
Recent progress
in general relativity
Peter Hintz and Gustav Holzegel

Abstract

We review recent progress in general relativity. After a brief introduction to some of the
key analytical and geometric features of the Einstein equations, we focus on two main
developments: the stability of black hole solutions, and the formation, structure, and
dynamical stability of singularities.
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1. Introduction

The objective of this article is to describe recent progress in the mathematical anal-
ysis of the Einstein equations of general relativity. General relativity is the theory of gravita-
tion postulated by Einstein in 1915. It superseded the Newtonian theory and rose to one of the
best experimentally tested physical theories we have. The Einstein equations can accurately
describe violent astrophysical processes happening in our universe (such as the merger of
black holes), they provide a model for the evolution and dynamics of our entire universe in
cosmology, and they are also central for the functioning of the ubiquitously used GPS system
on Earth. Recent experimental breakthroughs such as the detection of gravitational waves, a
prediction of Einstein’s theory, have inspired new developments in mathematics and physics
some of which we shall discuss below.

This article consists of three main parts, which are aimed at readers with potentially
different levels of expertise. The first part (Section 1) contains an introduction to some of
the basic geometric and analytic principles governing the study of general relativity (with
emphasis on the issue of diffeomorphism invariance of the governing equations). It also
includes examples of black hole solutions and a discussion of their geometry. This part is
intended for mathematicians who are perhaps familiar with the theory of partial differential
equations but have otherwise little prior knowledge of general relativity.

The second and main part (Section 2) contains a review of recent mathematical
results that have been obtained in the study of the stability of black holes. This part is aimed
mostly at readers who have had some previous experience with the study of wave equations
on curved backgrounds; familiarity with the Einstein equations will be useful for the results
on nonlinear or linearized gravity. Research during the past 15–20 years pioneered the tech-
niques that led in particular to the powerful nonlinear results which have been obtained in
the past five years and that we shall describe in more detail. We have kept the discussion
rather informal: theorems are often stated rather loosely in order to avoid introducing too
much notation; additional details are provided in the text. We hope that our descriptions of
the main ideas of the proofs can serve as an invitation to delve into the papers in this area in
some more detail.

The third part (Section 3) is concerned with the issue of singularities. We shall
discuss the structure of singularities appearing inside black holes as well as their stability,
which is related to Penrose’s famous Strong Cosmic Censorship conjecture. We also discuss
results concerning naked singularities, which are related to Weak Cosmic Censorship.

Unfortunately, in this overview we cannot do justice to the wide range of devel-
opments in mathematical relativity. The choice of topics is influenced both by our personal
expertise and taste. In particular, we almost exclusively focus on the vacuum equations. There
are many exciting developments that we will not be able to discuss: these include recent
progress on the weak limit of the Einstein equations (e.g., Burnett’s conjecture [32,123], also
[155]) and the structure and dynamics of cosmological singularities (stable big bang forma-
tion [82,83,181]), among others.

3925 Recent progress in general relativity



1.1. The Einstein equations
From a mathematical point of view, the Einstein equations constitute a set of non-

linear partial differential equations formulated in the language of differential geometry with
the dynamical variable being a Lorentzian manifold .M; g/:

Ric.g/ �
1

2
Rg Cƒg D 8�T : (1.1)

Here Ric.g/ andRD trg Ric denote the Ricci tensor and scalar curvature of .M; g/,ƒ is the
cosmological constant, and T is the stress–energy–momentum tensor of the matter present
in the spacetime. Below we shall mostly restrict attention to the vacuum case T D 0 for
which the equations (1.1), unlike their Newtonian analogue, already exhibit extremely rich
dynamics, although comments will be made about the analysis of spacetimes with matter.
Furthermore, we will focus on the physical case dimM D 4.

Applying the trace reversal operatorGg W T 7! T �
1
2
g trg T to equation (1.1) yields

the following equivalent form of the Einstein equations:

Ric.g/ �ƒg D 8�

�
T �

1

2
g trg T

�
.D 0 in vacuum/: (1.2)

1.2. The Cauchy problem and generalised harmonic gauges
While not immediate from the coordinate independent formulation (1.1), from a

PDE point of view (1.1) should be viewed as a hyperbolic system of equations, i.e., as a
system admitting an appropriate initial value problem. The geometric notion of initial data
is as follows:

Definition 1. A triple .†; g; K/ consisting of a smooth Riemannian manifold .†; g/ and
a smooth symmetric 2-tensor K on † is called a (smooth) vacuum initial data set for (1.1)
(i.e., with T D 0) if it satisfies the constraint equations

RC .trK/2 � jKj
2
g D 2ƒ; divK � d trK D 0: (1.3)

Theorem 1 ([39,40,180,187]). Let .†; g;K/ be a smooth vacuum initial data set. Then there
exists a unique smooth maximum Cauchy development, i.e., an .M; g/ with the property that

(1) .M; g/ solves (1.1) with T D 0.

