
Variety of fractional
Laplacians
Alexander I. Nazarov

Abstract

This paper is a survey of recent results on comparison of various fractional Laplacians.
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Fractional Laplacians (FLs for brevity) and equations with them have been actively
studied in last decades throughout the world in various fields of mathematics (analysis, par-
tial differential equations, the theory of random processes) and its applications (in physics,
biology). Hundreds of articles have been written on this topic. Note that the study of such
operators and equations is complicated not only by the fact of nonlocality itself, but also by
the existence of several nonequivalent definitions of a fractional Laplacian.

Historically, the first FL was the fractional Laplacian of order s > 0 in Rn defined
(say, on the Schwartz class �.Rn/) as

.��/su WD F �1
�
j�j2sF u.�/

�
;

where F is the Fourier transform

F u.�/ D
1

.2�/
n
2

Z
Rn

e�ih�;xiu.x/ dx:

For s 2 .0; 1/, the following relation holds:

.��/su.x/ D cn;s � V:P:
Z

Rn

u.x/ � u.y/

jx � yjnC2s
dy;

where

cn;s D
22ss

�
n
2

�.nC2s
2
/

�.1 � s/
:

We recall the definitions of the classical Sobolev–Slobodetskii spaces in Rn (see
[21, Subsection 2.3.3] or [7]),

H s.Rn/ D
®
u 2 � 0.Rn/ W

�
1C j�j2

� s
2 F u.�/ 2 L2.R

n/
¯
;

and corresponding spaces in a (say, Lipschitz and bounded) domain � (see
[21, Subsection 4.2.1] and [21, Subsection 4.3.2]),

H s.�/ D
®
uj� W u 2 H s.Rn/

¯
I QH s.�/ D

®
u 2 H s.Rn/ W supp.u/ � �

¯
:

Notice that the quadratic form of .��/s is naturally defined on H s.Rn/ by1�
.��/su; u

�
D

Z
Rn

j�j2s
ˇ̌
F u.�/

ˇ̌2
d�; (1)

and define the restricted Dirichlet FL as the positive self-adjoint operator with quadratic
form (see, e.g., [1, Chap. 10])

QDR
s Œu� �

�
.���/

s
DRu; u

�
WD

�
.��/su; u

�
I Dom.QDR

s / D QH s.�/:

Remark 1. For s 2 .0; 1/, the following relation evidently holds:

QDR
s Œu� D

cn;s

2

“
Rn�Rn

ju.x/ � u.y/j2

jx � yjnC2s
dx dy:

1 As usual, we denote by .�; �/ the duality generated by the scalar product in L2.
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Notice that for s 2 .0; 1/ one can also define the restricted Neumann (or regional) FL by the
quadratic form

QNR
s Œu� WD

cn;s

2

“
���

ju.x/ � u.y/j2

jx � yjnC2s
dx dyI Dom.QNR

s / D H s.�/:

For some “intermediate” fractional Laplacians of this type, see, e.g., [16] and the references
therein.

Now we turn to a different type of FLs, namely, to the spectral ones. Recall that
the spectral Dirichlet and Neumann FLs are the sth powers of conventional Dirichlet and
Neumann Laplacian in the sense of spectral theory. In a Lipschitz bounded domain �, they
can be defined as the positive self-adjoint operators with quadratic forms

QDSp
s Œu� �

�
.���/

s
DSpu; u

�
WD

1X
j D1

�s
j

ˇ̌
.u; 'j /

ˇ̌2
; (2)

QNSp
s Œu� �

�
.���/

s
NSpu; u

�
WD

1X
j D0

�s
j

ˇ̌
.u;  j /

ˇ̌2
; (3)

where �j , 'j and �j ,  j are eigenvalues and (normalized) eigenfunctions of the Dirichlet
and Neumann Laplacian in �, respectively. Notice that �0 D 0 and  0 � const.

