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Abstract

We discuss the asymptotic behavior of minimizers for a Donaldson functional of interest
in Teichmüller theory. For example, such minimizers allow one to parametrize the moduli
space of constant mean curvature immersions of a closed surface S of genus g � 2 into a
3-manifold with sectional curvature �1, by elements of the tangent bundle of the Teich-
müller space of S . The minimizers are governed by a system of PDEs which include a
Gauss equation of Liouville type and a holomorphic �-differential.
In our asymptotic analysis, we face the difficulty to describe the possible blow-up behavior
of minimizers, especially when it occurs at a point where different zeroes of the holo-
morphic �-differential coalesce. Therefore, we need to pursue accurate estimates of the
blow-up profile of solutions for Liouville type equations, in the “collapsing” case.
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1. Introduction

In this note we discuss the asymptotics for minimizers of a Donaldson-type func-
tional whose relevance in Teichmüller theory was pointed out in [29] and [33]. Such mini-
mizers are governed by the system of equations (1.3) below, which includes a Liouville-type
equation (as a Gauss consistency condition) and a holomorphic �-differential, � � 2, over a
closed surface of genus g � 2.

Since such a holomorphic �-differential admits 2�.g � 1/ zeroes counted with mul-
tiplicity, to pursue the asymptotics of such minimizers, we must keep handy the detailed
blow-up analysis and profile estimates developed for solutions of Liouville-type equations
involving a weight function with a finite number of zeroes of integral multiplicity (see [3,10,

11,67]).
We recall that Liouville-type equations arise in many contexts of interest in mathe-

matics and physics, and have attracted much attention after their first encounter by Liouville
in his model of Field Theory. Since then, a rich literature is now available revealing the many
facets of Liouville-type equations and the crucial role they played towards a successful devel-
opment of Liouville Field Theory, see [54].

In [47], Liouville furnished a local formula for solutions of Liouville equations in
terms of a meromorphic complex function, the so-called “developing map.” In this way,
Liouville equations were introduced into the realm of Complex Analysis and Algebraic
Geometry. In fact, exploring the solvability of Liouville equations has led to tackle many
fundamental issues about modular functions and forms, normal families, Fuchsian, Lamé,
and Painlevé equations, and about various moduli spaces, see [7, 13–18, 28, 40, 42] and the
references therein.

One may focus also on Liouville equations involving Dirac measures, whose poles
replace the role of the zeroes. Indeed, the poles will correspond to the zeroes of the weight
function which appears in the equation governing the “regular” part of the solution.

In (bidimensional) abelian Gauge Field Theory, at a self-dual regime, we have that
vortex configurations are governed by the Bogomolny equations. They involve a (gauge
invariant) Cauchy–Riemann equation for the (complex valued) Higgs field. Thus, the (gauge
independent) zeroes of the Higgs field are isolated with integral multiplicity and identify
the so-called “vortex-points.” As a consequence, around a vortex-point we can confirm the
“quantization” properties for the electric and magnetic fields, as already observed experi-
mentally (e.g., in superconductivity).

Taubes showed how to express Bogomolny’s self-dual equations in the form of Liou-
ville-type equations with Dirac measures supported exactly at the vortex points, see [34]. By
virtue of Taubes’ approach, it has been possible to obtain a rigorous description of self-
dual vortices for various models proposed in the context of Maxwell–Chern–Simons–Higgs
theory, Electroweak theory, Comics strings, etc. We refer to the monographs [59, 68] for
details.
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We mention that, the analytical construction of physically meaningful vortices has
motivated the accurate blow-up analysis and profile estimates for solutions of (singular) Liou-
ville equations, contained in [8–11,38].

From the geometrical side, such an analysis has helped also tackle the classical
“uniformization” problem of surfaces with conical singularities prescribed along a given
“divisor.” In this direction, the most delicate situation occurs when the prescribed conical
angle is bigger than 2� . For smaller angles, a complete description of conical metrics with
constant Gauss curvature is contained in [48, 62, 63]. On the other hand, for the standard 2-
sphere S2 D C [ ¹1º, it is yet not clear when a spherical metric with prescribed conical
singularities and relative angles (bigger than 2�) exists. Clearly, beside the constraint dic-
tated by the Gauss–Bonnet theorem, there are other less obvious obstructions to prevent the
existence of such (spherical) metrics. For example, in the case of two singularities, only the
“American” football is possible, where both conical angles must coincide.

There is a rich literature concerning spherical metrics on S2 (see, e.g., [12,19,22–27,
49–51, 57, 65, 69, 70] and the references therein), where different points of view have been
adopted and yielded to interesting (partial) results. Only recently Mondello–Panov [52, 53]

have identified (almost) sharp necessary and sufficient conditions on the conical angles so
that a corresponding spherical metric exists. The sharp results in [52,53] are established using
strategies and techniques developed in algebraic geometry. At the moment, such results seem
out of reach by mere analytical techniques. On the other hand, a blow-up approach to solu-
tions of the singular Liouville equation over the flat torus has permitted to reveal surprising
results, where nonexistence or (sharp) existence results may hold, according to the “geom-
etry” of the periodic cell domain. Thus, for example, a flat torus with a square lattice and a
single singularity with conical angle 4� cannot admit a metric with constant Gauss curva-
ture, while this is possible for a rhombus lattice, see [42]. Many other surprising phenomena
have been identified for the moduli space of tori and their metrics with conical singularities
and constant Gauss curvature, see [15] and [42].

For those and other reasons, it has emerged the need to describe what happens when
singularities (i.e., vortex or conical points) coalesce into a single point. Naturally, such an
investigation furnishes a better grasp about the uniformization problem, see [51]. But also it
helps in the understanding of non-abelian self-dual vortices which are described in terms
of systems of Liouville equations (see [4,36,37,43–46]). Indeed, it is difficult to have a firm
grasp about the blow-up of solutions for systems, especially when various components blow-
up at the same point, but with different blow-up rates. In such a situation, “concentration”
phenomena introduce terms in the equations which behave as Dirac measures whose poles,
however, may “collapse” together, see [35,41].

