48], except that the scattering to the
excited states is not established in [45]. The same problem with the defocusing nonlinearity

i Pu � �u C V u D �juj
2u; (3.9)

was also studied in [46], for which all solutions in H 1.R3/ with small mass scatter to the
ground states ˆ as t ! ˙1, while there is no other standing wave in H 1.R3/.

3.1. Threshold dynamics
As mentioned above, the scattering to the first excited states ‰ remains to be proven

on the center-stable manifold. This is mainly because of the lack of complete information
on the spectrum of the linearized operator. It is a highly nontrivial problem even without the
potential, which was solved by Marzuola–Simpson [43] by a computer-assisted proof.

In the nonradial case, however, a notable difference appears from the case without
the potential, where Beceanu [4] proved the scattering to the solitons generated by the Galilei
and translation invariance from the ground state Q. Both invariances are destroyed by the
potential, and thus the only remaining soliton is fixed at the origin, provided that the poten-
tial has a simple shape, e.g., V.x/ D ae�jxj2 with some constant a < 0. Then the natural
conjecture on the dynamics on the center-stable manifold of ‰ is the following:

(1) For EV .u/ < E0.M.u//, all solutions on the manifold scatter to ‰.

(2) For EV .u/ D E0.M.u//, there are solutions with the asymptotic behavior

lim
t!1

ku.t/ � e�i�.t/Q!

�
x � c.t/

�
kH 1 D 0 (3.10)

for some � W R ! R and c W R ! R3 satisfying P� ! !, jcj ! 1, and Pc ! 0

as t ! 1, where Q! is the ground state of (3.2) with V D 0 for some ! > 0

satisfying M.Q!/ D M.u/. The other solutions on the manifold scatter to ‰.

(3) For EV .u/ > E0.M.u//, there are also scatterings into a sum of the Galilei
transforms of some Q! and the ground states ˆ.

In short, the solutions on the center-stable manifold scatter either to the excited states ‰

trapped by the potential at x D 0, or to the ground state solitons without potential escaping
to jxj ! 1. The threshold between the two cases is the solitons escaping to jxj ! 1 but
with the zero asymptotic speed, for which the minimal energy is as in the case (2).
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The scattering to ‰ for the solutions initially away from x D 0 requires the attractive
force of the potential, which may be derived by the Newtonian approximation, but it is valid
only on a finite-time interval. Extending it to t ! 1 requires the dissipative effect by the
radiation of dispersive waves. Such a scattering result was established by Gang–Sigal [23]

in the case of stable solitons for initial data close to the origin. The scattering described
above in the case of (3) is also complicated as it contains three different components. Such a
scattering result was established by Cuccagna–Maeda [10], also in the stable case for initial
data that are already escaping. Classifying all the solutions on the manifold may well require
more ideas than the combination of those results.

3.2. Higher mass
Another problem is to extend the classification to M.u/ > ". This sounds plausible

at least in the simple defocusing case, where ˆ may be extended to all mass as the unique
energy minimizers. However, the argument in [45, 46] does not simply extend, because it
relies heavily on the smallness of ˆ, as well as on M.u/, to control all the interactions
with the ground states, especially during the concentration–compactness argument for the
dispersive component. In the focusing case, the problem does not seem easy even for the
smaller potentials, e.g., V.x/ D �ae�jxj2 with 0 < a � 1 such that �� C V > 0. In this
case, there are no small solitons and so the ground states are the perturbations of Q! for all
mass. Hence it is natural to expect that the same results as in Kenig–Merle [31] (or Holmer–
Roudenko [27] for the cubic NLS), and in Nakanishi–Schlag [48] should hold without the
small mass condition. It may an option to rely on the stability of the threshold structure with
respect to the change of equation (here by the parameter a), including the case of bigger a.