(2) There exists an embedding i W†! M such that i.†/ is a Cauchy hypersurface
in .M; g/ and such that the induced metric and second fundamental form of the
embedding agree with g and K.

(3) If . QM; Qg/ also satisfies (1) and (2), then there exists an isometric embedding
. QM; Qg/ ! .M; g/ commuting with the embeddings of †.

We remark that the constraint equations (1.3) are the Gauss and Gauss–Codazzi
equations induced by (1.1) on † and thus necessary conditions. We also note that for sim-
plicity we have stated the theorem in the smooth category although one typically proves
Sobolev versions of the result. Finally, the manifold M is diffeomorphic to R �† [21].
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Theorem 1 allows one to talk sensibly about the dynamics of solutions to the Einstein
equations. This will allow us to formulate the problem of stability in Section 2.

Proving Theorem 1 requires fixing a gauge. This is a mechanism to eliminate the
diffeomorphism covariance of (1.1), i.e., the fact that for any diffeomorphism � W M ! M,
the pullback ��g is a solution of (1.1) whenever g is. Consider first a local problem in which
† D B.0; 1/ � R3 is the unit ball, and we aim to construct, in a neighborhood of
i.†/ D ¹0º �† � M0 WD R � B.0; 1/, a solution g of (1.1) which induces the data .g;K/
at the hypersurface ¹0º � B.0; 1/. In local coordinates .t; x/ D .z0; z1; z2; z3/ on M0,
equation (1.2) for the metric g D .gij /1�i;j�4 takes the form

Ric.g/ij �ƒgij D �
1

2
gk`@k@`gij C

1

2

�
@iWj .z; g; @g/C @jWi .z; g; @g/

�
CNij .z; g; @g/ D 0 (1.4)

(with summation over repeated indices), where .gij / is the matrix inverse of .gij /, further-
more Nij .z; g; @g/ is a nonlinear expression in the coefficients of g and its first coordinate
derivatives, and finally

Wi .z; g; @g/ D gi`g
jk�`jk ;

with � i
jk

D � i
jk
.g/ denoting the Christoffel symbols of g. Given any gauge source func-

tions Fi D Fi .z; g/, we then aim to solve equation (1.4) in the generalized harmonic gauge
Wi .z; g; @g/ D Fi .z; g/. (The special case Fi D 0 is the wave coordinate gauge.1) Inserting
this gauge condition into (1.4), one obtains a system of quasilinear wave equations for the
metric coefficients gij , with principal part given by �

1
2
�ggij . We can write this system in

the compact form

P.g/ WD Ric.g/ �ƒg � ı�
g.W � F / D 0; (1.5)

whereW D Widzi and F D Fidzi , and ı�
g is the symmetric gradient defined by .ı�

g!/ij D

1
2
.!i Ij C !j Ii / where !i Ij WD .r@j!/.@i /. For future purposes, note that P.g/ D 0 is a

quasilinear wave equation when g is Lorentzian, whetherW � F D 0 or not. Equation (1.5)
is called the gauge-fixed Einstein (vacuum) equation.

One now solves the initial value problem in the gauge W � F D 0 as follows:

(1) One constructs (algebraically, i.e., without having to solve any differential equa-
tion) smooth Cauchy data .g0; g1/, where g� D .g

�
ij .x// is a spacetime sym-

metric 2-tensor (symmetric 4 � 4 matrix) on †, in such a way that g, resp. K
are the induced metric, resp. second fundamental form of ¹0º � † induced by
any spacetime metric g on M0 with .g0; g1/D .gjtD0; @tgjtD0/. Moreover, the
flexibility in the choice of .g0; g1/ is used to ensure that the gauge condition
W � F D 0 is satisfied at t D 0; the verification of this condition indeed only
requires knowledge of the Cauchy data .g0; g1/.

1 The terminology arises from the fact that W i D �gz
i where �g D jgj�1=2@i jgj1=2gij @j

is the scalar wave operator. That is, in the wave coordinate gauge, the coordinate functions
zi satisfy the homogeneous wave equation.
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(2) One solves the initial value problem P.g/ D 0, .g; @tg/jtD0 D .g0; g1/ for g.
Since this is a quasilinear wave equation, one has local existence and uniqueness
of solutions (but solutions may develop singularities in finite time).

(3) The constraint equations (1.3) together with P.g/D 0 andW � F D 0 at i.†/
can be shown to imply, via a direct computation, that also @t .W �F /D 0 at†.

(4) The second Bianchi identity is equivalent to the statement that for any metric g,
one has divg GgRic.g/ D 0. Applying divg Gg to equation (1.5) thus produces
a decoupled equation for W � F ,

divg Ggı�
g.W � F / D 0:

This is a homogeneous wave equation with principal part �
1
2
�g.W � F /.

