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Abstract

This contribution addresses the problem of singularity formation in nonlinear dispersive
equations. Despite significant progress made in the last 20 years, for most even simplest
canonical models our understanding of the question is far from being complete. The aim
of this note is to give a selection of results and open questions illustrating the present state
of the problem in the context of some basic model equations, mostly of Schrödinger type,
such as the semilinear Schrödinger and Schrödinger map equations, putting an emphasis
on the role of solitons in the mechanisms of singularity formation.
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1. Introduction

Many physical processes involving nonlinear evolution of wave-like objects are
modeled by semilinear Hamiltonian PDEs of dispersive type. Among the canonical examples
are the nonlinear Schrödinger equation (NLS)

iut D ��u C �juj
2pu; .t; x/ 2 R � Rd ;

and the nonlinear wave equation (NLW)

ut t D �u � �juj
2pu; .t; x/ 2 R � Rd ; (1.1)

where p > 0 and � 2 ¹�1;1º. The equations are said to be focusing if � D �1 and defocusing
if � D 1.

Other important examples are the wave and Schrödinger map equations. They are
respectively the hyperbolic and Schrödinger analogues of the harmonic map heat flow, which
is the gradient flow associated to the Dirichlet energy

R
Rd jru.x/j2dx for maps u from Rd

to an embedded Riemannian manifold1 M � Rn. We will limit ourselves to the case of
M D S2 � R3, where the equations take a particular simple form:

ut t D �u C u
�
jruj

2
� jut j

2
�

(1.2)

for wave maps,
ut D u � �u

for Schrödinger maps, and
ut D �u C ujruj

2

for the heat flow. Here u is a map from Rt � Rd
x to S2 � R3.

Of course, the first question in the theory of such equations is the local well-
posedness of the corresponding Cauchy problem (including existence, uniqueness, and
continuous dependence of solutions on initial data). But once the local well-posedness is
understood, which is often the case at least for the simplest models, the next step is to
study the qualitative behavior of solutions, and in particular to answer the following ques-
tions:

• Do all maximal solutions exist globally in time or does finite time blow-up occur?
If yes, for what classes of initial data?

• If the solution blows up in finite time, can one determine when, where, and how
the singularities form?

• If the solution is global, can one determine its behavior as t ! 1?

Despite substantial progress made in the last 20–30 years, a complete answer to most of
these questions remains an open problem even for the relatively simple models. The gen-
eral belief is that in nonlinear dispersive equations the linear dispersion tends to stabilize
the dynamics, leading to a kind of universality in the long-time behavior: global solutions

1 For the Schrödinger map equation, one needs M to be a Kähler manifold.

3855 Formation of singularities in nonlinear dispersive PDEs



are expected to decompose asymptotically as t ! 1 into a sum of decoupled nonlinear
bound states, such as solitary wave solutions, plus a radiation that disperses to zero, typi-
cally as a free linear wave. This prediction is known as the soliton resolution conjecture and
is motivated by the theory of completely integrable equations such as the one-dimensional
cubic NLS, KdV, and mKdV equations, for which this kind of behavior can be justified
by means of the inverse scattering method at least for some classes of initial data. For the
nonintegrable equations, this conjecture remains largely open. Most of the available results
concern either the soliton-free dynamics typical for the defocusing nonlinearities or small
data (usually below some threshold determined by the ground state of the equation), or the
perturbative regimes near a single soliton or near a superposition of well-decoupled solitons.
The only exceptions are wave-type models, such as the energy critical NLW equation ((1.1)
with p D

2
d�2

, d � 3) and the energy critical wave maps into the two sphere ((1.2) with
d D 2), for which satisfactory global results begin to emerge starting from the breakthrough
work of Duyckaerts, Merle, and Kenig [25], where a resolution into solitons was established
for all energy bounded radial solutions of the energy critical nonlinear wave equation in
dimension 3 (see Section 5). For the Schrödinger-type models, such results are still out of
reach. The only known global results in this setting correspond to a much weaker version of
the soliton resolution conjecture as that proved by Tao [106] for the nonlinear Schrödinger
equations with mass supercritical and energy subcritical nonlinearities in high dimensions.
This weak version gives a decomposition of any global, energy bounded solution into a dis-
persive part that evolves according to the linear Schrödinger equation, a sum of decoupled
pieces, each piece evolving (modulo the space translations) on a compact invariant set, and
a remainder going to zero as t ! 1 in the energy space, thus reducing the problem to a
classification of solutions with a compact trajectory, the question which is largely open for
the NLS equations.

In the case of finite time blow-up, even less is known. For the Schrödinger-type
equations, the theory is still on the level of searching for possible blow-up mechanisms and
studying their stability. Below we give a selection of corresponding results. The choice of
the results is unavoidably related to those aspects of the problem which are most familiar to
the author, the list of the references is by no means complete.

2. Overview of the well-posedness theory for the NLS

equation

Consider the nonlinear Schrödinger equation on Rd :

iut D ��u C �juj
2pu; .t; x/ 2 R � Rd ; p > 0; � 2 ¹�1; 1º; (2.1)

with initial condition
ujtD0 D u0 2 H s.Rd /: (2.2)
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The solutions to (2.1), (2.2) satisfy formally mass, energy, and momentum conservation laws:

M
�
u.t/

�
�

Z
Rd

ˇ̌
u.t; x/

ˇ̌2
dx D M.u0/;

E
�
u.t/

�
�

Z
Rd

�ˇ̌
ru.t; x/

ˇ̌2
C

�

p C 1

ˇ̌
u.t; x/

ˇ̌2pC2
�

dx D E.u0/;

P
�
u.t/

�
� Im

Z
Rd

u.t; x/ru.t; x/dx D P.u0/:

The NLS equation is invariant with respect to time translations, spatial translations and
rotations, and phase rotations. A less evident symmetry is the invariance under Galilei trans-
formations, u.t; x/ 7! e�i

jvj2

4 tCi v
2 �xu.t; x � vt/, v 2 Rd . In the case of p D

2
d

, there is an
additional symmetry

u.t; x/ 7!
1

jt j
d
2

ei
jxj2

4t u

�
�

1

t
;

x

t

�
; t ¤ 0; (2.3)

called pseudoconformal symmetry.
The NLS equation (2.1) is also invariant with respect to the scaling, u.t; x/ 7!