4. Transition between multisolitons

In view of the soliton resolution conjecture, it is an important and necessary step
in the study of global dynamics to understand the behavior of solutions migrating between
neighborhoods of multisolitons, where the neighborhood may be in the weaker sense as in
the previous section. Obviously, this is an even harder problem, so it seems natural to seek
for simpler models which admit similar dynamics. The nonlinear Klein–Gordon equation
with the damping term

Ru C 2˛ Pu � �u C u D juj
p�1u; u.t; x/ W R1Cd

! R; (4.1)

for some constants ˛ > 0, p > 1, turns out to be a good model. In fact, Burq–Raugel–Schlag
[5] proved the soliton resolution conjecture for all radial solutions in the energy space for the
energy-subcritical power p C 1 < 2?. In this case, solutions asymptotic to solitons are those
exponentially converging to some (radial) stationary solutions. The major difference from
the conservative NLKG comes from the energy decay

@t EK.Eu/ D �2˛k Puk
2
L2 ; (4.2)

which makes the analysis much simpler, both in the linear and nonlinear parts. The stable and
unstable manifolds had been constructed much earlier by Keller [30] around general station-
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ary solutions. The soliton resolution along time sequences had been established by Feireisl
[22] without the radial restriction (but for smaller p), as a consequence of the concentration–
compactness due to Lions [38] for the stationary problem. The soliton resolution in the
general case takes, as t ! 1, the form of

Eu.t/ D

NX
nD1

E'n

�
x � cn.t/

�
C o.1/ in H ; (4.3)

where 'n are some stationary solutions and cn W Œ0; 1/ ! Rd are some functions satisfying
jcm � cnj ! 1 for each m 6D n. The existence of such solutions with polygonal symmetry
was also proven by Feireisl [22]. This allows us to discuss the dynamics around, away, and
between multisolitons, as a model case for the more difficult conservative case (NLKG).

More recently, Côte–Martel–Yuan–Zhao [8] characterized the set of asymptotic 2-
solitons consisting of the ground state Q of NLKG, namely

Eu.t/ D EQ
�
x � c1.t/

�
� EQ

�
x � c2.t/

�
C o.1/ in H .t ! 1/ (4.4)

as a manifold with codimension 2 in the energy space H , together with the asymptotic for-
mula for cn.t/, as well as nonexistence of similar solutions with the same sign on EQ.

Moreover, Côte–Martel–Yuan [7] proved the soliton resolution conjecture in the 1D
case without any restriction in the energy space. That is, for any initial data in H , the solution
either blows up in finite time, or is asymptotic to a form

Eu.t/ D ˙

NX
nD1

.�1/n EQ
�
x � cn.t/

�
C o.1/; (4.5)

in H , for some N 2 Z with cn � cn�1 ! 1 as t ! 1. The existence of such solutions for
every N is also proven in [7]. To the best of the author’s knowledge, this is the first and only
result so far of soliton resolution in the entire energy space with no restriction for the full
limit t ! 1 that contains moving solitons, provided that the damping is acceptable for the
conjecture.

Then it is natural to ask the questions raised in the first section, namely the global
dynamics in the full neighborhood of such solutions for all t � 0. In particular, it is a good
place to investigate the migration between different numbers of multisolitons. Ishizuka–
Nakanishi [29] considered the simplest case, namely a neighborhood of 2-solitons and tran-
sition to 1-solitons, and established a classification into 5 sets of different behavior. To state
the precise result, some notation is needed. Let

L WD �� C 1 � pQp�1 (4.6)

be the linearized operator for the static NLKG around the ground state Q, and let � 2 H 2.Rd /

be its normalized ground state with L� D ��2� for some constant � > 0. Define operators
acting on H in the matrix form

J WD

 
0 1

�1 0

!
; L˛ WD

 
L 2˛

0 1

!
: (4.7)
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Then the linearization of (4.1) around EQ is written as @t Eu D J L˛ Eu. The damped linearized
operator J L˛ has eigenfunctions of the form

�˙
WD �˛ ˙

p
�2 C ˛2; Y ˙

WD .1; �˙/� H) J L˛Y ˙
D �˙Y ˙: (4.8)

For any z D .z1; z2/ 2 .Rd /2, let H?.z/ � H be the energy subspace defined by

H?.z/ WD
®
' 2 H j

˝
J'
ˇ̌
Y �.x � zk/

˛
D 0 .k D 1; 2/

¯
; (4.9)

where h�j�i denotes the inner product of .L2.Rd //2. Then it is easy to see that for
jz1 � z2j � 1 (depending on ˛ > 0), the energy space is decomposed into a direct sum