For s 2 .0; 1/, the domains of these quadratic forms are

Dom.QDSp
s / D QH s.�/I Dom.QNSp

s / D H s.�/:

For s > 1, the domains of spectral quadratic forms are more complicated. However, the
following relations hold ([21, Theorem 1.17.1/1] and [21, Theorem 4.3.2/1]; see also [12, Lemma 1]

and [14, Lemma 2]):

QH s.�/ D Dom.QDSp
s /; 0 < s <

3

2
I QH s.�/ ¨ Dom.QDSp

s /; s �
3

2
I

QH s.�/ D Dom.QNSp
s /; 0 < s <

1

2
I QH s.�/ ¨ Dom.QNSp

s /; s �
1

2
:

It follows from the well-known Heinz inequality ([10]; see also [1, §10.4]) that for
u 2 QH s.�/, s 2 .0; 1/, the following inequality holds:

QDSp
s Œu� � QNSp

s Œu�: (4)

On the other hand, the inequality QDR
s Œu� � QNR

s Œu� for u 2 QH s.�/, s 2 .0; 1/, is trivial.
Below we provide a wide generalization and sharpening of (4). To this end, we recall

the basic facts on the generalized harmonic extensions related to fractional Laplacians of the
order � 2 .0; 1/ and of the negative order �� 2 .�1; 0/.

It was known long ago that the square root of Laplacian is related to the harmonic
extension and to the Dirichlet-to-Neumann map. In the breakthrough paper [4], the FL .��/�

(and therefore .���/
�
DR) for any � 2 .0;1/was related to the generalized harmonic extension

and to the generalized Dirichlet-to-Neumann map.
Namely, let u2 QH � .�/. Then there exists a unique solutionwDR

� .x;y/ of the bound-
ary value problem in the half-space

� div.y1�2�
rw/ D 0 in Rn

� RCI wjyD0 D u;
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with finite energy (weighted Dirichlet integral)

ER
� .w/ D

Z 1

0

Z
Rn

y1�2�
ˇ̌
rw.x; y/

ˇ̌2
dxdy;

and the relation

.���/
�
DRu.x/ D �C� � lim

y!0C
y1�2�@yw

DR
� .x; y/ (5)

with
C� D

4��.1C �/

�.1 � �/

holds in the sense of distributions in � and pointwise at every point of smoothness of u.
Moreover, the function wDR

� .x; y/ minimizes ER
� over the set

WDR
� .u/ D

®
w.x; y/ W ER

� .w/ < 1; wjyD0 D u
¯
;

and the following equality holds:

QDR
� Œu� D

C�

2�
� ER

� .w
DR
� /: (6)

In [20] this approach was substantially generalized. In particular, for u 2 QH � .�/ (for
u 2 H � .�/) there is a unique solution of the boundary value problem in the half-cylinder

� div.y1�2�
rw/ D 0 in � � RCI wjyD0 D u;

satisfying, respectively, the Dirichlet or the Neumann boundary condition on the lateral sur-
face of the half-cylinder and having finite energy

ESp
� .w/ D

Z 1

0

Z
�

y1�2�
ˇ̌
rw.x; y/

ˇ̌2
dxdy:

Denote these solutionswDSp
� .x;y/ andwNSp

� .x;y/, respectively. The following relations hold
in the sense of distributions in � and pointwise at every point of smoothness of u:

.���/
�
DSpu.x/ D �C� � lim

y!0C
y1�2�@yw

DSp
� .x; y/; (7)

.���/
�
NSpu.x/ D �C� � lim

y!0C
y1�2�@yw

NSp
� .x; y/: (8)

Moreover, these solutions minimize E
Sp
� over the sets

W
DSp
�;� .u/ D

®
w.x; y/ W ESp

� .w/ < 1; wjyD0 D u; wjx2@� D 0
¯
;

W
NSp
�;� .u/ D

®
w.x; y/ W ESp

� .w/ < 1; wjyD0 D u
¯
;

respectively, and the following equalities hold:

QDSp
� Œu� D

C�

2�
� ESp

� .w
DSp
� /I QNSp

� Œu� D
C�

2�
� ESp

� .w
NSp
� /: (9)
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Now we set s D �� 2 .�1; 0/. The operators .���/
��
DR , .���/

��
DSp, and .���/

��
NSp

are defined by corresponding quadratic forms (1)–(3)2 with domains

Dom.QDR
�� / D

8<: QH�� .�/ if either n � 2 or � < 1
2
I

¹u 2 QH�� .�/ W .u; 1/ D 0º if n D 1 and � �
1
2
I

Dom.QDSp
�� / D H�� .�/I Dom.QNSp

�� / D
®
u 2 QH�� .�/ W .u; 1/ D 0

¯
:

The first two equalities were proved in [14, Lemma 1]; the third follows from [21, Theo-

rem 2.10.5/1]. We notice that .���/
��
NSpu is defined up to an additive constant which can

be naturally fixed by assumption ..���/
��
NSpu; 1/ D 0.