SinceW � F has trivial Cauchy data at i.†/, we conclude thatW � F � 0 in
the domain of dependence of i.†/ with respect to the metric g.

(5) Plugging W � F D 0 into (1.5) shows that also Ric.g/ �ƒg D 0 in the same
domain.

This argument also shows that solutions of the Einstein vacuum equations obey finite
speed of propagation. Thus, passing from local solutions to the maximal Cauchy develop-
ment can be accomplished by carefully gluing together local solutions.

We point out that different choices of gauge source functions Fi may cause sin-
gularities to form at different subsets of spacetime. For controlling the global evolution of
spacetimes, it is thus of central importance to make a well-informed choice of Fi ; there is no
knownmethod to make an optimal or even a good choice in general. A particularly geometric
choice can bemade whenM D R �† is already equipped with a “backgroundmetric” g0: in
this case one can takeFi D gi`g

jk�`
jk
.g0/, and the gauge conditionW �F D 0 is equivalent

to the requirement that the pointwise identity map .M; g/ ! .M; g0/ be a wave map [93].
An attractive feature of (1.5) is that it highlights the principally scalar (albeit ten-

sorial) character of the gauge-fixed Einstein equation. Thus, many aspects of its analysis are
no more difficult than for the linear scalar wave equation, while one retains the flexibility to
work in particular coordinates, or splittings of the tangent or cotangent bundles, wherever
needed. Further aspects of (variants of) (1.5) and of generalized harmonic gauges will be
discussed in Section 2.4.2.

1.3. Double null gauge and the characteristic initial value problem
A particularly geometrically adapted gauge to write the Einstein equation in is the

double null gauge. The idea is to foliate the spacetime by ingoing and outgoing null hypersur-
faceswhich intersect in (spacelike) 2-manifolds. From a physical perspective, onemay expect
that this will reveal important structure in the equations as gravitational waves propagate
along null hypersurfaces. Indeed, the double null gauge has been successfully employed in
several seemingly unrelated contexts, for instance, the formation of black holes [44], the sta-
bility of black holes (see Section 2.4.1), the theory of impulsive gravitational waves [153,154]
and the construction of naked singularities (see Section 3.2).
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Let W � R2 be a nonempty open subset. A double null gauge on a manifold
M D W � S2 is a coordinate system .u; v; �1; �2/ such that the metric takes the form

g D �4�2du dv C =gAB.d�
A

� bA dv/.d�B � bB dv/; (1.6)

where� is a spacetime function, b W M ! TM an S2u;v-vector and =g the induced metric on
the spheres S2u;v D ¹.u; v/º � S2.2 We remark that any Lorentzian metric can be locally put
into this form by solving the eikonal equation associated with the metric g.

Associated with a double null foliation is a local double null frame given by

e3 D
1

�
@u; e4 D

1

�
.@v C bA@�A/; eA D @�A : (1.7)

The vectors e3 and e4 are null, and the frame satisfies the normalization conditions
g.e3; e4/ D �2, g.e3; eA/ D 0 D g.e4; eA/, and g.eA; eB/ D =gAB .

Given a double null gauge, one can define Ricci coefficients and curvature compo-
nents with respect to the above frame (all these are the coefficients of S2u;v-tensors)

�AB D g.rAe4; eB/; �
AB

D g.rAe3; eB/; � D �
1

2
g.re3eA; e4/;

O! D
1

2
g.re4e3; e4/; O! D

1

2
g.re3e4; e3/; � D �

1

2
g.re4eA; e3/;

˛AB D R.eA; e4; eB ; e4/; ˛AB D R.eA; e3; eB ; e3/; ˇ D
1

2
R.eA; e4; e3; e4/;

� D
1

4
R.e4; e3; e4; e3/; � D

1

4
?R.e3; e4; e4; e3/; ˇ D

1

2
R.eA; e3; e3; e4/;

andwrite out the null-structure equations (which relate the intrinsic and extrinsic geometry of
the spacetime foliation) in terms of S2u;v-tensors; this leads to a system of transport equations
along the null cones, and elliptic equations on the spheres. An example of a transport equation
is (note that ˛; ˛ are =g-traceless as a consequence of the Einstein equations)

=r4 O�C .tr�/ O� � O! O� D �˛; (1.8)

where O� denotes the =g-traceless part of � and =r4 denotes the projected covariant derivative
in the e4 direction. An example of an elliptic equation is

=div O� D �
1

2
O� � .� � �/C

1

4
tr�.� � �/C

1

2
=r tr� � ˇ; (1.9)

where =div denotes the =g-divergence on S2u;v . The analytical content of the Einstein equa-
tions (1.1) is then captured by these structure equations in conjunction with the Bianchi
equations, which capture the essential hyperbolicity of (1.1). An example of two such null-
decomposed equations is

=r3˛ C
1

2
.tr�/˛ C 2 O!˛ D �2 =D

?
2ˇ � 3� O� � 3? O�� C

1

2
.9� � 2�/ Ő ˇ; (1.10)

=r4ˇ C 2.tr�/ˇ � O!ˇ D =div˛ C � � ˛; (1.11)

where =D?
2 denotes the symmetric traceless part of the covariant derivative =r on .S2u;v; =g/,

Ő the symmetric traceless tensor product, and ? is the Hodge-star operator.