�
1
p u.�2t; �x/, � > 0, that preserves the homogeneous Sobolev norm ku0k PH sc .Rd / with

sc D
d
2

�
1
p

. This defines a notion of criticality: the Cauchy problem (2.1), (2.2) is said to
be subcritical if s > sc , critical if s D sc , and supercritical if s < sc . As we will see below,
the notion of criticality plays a fundamental role in the well-posedness theory of (2.1). Of a
particular interest are the mass critical case sc D 0 and the energy critical case sc D 1 when
the critical regularity coincides with one of the conservation laws.

The local well-poseness of the NLS equation is well understood (see, e.g., [10,105]
and the references therein). The Cauchy problem (2.1), (2.2) is locally well-posed in H s for2

s � max¹0; scº, and typically, also in PH sc if sc � 0. In the latter case the solutions arising
from PH sc small initial data are global and scatter both forward and backward in time (i.e.,
converge to a linear solution as t ! ˙1).

In the subcritical case s > sc , the lifespan of the solutions admits a lower bound
depending only on the H s norm of initial data,3 which in a standard way implies that the
solution of (2.1), (2.2) is either global or its H s norm becomes unbounded in finite time. By
the mass and energy conservation, this ensures global well-posedness in H s for s � 0 in the
mass subcritical range p < 2

d
independently of the sign of �, and in H s with s � 1 in the

defocusing energy subcritical case p < 2
d�2

.
The critical well-posedness (s D sc � 0) is more subtle. In this case the lifespan

of solutions given by the local theory depends on the profile of the initial data, not only on
its PH sc norm. In the defocusing case, however, typically the uniform boundedness of the
solution in PH sc on its maximal interval of existence implies that the solution is global and
scatters. In particular, one has global well-posedness and scattering in PH sc for the defocusing

2 In the case when p is not an integer, one has also to assume that s is compatible with the
smoothness of the nonlinear term.

3 In fact, typically one has a slightly stronger result including the persistence of regularity: if
u0 2 H s0 with s0 > s, then the solution stays in H s0 as long as it exists in H s .
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energy critical (sc D 1) and mass critical (sc D 0) NLS equations. In the energy critical
case, this was proved by Bourgain [6], Grillakis [34], Tao [104] for spherically symmetric
initial data, and by Colliander, Keel, Staffilani, Takaoka, and Tao [12], Ryckman and Visan
[98], and Visan [111] for general data. We also refer to the seminal paper of Kenig and Merle
[48] where the powerful concentration compactness/rigidity method was introduced. The
corresponding result for the mass critical NLS was proved by Killip, Tao, Visan, and Zhang
[50,53,109] in the case of spherically symmetric initial data, and by Dodson for general initial
data, see [17] and the references therein. In the energy supercritical case sc > 1, the fact
that the PH sc bounds imply global existence and scattering was established by Killip and
Visan [51] in dimension d � 5. We also refer to Miao, Murphy, and Zheng [84] for the case
of d D 4. Similar results hold in the mass supercritical, energy subcritical range, see, e.g.,
Kenig and Merle [49], although in this case unconditional global existence and scattering in
PH sc is expected, see Dodson [19] for some partial results in this direction as well as for the

history of the problem. In the energy supercritical case, finite time blow-up may occur. This
has been recently proved by Merle, Raphaël, Rodnianski, and Szeftel [79], see Section 6.

For the focusing NLS, the picture is different. On the one hand, large initial data
may lead to finite time blow-up as soon as 0 � sc , and, on the other hand, if sc � 1, the
equation admits solitary wave solutions, which shows that even for global in time solutions
scattering may not occur.

The existence of finite time blow-up for the focusing NLS with p �
2
d

follows from
the virial identity [33]:

d 2

dt2

Z
jxj

2
ˇ̌
u.x; t/

ˇ̌2
dx D 8E.u/ �

4.dp � 2/

p C 1

Z
Rd

ˇ̌
u.t; x/

ˇ̌2pC2
dx;

which holds for finite variance H 1 \ H sc solutions of (2.1), and shows that if E.u/ < 0,
then the solution breaks down in finite time. Note that in the mass critical case, any blow-
up solution is trivially bounded in the critical Sobolev space. For the energy critical NLS,
one also might have blow-up solutions with bounded PH 1 norm. In the case 0 < sc < 1, the
situation is different: solutions that stay bounded in PH sc are expected to be global. In the
radial case this property was proved by Merle and Raphaël [76].

As mentioned above, the focusing NLS with sc � 1 admits a family of solitary wave
solutions. In the energy subcritical range 0 < p < 2

d�2
, they have the form

u.t; x/ D ei.!� v2

4 /tCi v
2 �xQ!.x � vt/;

where v 2 Rd , ! > 0, and the profile Q! solves the elliptic equation

��Q! C !Q! � jQ! j
2pQ! D 0;

which after the rescaling Q!.y/ D !
1

2p Q.!
1
2 x/ takes the form

��Q C Q � jQj
2pQ D 0: (2.4)

For any 0 < p < 2
d�2

, there is a unique positive radially symmetric H 1 solution to this
equation, called ground state (see, e.g., [10,105] and the references therein); the ground state
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solution is smooth and exponentially decaying. In the one-dimensional case, the ground state

is explicit, namely Q.x/ D
.pC1/

1
2p

cosh
1
p .px/

. If d � 2, equation (2.4) has also radial H 1 solutions

which change sign (called exited states).
In the energy critical case, solitary wave solutions are given by

u.t; x/ D e�i v2

4 tCi v
2 �xW.x � vt/;

where v 2 Rd and W is a stationary solution, satisfying

�W C jW j
4

d�2 W D 0; W 2 PH 1.Rd /: (2.5)

The radial solutions of this elliptic equation are completely classified: they are of the form
W˛;�.x/ D ei˛�

d�2
2 W.�x/, where

W.x/ D

�
1 C

jxj2

d.d � 2/

�� d�2
2

: (2.6)

3. Mass critical focusing NLS

In this section we consider the mass critical NLS8<: iut D ��u � juj
4
d u; .t; x/ 2 R � Rd ;

ujtD0 D u0:
(3.1)

3.1. Global existence and scattering below the ground state
For p �

2
d

, the local well-posedness theory ensures global existence and scattering
for initial data with small PH sc norm. Typically, in the range 0 � sc � 1, this smallness can
be related to the ground state of the problem. In the case of the mass critical NLS, one has:

Theorem 3.1 (Global existence and scattering below the ground state). For any u0 2

L2.Rd / with ku0kL2 < kQkL2 , the solution to (3.1) is global and scatters forward and
backward in time (that is, there exist u�; uC 2 L2 such that ku.t/ � ei�t u˙kL2 ! 0 as
t ! ˙1).