We encounter an analogous “collapsing” issue in the asymptotic description of min-
imizers for the Donaldson functional, considered in [29] and [33]. Such a functional is inspired
by [20,21,56], and relates to the representation of the fundamental group of a closed surface
into various character varieties, or to the parametrization of the moduli space of minimal
or constant mean curvature (CMC) immersions into a 3-manifold with constant sectional
curvature �1, see [29,33].
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To be more precise, for a given oriented closed surface S with genus g � 2, we
denote by Tg.S/ the Teichmüller space of conformal structures on S , modulo biholomor-
phisms in the homotopy class of the identity.

For minimal immersions, Uhlenbeck in [64] proposed a parametrization of the cor-
responding moduli space in terms of elements of the cotangent bundle of Tg.S/, described
by pairs .X;˛/ 2 Tg.S/ � C2.X/, where C2.X/ is the space of holomorphic quadratic differ-
entials on X . In this way, minimal immersions are sought with assigned second fundamental
form II D Re.˛/, simply by solving the Gauss equation of Liouville type for the conformal
factor of the pullback metric on X from the minimal immersion. However, as discussed in
[31,32], such an immersion may not exist, or when it exists, it may not be unique (see also [30]).
So, by this approach, one does not obtain a one-to-one correspondence between a minimal
immersion and the pair .X; ˛/.

On the contrary, as we shall see below, we have a better chance when we choose to
parametrize minimal or (CMC) immersions of S in terms of elements of the tangent bundle
Tg.S/.

To this purpose, for given X 2 Tg.S/, we let T
1;0

X denote the holomorphic tangent
bundle of X and define E D ˝��1T

1;0
X with � � 2. Moreover, letting A0.E/ be the space of

smooth sections of E and A0;1.X; E/ the space of .0; 1/-forms of X valued on E, we con-
sider the .0; 1/-Dolbeault cohomology group H 0;1.X; E/ D A0;1.X; E/=@.A0.E//, where
@ W A0.E/ ! A0;1.X; E/ is the d-bar operator.

Using the Hodge star operator �E W A0;1.X; E/ ! A1;0.X; E�/ and Serre duality
theorem, we know that C�.X/, the space of holomophic �-differential on X , satisfyies:

C�.X/ ' .H 0;1.X; E//�;

see ([66]). Therefore, for � D 2, we can use the pair .X; Œˇ�/ 2 Tg.S/ � H 0;1.X; E/ to
parametrize the tangent bundle of Tg.S/.

At this point, we consider on X the unique hyperbolic metric gX with induced norm
j � j and volume element dA. Also for ˇ 2 A0;1.X; E/ the corresponding norm (in local
coordinates) is given by kˇk D jˇj.z/.gX /

��2
2 .

Moreover, every ˇ 2 A0;1.X; E/ admits the (unique) decomposition ˇ D ˇ0 C @�,
with harmonic ˇ0 2 A0;1.X; E/ and � 2 A0.E/. Therefore the class Œˇ� 2 H 0;1.X; E/ is
uniquely identified by its harmonic representative ˇ0 with respect to the metric gX .

Thus, for any pair .X; Œˇ�/ and t > 0, we define the Donaldson functional:

Dt .u; �/ D

ˆ
X

�
1

4
jruj

2
� u C teu

C 4e.��1/u
kˇ0 C @�k

2

�
dA; (1.1)

with the function u and the section � in the appropriate Sobolev spaces.
As observed in [29], it is possible to construct a (CMC) immersion with constant c,

directly from a critical point of the Donaldson functional Dt with

t D 1 � c2 > 0 and � D 2: (1.2)
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Indeed, in this case, if .u; �/ is a critical point of Dt , then it satisfies´
�u C 2 � 2teu � 8.� � 1/e.��1/ukˇ0 C @�k2 D 0 in X;

@.e.��1/u �E .ˇ0 C @�// D 0:
(1.3)

Therefore, one may check that, if (1.2) holds, then .X; eugX / can be immersed as a (CMC)
surface with constant ˙c into a suitable hyperbolic 3-manifold M 3 ' S � R with second
fundamental form given by II D Re.˛/ and ˛ D 8eu �E .ˇ0 C @�/ 2 C2.X/, see [29,32,33] for
details. Interestingly, as discussed in [33], system (1.3) can be recasted as Hitchin’s selfduality
equations for a suitable nilpotent SL.2; C/-Higgs bundle (of rank 2) and for this reason we
refer to Dt as a Donaldson functional.

As also anticipated in [29], the following holds:

Theorem 1 ([33]). For given c 2 .�1; 1/, there is a one-to-one correspondence between
the space of constant mean curvature c immersions into a 3-manifold of constant sectional
curvature �1 and the tangent bundle of Tg.S/, the latter parametrized by the pairs�

X; Œˇ�
�

2 Tg.S/ � H 0;1.X; E/; E D T
1;0

X :

Theorem 1 is a particular case of a more general result established in [33], showing
that, for all t > 0 and Œˇ� 2 H 0;1.X;E/, the Donaldson functional Dt admits a unique critical
point .ut ; �t /, which is smooth and corresponds to the global minimum of Dt .

Such a uniqueness result yields also several interesting algebraic consequences. For
example (for � D 2 and c D 0), we derive a one-to-one correspondence between minimal
immersions of S into a (germ of) hyperbolic 3-manifold and the irreducible representation
of �1.S/ into the group PSL.2; C/ of the (orientation preserving) isometry group of H3.