2 Tensors S2u;v can be canonically identified with spacetime tensors having the property that
any contraction with the null directions in (1.7) is identically zero.
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Figure 1

The characteristic initial value problem and the double null foliation. Data is specified on the green ingoing and
outgoing cones and the solution exists in the grey shaded region.

As mentioned above, given a solution of the Einstein equations, we can locally put
the metric into a double null gauge. Conversely, one can construct local solutions to the
Einstein equations in a double null gauge by solving a characteristic initial value problem,
where initial data are prescribed on two intersecting null cones (see Figure 1).

Theorem 2 ([130, 149, 178]). Consider suitable smooth vacuum initial data prescribed on
two (what will be) null hypersurfaces intersecting transversally on a spacelike 2-sphere
S0 D N1 \ N2. Then there exists a nonempty maximum development .M; g/ which is
bounded in the past by a neighborhood of S0 in N1 [N2.

The proof of the theorem reduces the problem to the situation of Theorem 1 (the
hypersurface S0 can in fact be any two-dimensional spacelike surface).

As we shall see, the relevance of the double null gauge is most apparent in (semi)-
global problems through the way it allows to estimate the solution. We mention explicitly
already Luk’s result [149] which provides estimates on the size of the corresponding maxi-
mum development in Theorem 2 by means of exploiting the null structure in the equations.

We have not given a precise notion of a vacuum initial data set prescribed on inter-
secting null hypersurfaces in Theorem 2. The definition and the procedure to construct such
data can be found in [44]. Roughly speaking, in canonical coordinates (1.6) and using stere-
ographic coordinates on the sphere, the free data correspond to prescribing, in a smooth
fashion, a symmetric traceless 2 � 2-matrix along each of the initial cones as well as the
mean curvatures and the torsion at the sphere of intersection. All remaining geometric quan-
tities are then determined by solving ordinary differential equations along the initial cones.

1.4. Explicit solutions
1.4.1. Maximally symmetric solutions
The simplest solution to (1.1) for ƒ D 0 is Minkowski space .R4; �/, where

� D �dt2 C
P3
jD1.dxj /2 in standard coordinates .t; x1; x2; x3/ on R4. It is geodesically

complete and maximally symmetric in that the spacetime admits the maximum number of
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Killing vectors, namely 10. These correspond to the infinitesimal generators of the Poincaré
group of special relativity (spacetime translations, spatial rotations, Lorentz boosts). Pass-
ing to polar coordinates .r; �; �/ on R3 and denoting by V=g D d�2 C sin2 � d�2 the standard
metric on S2, we have

� D �dt2 C dr2 C r2 V=g D �dU dV C r2.U; V / V=g; U D t C r; V D t � r;

with r.U; V / D
1
2
.U � V /, and .U; V / 2 .�1;1/ � .�1;1/ is restricted to the subset

where r.U; V / � 0. Since � is spherically symmetric, we can give a simple description of
the causal geometry by depicting the .U;V / plane, compactified atU D 1 and at V D �1.
See Figure 2. The ideal boundary at U D 1, resp. V D �1, is called future, resp. past null
infinity (JC, resp. J�).

Figure 2

Penrose diagram of the Minkowski spacetime.

Certain approaches [116] to the analysis of wave equations on the Minkowski space-
time (or suitable perturbations thereof [18,19]) instead focus first on the fact that � is homo-
geneous of degree �2 with respect to scaling in .t; x/. Thus, one attaches an ideal boundary
at j.t; x/j D 1 by passing to the radial (or projective) compactification R4 of R4, which
is a closed 4-ball. All forward light cones intersect the ideal boundary in the same 2-sphere
(analogously for backward light cones). Resolving these by means of real blow-up produces,
as front faces, future and past null infinity. The resulting manifold with corners can also be
regarded as a blow-up of the Penrose diagram at i0 and i˙, see Figure 3.

Themaximally symmetric analogue ofMinkowski space forƒ>0 is called de Sitter
space. This can be defined as the cylinder

M D

�
�
�

2
;
�

2

�
s

� S3; g D ��2g; �2 D
ƒ

3
cos2 s; g D �ds2 C gS3 : (1.12)

The boundary at s D ˙
�
2
is called the future/past conformal boundary. Since null-geodesics

of conformally related metrics are the same up to reparametrization, the causal structure of
.M; g/ is the same as that of M equipped with the smooth (down to s D ˙

�
2
) metric g. See

Figure 4.
Due to the finite speed of propagation for solutions of wave equations, one can con-

sider wave equations in a static patch of de Sitter space, which is the intersection of the
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Figure 3

Resolution (blow-up) of the radial compactification R4.