Remark 2. By [21, Theorems 4.3.2/1 and 2.10.5/1], for 0< � �
1
2

we have QH�� .�/�H�� .�/

(even QH�� .�/DH�� .�/ if 0 < � < 1
2
) whereas in the case 1

2
< � < 1,H�� .�/ is a sub-

space of QH�� .�/. However, in the latter case we can consider an arbitrary f 2 Dom.QDR
�� /

as a functional on H � .�/, put Qf D f j QH �� .�/ 2 Dom.QDSp
�� / and define QDSp

�� Œf � WD

Q
DSp
�� Œ Qf �.

Next, we connect FLs of the negative order with the generalized Neumann-to-
Dirichlet map. It was done in [5] for the spectral Dirichlet FL and in [3] for the FL in Rn (and
therefore for the restricted Dirichlet FL). Variational characterization of these operators was
given in [14]. The spectral Neumann FL was considered in [17].

Let u 2 QH�� .�/ (for n D 1 and � �
1
2

assume in addition that .u; 1/ D 0). We
consider the problem3

QER
�� .w/ WD ER

� .w/ � 2.u;wjyD0/ ! min (10)

on the set WDR
�� , that is, the closure of smooth functions on Rn � NRC with bounded support,

with respect to ER
� .�/.

If n > 2� (this is a restriction only for n D 1) then the minimizer is determined
uniquely. Denote it by wDR

�� .x; y/. Then (5) and (6) imply

.���/
��
DRu.x/ D

2�

C�

wDR
�� .x; 0/I QDR

�� Œu� D �
2�

C�

� QER
�� .w

DR
�� / (11)

(the first relation holds for a.a. x 2 �).
In case n D 1 � 2� , the minimizer wDR

�� .x; y/ is defined up to an additive constant.
However, by assumption .u;1/D 0, the functional QER

�� .w
DR
�� / does not depend on the choice

of the constant, and the second relation in (11) holds. The first equality in (11) also holds if
we choose the constant such that wDR

�� .x; 0/ ! 0 as jxj ! 1.
Notice that the function wDR

�� solves the Neumann problem in the half-space

� div.y1�2�
rw/ D 0 in Rn

� RCI lim
y!0C

y1�2�@yw D �u

(the boundary condition holds in the sense of distributions). So, we can consider .���/
��
DR

as the Neumann-to-Dirichlet map, and (10) gives the “dual” variational characterization of
negative restricted Dirichlet FL.

2 We emphasize that .���/
��
DR is not the inverse to .���/

�
DR.

3 Notice that by the result of [4] the duality .u;wjyD0/ is well defined.
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In a similar way we provide the “dual” variational characterization of the operators
.���/

��
DSp and .���/

��
NSp. Namely, let u 2 QH�� .�/ (for the spectral Neumann operator

assume in addition that .u; 1/ D 0). Consider the problem
QESp
�� .w/ D ESp

� .w/ � 2.u;wjyD0/ ! min

respectively on the sets

W
DSp
��;� D

®
w.x; y/ W ESp

� .w/ < 1; wjx2@� D 0
¯
;

W
NSp
��;� D

®
w.x; y/ W ESp

� .w/ < 1
¯
:

Denote corresponding minimizers wDSp
�� .x; y/ and wNSp

�� .x; y/, respectively4. Then (7)–(9)
imply

QDSp
�� Œu� D �

2�

C�

� QESp
�� .w

DSp
�� /I .���/

��
DSpu.x/ D

2�

C�

wDSp
�� .x; 0/I (12)

QNSp
�� Œu� D �

2�

C�

� QESp
�� .w

NSp
�� /I .���/

��
NSpu.x/ D

2�

C�

wNSp
�� .x; 0/ (13)

(the second equalities in (12) and (13) hold for a.a. x 2 �; in the latter case, we should
choose the additive constant such that wNSp

�� .x; y/ ! 0 as y ! C1).
Also the functions wDSp

�� and wNSp
�� solve the boundary value problem in the half-

cylinder
� div.y1�2�

rw/ D 0 in � � RCI lim
y!0C

y1�2�@yw D �u

with the Dirichlet or the Neumann boundary condition on the lateral surface @��RC,
respectively (the Neumann boundary condition on the bottom holds in the sense of dis-
tributions).