On the grounds of Theorem 1, we can adventure to investigate the existence of
(CMC) immersions with constant c reaching the limiting values c D ˙1. Thus, for .uc ; �c/,
the (unique) global minimum of Dt with t D 1 � c2 and � D 2, we can investigate if it
survives the passage to the limit, as jcj ! 1�. But we run immediately into trouble, since
uc could “blow up”, as jcj ! 1�. In fact, by using the blow-up analysis developed for solu-
tions of Liouville equations, we find that actually blow-up can only occur around a finite
number of (blow-up) points. We face a particularly delicate situation, when the blow-up
point occurs at the “collapsing” of different zeroes of the holomorphic quadratic differential
˛c D euc �E .ˇ0 C @�c/ 2 C2.X/. Recall that any holomorphic quadratic differential admits
4.g � 1/ � 4 zeroes in X (counted with multiplicity).

Thus, we devote the following sections to illustrate such a new scenario where, as
pointed out in [35] and [41], we have to handle the new phenomenon of “blow-up without
concentration.” We present the recent results contained in [60,61]. Interestingly, when we deal
with blow-up solutions carrying the least possible ‘blow-up” mass 8� (see (3.19) and (3.20)),
the pointwise estimates we obtain in the collapsing case are in striking analogy with the sharp
“single bubble” estimates obtained in [8] and [38] for the nonvanishing (hence noncollapsing)
case. Observe that no “bubble” is available in the “collapsing” situation.
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By using the full power of the whole system (1.3), beyond the information encom-
passed by the mere Liouville equation, we are able to provide a useful description of (CMC)
immersions with constant c “close” to ˙1 in some interesting cases, see Theorems 8 and 9.

In particular, we show that, for genus g D 2 and Œˇ� ¤ 0, the Donaldson functional
at t D 0 is always bounded from below. This is a nontrivial information, since for Œˇ� D 0

and t D 0, DtD0 is always unbounded.
The seminal contribution contained in this note awaits improvements and some geo-

metrical interpretation. We hope that our discussion will stimulate further investigation and
new ideas in the pursuit of more complete results.

2. Blow-up at collapsing zeroes: local analysis

Let � � R2 be an open, bounded, and regular set, and consider the sequence:

�k 2 C 2.�/ \ C 0.�/;

satisfying the following Liouville-type problem:8̂̂̂̂
<̂
ˆ̂̂:

���k D Wke�k in �; (2.1)

max
@�

�k � min
@�

�k � C; (2.2)
ˆ

�

Wke�k � C; (2.3)

with a weight function Wk � 0.
After the pioneering work of Brezis–Merle [6], a vast literature is now available,

concerning the asymptotic behavior of �k (possibly along a subsequence), as k ! C1,
according to various assumptions on Wk and its vanishing behavior, see [2, 9, 11, 39, 55, 59].
Motivated by our applications, here we shall take Wk to satisfy

Wk � 0 and kWkkL1.�/ C

ˆ
�

1

.Wk/"0
� C; for some "0 > 0: (2.4)

As in [6], we say that �k admits a blow-up point at z0 2 �, if

9zk ! z0 with �k.zk/ ! C1; as k ! 1 (2.5)

(possibly along a subsequence), and the value

�.z0/ D lim
r!0

lim inf
k!C1

ˆ
Br .z0/

Wke�k (2.6)

is called the “blow-up mass” of �k at z0.
The following result was pointed out in [61], as a general version of previous results

contained in [2,6,55,59]. We hope it can be useful in other contexts as well.

Proposition 2.1. Let �k satisfy (2.1)–(2.3) with Wk ! W uniformly in C 0
loc.�/, and assume

that (2.4) holds. Then (along a subsequence) �k satisfies one of the following alternatives,
as k ! C1:
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(i) �k ! �1 uniformly on compact sets of �;

(ii) �k ! �0 in C 0
loc.�/, with �0 satisfying8<:���0 D We�0 in �;´

�
We�0 � C I

(iii) (blow-up) there exists a finite set � of blow-up points of �k in �. Moreover,
either

(“concentration”) Wke�k *
X
q2�

�.q/ıq weakly in the sense of measures,

and in particular �k ! �1; uniformly on compact

sets of � n � I

or
(“no concentration”) �k ! �0 in C 0

loc.� n �/;

Wke�k *
X
q2�

�.q/ıq C We�0

weakly in the sense of measures, and �0 satisfies8<:���0 D We�0 C
P

q2� �.q/ıq in �;´
�

We�0 � C:
(2.7)

Moreover, the blow-up mass satisfies �.q/ � 4� , 8q 2 � .

Clearly, when alternative (iii) holds, in order to better understand the behavior of �k

around a blow-up point q 2 � , it is crucial to identify the specific value of the blow-up mass
�.q/ in (2.6).

In this respect, we recall the result of Li–Shafrir [39] and Bartolucci–Tarantello [2]

in case,
Wk.x/ D jx � pkj

2˛k hk.x/ in Br .q/; (2.8)

for r > 0 sufficiently small, with pk 2 Br .q/ and

hk ! h uniformly with 0 < a � h � b and jrhkj � AI

0 � ˛k ! ˛; pk ! q; as k ! C1:
(2.9)

Theorem 2 ([2,39]). If �k in Proposition 2.1 satisfies alternative (iii) and for some q 2 � the
weight function Wk satisfies (2.8)–(2.9), then (iii)(a) holds, in the sense that blow-up occurs
with a “concentration” property. Furthermore,

(i) if W.q/ > 0 (i.e., ˛k � 0 and (2.9)) then �.q/ D 8� ,

(ii) if ˛ > 0 in (2.9) then �.q/ D 8�.1 C ˛/.