Figure 4

(Global) de Sitter space. Also shown is part of the backwards light cone from a point p on the future conformal
boundary IC.

timelike past of a point p D .�
2
; q/ and the timelike future of .��

2
; q/. One can introduce

coordinates in such a domain in which the de Sitter metric is static,

g D �

�
1 �

ƒ

3
r2

�
dt2 C

�
1 �

ƒ

3
r2

��1

dr2 C r2 V=g: (1.13)

The singularity of this expression at the cosmological horizon r�1.
p
3=ƒ/ (which in s > 0

is the backwards light cone with vertex p) is a coordinate singularity.
Finally, the maximally symmetric spacetime with ƒ < 0 is called anti-de Sitter

space (AdS). This is the manifold R4 equipped with the metric (1.13) where now ƒ < 0.
Using the transformation r D tan (with  2 .0; �=2/) the metric (1.13) can be written as
g D

1
cos2 .�dt

2 C d 2 C sin2  V=g/ from which it becomes apparent that AdS is con-
formal to R � S3

h
� R � S3 (S3

h
denoting a hemisphere of S3), equipped with the metric

�dt2 C gS3 , i.e., conformal to one “half” of the Einstein static cylinder. The timelike bound-
ary  D

�
2
in the conformal picture corresponds to the timelike conformal infinity (r D 1)

of anti-de Sitter space. The spacetime is not globally hyperbolic and boundary conditions
will have to be imposed to get a well-posed evolution for hyperbolic equations on or near
these backgrounds. See Figure 5.

1.4.2. The Schwarzschild manifold
A nontrivial solution to the Einstein equations was found by Schwarzschild in 1915.

The Schwarzschild solution describes what we (today) call a black hole solution.We follow a
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Figure 5

The Penrose diagram of anti-de Sitter space with its timelike conformal boundary J.

Figure 6

The causal geometry of the maximally extended Schwarzschild manifold.

somewhat revisionist approach in presenting the metric which however emphasizes directly
its geometric nature and its connection to the double null gauge introduced in Section 1.3.

Given M > 0, equip M D .�1;1/U � .�1;1/V � S2 \ ¹UV < 1º with the
metric

gM D �4�2KdU dV C r2.U; V / V=g; �2K D
8M 3

r
exp

�
�
r

2M

�
;

where r W .�1;1/ � .�1;1/ ! RC is defined implicitly by�
r.U; V /

2M
� 1

�
exp

�
r.U; V /

2M

�
D �UV:

We time-orient .M; gM / by declaring @U C @V to be future directed. The metric is spheri-
cally symmetric, and we can give a simple depiction of the causal geometry by depicting the
.U; V /-plane below. We observe that for the region U < 0, V > 0 we must have r < 2M ;
moreover, any future directed curve causal curve emanating from this region remains in
this region, has finite affine length, and terminates on the asymptotic boundary UV D 1,
where r ! 0 and the Kretschmann scalarR����R���� blows up like r�6. It follows that the
spacetime is geodesically incomplete and C2-inextendible (in fact, C0-inextendible [188]) as
a Lorentzian manifold. One may compactify the U and the V coordinates to produce the
well-known Penrose-diagram of the Schwarzschild metric, see Figures 6 and 7.
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Figure 7

Penrose diagram of the Schwarzschild manifold.

The set r D 1 is now realized as a (null) boundary of the spacetime, and we can
define the black hole region as M n J�.JC/, i.e., as the set of observers that cannot commu-
nicate with asymptotic observers in the far away region of spacetime. The black hole region
is bounded by the set r�1.2M/, which is a union of null hypersurfaces.

We finally note that if we restrict to the black hole exterior regionU > 0, V > 0, then
the sequence of coordinate transformations U D �e� u

2M , V D e
v
2M , u D

t�r?

2
, v D

tCr?

2
,

where dr?
dr

D
1

1� 2M
r

, brings the metric into the standard (static) form where the area radius
r is used as a coordinate:

g D �

�
1 �

2M

r

�
dt2 C

�
1 �

2M

r

��1

dr2 C r2 V=g: (1.14)

This coordinate system breaks down when r equals the Schwarzschild radius r D 2M ; coor-
dinates valid across r D 2M (besides the Kruskal coordinates U; V above) are discussed
in Section 1.4.3. Expression (1.14) shows that the Schwarzschild metric is stationary (@t is
a Killing vector field and timelike for large r , or indeed for all r > 2M ).