This result has a long history. In the case of H 1 solutions, the global existence
follows from the variational characterization of the mass critical ground state proved by M.
Weinstein in [112]:

kf k
2C 4

d

L
2C 4

d

�
d C 2

d

�
kf k

4
d

L2

kQk
4
d

L2

�
krf k

2
L2 ; 8f 2 H 1; (3.2)

the equality being achieved if and only if f .x/ D zQ.�.x � a// for some z 2 C, � > 0 and
a 2 Rd . Inequality (3.2) shows that the H 1 norm of the solutions is controlled by their mass
and energy as soon as M.u/ < M.Q/. Global existence and scattering for L2 data with finite
invariance is also classical, see, e.g., [10]. The general L2 result is much more difficult and
has been proved only recently, see Killip, Tao, Visan, Zhang [50,53] and Dodson [16].
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Applying the pseudoconformal transformation to the soliton eit Q gives an explicit
blow-up solution

S.t/ D
1

t
d
2

ei
jxj2

4t �i 1
t Q

�
x

t

�
(3.3)

that has the same mass as the ground state Q. Thus the bound M.u/ < M.Q/ is optimal not
only for scattering but also for global existence.

The minimal mass dynamics is also well understood. In [72] Merle proved that up
to the symmetries of the equation, S.t/ is the only H 1 minimal mass finite time blow-up
solution, see also Hmidi, Keraani [40] for a simplified proof. By the pseudoconformal invari-
ance, this result also implies that any global minimal mass nonscattering H 1 solution with
finite variance is a ground state solitary wave. The L2 case was studied by Dodson [20, 21]

who proved:

Theorem 3.2 (Threshold dynamics, Dodson [20, 21]). Let 1 � d � 15 and consider
u0 2 L2.Rd / with ku0kL2 D kQkL2 . Then either the solution of (3.1) is global and scatters
as t ! ˙1 or it coincides with eit Q up to the symmetries of the equation (including the
pseudoconformal symmetry).

We next turn to the case M.u/ > M.Q/. In this case the virial identity ensures
the existence of a large set of initial data leading to finite time blow-up both forward and
backward in time, but gives no information on the structure of the singularity, and for general
large mass data little is known in this direction. Essentially, only two general results are
available. First, one has the following lower bound on the blow-up rate of H s solutions,
which is a direct consequence of the scaling invariance of the problem: if u0 is in H s with
s > 0, such that the corresponding solution u blows up in finite time T > 0, thenu.t/


PH s �

C.u0/

.T � t /
s
2

; 8t 2 Œ0; T Œ:

Second, it is known that any blow-up solution concentrates at the blow-up time at least the
mass of the ground state. This is a consequence of Theorem 3.1. We refer to [50] and to
the references therein for the precise statements and for the history of the L2 concentra-
tion results. For masses slightly above the critical mass, more can be done. We discuss the
corresponding results in the next subsection.

3.2. Near ground state blow-up dynamics
In this subsection, we focus on the H 1 blow-up solutions with mass slightly above

the critical mass:

u0 2 H 1.Rd /; kQkL2 < ku0kL2 � kQkL2 C ˛; 0 < ˛ � 1: (3.4)

The mass and energy conservation, together with the variational characterization of the
ground state (3.2), ensures that near the blow-up time these solutions behave as a modu-
lated ground state, admitting a decomposition of the following form:

u.t; x/ D �
d
2 .t/ei�.t/

�
Q.z/ C r.t; z/

�
; z D �.t/

�
x � q.t/

�
;
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with �.t/ � kru.t/kL2 , kr.t/kH 1 � 1. Although giving no information on the blow-up
rate �.t/ and on the blow-up location q.t/, this variational result is conceptually important,
showing that the blow-up profiles arising from initial data (3.4) are close to the ground state,
and thus providing a starting point for their perturbative analysis. Such analysis was initiated
in [90] where we considered the one-dimensional mass critical NLS with even initial data
of the form u0 D Q C �0, k�0kH 1 C kx�0kL2 � 1, and showed that for an open set of
initial perturbations �0 the corresponding solution u blows up in finite time T > 0 with the
following asymptotic behavior as t ! T :

u.t; x/ D ei�.t/�
1
2 .t/

�
Q

�
�.t/x

�
C r

�
t; �.t/x

��
;

r.t/


H 1 � 1;
r.t/


L1 D o.1/;

�.t/ D

�
ln j ln.T � t /j

2�.T � t /

�1=2�
1 C o.1/

�
:

(3.5)

The existence of a stable blow-up regime with the log-log blow up rate (3.5) was predicted
by numerical computations and formal arguments in a number of works, see, e.g., Landman,
LeMesurier, Papanicolaou, Sulem, and Sulem [62, 64], Smirnov and Fraiman [99], Sulem
and Sulem [102] and the references therein. In the H 1 setting the log-log blow-up regime
was studied in details by Merle and Raphaël. Assuming some coercivity property of the lin-
earization around Q, they proved the following (see [66,73–75,93], and the references therein).

Theorem 3.3 (Merle, Raphaël). (i) Any solution arising from initial data (3.4)
and blowing up in finite time T admits a representation of the form

u.t/ D ei�.t/�
d
2 .t/Q

�
�.t/

�
� � q.t/

��
C u�

C oL2.1/; t ! T;

with limt!T �.t/ D C1, limt!T q.t/ D q� 2 Rd , and u� 2 L2.Rd /. Fur-
thermore, one of the following alternatives holds:

• either the blow-up rate �.t/ satisfies the log-log law (3.5) and then
the limiting profile u� does not belong to4 H 1,

• or

�.t/ �
c.u0/

T � t
(3.6)

and then u� 2 H 1.

(ii) The set of initial data satisfying (3.4) and such that the corresponding solution
blows up in finite time in the log-log regime (3.5) is open in H 1 and contains
the initial data (3.4) with E.u0/ � 0.