Therefore, we focus on a blow-up point q 2 � with W.q/ D 0 and q being the
accumulation point of different zeroes of Wk (collapsing zeroes). In view of the applications
we have in mind, we assume that the zeroes of Wk have integral multiplicity.
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In [35] this situation was handled in case only two zeroes of Wk coalesce at q, while
the general case was treated in [61], see also [36], [37]. The following “quantization” property
for the “blow-up” mass holds:

Theorem 3 ([35,61]). Suppose that �k in Proposition 2.1 satisfy alternative (iii). Let q 2 �

and assume that, for r > 0 sufficiently small, we have

Wk.x/ D

 
sY

j D1

jx � pj;kj
2 j̨

!
hk.x/; for x 2 Br .q/ and s � 2; (2.10)

and hk satisfies (2.9) in Br .q/, j̨ 2 N and pj;k ! q, as k ! C1, 8j D 1; : : : ; s. Then
�.q/ 2 8�N.

The “local” results above can be used to describe the asymptotic behavior of solu-
tions for Liouville-type equations on a compact Riemann surface .X; g/. Denote by dg.�; �/

the distance in .X; g/. We consider a sequence �k 2 C 2;˛.X/ satisfying

� ��k D Rke�k � fk in X; (2.11)

where

Rk.z/ D

 
NY

j D1

�
dg.z; zj;k/

�2 j̨

!
gk.z/; z 2 X I (2.12)

gk 2 C 1.X/ W a � gk � b; jrgkj � A and gk ! g0 in C 0.X/I (2.13)

zj;k 2 X W zj;k ¤ zl;k ; j ¤ l 2 ¹1; : : : ; N º and zj;k ! zj ; j D 1; : : : ; N I (2.14)

fk 2 C 0;˛.X/; fk ! f0 in Lp.X/; p > 1;

ˆ
X

f0 dA ¤ 0: (2.15)

As before, we assume that
j̨ 2 N; j D 1; : : : ; N: (2.16)

In particular, we have that Rk ! R0 uniformly in X , as k ! C1, with

R0.z/ D

 
NY

j D1

�
dg.z; zj /

�2 j̨

!
g0.z/:

We denote by
Z D

®
z 2 X W R0.z/ D 0

¯
(2.17)

the zero set of R0. Clearly, Z D ¹z1; : : : ; zN º with the point zj given in (2.14) for
j D 1; : : : ;N . We must keep in mind that such points are not necessarily distinct, as different
zeroes of Rk could coalesce to the same zero of R0. Therefore, we let Z0 be the set (possibly
empty) of such “collapsing” zeroes, namely

Z0 D
®
z 2 Z W 9s � 2; 1 � j1 < � � � < js � N such that

z D zj1 D � � � D zjs and z 62 Z n ¹zj1 ; : : : ; zjs º
¯
: (2.18)

By combining the “local” results stated above, we can establish the following:
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Theorem 4 ([61]). Let �k satisfy (2.11) and assume (2.12)–(2.16). Then, along a subse-
quence, one of the following alternatives holds:

(i) (compactness) �k ! �0 in C 2.X/ with

� ��0 D R0e�0 � f0 in X; (2.19)

(ii) (blow-up) there exists a finite blow-up set

� D
®
q 2 X W 9qk ! q and �k.qk/ ! C1; as k ! C1

¯
such that �k is uniformly bounded in C 2

loc.X n �/ and, as k ! C1,

(a) either (blow-up with concentration)

�k ! �1 uniformly on compact sets of X n � I

Rke�k *
X
q2�

�.q/ıq weakly in the sense of measures; �.q/ 2 8�N:

(2.20)

In particular,
´

X
f0 dA 2 8�N in this case.

(b) or (blow-up without concentration)

�k ! �0 in C 2
loc.X n �/I

Rke�k * R0e�0 C

X
q2�

�.q/ıq weakly in the sense of measures;

� ��0 D R0e�0 C

X
q2�

�.q/ıq � f0 in X; �.q/ 2 8�N:

Furthermore, in case alternative (ii)(b) holds, � � Z0 and so any blow-up point
occurs at a collapsing of zeroes of Rk .

See [61] for details. As discussed in [35] and [41], all the alternatives of Theorem 4
can actually occur.

Remark 2.1. If in (ii) we have � n Z0 ¤ ;, then blow-up always occurs with the “concen-
tration” property. So (2.20) holds and, by Theorem 2, for q 2 � n Z0, we have:

(1) �.q/ D 8� , if q 62 Z;

(2) �.q/ D 8�.1 C j̨ /, if q D zj 2 Z n Z0.

As a direct consequence of Theorem 4, we may extend to the “collapsing” case the
“compactness” result, well known to hold in the “non-collapsing” situation:

Corollary 2.1. Under the assumption of Theorem 4, if

lim sup
k!C1

ˆ
X

Rke�k dA < 8�;

then alternative (i) holds.
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Next, we wish to provide more precise information around q 2 � \ Z0, a blow-up
point of “collapsing” zeroes of Rk . To this purpose, we “localize” our analysis by intro-
ducing in X local holomorphic coordinates around q centered at the origin. Thus, with the
obvious manipulations (see, e.g., [1, 2, 38]), and with abuse of notation, for r > 0 small, in
Br D ¹x 2 R2 W jxj < rº we may consider a sequence �k 2 C 2;˛.Br / \ C.Br / satisfying8̂̂̂̂

<̂
ˆ̂̂:

���k D Wke�k in Br ; (2.21)

max
@Br

�k � min
@Br

�k � C;

ˆ
Br

Wke�k � C; (2.22)

max
Br

�k D �k.0/ ! C1; as k ! C1; (2.23)

with

Wk.x/ D

 
sY

j D1

jx � pj;kj
2 j̨

!
hk.x/; where hk satisfies (2.9) in Br I

s � 2; j̨ 2 N; pj;k ¤ pl;k for j ¤ l I

pj;k ! 0; as k ! C1; 8j D 1; : : : ; s:

(2.24)

Let us just recall that the bounded oscillation property stated in (2.22) follows from the global
problem (2.11) by means of the Green representation formula. We have

jrWkj � A and Wk ! W in C 0
loc.Br /; as k ! C1; (2.25)

with

W.x/ D jxj
2˛h.x/ and ˛ D

sX
j D1

j̨ 2 N: (2.26)