Now we are in a position to formulate the first group of our main results, namely, the
comparison of various FLs in the sense of quadratic forms. These statements were proved in
[12, Theorem 2], [14, Theorem 1], and [17, Theorem 3] (for some partial results see also [6,9,19]).

Theorem 3. Let s > �1 and s … N0. Suppose that5u 2 QH s.�/, u 6� 0. Then the following
relations hold:

QDSp
s Œu� > QDR

s Œu� > QNSp
s Œu�; if s 2 .2k; 2k C 1/; k 2 N0I (14)

QDSp
s Œu� < QDR

s Œu� < QNSp
s Œu�; if s 2 .2k � 1; 2k/; k 2 N0: (15)

Proof. We prove the theorem in three steps.

1. Let s 2 .0; 1/. Notice that we can assume any function w 2 W
DSp
s;� .u/ to be extended by

zero to .Rn n�/ � RC. Then evidently

W
DSp
s;� .u/ � WDR

s .u/ and ESp
s D ER

s j
W

DSp
s;� .u/

:

4 Notice that wNSp
�� .x; y/ is defined up to an additive constant. By assumption .u; 1/ D 0, the

functional QE
Sp
�� .w

NSp
�� / does not depend on the choice of the constant.

5 We assume in addition that .u; 1/ D 0 in two cases:

(1) for the left inequality in (15), if n D 1 and s � �
1
2 ;

(2) for the right inequality in (15), if s < 0.
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Therefore, formulae (6) and (9) provide

QDSp
s Œu� D

Cs

2s
� min

w2W
DSp
s;� .u/

EDSp
s .w/ �

Cs

2s
� min

w2WDR
s .u/

EDR
s .w/ D QDR

s Œu�;

and the first inequality in (14) follows with the “�” sign.
To complete the proof, we observe that for u 6� 0 the corresponding extensionwDSp

s

(extended by zero) cannot be a solution of the homogeneous equation in the whole half-space
Rn � RC since such a solution should be analytic in the half-space. Thus, it cannot provide
minw2WDR

s .u/ EDR
s .w/.

Since wDR
s j��RC

2 W
NSp
s;� .u/, the proof of the second inequality in (14) is even

simpler.

2. Now let s D �� 2 .�1; 0/. We again extend functions in W
DSp
��;� by zero and obtain

W
DSp
��;� � WDR

�� and QESp
�� D QER

�� j
W

DSp
��;�

:

Therefore, formulae (11) and (12) provide

Q
DSp
s;� Œu� D �

2�

C�

� min
w2W

DSp
��;�

QESp
�� .w/ � �

2�

C�

� min
w2WDR

��

QER
�� .w/ D QDR

s Œu�;

and the left part in (15) follows with the “�” sign. To complete the proof, we repeat the
argument of the first part. The proof of the right part is similar.

3. Now let s > 1, s … N. We put k D b
sC1

2
c and define for u 2 QH s.�/,

v D .��/ku 2 QH s�2k.�/; s � 2k 2 .�1; 0/ [ .0; 1/:

Note that v 6� 0 if u 6� 0, and

.v; 1/ D F v.0/ D j�j2kF u.�/j�D0 D 0:

Then we have

Q
DSp
s;� Œu� D Q

DSp
s�2k;�

Œv�; QDR
s Œu� D QDR

s�2k Œu�; QNSp
s Œu� D Q

NSp
s�2k

Œu�;

and the conclusion follows from steps 1 and 2.

The second group of our results is related to the pointwise comparison of FLs. These
statements were proved in [12, Theorem 1], [14, Theorem 3], and [17, Theorem 4] (a partial result
can be found in [8]).

Theorem 4. A. Let s 2 .0;1/, and let u2 QH s.�/, u� 0, u 6� 0. Then the following
relation holds in the sense of distributions:

.���/
s
DSpu > .���/

s
DRu in �: (16)

B. Let s 2 .�1;0/ for n� 2, and let s 2 .� 1
2
; 0/ for nD 1. Suppose that u2 QH s.�/,

u � 0 in the sense of distributions, u 6� 0. Then the following relation holds:

.���/
s
DSpu < .���/

s
DRu in �: (17)
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C. Suppose that � is convex. Let s 2 .0; 1/, and let u 2 QH s.�/, u � 0, u 6� 0.
Then the following relation holds in the sense of distributions:

.���/
s
DRu > .���/

s
NSpu in �: (18)

Proof. A. We introduce the function

Ws.x; y/ WD wDR
s .x; y/ � wDSp

s .x; y/:

Note that formulae (5) and (7) imply

.���/
s
DSpu � .���/

s
DRu D C� � lim

y!0C
y1�2s@yWs.x; y/ (19)

in the sense of distributions.
By the strong maximum principle, the assumptions u� 0, u 6� 0 imply thatwDR

s > 0

in Rn � RC. Thus, wDR
s > w

DSp
s at @� � RC and, again by the strong maximum principle,

Ws > 0 in � � RC.
After changing of the variable t D y2s , the functionWs satisfies the following rela-

tions:

�xWs.x; t
1
2s /C 4s2t

2s�1
s @2

ttWs.x; t
1
2s / D 0 in � � RCI WsjtD0 D 0: (20)

The differential operator in (20) satisfies the assumptions of the boundary point lemma [11]

at any point .x; 0/ 2 � � ¹0º. Therefore, we have for any x 2 �,

lim inf
y!0C

y1�2s@yWs.x; y/ D 2s lim inf
t!0C

Ws.x; t
1
2s /

t
> 0:

This gives (16) in view of (19).

B. Put � D �s 2 .0; 1/ and consider extensions wDR
�� and wDSp

�� . Making the change of the
variable t D y2� , we rewrite the boundary value problem for wDR

�� .x; t
1

2� / as follows:

�xw
DR
�� C 4�2t

2��1
� @2

ttw
DR
�� D 0 in Rn

� RCI @tw
DR
�� jtD0 D �

u

2�
: (21)

Since wDR
�� vanishes at infinity, wDR

�� .x; t
1

2� / > 0 for t > 0 by the maximum principle.
Further, the function wDSp

�� .x; t
1

2� / satisfies the equalities in (21) for x 2 �. Since
w

DSp
�� jx2@� D 0, we infer that the function

OWs.x; t/ WD wDR
�� .x; t

1
2� / � wDSp

�� .x; t
1

2� /

verifies the following relations:

�x
OWs C 4�2t

2��1
� @2

tt
OWs D 0 in � � RCI @t

OWsjtD0 D 0I OWsjx2@� > 0:

Now the boundary point lemma [11] implies OWs.x; 0/ > 0, which gives (17) in view of (11)
and (12).

C. This statement is more complicated and requires the representation formulae for wDR
s

and wNSp
s , see [4] and [20], respectively:

wDR
s .x; y/ D const �

Z
Rn

y2su.z/ dz

.jx � zj2 C y2/
nC2s

2

I

3849 Variety of fractional Laplacians



wNSp
s .x; y/ D

1X
j D0

.u;  j /L2.�/ � Qs.y
p
�j / j .x/; Qs.�/ D

21�s� s

�.s/
Ks.�/

(here Ks.�/ stands for the modified Bessel function of the second kind).
First of all, these formulae imply for u � 0, u 6� 0 that

lim
y!C1

wDR
s .x; y/ D 0I lim

y!C1
wNSp

s .x; y/ D .u;  0/L2.�/ �  0.x/ > 0I

the second relation follows from the asymptotic behavior (see, e.g., [20, (3.7)])

Ks.�/ � �.s/2s�1��s; as � ! 0I

Ks.�/ �

�
�

2�

� 1
2

e��
�
1CO.��1/

�
; as � ! C1:

Next, for x 2 @� we derive by convexity of � that

@nw
DR
s .x; y/ D const �

Z
Rn

y2sh.z � x/;niu.z/ dz

.jx � zj2 C y2/
nC2sC2

2

< 0:

Thus, the difference QWs.x; y/D w
NSp
s .x; y/�wDR

s .x; y/ has the following proper-
ties in the half-cylinder � � RC:

� div.y1�2s
r QWs/ D 0I QWsjyD0 D 0I QWsjyD1 > 0I @n QWsjx2@� > 0:

By the strong maximum principle, QWs > 0 in�� RC. Finally, we apply again the boundary
point lemma [11] to the function QWs.x; t

1
2s / and obtain for x 2 �,

lim inf
y!0C

y1�2s@y
QWs.x; y/ D 2s lim inf

t!0C

QWs.x; t
1
2s /

t
> 0:

This gives (18) in view of (5) and (8).