The coercivity property required in Theorem 3.3 was proved in dimension 1 in [73]

and checked numerically for 2 � d � 4 in [30], and for 5 � d � 10 in [113].

4 More precisely, in this case one has
R

jx�q.t/j�R ju�.x/j2dx �
C

.ln j ln Rj/2 , as R ! 0.
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The log-log blow-up regime of Theorem 3.3 is known to remain stable under H s

perturbations of initial data for all s > 0, see Colliander and Raphaël [13]. An interesting
open question is wether this stability persists in the L2 setting.

The set of initial data (3.4) such that the corresponding solution blows up satis-
fying (3.6) is nonempty. A large class of solutions with the pseudoconformal blow-up rate
kru.t/kL2 �

1
T �t

was constructed by Bourgain and Wang [7] in dimensions 1 and 2, starting
from perturbations of the minimal blow-up solution (3.3) by smooth rapidly decaying limit-
ing profiles u� vanishing at zero to a sufficiently large order, see also Krieger and Schlag [58].
In [82] Merle, Raphaël, and Szeftel proved that the Bourgain–Wang solutions with slightly
supercritical mass are unstable, belonging to the boundary of the H 1 open sets of global
solutions that scatter both forward and backward in time, and solutions that blow up in finite
time in the log-log regime. It is not known whether blow-up solutions with a blow-up rate
strictly greater than the pseudoconformal rate exist in the regime (3.4). For larger masses, an
example of such solutions was constructed by Martel and Raphaël [68] in the 2D case. The
solutions of [68] are obtained by considering the interaction of K solitary waves concentrated
at the vertices of a K-sided regular polygon and showing that this leads to a KM.Q/-mass
solution blowing up at infinity with the rate kru.t/kL2 � ln t as t ! C1, and thus, after
applying the pseudoconformal transformation (2.3), to a solution that blows up as t ! 0 with
the rate kru.t/kL2 �

j ln t j

t
.

We also refer to [66, 67] and references therein for the results on the near soliton
blow-up dynamics for the mass-critical gKdV equation where the picture is more complete.

The regimes discussed above correspond to a single point finite time blow-up. The
examples of multipoint blow-up solutions can be also constructed using as building blocks
either the explicit blow-up solution (3.3) (see Merle [71]), or the log-log blow-up solutions
of Theorem 3.3 (see Fan [28]). The general conjecture is that for any finite time blow-up
solution, the singular set is given by a finite number of points, each point concentrating at
least the mass of the ground state, see, e.g., [74].

4. Mass supercritical, energy subcritical NLS

In this section we discuss briefly the known blow-up regimes for the focusing NLS
in the range 2

d
< p < 2

d�2
.

4.1. Self-similar blow-up
Numerical simulations and formal arguments (see, e.g., Sulem and Sulem [102] and

the references therein) strongly suggest the existence of stable blow-up solutions of the fol-
lowing self-similar form:

u.t; x/ �
1

.2b.T � t //
1

2p

e�i 1
2b

ln.T �t/V

�
x

.2b.T � t //
1
2

�
; b > 0: (4.1)
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Substituting this ansatz into the NLS equation leads to the following elliptic equation for the
profile V.y/:

��V C V � ib

�
1

p
C y � r

�
V � jV j

2pV D 0; y 2 Rd : (4.2)

It is expected that for a discrete set of values of b, this equation admits nontrivial zero-
energy radial solutions, although these solutions fail to belong to PH sc (in accordance with
the growth of the PH sc norm proved in [75]) due to a slow decay at infinity, V.y/ �

C

jyj
1
p C i

b

, as

jyj ! 1. Thus, to obtain, say, H 1 solutions, one has to view (4.1) as a local approximation
near the blow-up point (x D 0), and then to extend it to the region jxj �

p
T � t by a well-

localized time-independent profile, smooth away from the origin and behaving as C

jxj
1
p C i

b

near the origin.
Rigorous results justifying the above self-similar blow-up scenario are currently

available only in the case 0 < sc � 1 where bifurcation-type arguments starting from the
mass critical case can be used, see Merle, Raphaël, and Szeftel [81], Bahri, Martel, and
Raphaël [2].

4.2. Standing sphere and contracting sphere blow-up solutions
In addition to the self-similar blow-up (4.1), which is expected to be generic, two

other blow-up regimes are known for the mass supercritical NLS. The first is given by the so-
called standing sphere blow-up solutions discovered by Raphaël [94] in the context of the two-
dimensional quintic NLS and later on generalized to the quintic NLS in higher dimensions
d � 3 by Raphaël and Szeftel [96]. Standing sphere blow-up solutions are radial, stable in
their symmetry class solutions that blow up in finite time on a fixed sphere in the 1D log-log
regime. The heuristic behind these solutions is that in the radial setting the quintic NLS takes
the following form:

iut D �@2
r u �

d � 1

r
@ru � juj

4u; r D jxj;

where for solutions concentrated near a fixed sphere r D r0 > 0 the second term on the
right-hand side can be viewed as a lower order term. Thus, one can expect the dynamics to
be governed by the one-dimensional quintic NLS,

iut D �@2
r u � juj

4u;

for which one has a stable log-log blow-up regime. The above idea of reduction to a lower
dimensional mass critical NLS was adapted to the 3D cylindrically symmetric cubic NLS
by Holmer and Roudenko [43] and Zwiers [114], yielding the existence of finite time blow-up
solutions concentrating on a fixed circle in the 2D log-log regime. These are the only known
examples of blow-up solutions with a nontrivial blow-up set.

Another blow-up scenario occurs in the range d � 2, 2
d

< p < 5. In this case there
exist radial solutions, called contracting sphere blow-up solutions, that blow up in finite time
by concentration of the corresponding 1D ground state on a sphere of radius5 � t

˛
1C˛ at the

5 With blow-up time set to t D 0.
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rate � t
1

1C˛ with ˛ D
2�p

p.d�1/
:

u.t; x/ � ei�.t/Civ.t/r=2�.t/Q.�.t/
�
r � q.t/

�
; r D jxj;

where
q.t/ � t

˛
˛C1 ; �.t/ � t� 1

˛C1 ; v.t/ � t� 1
˛C1 ; � � t

˛�1
˛C1 ;

and Q.y/ D
.pC1/

1
2p

cosh
1
p .py/

. The contracting sphere blow-up was predicted numerically and
heuristically in [29,42], see also the references therein. Rigorously, the existence of contract-
ing sphere blow-up solutions was proved for the 3D cubic NLS in [41], and in the range
d � 2, 0 < sc < 1, p < 5 by Merle, Raphaël, and Szeftel in [83].