Furthermore, by taking r > 0 smaller if necessary, we may assume that zero is the only
blow-up point of �k in Br , that is,

80 < ı < r 9Cı > 0 W max
Br nBı

�k � Cı : (2.27)

Clearly, under the assumptions above, Theorem 3 applies to �k and implies the following for
the “blow-up” mass:

� WD lim
ı!0C

�
lim

k!C1

ˆ
Bı .0/

Wke�k

�
2 8�N: (2.28)

Here, we focus on the case of the least “blow-up” mass, namely when (2.28) holds with

� D 8�: (2.29)

Interestingly, in this case we are able to provide sharp pointwise estimates for �k in Br .
This should be considered a first relevant step. Indeed, the analysis of multiple “blow-up,”
where � D 8�m with m 2 N and m � 2, typically reduces to the case � D 8� after multiple
rescaling, unless one ends up with a blow-up point at a “noncollapsing” zero of W , described
in (ii) of Theorem 2. But in the latter case one can take advantage of the recent estimates in
[3] and [67] to complete the analysis. Also we mention [35], where blow-up was analyzed
when “collapsing” occurs between two zeroes, i.e., when s D 2 in (2.24).
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The following estimates were derived in [61].

Theorem 5 ([61]). Let �k satisfy the assumptions above. If (2.29) holds, then

(i) �k.0/ D �.min@Br
�k C 2

Ps
j D1 2 j̨ log jpj;kj/ C O.1/;

(ii) �k.x/ D log e�k .0/

.1C 1
8 Wk.0/e�k .0/jxj2/2

C O.1/;

(iii)
´

Br
jr�kj2 D �16�.min@Br

�k C
Ps

j D1 2 j̨ log jpj;kj/ C O.1/.

It is interesting to compare the above estimates with those available in [8] and [38]

(see, e.g., Theorem 0.3 in [38]) for solutions of (2.21)–(2.23), when (2.25) holds with
W.0/ > 0 (instead of (2.26) as considered here). In this case, (2.29) is automatically sat-
isfied (see (i) of Theorem 2) and the estimate (ii) of Theorem 5 is the striking exact analogue
of the pointwise estimate provided in Theorem 0.3 of [38]. Furthermore, by considering the
sequence

uk.x/ D �k.x/ C

sX
j D1

2 j̨ log jx � pj;kj;

satisfying � �uk D hkeuk � 4�

sX
j D1

j̨ ıpj ;k in Br ;

we realize that the estimate (i) stated for �k in Theorem 5 reduces just to the following
“sup C inf” estimate of Harnack type [5] for uk :

uk.0/ C min
@Br

uk D O.1/; (2.30)

which was established in this form in [58] when the origin is a “noncollapsing” zero of W .
Therefore, we expect that the estimate (2.30) should remain valid in the “collapsing” case as
well, without the assumption (2.29).

We shall use those estimates to describe the asymptotic behavior of minimizers of
the Donaldson functional, considered in [29,33].

3. Asymptotics for minimizers of the Donaldson

functional

Let S be a smooth, closed, oriented surface of genus g � 2, and denote by Tg.S/ the
Teichmüller space of conformal structures on S , modulo biholomorphisms in the homotopy
class of the identity.

We fix a conformal structure X 2 Tg.S/ and denote by gX the corresponding hyper-
bolic metric on X , which will be used as the background metric, with norm j � j and volume
element dA.

On .X; gX / we consider a Donaldson functional assigned in terms of a pair of (con-
formal) data .X; Œˇ�/ 2 Tg.S/ � H 0;1.X;E/, where E D ˝k�1T

1;0
X with � � 2 and T

1;0
X the

holomorphic tangent bundle of X and H 0;1.X; E/ D A0;1.X; E/=@.A0.E// is the .0; 1/-
Dolbeault cohomology group. We recall that A0;1.X; E/ is the space of .0; 1/-forms in X
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valued in E, A0.E/ is the space of smooth sections of E and @ W A0.E/ ! A0;1.X; E/ is
the d -bar operator. For ˇ 2 A0;1.X; E/, we have the decomposition ˇ D ˇ0 C @�, with ˇ0

a unique harmonic .0; 1/-form valued on E and � 2 A0.E/. So the class Œˇ� 2 H 0;1.X; E/

is uniquely identified by its harmonic representative ˇ0. We also recall that, by means of
the Hodge star operator �E W A0;1.E/ ! A1;0.E�/ and by Serre’s duality theorem (see
[66]), for any class Œˇ� D Œˇ0 C @�� 2 H 0;1.X; E/ with ˇ0 harmonic, we can uniquely iden-
tify �E ˇ0 with a holomorphic �-differential on X . In other words, denoting by C�.X/ the
space of �-holomorphic differentials, we have that C�.X/ ' .H 0;1.X; E//�. Moreover, the
linear complex space C�.X/ is finite dimensional and dimC C�.X/ D .2� � 1/.g � 1/.
Since Tg.S/ is a complex cell of dimension 3.g � 1/, we find that, for � D 2, the pair
.X; Œˇ�/ 2 Tg.S/ � H 0;1.X; E/ can be used to parametrize the tangent bundle of Tg.S/.

In addition, recall that in local holomorphic coordinates ¹zº, any ˛ 2 C�.X/ takes
the expression ˛ D h.dz/k , with h holomorphic. In this way, a zero for ˛ is well understood,
and actually, it is known that ˛ admits 2�.g � 1/ zeroes in X , counted with multiplicity.