H D RY C.x � z1/ ˚ RY C.x � z2/ ˚ H?.z/: (4.10)

Let H?.zI ı/ WD ¹' 2 H?.z/ j k'kH < ıº be the open ball in the subspace. Then

Theorem 4.1 ([29]). For any d 2 N, ˛ > 0 and p 2 .2; 2? � 1/, there is a small ı > 0

such that for any z 2 .Rd /2 satisfying jz1 � z2j > 1=ı, there are two Lipschitz functions
G1;G2 W .�ı;ı/ � H?.zIı/ ! .�ı;ı/ with the following properties. For any h1;h2 2 .�ı;ı/

and any ' 2 H?.zI ı/, let u be the solution of (4.1) with the initial data

Eu.0/ D

X
nD1;2

.�1/n
�

EQ C hnY C
�
.x � zn/ C ': (4.11)

Then its global behavior is classified by the initial data as follows. Let n� WD 3 � n.

(1) If hn < Gn.hn� ; '/ for both n D 1; 2, then u is global with kEu.t/kH ! 0 as
t ! 1; we have the global decaying case.

(2) If hn D Gn.hn� ; '/ and hn� < Gn�.hn; '/ for one of n D 1; 2, then u is global
with Eu.t/ ! .�1/n EQ.x � z1/ in H , for some z1 2 Rd , as t ! 1; this is the
1-soliton case with .�1/nQ.

(3) If hn D Gn.hn� ; '/ for both n D 1; 2, then u is global with

Eu.t/ C EQ.x � z1.t// � EQ.x � z2.t// ! 0

in H , for some zn W Œ0; 1/ ! Rd satisfying jz1.t/ � z2.t/j ! 1, as t ! 1;
this is the 2-soliton case.

(4) Otherwise, u blows up in finite time.

The 2-soliton case (3) may be characterized as h D G0.'/ by another Lipschitz function
G0 W H?.zI ı/ ! .�ı; ı/2.

Moreover, we obtain a full-time description for all those solutions. In particular, in
the 1-soliton case (2), the soliton component starting from .�1/n�

EQ.x � zn�/ decays due
to the instability, while the other component from .�1/n EQ.x � zn/ remains for all time,
moving in space and eventually converging to .�1/n EQ.x � z1/.

The above classification of dynamics is for all initial data in a small neighborhood
of any superposition of ˙ EQ with sufficient distance from each other. For each sign of ˙ EQ,
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there is a Lipschitz manifold of codimension 1 consisting of solutions convergent to ˙ EQ,
translated in space. The two manifolds are joined together at their boundary by the manifold
of codimension 2 consisting of solutions asymptotic to 2-solitons, moving away from each
other. The connected union of those three manifolds separates the rest of the neighborhood
into the open set of global decaying solutions and the open set of blow-up solutions.

The 2-soliton case of (3) was already established by Côte–Martel–Yuan–Zhao [8].
The above theorem extends the dynamics description to the full neighborhood. Note that
the manifolds of 1-solitons in (2) are far from those constructed by Keller [30], or by any
general method to construct local invariant manifolds, because the manifolds in the above
theorem are in a neighborhood of 2-solitons. In other words, it describes the transition from
the 2-solitons to the 1-solitons with respect to initial perturbations. In the proof, we also
need to describe the transition in time for each initial data on the 1-soliton manifolds. The
transition time tends to infinity as the initial data approaches the 2-soliton manifold, so the
global dynamics is not at all uniform or continuous within the small neighborhood.

The structure or relation of those three manifolds is in the simplest form as one may
expect, by a small perturbation in the energy space from the superposition of two ground
states, each having one unstable direction. However, proving this is not so simple as it may
appear, because we need to control the two unstable modes with the same eigenvalue, namely
Y ˙.x � zn.t// with n D 1; 2. The difficulty comes from the fact that the solitons are get-
ting away from each other, but very slowly, namely jz1.t/ � z2.t/j � j log t j, and the soliton
interactions are of order O.1=t/ and not integrable in time. In fact, this changes the growth
order of the unstable modes from the linearized approximation, making the unstable dynam-
ics far from the superposition of the 1-soliton case. The coupling of the two unstable modes
could be even more complicated because the interaction can possibly change the direction of
instability, too. It may be illustrated by a simple ODE model with a small parameter " 2 R,
namely

d

dt

 
h1

h2

!
D

 
�C "2e�t

"2e�t �C C
"