Both the standing sphere and contracting sphere blow-up are L2-concentration
mechanisms in a contrast to the self-similar collapse where no mass concentration occurs.

5. Type II blow-up in the energy critical models

In the last 15–20 years there have been significant developments in the study of the
blow-up phenomenon for the energy critical equations and, more specifically, in the study of
energy bounded blow-up solutions (the so-called type II blow-up), including their construc-
tions and in some cases their classification. Below we review some of these developments.

5.1. Blow-up for Schrödinger maps from R2 to S2

Consider the Schrödinger flow for maps from R2 to S2:

ut D u � �u; x D .x1; x2/ 2 R2; t 2 R;

ujtD0 D u0;
(5.1)

where u.t; x/ D .u1.t; x/; u2.t; x/; u3.t; x// 2 S2 � R3. Equation (5.1) is a special case of
the Landau–Lifshitz equation

ut D a1u � �u C a2

�
�u C jruj

2u
�
; a1 2 R; a2 � 0; (5.2)

arising in the theory of ferromagnetism. In the case a1 D 0, a2 D 1, one recovers the har-
monic map heat flow.

Schrödinger map equation (5.1) conserves the energy

E.u/ D
1

2

Z
R2

dxjruj
2: (5.3)

The problem is energy critical since both the equation (5.1) and energy (5.3) are invariant
with respect to the scaling u.t; x/ ! u.�2t; �x/, � 2 RC.

The local/global well-posedness of (5.1) has been extensively studied. Local exis-
tence for smooth initial data goes back to Sulem, Sulem, and Bardos [103], see also McGa-
hagan [70]. The case of small data of low regularity was studied in several works. Global
existence for equivariant small energy initial data was established by Chang, Shatah, and
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Uhlenbeck in [11]. We recall that a map u W R2 ! S2 � R3 is called equivariant if it has the
form

u.x/ D em�Rv.r/; v W RC ! S2
� R3; (5.4)

for some m 2 Z. Here .r; �/ are the polar coordinates in R2, x1 C ix2 D ei� r , and R is the
generator of the horizontal rotations,

R D

0B@ 0 �1 0

1 0 0

0 0 0

1CA ;

or equivalently, Ru D k � u, k D .0;0;1/. The m-equivariance is preserved by the Schrödin-
ger flow (5.1). Global existence and scattering for general small energy initial data was proved
by Bejenaru, Ionescu, Kenig, and Tataru in [3]. For large data, such a result cannot hold
because of the existence of a rich family of finite energy stationary solutions, i.e., harmonic
maps. The lowest energy giving rise to a nontrivial harmonic map is 4� , the corresponding
harmonic map is, up to the symmetries, the stereographic projection

�1.x/ D e�RQ.r/; Q D

�
2r

r2 C 1
; 0;

r2 � 1

r2 C 1

�
: (5.5)

The stereographic projection is a member of a family of equivariant harmonic maps �m,
m 2 ZC:

�m.x/ D em�RQm.r/; Qm
D .hm

1 ; 0; hm
3 / 2 S2;

hm
1 .r/ D

2rm

r2m C 1
; hm

3 .r/ D
r2m � 1

r2m C 1
:

(5.6)

All these maps are minimizers of the energy in their homotopy class. Namely, one has

deg �m D m; E.�m/ D 4�m:

The general threshold conjecture is that global existence and scattering hold for all zero
homotopy data with energies E.u/ < 8� . The corresponding result for the wave map equa-
tion (1.2) follows from the works of Sterbenz and Tataru [100], where the wave maps from
R2 into general compact target manifold were considered, and it was shown that any smooth
finite energy solution to the wave map equation is either global and scatters in a suitable sense
or concentrates a nontrivial harmonic map at its maximal time of existence; see Lawrie and
Oh [63]. Under symmetry reductions, the results of this type were obtained earlier, see, e.g.,
Struwe [101] and the references therein. To the best of author’s knowledge, for the Schrödinger
map equation (5.1) in full generality, the threshold conjecture is open. In the equivariant set-
ting, global existence and scattering for initial data with E.u0/ < 4� was proved by Bejenaru,
Ionescu, Kenig, and Tataru [4].

Local existence for the Scrödinger map equation (5.1) in the energy space in the
case of nontrivial homotopy equivariant initial data with energies slightly above the energy
of the ground state,

u0 2 †m; E.u0/ � 4�m C "2; 0 < " � 1; (5.7)
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where †m D ¹u.x/ D em�Rv.r/ 2 S2 � R3 W E.u/ < 1; v.0/ D �v.1/ D �kº, was
established by Gustafson, Kang, and Tsai [36]. The conservation of energy, together with
the inequality [35]

dist2
PH 1

.u; �m/ . E.u/ � 4�m; 8 u 2 †m;

where �m D ¹e˛R�m.�x/; ˛ 2 R; � > 0º, ensures that the Schrödinger maps with initial
data (5.7) have the form u.t; x/ D e˛.t/R�m.�.t/x/ C O PH 1."/, which reduces the problem
to understanding the behavior of the functions �.t/ and ˛.t/. It was shown by Gustafson,
Kang, and Tsai [36], as well as Gustafson, Nakanishi, and Tsai [37], that if m � 3, then the
initial data (5.7) lead to global solutions that, for all t , remain PH 1-close to the initial soliton
e˛.0/R�m.�.0/x/ and, furthermore, scatter as t ! 1 to a nearby member of the family �m

(in fact, in [37] this is proved for the general Landau–Lifshitz equation (5.2)). The paper [37]

treats also the case of m D 2 for the harmonic map heat flow under further restriction v2 D 0,
showing that global existence persists in this case while the stability may fail: as t ! C1,
the solutions still converge to the family �2 but the evolution along this family described by
the parameter �.t/ does not necessarily converge or stay close to a particular harmonic map,
more complicated asymptotics of �.t/ occur as well. It is natural to expect similar behavior
for the 2-equivariant Schrödinger maps. The case of m D 1 was studied by Bejenaru and
Tataru in [5] where it was proved that �1 is unstable in PH 1 but stable within its equivariant
class in some smaller space that includes H 1.