At this point, for a given pair .X; Œˇ�/ and t > 0, we define the Donaldson functional

Dt .u; �/ D

ˆ
X

�
jruj2

4
� u C teu

C 4e.��1/u
kˇ0 C @�k

2

�
dA (3.1)

with “natural” (convex) domain

ƒ D

²
.u; �/ 2 H 1.X/ � W 1;2.X; E/ W

ˆ
X

e.��1/u
kˇ0 C @�k

2 dA < C1

³
:

Here, H 1.X/ and W 1;2.X; E/ are the usual Sobolev spaces. Clearly, the functional Dt is
bounded from below in ƒ.

In [33], the authors have shown that, for any Œˇ� 2 H 0;1.X; E/ and t > 0, the func-
tional Dt attains its infimum on ƒ at a smooth pair .ut ; �t / satisfying´

�u C 2 � 2teu � 8.� � 1/e.��1/ukˇ0 C @�k2 D 0 in X;

@
�
e.��1/u �E .ˇ0 C @�/

�
D 0:

(3.2)

More importantly, it is possible to show the unique solvability of (3.2).

Theorem 6 ([33]). For given t > 0 and Œˇ� 2 H 0;1.X;E/, the functional Dt admits a unique
critical point .ut ; �t /, which corresponds to its global minimum in ƒ. Furthermore, .ut ; �t /

is smooth and it is the only solution of (3.2).

Such a uniqueness result implies relevant information about the moduli space of
minimal, constant mean curvature, and Lagrangean immersions into hyperbolic 3-manifolds,
and also about the irreducible representation of the fundamental group �1.S/ in various
character varieties. We refer to [33] and the references therein for more details. Here, we
only mention the following consequence of Theorem 6 about the immersion of constant
mean curvature (CMC) surfaces:

Corollary 3.1 ([29, 33]). For a given c 2 .�1; 1/, there is a one-to-one correspondence
between the space of constant mean curvature c immersions of S into 3-manifolds of con-
stant sectional curvature �1 and the tangent bundle of Tg.S/, the latter parametrized by the
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pair �
X; Œˇ�

�
2 Tg.S/ � H 0;1.X; E/:

Clearly, Corollary 3.1 is a direct consequence of Theorem 6, once we take � D 2

and t D 1 � c2 > 0. We refer the reader to [33] for details.
For X 2 Tg.S/ fixed, by this approach, one may be tempted to look for (CMC)

immersions of X with constant c D ˙1, simply by taking t D 1 � c2 and by following the
solution .ut ; �t / to the limit, as t ! 0C. However, this requires a rather delicate analysis.
Indeed, it is not even clear for which data .X; Œˇ�/, the functional D0 D DtD0, given by

D0.u; �/ D

ˆ
X

�
jruj2

4
� u C 4e.��1/u

kˇ0 C @�k
2

�
dA; (3.3)

is bounded from below in ƒ. Notice, for example, that for t > 0 and Œˇ� D 0 (i.e., ˇ0 D 0),

ut D log
1

t
; �t D 0 and Dt .ut ; �t / D log t ! �1; as t ! 0C:

Obviously, for ˇ0 D 0 and t D 0, the system of equations (3.2) admits no solutions.
On the other hand, for Œˇ� ¤ 0, the following has been established in [60].

Theorem 7 ([60]). Let Œˇ� ¤ 0 and assume that D0 admits a critical point .u0; �0/ (or
equivalently, the system (3.2) for t D 0 is solvable). Then D0 is bounded from below in ƒ

and .u0; �0/ is unique, smooth, and it corresponds to the global minimum of D0 in ƒ.

Therefore, as anticipated, to find out if D0 admits a critical point, we need to analyze
the convergence of .ut ; �t / (the global minimum of Dt ), as t ! 0C. We shall see that the
failure of convergence of .ut ; �t / (along a subsequence) is due to “blow-up” phenomena.

For � D 2, such an asymptotic analysis allows us to obtain information about
(CMC)-immersions, when the constant c approaches the limiting values ˙1. On the other
hand, when � � 2, such an asymptotic analysis permits to follow the behavior of the global
minimizer .u�; ��/ of the Donaldson functional

D.u; �/ D

ˆ
X

�
jruj2

4
� u C eu

C 4e.��1/u
k�ˇ0 C @�k

2

�
dA (3.4)

along the .0; 1/-Dolbeault cohomology classes Œ�ˇ�, as � varies in .0; C1/ and Œˇ� ¤ 0 is
fixed in H 0;1.X; E/. Indeed, via the transformations

t D �� 2
��1 ; ut D u� C

2

� � 1
log �; �t D

1

�
��; and

Dt .ut ; �t / D D.u�; ��/ � 4�.g � 1/ log �
2

��1 ;

(3.5)

we can recast the analysis of .u�; ��/ (the global minimum of D in (3.4)), as � ! C1, to
the analysis of .ut ; �t / (the global minimum of Dt in (3.1)), as t ! 0C.

To start, we notice that, by the strict positivity of the Hessian D00
t at .ut ; �t / (see

[29,33]) and the Implicit Function Theorem, we can show the C 2-dependence of .ut ; �t / with
respect to t 2 .0; C1/. We refer for details to [60], where it is also shown that the expression
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t
´

X
eut dA is increasing, as a function of t 2 .0; C1/. Since, after integration over X of

the first equation in (3.2), we have

t

ˆ
X

eut dA C 4.� � 1/

ˆ
X

e.k�1/ut kˇ0 C @�t k
2 dA D 4�.g � 1/; (3.6)

we may conclude that

�t

�
Œˇ�
�

WD 4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA 2

�
0; 4�.g � 1/

�
(3.7)

is decreasing in .0; C1/. These facts lead us to ask the following question:

Question 1. Can we identify the value

�
�
Œˇ�
�

D �.ˇ0/ D lim
t!0C

4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA (3.8)

in terms of the given cohomology class Œˇ� D Œˇ0 C @�� 2 H 0;1.X; E/?