Notice that for nonconvex domains, the relation (18) does not hold in general. We
provide a corresponding counterexample.

Example 5. Put temporarily�D�1 [�2 where�1 \�2 D ;. If u� 0 is a smooth func-
tion supported in�1 then easily .���/

s
NSpu � 0 in�2. On the other hand, wDR

s .x; y/ > 0

for all x 2 Rn, y > 0, and the boundary point lemma gives .���/
s
DRu < 0 in�2. Now we

join �1 with �2 by a small channel, and the inequality .���/
s
DRu < .���/

s
NSpu in �2

holds by continuity.

The last group of results in our survey is related to an obvious identity

.��u; u/ D

Z
�

jruj
2 dx D

Z
�

ˇ̌
rjuj

ˇ̌2
dx D .��juj; juj/; u 2 QH 1.�/:

The following statement was proved in [13, Theorem 3].6

6 The proof was given for the Dirichlet operators (restricted and spectral); however, it is men-
tioned in [22, Proposition 1] that for the spectral Neumann FL the proof runs without
changes.
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Theorem 6. Let s 2 .0; 1/. Then

A. For any u 2 QH s.�/, we have juj 2 QH s.�/ and

QDR
s Œu� � QDR

s

�
juj

�
I QDSp

s Œu� � QDSp
s

�
juj

�
I

B. For any u 2 H s.�/, we have juj 2 H s.�/ and

QNR
s Œu� � QNR

s

�
juj

�
I QNSp

s Œu� � QNSp
s

�
juj

�
:

For a sign-changing u, all inequalities are strict.

Proof. For s 2 .0; 1�, the Nemytskii operator u 7! juj is a continuous transform ofH s.Rn/

into itself, see, e.g., [18, Theorem 5.5.2/3].
There are several proofs of the inequality for QDR

s ; in particular, its representation
in Remark 1 provides this inequality immediately. This proof works for QNR

s as well.
We show another proof that works also for spectral quadratic forms.
Let u be sign-changing. Consider the extension wDR

s and notice that
jwDR

s j 2 WDR
s .juj/. Therefore,

2s

Cs

�QDR
s

�
juj

�
D min

w2WDR
s .juj/

ER
s .w/ � ER

s

�
jwDR

s j
�

D ER
s .w

DR
s / D

2s

Cs

�QDR
s Œu�:

Moreover,wDR
s is sign-changing, so jwDR

s j cannot be a solution of the homogeneous equation
by the maximum principle and thus cannot be a minimizer for the energy.

What happens for s > 1? If s 2 .1; 3
2
/ then the operator u 7! juj is a bounded

transform of H s.Rn/ into itself, see, e.g., [2, Section 4]. To the best of our knowledge, its
continuity is still an open problem. Moreover, it is easy to show that the assumption s < 3

2

cannot be improved, see, e.g., [15, Example 1].
So, the question about the behavior of quadratic forms of FLs under the transform

u 7! juj seems reasonable for s 2 .1; 3
2
/. The following statement was proved in [15].

Theorem 7. Let s 2 .1; 3
2
/, and let u 2 QH s.�/ be sign-changing. Then

QDR
s Œu� < QDR

s

�
juj

�
: (22)

The sketch of proof. Define u˙ D
1
2
.juj ˙ u/ and assume for a moment that uC and u� are

smooth and have disjoint supports. Then

QDR
s

�
juj

�
�QDR

s Œu� D 4
�
.���/

s
DRu

C; u�
�

D 4
�
.���/

s�1
DR u

C; .��/u�
�
:

By Remark 1,�
.���/

s�1
DR u

C; .��/u�
�

D
cn;s�1

2

“
Rn�Rn

.uC.x/ � uC.y//.��u�.x/C�u�.y//

jx � yjnC2s�2
dx dy

D cn;s�1

“
Rn�Rn

uC.x/�u�.y/

jx � yjnC2s�2
dx dy

(notice that uC.x/u�.x/ � 0).
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Since the supports of uC and u� are disjoint, we can integrate by parts. Using the
definition of cn;s , we derive

�y

cn;s�1

jx � yjnC2s�2
D
2s.nC 2s � 2/cn;s�1

jx � yjnC2s
D �

cn;s

jx � yjnC2s

and obtain

QDR
s

�
juj

�
�QDR

s Œu� D �4cn;s

“
Rn�Rn

uC.x/u�.y/

jx � yjnC2s
dxdy:

It remains to observe that cn;s < 0 for s 2 .1; 2/, and (22) follows.
In the general case, the result was obtained in [15] using a quite nontrivial approxi-

mation procedure.