The question of existence of finite time blow-up for both the wave and Schrödinger
maps from R2 to S2 has been a long standing problem. The bubbling results mentioned above
show that for the wave maps the only possible scenario for singularity formation is by concen-
tration of a nontrivial harmonic map. The first rigorous confirmations of this scenario were
obtained by Krieger, Schlag, and Tataru [60], Rodnianski–Sterbenz [97], and Raphaël– Rod-
nianski [95]. Krieger, Schlag, and Tataru considered the equivariant wave maps (that is, the
wave maps of the form (5.4) with v.t; r/ D .sin '.t; r/; 0; cos '.t; r//) of corotation index 1

and showed that for any � > 1
2

there exist initial data arbitrary close to �1 in PH 1, leading
to finite time blow-up solutions of the form u.t; x/ � �1.�.t/x/ with �.t/ D .T � t /�1�� .
The specificity of these solutions is that they are of finite Sobolev regularity depending on
the blow-up rate. Namely, one has u 2 PH 1C��. The construction of [60] was extended to the
whole range � > 0 by Gao and Krieger [32] (� � 0 is precluded by the concentration results
of [100,101]). Similar results were obtained for the focusing energy critical wave equation in
dimension 3 by Krieger, Schlag, and Tataru [59,61], see also [22] for the case of more exotic
scales, and Donninger–Krieger [23] for the case of infinite time blow-up. We also refer to
Jendrej [45] for the construction of near ground state blow up solutions for the energy critical
wave equation in dimension 5.

In a contrast to the Krieger–Schlag–Tataru solutions, the blow-up regimes exhibited
in [95, 97] arise from C 1 finite energy initial data and are characterized by some specific
blow-up rates. Namely, the following was proved in [95]: for any m � 1, there exists a set
of C 1 m-equivariant initial data arbitrary close to �m in the energy space such that the
corresponding solution blows up in finite time T and, as t ! T , has the form u.t; x/ �
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�m.�.t/x/ with

�.t/ D

8<: .T � t /�1e
p

j ln.T �t/jCO.1/ if m D 1;

cm.T � t /�1j ln.T � t /j
1

2m�2 .1 C o.1// if m � 2;
as t ! T:

Furthermore, it was shown that these blow-up regimes are stable under smooth equivariant
perturbations of the initial data. Similar results were obtained for the focusing energy critical
nonlinear wave equation in dimension d D 4 by Hillairet and Raphaël [39].

Compared to [95], the construction of [60] gives no information on the stability/insta-
bility of the corresponding solutions. Recently, Krieger and Miao [54] proved that for � small,
these solutions are stable under sufficiently smooth corotational initial perturbations. Further-
more, Krieger, Miao, and Schlag [55] showed that this stability persists under nonequivariant
smooth perturbations that vanish near the light cone. See also Burzio and Krieger [9] for the
related results for the 3D energy critical nonlinear wave equation.

While for m-equivariant Schrödinger maps with m � 3 the possibility of blow-up
near �m is excluded by the stability results of Gustafson, Kang, Nakanishi, and Tsai, for
m D 1 near �1 blow-up does occur. This was proved by Merle, Raphaël, and Rodnianski
[77].

Theorem 5.1 (Merle, Raphael, Rodnianski [77]). There exists a set of C 1 1-equivariant ini-
tial data with elements arbitrary close to �1 in the energy space such that the corresponding
solution to the Schrödinger map equation (5.1) blows up in finite time T and, as t ! T , one
has

u.t/ D e˛.t/R�1

�
�.t/�

�
C u�

C o PH 1.1/;

�.t/ D c
j ln.T � t /j2

T � t

�
1 C o.1/

�
; ˛.t/ D ˛0

�
1 C o.1/

�
;

with some u� 2 PH 1 \ PH 2, ˛0 2 R, and c > 0.

In contrast to the wave map result of [95], the initial data in Theorem 5.1 form a set
of codimension one.

In [91] we complemented the result of [77] by showing that (5.1) admits Krieger–
Schlag–Tataru-type blow-up solutions as well. Namely, we proved:

Theorem 5.2 ([91]). For any � > 1, ˛0 2 R, there exist 1-equivariant initial data arbitrary
close to �1 in PH 1 \ PH 3 such that the corresponding solution to the Schrödinger map equa-
tion (5.1) blows up in finite time T and, as t ! T , one has

u.t/ D e˛.t/R�1

�
�.t/�

�
C u�

C o PH 1\ PH 2.1/; (5.8)

where �.t/ D .T � t /�1=2�� , ˛.t/ D ˛0 ln.T � t /, and u� 2 H 1C2��. Furthermore,
u�.x/ D e�Rv�.r/, v� D .v�

1 ; v�
2 ; v�

3 /, is compactly supported, C 1 away from x D 0 and,
as jxj ! 0, behaves as

v�
1 .r/ C iv�

2 .r/ � c˛;�r2i˛0C2� ln r:
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In fact, the solutions constructed in [91] belong to PH 1C2��. Observe that the regu-
larity of the limiting profile u� in (5.8) is also related to the blow-up rate (as in the case of
the mass critical NLS, see Section 3.2).

As in [60,61], the proof of Theorem 5.2 relies on obtaining an approximate solution to
an arbitrary high order O..T � t /N /, which we construct using matching asymptotic expan-
sions. We also refer to [31] for some closely related constructions in the parabolic setting. To
convert the approximate solution into an exact solution, one then solves the problem for the
small remainder backward in time with zero initial data at t D T . Once one can solve the
equation up to any order, some very rough energy estimates are enough to control the remain-
der, in contrast to the approach of [77] that requires more advanced mixed energy/Morawetz
estimates. Of course, a drawback of this procedure is that it gives no information on the
stability of the constructed solutions.

Although we do not discuss the parabolic problems in this note, let us stress that as
far as slow blow-up is concerned, there are a lot of direct connections between Schrödinger-
type equations and their parabolic counterpart.