To emphasize the relevance of the value �.Œˇ�/ in (3.8), we observe that, for
Œˇ� D Œˇ0 C @�� ¤ 0, the interval .0; �.Œˇ�// provides the range of the (decreasing) function

�t

�
Œˇ�
�

D 4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA; as t varies in .0; C1/:

We summarize the following consequences of the above discussion:

Proposition 3.1. Given Œˇ� 2 H 0;1.X; E/, there hold:

(i) �.Œˇ�/ 2 Œ0; 4�.g � 1/� and �.Œˇ�/ D 0 ” Œˇ� D 0;

(ii) If Œˇ� ¤ 0, then for every 0 < � < �.Œˇ�/, there exists a unique � 2 .0; C1/

such that � D 4.� � 1/
´

X
e.��1/u�k�ˇ0 C @��k2 dA, where .u�; ��/ is the

global minimum (and unique critical point) for D in (3.4).

Letting ct D Dt .ut ; �t / D minƒ Dt , we see that it is increasing for t 2 .0; C1/

and therefore,

D0 is bounded from below on ƒ ” inf
t>0

ct D lim
t!0C

ct D c0 > �1 (3.9)

and infƒ D0 D c0. More importantly, it has been proved in [60] that the following holds:

Proposition 3.2 ([60]). If D0 is bounded from below on ƒ then �.Œˇ�/ D 4�.g � 1/.

Now the delicate questions are the following:

Question 2. (i) If �.Œˇ�/ D 4�.g � 1/, is it true that D0 is bounded from below
in ƒ?

(ii) If D0 is bounded from below in ƒ, for which Œˇ� ¤ 0 is the infimum attained?

In order to investigate the questions raised above, we set

ˇt D ˇ0 C @�t 2 A0;1.X; E/ and ˛t D eut �E ˇt : (3.10)
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By virtue of the second equation in (3.2), we know that

˛t 2 C�.X/ D
®
˛ 2 A1;0.X; E�/ W @˛ D 0

¯
; ˛t ¤ 0;

namely ˛t ¤ 0 is a holomorphic �-differential in X , and so it admits 2�.g � 1/ zeroes in X ,
counted with multiplicity. Moreover, since C�.X/ is finite dimensional, all norms of ˛t are
equivalent. Let

st 2 R W e.��1/st D k˛t k
2
L1 and Ǫ t D

˛t

k˛t kL1

D e�
.k�1/st

2 ˛t : (3.11)

Then, as t ! 0C (along a subsequence), we have Ǫ t ! Ǫ0 with

Ǫ0 2 C�.X/ and k Ǫ0kL1 D 1:

So, also Ǫ0 must vanish at 2�.g � 1/ points (counted with multiplicity), which correspond to
the limits of the zeroes of Ǫ t (along a subsequence). Obviously, different zeroes of Ǫ t could
coalesce into the same zero of Ǫ0. It is shown in [60] that, in order to describe the asymptotic
behavior of .ut ; �t / satisfying (3.2), it is possible to use the blow-up analysis discussed in
Section 2 for (a subsequence of)

�t D �ut C st : (3.12)

With this information, it is possible to obtain the following (nontrivial) lower bound:

Proposition 3.3 ([60]). For Œˇ� 2 H 0;1.X; E/ n ¹0º, there holds:

�
�
Œˇ�
�

�
4�

� � 1
with �.Œˇ�/ in (3.8).

For details, we refer the interested reader to [60].
Next, along a suitable sequence tk ! 0C, we are going to analyze more closely the

sequence �k D �tk in (3.12). To reduce technicalities, from now on we focus on the case

� D 2: (3.13)

We let uk D utk , �k D �tk , sk D stk , and ˛k D ˛tk , so that the function

�k D �.uk � sk/ (3.14)

satisfies
� ��k D 8k Ǫkk

2e�k � fk in X; (3.15)

with fk D 2.1 � tkeuk / and Ǫk D e�
sk
2 ˛k satisfying k ǪkkL1 D 1. By the maximum princi-

ple, we also know that kfkkL1.X/ � 2. So, along the given sequence, we can further assume
that

fk ! f0 in Lp.X/; p > 1; and Ǫk ! Ǫ0 2 C2.X/; k Ǫ0kL1 D 1:

So, for N D 4.g � 1/ (recall (3.13)), we let Z D ¹z1; : : : ; zN º be the set of zeroes of Ǫ0,
repeated according to their multiplicity. Clearly, the set Z is formed by the limit points of the
zeroes of Ǫk , which may coalesce into the same zero of Ǫ0. Thus, we let Z0 the set (possibly
empty) of such “collapsing” zeroes of Ǫk , as defined in (2.18).

Theorem 4 applies to �k and (possibly along a subsequence) implies that:

(i) either (compactness) �k ! �0 in C 2.X/, as k ! C1, and D0 is bounded
from below and attains its infimum in ƒ;
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(ii) or (blow-up) �k admits a finite blow-up set

� D ¹q1; : : : ; qn W 1 � n � g � 1º;

and we may have “blow-up with concentration,” or “blow-up without con-
centration,” as described respectively in parts (ii)(a) and (ii)(b) of Theorem 4
(with Rk D 8k Ǫkk2 and R0 D k Ǫ0k2).

At this point, by exploiting the full power of the whole system (3.2), it is possible
to provide a careful description of the minimizer .uk ; �k/ of Dtk in case of blow-up.