Conjecture 8. For s 2 .1; 3
2
/, the inequalities similar to (22) should hold for spectral

quadratic forms.

Acknowledgments

I am deeply grateful to my friend and coauthor Professor Roberta Musina for many years
of cooperation. Indeed, without her, I could not even get started in this field.

Funding

This work was supported by RFBR grant 20-01-00630.

References

[1] M. S. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in
Hilbert space. 2nd edn., revised and extended, Lan’, St. Petersburg, 2010 (in Rus-
sian); English transl. of the 1st ed.: Math. Appl., Sov. Ser., 5, Kluwer, Dordrecht,
1987.

[2] G. Bourdaud and W. Sickel, Composition operators on function spaces with
fractional order of smoothness. In Harmonic analysis and nonlinear partial dif-
ferential equations, edited by T. Ozawa and M. Sugimoto, pp. 93–132, RIMS
Kôkyûroku Bessatsu B26, Res. Inst. for Math. Sci, Kyoto, 2011.

[3] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians. I: Regularity,
maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal.
Non Linéaire 31 (2014), no. 1, 23–53.

[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional
Laplacian. Comm. Partial Differential Equations 32 (2007), no. 8, 1245–1260.

[5] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of radial extremal
solutions for some non-local semilinear equations. Comm. Partial Differential
Equations 36 (2011), no. 8, 1353–1384.

[6] Z.-Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate pro-
cesses in domains. J. Funct. Anal. 226 (2005), 90–113.

3852 A. I. Nazarov



[7] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional
Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521–573.

[8] M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy
potential. Nonlinear Anal. 193 (2020), 111311, 29 pp. arXiv:1109.5530v4, 2012.

[9] R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional
powers of the Laplace operator. J. Reine Angew. Math. 712 (2016), 1–37.

[10] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 193
(1951), 415–438 (in German).

[11] L. I. Kamynin and B. N. Himčenko, Theorems of Giraud type for second order
equations with a weakly degenerate non-negative characteristic part. Sib. Math. J.
18 (1977), 76–91.

[12] R. Musina and A. I. Nazarov, On fractional Laplacians. Comm. Partial Differen-
tial Equations 39 (2014), no. 9, 1780–1790.

[13] R. Musina and A. I. Nazarov, On the Sobolev and Hardy constants for the frac-
tional Navier Laplacian. Nonlinear Anal. 121 (2015), 123–129.

[14] R. Musina and A. I. Nazarov, On fractional Laplacians–2. Ann. Inst. H. Poincaré
Anal. Non Linéaire 33 (2016), no. 6, 1667–1673.

[15] R. Musina and A. I. Nazarov, A note on truncations in fractional Sobolev spaces.
Bull. Math. Sci. 9 (2019), no. 1, 1950001, 7 pp.

[16] R. Musina and A. I. Nazarov, Strong maximum principles for fractional Lapla-
cians. Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 5, 1223–1240.

[17] A. I. Nazarov, On comparison of fractional Laplacians. 2021, arXiv:2108.05416.
[18] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators,

and nonlinear partial differential equations. De Gruyter Ser. Nonlinear Anal.
Appl. 3, de Gruyter, Berlin, 1996.

[19] R. Servadei and E. Valdinoci, On the spectrum of two different fractional opera-
tors. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 831–855.

[20] P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for
some fractional operators. Comm. Partial Differential Equations 35 (2010),
no. 11, 2092–2122.

[21] H. Triebel, Interpolation theory, function spaces, differential operators. Deutscher
Verlag Wissensch, Berlin, 1978.

[22] N. S. Ustinov, On solvability of a semilinear problem with spectral Neumann
Laplacian and critical right-hand side. Algebra i Analiz 33 (2021), no. 1, 194–212
(Russian).

Alexander I. Nazarov

PDMI RAS, Fontanka 27, St. Petersburg 191023, Russia, al.il.nazarov@gmail.com

3853 Variety of fractional Laplacians

https://arxiv.org/abs/1109.5530v4
https://arxiv.org/abs/2108.05416
mailto:al.il.nazarov@gmail.com

	References