5.2. Energy critical NLS
In this subsection, we consider the energy critical focusing nonlinear Schrödinger

equation

iut D ��u � juj
4

d�2 u; x 2 Rd ; d � 3; (5.9)

restricting ourselves to the case of radial solutions

ujtD0 D u0 2 PH 1
rad.Rd /: (5.10)

Recall that this equation admits a family of stationary states W˛;�.x/ D ei˛�
d�2

2 W.�x/,
˛ 2 R, � > 0, with W given by (2.6). We denote by � the two-dimensional manifold of
these solutions, � D ¹W˛;�; ˛ 2 R; � > 0º.

The dynamics for the energies below the ground state energy was classified by Kenig
and Merle [48] for radial data in dimensions 3, 4, 5, and by Killip–Visan [52] (d � 5) and
Dodson [18] (d D 4) for general initial data in dimension d � 4. The results of [48, 52]

ensure that for u0 2 PH 1
rad.Rd / with E.u0/ < E.W / one has global existence and scatter-

ing if kru0kL2 < krW kL2 , and finite time blow-up both forward and backward in time if
kru0kL2 > krW kL2 and u0 2 L2.

A classification of radial solutions with critical energy E.u0/ D E.W / was obtained
by Duyckaerts and Merle [27] in dimensions 3, 4, 5, and by Li and Zhang [65] in dimension
d � 6. In this case, in addition to scattering in both directions if kru0kL2 < krW kL2 and
finite time blow-up in both directions if kru0kL2 > krW kL2 and u0 2 L2, there exist solu-
tions that converge to W in one direction and scatter or blow-up in the opposite direction.
More precisely, there exist unique, up to the symmetries, solutions W �, W C that converge
to W in PH 1 as t ! C1 satisfying kW �kL2 < krW kL2 , kW CkL2 > krW kL2 ; W � is
global and scatters as t ! �1, and W C blows up in finite negative time, at least if d � 5.
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The dynamics of the radial solutions with the energies slightly above E.W / in the
3D case was studied by Nakanishi and Roy [86]. In continuation of the previous results of
Nakanishi and Schlag [87,88] for the energy subcritical Klein–Gordon and Schrödinger equa-
tions and Krieger, Nakanishi, and Schlag [56] for the energy critical wave equation, Nakanishi
and Roy proved that any radial PH 1 solution to (5.9) with E.u/ � E.W / C "2, " � 1, can
stay PH 1-close to the ground state family � only on an interval of time, although it can be
the entire lifespan. Once the solution leaves a neighborhood of � , it either scatters or blows
up (in the latter case, one has to assume in addition that u0 2 L2). Furthermore, all four
combinations of scattering and blow-up forward/ backward in time occur for large sets of
initial data. One might expect a similar result to hold in higher dimensions. The solutions
that stay PH 1-close to � forward (backward) in time are expected to form a codimension one
center-stable (center-unstable) manifold that divides a neighborhood of � into two regions
exhibiting blow-up and scattering, respectively, forward (backward) in time (see Krieger,
Nakanishi, and Schlag [57] for the corresponding result for the energy critical nonlinear
wave equation). In low dimensions, the near ground state solutions can exhibit nontrivial
dynamical behavior, including, along with scattering to the ground states, finite and infinite
time type II blow-up. In dimension 3, the examples of infinite time near ground state blow-up
at prescribed power law rate were constructed in [89]. Combining the linear analysis around
W that we developed in [89] with the construction of approximate solutions of [91], one gets
also H 1

rad.R3/ \ PH 1C��.R3/ finite time blow-up solutions of the form

u.t/ D W˛.t/;�.t/ C u�
C o PH 1.1/; as t ! 0;

�.t/ D t�1=2�� ; ˛.t/ D ˛0 ln t;
u�


PH 1\ PH 1C�� � 1; � > 0; ˛0 2 R:

Similar results can be proved for d D 4. As in the case of Schrödinger maps (5.1), these blow-
up dynamics are closely related to the slow decay of the ground state in low dimensions and
are expected to disappear starting from d D 7 (for d D 5; 6, finite or infinite near ground
state concentration is still expected). Some partial results in this direction were obtained
in [92], where we showed that for any d � 7, radial solutions staying in a neighborhood
of � are global and scatter to a fixed ground state as soon as the linearization around W

satisfies some suitable spectral assumptions that we were able to prove for d sufficiently
large. In the parabolic setting, much more complete results are available. Namely, for the
energy critical nonlinear heat equation in dimension d � 7, Collot, Merle, and Raphaël [15]
obtained a complete classification of the dynamics for initial data PH 1 close to W (without
radial symmetry assumption), showing that both the set of initial data leading to blow-up in
the ODE type I regime and the set of initial data leading to global solutions that dissipate
as t ! C1 are open in PH 1 and are separated by a codimension one set of global solutions
that converge as t ! C1 to a fixed ground state.

5.3. Radial multibubble dynamics
In the breakthrough paper [25], Duyckaerts, Kenig, and Merle obtained a complete

classification of radial, energy bounded solutions of the 3D focusing energy critical nonlinear
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wave equation:

ut t D �u C u5; .t; x/ 2 R � R3;

.u; @t u/jtD0 D .u0; u1/ 2 PH 1
rad.R3/ � L2

rad.R3/;
(5.11)

showing that they asymptotically decompose into a finite sum of scale separated ground
states and a radiation term which solves the linear wave equation. More precisely, one has

Theorem 5.3 (Soliton resolution for (5.11), Duyckaerts, Kenig, Merle [25]). Let .u0; u1/ 2

PH 1
rad � L2

rad and .u; @t u/ 2 C. �T�; TCŒ; PH 1 � L2/ be the corresponding maximal solution
to (5.11). Then one of the following holds:

(i) Type I blow-up: TC < C1 and k.u.t/; @t u.t//k PH 1�L2

t!TC

�! 1.