An important feature of the Schwarzschild metric and other black hole spacetimes
discussed below is the existence of trapped null-geodesics in the exterior region r > 2M , i.e.,
future and past inextendible null-geodesics which when quotienting out by time translations
(i.e., projecting to the .r; �; �/ variables) remain in a compact subset of ¹r > 2M º. The
trapped set is defined as the subset of phase space T �M consisting of all .z; �/ so that the
null-geodesic with initial position z and initial momentum � 2 T �M, � ¤ 0, is trapped.
Writing

� D � dt C � dr C �; � 2 T �S2;

the trapped set of the Schwarzschild spacetime is the conic set

� D
®
� 2 T �M n o W r D 3M; � D 0; j�j2

V=g
�1 D 27M 2�2

¯
: (1.15)

Its projection to the base manifold M is the hypersurface r D 3M . The trapped set is unsta-
ble, and indeed �-normally hyperbolic for all � [118], as will be discussed in more detail in
Section 2.3.4.

We finally mention the important red-shift effect [171], which is in fact a general
feature of nondegenerate black hole horizons. In the geometric optics approximation, it mani-
fests itself by the frequency of waves (measuredwith respect to an appropriate notion of time)
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being shifted towards longer (i.e., less energetic) frequencies as they propagate near the event
horizon. For hyperbolic equations, the red-shift effect can be captured by a physical space
energy identity with good coercive properties near the horizon [63]. From the viewpoint of
microlocal analysis these are the radial estimates of [201] (see Section 2.3.4).

1.4.3. Further spherically symmetric spacetimes
The Schwarzschild solution generalizes to the Reissner–Nordström–((anti)-de Sitter)

solution of the Einstein–Maxwell equations with cosmological constant (1.1) (we omit the
explicit formulas for the electromagnetic field here). The line element in so-called static
coordinates is

g D �

�
1 �

2M

r
C
Q2

r2
�
ƒ

3
r2

�
dt2 C

�
1 �

2M

r
C
Q2

r2
�
ƒ

3
r2

��1

dr2 C r2 V=g: (1.16)

Near the zeros ofF.r/D 1�
2M
r

C
Q2

r2
�
ƒ
3
r2, one needs to pass to other coordinate systems

to unravel the maximally extended spacetimes shown in the Penrose diagrams below. For
instance, near the event horizon r D rC whereF changes sign from� toC, one can introduce
ingoing Eddington–Finkelstein coordinates, v D t C

R
F �1 dr , in which

g D �F.r/ dv2 C 2 dv dr C r2 V=g:

For ƒ D 0 but nonzero subextremal charge 0 ¤ jQj < M , the Penrose diagram
of the Reissner–Nordström spacetime differs dramatically from that of the Schwarzschild
spacetime in the black hole region: while there still is an event horizon at r D rC WD

M C
p
M 2 �Q2, there is now also a future/past inner horizon (or Cauchy horizon) at

r D r� WD M �
p
M 2 �Q2 across which the metric extends analytically. The Cauchy

horizon is the boundary of the maximal Cauchy development of the initial data at the hyper-
surface † indicated in Figure 8. For ƒ > 0 and Q D 0, the metric (1.16) is a vacuum

Figure 8

A piece of the maximal analytic extension of the Reissner–Nordström spacetime.

solution of (1.1) and called the Schwarzschild–de Sitter (SdS) metric; we consider only the
subextremal case 0 < 9Mƒ2 < 1. Its geometry near the black hole and near the event hori-
zon r D r� (the smaller positive root of 1 �

2M
r

�
ƒ
3
r2 D 0) is then the same as for the
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Schwarzschild metric, but now there is also a second horizon, called cosmological horizon,
at the larger positive root r D rC of 1�

2M
r

�
ƒ
3
r2 D 0; this is analogous to the cosmolog-

ical horizon of the static patch of de Sitter space. The metric extends analytically past this
horizon and asymptotes to the de Sitter metric as r ! 1. See Figure 9.

Figure 9

(Left) Penrose diagram of a neighborhood r� � " < r < rC C " of the domain of outer communications of a
subextremal Schwarzschild–de Sitter (SdS) spacetime near the causal future of a hyperboloidal spacelike slice †.
(Right) An illustration of a SdS black hole with a focus on its asymptotically de Sitter geometry far from the black
hole; HC denotes the cosmological horizon.

The (subextremal) Reissner–Nordström–de Sitter spacetime has an event horizon
and a cosmological horizon just like the Schwarzschild–de Sitter spacetime. Only the struc-
ture of the black hole interior depends on whetherQ D 0 (in which case there is a terminal
singularity as in the Schwarzschild case) orQ ¤ 0 (in which case there is a Cauchy horizon
across which the metric extends analytically).

Forƒ< 0 andQ D 0, the metric (1.16) is a vacuum solution of (1.1) and called the
Schwarzschild–anti-de Sitter metric. Its crucial geometric features are the timelike conformal
boundary at infinity (which is future complete) and the future complete event horizon located
at the unique real zero of F.r/.