1Ct

! 
h1

h2

!
; (4.12)

which mimics the linearized interaction of the two unstable modes hn.t/Y C.x � cn.t//. It
is easy to check for the above ODE that

" > 0;
�
h1.0/; h2.0/

�
D .1; 0/ H) lim

t!1
h2.t/=h1.t/ D 1;

" < 0;
�
h1.0/; h2.0/

�
D .0; 1/ H) lim

t!1
h1.t/=h2.t/ D 1;

(4.13)

so the direction of h.t/ 2 R2 is completely changed by the interaction. If such a transfer
were to happen for the 2-soliton interactions, then the structure of the neighborhood could
be more complicated than the above result.

Fortunately, it is not the case because we can prove that nonintegrable interactions
are essentially in the scalar part of the above matrix, and the remainder, namely the nonscalar
part of the matrix, is uniformly integrable and small. This follows from the reflection sym-
metry of the equation and the 2-solitons, together with a detailed description of the behavior
of solutions in the full neighborhood and all time.
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4.1. 3-solitons and soliton merger
It is natural to expect a similar structure for more than 2 solitons (N � 3 in (4.5)),

namely the joint boundary of manifolds with less solitons. However, to prove or disprove
such a result seems to be fundamentally more difficult, as the full-time dynamics in the full
neighborhood should include a new and more dramatic phenomenon, which may be called
soliton merger. The distinction between N � 2 and N � 3 stems from the fact that the soliton
interaction is attractive for the same sign and repulsive for the opposite sign. It is essential
for the proof of the above result; 2-solitons with opposite signs are repelling each other as
long as both of them exist.

If we start from a small neighborhood of the 3-soliton in the form of (4.5), then the
situation is different. Even though the solitons initially have alternating signs, if the middle
soliton is destroyed by the instability and the other two survive, then the remaining 2-solitons
have the same sign and so start attracting each other. The result of Côte–Martel–Yuan [7]

implies that they cannot remain to be 2-solitons, but the solution either blows-up, decays
to 0, or is asymptotic to 1-soliton. The transition in the last case from 2-solitons to 1-soliton
is very different from the case in Theorem 4.1. As the simplest case, consider the initial data
with the even symmetry

Eu.0/ D EQ.x C c/ C hY C.x C c/ C EQ.x � c/ C hY C.x � c/ (4.14)

with a small parameter h 2 R and a large parameter c > 1. It is easy to see that if 0 < h � 1

and c � 1 is large enough depending on h, then the solution u blows up, and similarly if
0 > h � �1 with c � 1 then the solution is globally decaying to 0. Since both types of
behavior are stable (in 1D), there must be some intermediate h 2 R for a fixed large c such
that the solution u converges to ˙Q. For such solutions, the even symmetry implies that both
the soliton components from x D ˙c are destroyed, but afterward another soliton emerges
at x D 0. Because of the energy damping, the latter component has to absorb some energy, at
least half of E. EQ/ from each of the two destroyed solitons, before they are dissipated. This
may be regarded as a sort of collision, but very far from the elastic ones in the completely
integrable case.

Inelastic collisions have been studied for the generalized KdV by Mizumachi [44]

and Martel–Merle [40, 41], where the inelasticity is in a small radiation. For perturbation
from the integrable NLS, Perelman [53] proved that the collision splits the smaller soliton
into two pieces. For the energy-critical NLW in 5D, Martel–Merle [42] showed the existence
of radiation after collision. The above phenomenon looks quite different also from those
cases.

Describing the soliton merger and determining the manifold structure around the 3-
solitons (or more) seem to be challenging problems. It does not look obvious even whether
the merged soliton can take both signs ˙Q or only one. Another question is whether there
exists a similar solution in the conservative case such as NLKG. Those questions may be
difficult also for numerical experiments because the merger requires some balance between
the two dynamics of different orders, namely the exponential instability and the logarithmic
movement of solitons.
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