(ii) Type II blow-up: TC < C1 and there exist .v0; v1/ 2 PH 1 � L2, an integer
J 2 N n ¹0º, and for each 1 � j � J , a sign "j 2 ¹�1;1º and a positive function
�j .t/ defined for t close to TC, verifying

�j

�j C1

.t/
t!TC

�! 1; 81 � j � J; �J C1.t/ D .TC � t /�1;

such that

u.t/ D

JX
j D1

"j �
1=2
j .t/W

�
�j .t/�

�
C v0 C o PH 1.1/; @t u.t/ D v1 C oL2.1/;

as t ! TC:

(iii) Global solution: TC D C1 and there exist a solution vL of the linear wave
equation, an integer J 2 N, and for each 1 � j � J , a sign "j 2 ¹�1; 1º and
a positive function �j .t/ defined for t sufficiently large, verifying

�j

�j C1

.t/
t!C1
�! 1; 81 � j � J; �J C1.t/ D t�1;

such that

u.t/ D

JX
j D1

"j �
1=2
j .t/W

�
�j .t/�

�
C vL.t/ C o PH 1.1/;

@t u.t/ D @t vL.t/ C oL2.1/; as t ! C1:

Later similar results were proved for the radial energy critical NLW equation in all
odd dimensions and in dimension 4, and for critical equivariant wave maps, see Duyckaerts,
Kenig, and Merle [26], Duyckaerts, Kenig, Martel, and Merle [24], Jendrej and Lawrie [47],
as well as the references therein.

In view of the above results, a natural question is to determine which type of con-
figurations of solitons and radiation can really occur. A similar question can be asked the
NLS equation. In dimensions d D 3; 4; 5, for both the radial energy critical wave and radial
energy critical Schrödinger equations, no examples with J � 2 are known. For the energy
critical wave equation in dimension d � 6 and for the energy critical Schrödinger equation
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in dimension d � 7, global (TC D C1) radial pure (vL D 0/ two-bubble solutions, with one
bubble developing at scale 1 and the other concentrating at infinite time, were constructed
by Jendrej [44,46].

5.4. Further generalizations
Blow-up by concentration of stationary states can also occur in the energy super-

critical models. Among the known examples are the focusing energy supercritical NLS and
NLW equations. The focusing energy supercritical NLS,

iut D ��u � juj
2pu; x 2 Rd ; d � 3; p >

2

d � 2
; (5.12)

has a two-parameter family of smooth radial stationary solutions '˛;�.x/ D ei˛�
1
p '.�x/,

˛ 2 R, � > 0, where ' solves

�' C '2pC1
D 0; ' > 0; '.0/ D 1;

and has the following behavior at infinity:

'.x/ �
cp;d

jxj
1
p

; c
2p

p;d
D

.d � 2/p � 1

p2
; as jxj ! 1:

Merle, Raphael, and Rodnianski [78] proved that in dimension d � 11, for generic integers p

satisfying p > p�.d/ D
2

d�4�2
p

d�1
, equation (5.12) admits radial blow-up solutions of the

form
u.t; x/ � �

1
p .t/'

�
�.t/x

�
; �.t/ � .T � t /��.p;d/l ; l 2 N n ¹0º;

arising from C 1 compactly supported initial data. Here �.p; d/ > 0 is an explicit constant.
The H s norms of these solutions remain bounded if 0 � s < sc , while the critical norm
blows up logarithmically, kukH sc �

p
j ln.T � t /j, as t ! T . The corresponding result for

the energy supercritical nonlinear heat equation (in the same range of parameters and with
the same sequence of blow-up rates) goes back to the work of Herrero and Velázquez [38], see
also Mizoguchi [85]. The numerology d � 11, p > p�.d/ is related to the stability properties
of '; for the radial energy supercritical heat equation, it is known (under some mild additional
assumptions) that no type II blow-up occurs outside this range, see Matano– Merle [69] and
the references therein. The analysis of [78] was extended to the energy supercritical wave
equation by Collot [14]. One can also use the approach of [60,91] to construct near ' blow-up
solutions of finite Sobolev regularity with a continuum of power-type blow-up rates for both
energy supercritical NLS and NLW equations.

Another example that we would like to mention is the hyperbolic vanishing mean
curvature flow in the Minkowski space R2n;1 that we considered in [1] in the case of n D 4.
The minimal hypersurfaces in R2n are stationary solutions of the corresponding Cauchy
problem. It is known that R8 is foliated by a scaling-invariant family of smooth birotational
invariant minimal hypersurfaces asymptotic at infinity to the Simons cone:

C4 D
®
.x1; : : : ; x8/ 2 R8; x2

1 C � � � C x2
4 D x2

5 C � � � C x2
8

¯
:
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In [1], we showed that this family of minimal hypersurfaces generates finite time blow-up for
the hyperbolic vanishing mean curvature flow, again with a continuum of prescribed power-
type blow-up rates. In the parabolic setting, that is, for the mean curvature flow, a similar
result (but with a sequence of specific blow-up rates) was proved much earlier by Velázquez
[110].

6. Finite time blow-up for the energy supercritical

defocusing NLS

Consider the energy supercritical defocusing nonlinear Schrödinger equation

iut D ��u C juj
2pu; x 2 Rd ; p >

2

d � 2
; d � 3: (6.1)

The question whether finite time blow-up occurs for (6.1) remained completely open up to
very recently. On the one hand, numerical simulations, global well-posedness results for
the log-supercritical equations (see, e.g., Tao [107]), the nonexistence of soliton-like solu-
tions, and the expected nonexistence of the self-similar blow-up supported the hypothesis
of global well-posedness. On the other hand, in [108] Tao exhibited examples of the energy
supercritical defocusing NLS systems for which finite time blow-up does occur.

A decisive breakthrough has been achieved recently by Merle, Raphaël, Rodnianski,
and Szeftel [79] who showed that in dimension 5 � d � 9 the energy supercritical NLS (6.1),
at least for certain choices of p, admits finite time blow-up solutions arising from C 1 well-
localized initial data. The construction of [79] employs the hydrodynamic formulation of the
NLS equation that relates (6.1) to a compressible Euler equation via the Madelung transform,
u D

p
�ei' . In a companion paper [80], Merle, Raphaël, Rodnianski, and Szeftel proved that

the underlying compressible Euler equation has a family of self-similar blow-up solutions
with C 1 profiles that well approximate the NLS dynamics and thus can be used to construct
finite time blow-up solutions for (6.1). The smoothness of the Eulerian self-similar solutions
plays an important role in the analysis of [79]. In contrast to the focusing energy supercritical
blow-up regime discussed in Section 5.4, where all subcritical H s norms remain bounded,
the solutions constructed in [79] satisfyu.t/


H s

t!T
�! C1; 8s > s�; (6.2)

for some 1 < s� < sc , the growth in (6.2) being polynomial. The recent results of Bulut [8]
indicate (6.2) as a general feature of the energy supercritical defocusing blow-up.
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