All these spherically symmetric black hole spacetimes have trapped sets of the same
form as (1.15), with 3M and 27M 2 replaced by appropriate constants.

1.4.4. The Kerr metric and related metrics
In 1963 Roy Kerr found a generalization of the Schwarzschild family of metrics to a

family of vacuum solutions of (1.1) (with ƒ D 0) which incorporates also angular momen-
tum. For parametersM > 0 and a 2 Œ�M;M�, and setting rC DM C

p
M 2 � a2, the Kerr

family of metrics, in Boyer–Lindquist coordinates t 2 R, r 2 .rC;1/, � 2 .0;�/, � 2 .0;2�/,
takes the form

gM;a D �
�

%2
.dt � a sin2 � d�/2 C %2

�
dr2

�
C d�2

�
C

sin2 �
%2

�
a dt � .r2 C a2/ d�

�2
;

� D r2 � 2Mr C a2; %2 D r2 C a2 cos2 �:
(1.17)

For a D 0, this reduces to (1.14).
For now, we focus on the subextremal range a 2 .�M;M/. For a ¤ 0, the Pen-

rose diagram of suitable two-dimensional timelike slices of the maximal analytic extension
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of the Kerr spacetime has the same form as that of the Reissner–Nordström spacetime,
see Figure 8. In particular, there is an event horizon at r D rC and a Cauchy horizon at
r D r� WD M �

p
M 2 � a2.

Furthermore, there is a trapped set� , which as in the Schwarzschild case is a smooth
(in fact, analytic) conic submanifold� � T �M n o of phase space over the black hole exterior
r > rC; it is an �-normally hyperbolic (for every �) invariant submanifold for the lift of the
null-geodesic flow to T �M, as first noted by Wunsch–Zworski [210] and proved in the full
subextremal range by Dyatlov [76]. The projection of � to the base M is however no longer
a smooth submanifold, but rather a full-dimensional closed set (with compact intersection
with any t -level set) with non-empty interior.

Another novel feature of rotating Kerr metrics is the presence of superradiance.
This means that the energy �gM;a. P; @t / of a future lightlike geodesic  with respect to
the generator @t of time translations may be negative; here @t is the unique (up to scaling)
Killing vector field which for sufficiently large r=M is future timelike. This is the basis of
the Penrose effect for energy extraction from rotating black holes. On the level of analysis,
this problem is overcome by means of so-called red-shift or radial point estimates.

We mention a geometric and an algebraic fact about the Kerr metric. Firstly, there
exists a global double null foliation on the Kerr manifold (constructed in [174]). Secondly,
there exists a (nonintegrable) null-frame, called the algebraically special frame, on the Kerr
manifold with respect to which all but the curvature components � and � (defined as in
Section 1.3 but for the null frame being the algebraically special frame) vanish.

Finally, we note that for extremal Kerr black holes, with jaj DM , the event horizon
at r DM degenerates (the function� in (1.17) has a double zero). Furthermore, the trapped
set now extends down to the horizon and ceases to be normally hyperbolic [76].

The generalization of (1.17) allowing for the presence of a cosmological constant
ƒ and an electric charge Q was found by Carter [36], following the discovery [170] of the
charged analogue in the caseƒD 0. It is called the Kerr–Newman–((anti)-de Sitter) metric,

gM;a;ƒ;Q D �
�

.1C �/%2
.dt � a sin2 � d�/2 C %2

�
dr2

�
C

d�2

�

�
C

� sin2 �
.1C �/2%2

�
a dt � .r2 C a2/ d�

�2
;

� D
ƒ

3
a2; � D 1C � cos2 �; %2 D r2 C a2 cos2 �;

� D .r2 C a2/

�
1 �

ƒ

3
r2

�
� 2Mr C .1C �2/Q2:

(1.18)

(We again omit the explicit expression for the electromagnetic field.) ForQ D 0 and ƒ > 0

(ƒ < 0), this is called the Kerr–(anti-)de Sitter metric. For simplicity, in these notes we
restrict attention to the case of small angular momenta a and small chargesQ; in this case,
the Penrose diagram of suitable two-dimensional slices of a neighborhood of the black hole
exterior region of Kerr–Newman–de Sitter spacetimes is the same as the one of a SdS space-
time, as shown in Figure 9. Again, there is a trapped set with the same (phase space and
physical space) structure as in the subextremal Kerr case.
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1.5. Matter models
In the notation of equation (1.1), we have so far restricted ourselves to the vacuum

case T D 0. However, real world physical systems typically involve matter. We briefly dis-
cuss the most common matter models studied in connection with the Einstein equations. In
each of these cases, the stated expression for T arises by direct calculation from the Euler–
Lagrange equation for a suitable Lagrangian (the Einstein–Hilbert action plus additional
terms describing the matter).