We start to discuss the case where we assume that � \ Z D ;, namely no blow-
up point coincides with a zero of Ǫ0. In this situation, by Remark 2.1, we know that only
“blow-up with concentration” occurs [6,38]. Therefore,

8euk k˛kk
2

D 8k Ǫkk
2e�k * 8�

nX
lD1

ıql
; and we obtain �

�
Œˇ�
�

D 4�n:

To proceed further, we follow [60], and for a given set P D ¹x1; : : : ; x�º � X with 1 � � �

.g � 1/, we introduce the following subspace of C2.X/:

Q2ŒP � D Q2

�
¹x1; : : : ; x�º

�
D
®
˛ 2 C2.X/ W ˛ vanishes exactly at the set P

¯
:

By the Riemann–Roch theorem, we have

dimC Q2

�
¹x1; : : : ; x�º

�
D 3.g � 1/ � �:

In [60] it has been shown that the following holds:

Theorem 8 ([60]). Assume that �k blows up (in the sense of (ii) above). If (3.13) holds and

� \ Z D ;; (3.16)

then (along a subsequence), as k ! C1,

˛k ! ˛0 2 C2.X/ with ˛0 ¤ 0 vanishing exactly at Z;

e�uk * 4�
X
q2�

1

k˛0k2.q/
ıq weakly in the sense of measures; (3.17)

ck D Dtk .uk ; �k/ D �4�.g � 1 � n/dk C O.1/; with dk D

 
X

uk dA ! C1;

ˆ
X

ˇ0 ^ ˛ dA D 0; 8˛ 2 Q2Œ� �: (3.18)

Furthermore, �.Œˇ�/ D
´

X
ˇ0 ^ ˛0 dA D 4�n.

Remark 3.1. Since dimC Q2Œ� � D 3.g � 1/ � n, the orthogonality condition (3.18), together
with the estimate (3.17) for the global minimizer of Dtk , seems to indicate that �k should
admit only one blow-up point (n D 1), where the holomorphic quadratic differential �E ˇ0

does not vanish.

When (3.16) holds, the estimate (3.17) allows us to answer Question 2 posed above.
Indeed, if �.Œˇ�/ D 4�.g � 1/ then n D g � 1, and therefore, by using (3.17), we find that
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D0 is bounded from below in ƒ. However, the analysis above seems to suggests that D0 may
not attain its infimum in ƒ.

Next we wish to acquire some useful information about the blow-up behavior of
.uk ; �k/ when we no longer assume (3.16). By taking advantage of the blow-up analysis
developed in Section 2, we focus to the case where blow-up occurs with the “least” blow-up
mass. More precisely, for the blow-up mass

�.q/ D lim
r!0C

�
lim

k!C1

ˆ
Br .q/

euk kˇ0 C @�kk
2dA

�
2 8�N; 8q 2 � ; (3.19)

we assume that
�.q/ D 8�; 8q 2 � : (3.20)

Remark 3.2. When (3.20) holds, it is shown in [60] that every blow-up point q 2 � \ Z

must correspond to a collapsing of zeroes, that is,

� \ Z D � \ Z0: (3.21)

For ql 2 � and r > 0 sufficiently small, let

xk;l 2 Br .ql / W �k.xk;l / D max
Br .ql /

�k ! C1 and xk;l ! ql ; as k ! C1; (3.22)

and set
�k;l D k˛kk

2.xk;l /: (3.23)

In [60], it is shown that the following holds:

Theorem 9 ([60]). Assume (3.20) and suppose that � \ Z ¤ ;. Then (along a subsequence)

sk ! C1; as k ! C1:

Moreover, there exists a set of indices J � ¹1; : : : ; nº such that, as k ! C1,

(i) 8l 2 J we have ql 2 � \ Z D � \ Z0 and �k;l ! �l > 0,

e�uk * 4�
X
l2J

1

�l

ıql
weakly in the sense of measures;

(ii)
´

X
ˇ0 ^ ˛ dA D 0, 8˛ 2 C2.X/ vanishing at �0 D ¹ql 2 � W l 2 J º � Z0.

In particular,
´

X
ˇ0 ^ Ǫ0 dA D 0;

(iii) �k;l ! C1, as k ! C1, 8l 2 ¹1; : : : ; nº n J (if not empty),

ck D Dtk .uk ; �k/ D �4�.g � 1 � n/dk �

X
l2¹1;:::;nºnJ

log.�k;l / C O.1/;

with dk D

 
X

uk dA ! C1: (3.24)

We can reveal a clearer relation between Theorems 8 and 9, when J covers the full
set of possible indices, namely when J D ¹1; : : : ; nº, which is reasonable, as we expect that
n D 1. With the above notations, the following holds:
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Corollary 3.2. Under the assumptions of Theorem 9, if in part 2 we have

J D ¹1; : : : ; nº;

then � � Z0. Moreover, as k ! C1,

(i) e�uk ! 4�
Pn

lD1
1

�l
ıq weakly in the sense of measures;

(ii) ck D �4�.g � 1 � n/dk C O.1/ with dk D
ffl

X
uk dA ! C1,

and

(iii)
´

X
ˇ0 ^ ˛ dA D 0, 8˛ 2 Q2Œ� �.

When g D 2, � contains at most one single point (n D 1), and by virtue of Propo-
sitions 3.1 and 3.3, we know that

�
�
Œˇ�
�

D 4�; for every Œˇ� 2 H 0;1.X; E/ n ¹0º:

Thus, as a consequence of Corollary 2.1 or Theorem 8 and Corollary 3.2, we obtain

Corollary 3.3. For the genus g D 2, the functional D0 in (3.3) is bounded from below,
whenever Œˇ� ¤ 0.

As a final observation, we add that in Theorem 9 it should be possible to remove
the assumption (3.20). However, when (3.20) is no longer valid then also (3.21) cannot be
expected to hold (recall Remark 3.2) and so we could end up with a blow-up point q 2 Z n Z0.
Namely, blow-up can occur at a zero of Ǫ0 which does not coincide with a “collapsing”
of zeroes of Ǫk . As well known, in this case one needs to deal with a “multiple bubble”
situation where, after rescaling, the “bubbles” are symmetrically placed (see [3]). This fact
causes some “cancelation” phenomena that prevents to obtain, as in [60], a nice control on
the sequence sk . It is likely that the new sharper estimates obtained by Wei–Zhang in [67]

may help resolve such difficulties.
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