For real-valued scalar fields � with mass m, one takes

T�� D .@��/.@��/Cm2�2 �
1

2
g�� jr�j

2
g : (1.19)

The second Bianchi identity implies that for a solution of (1.1) with this energy–momentum
tensor, � necessarily solves the Klein–Gordon equation (for m D 0 the wave equation)

.�g �m2/� D 0:

For electromagnetic fields F D F��dx� ^ dx� , one takes

T�� D g˛ˇF˛�Fˇ� �
1

4
F ˛ˇF˛ˇg�� : (1.20)

The second Bianchi identity gives as the equations of motion the Maxwell equations

dF D 0; divg F D 0:

On spacetimes with nonzero electromagnetic fields F D dA, one can also consider charged
scalar fields; they are sections of a complex line bundle satisfying a wave equation defined
with respect to the connection d � iA.

Finally, uncharged collisionless (“Vlasov”) matter with mass m � 0 is described
by a density distribution f W TM ! Œ0;1/ with support in the set of future causal v with
g.v; v/ D �m2; the energy–momentum tensor at the point p 2 M is

T��.p/ D

Z
TpM

f .p; v/v�v� ; v� D g��v
� : (1.21)

The equation of motion for the density f is the transport equation Xf D 0, where X is the
geodesic vector field on TM.

2. The stability of black hole solutions

Before we turn to the discussion of the stability of the black hole solutions (de-
scribed in Section 1.4) in Section 2.2, we record what is known about the stability of the
maximally symmetric solutions.

2.1. Prelude: stability of maximally symmetric solutions
The sign of the cosmological constant has a dramatic effect on the global structure

of the maximally symmetric solutions, and thus we discuss the three cases separately.
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2.1.1. ƒ D 0

For ƒ D 0, we have the following seminal result:

Theorem 3 ([45]). Minkowski spacetime .R4; �/ is nonlinearly asymptotically stable.

We note earlier work of Friedrich [87] proving a version of the above theorem for
initial data which are exactly Schwarzschildean outside a compact set (such data were later
constructed in [47,48]) or prescribed on a hyperboloidal slice ending at null infinity.

While the original proof of Theorem 3 is closer in spirit to the analysis of the equa-
tions in double null form (in particular, [45] estimates curvature and Ricci coefficients instead
of metric components), a simplified proof of the theorem (with weaker conclusions regarding
the asymptotics) was later given in harmonic gauge by Lindblad–Rodnianski [146].

Studying the stability of flat space is still an active area of research with many new
developments regarding regularity [23], optimal asymptotic decay rates [116, 145], and cou-
pling to various matter models. A particularly interesting direction is to consider flat space as
a solution to the (massive or massless) Einstein–Vlasov system. Unlike for the scalar field or
electromagnetic radiation, the matter does not satisfy wave-type equations but instead trans-
port equations (see Section 1.5). This requires a several new ideas including the construction
of various lifts of geometrically adapted vector fields to the mass-shell to identify a suitable
version of the null condition in the nonlinearities. In summary we have:

Theorem 4 ([24, 79, 147, 199]). Minkowski spacetime .R4; �/ is nonlinearly asymptotically
stable as a solution of the coupled Einstein–Vlasov system.

2.1.2. ƒ > 0

The first general nonlinear stability result for the Einstein vacuum equations was
obtained for perturbations of de Sitter space .��

2
; �
2
/s � S3 by Friedrich [87]: the metric

evolving from small and sufficiently regular perturbations of de Sitter initial data at
† D ¹s D 0º can be written as ��2g where � is positive near † and vanishes simply
at what becomes the future and past conformal boundary, cf. (1.12). (Thus, the spacetime is
not asymptotic to de Sitter spacetime as � & 0.) Moreover, such asymptotically de Sitter
spacetimes can be characterized via suitable asymptotic initial data (two scalar functions
and a symmetric 2-tensor K on a Riemannian 3-manifold .S3; h/) at the future conformal
boundary which satisfy linear constraint equations (K must be trace- and divergence-free).
See Section 4.1 for a recent result making use of this fact on a conceptual level. Extensions of
[87] to general dimensions were proved in [4,179]. A different perspective on the stability of
small neighborhoods of the static patch of de Sitter space (in generalized harmonic gauges)
was given in [115], see also Section 2.5.2 below.

2.1.3. ƒ < 0

The least understood case is ƒ < 0. Here the Einstein equations become a nonlin-
ear initial boundary value problem for which well-posedness was established in [88]. The
question of global stability or instability depends on the boundary conditions imposed at the
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conformal boundary. The most interesting case are reflective boundary conditions as they
preclude any mechanism for energy to be radiated away. (In the case of dissipative boundary
conditions, [119] established strong decay for the linearized problem.) The fact that linear
fields do not decay lead [55] to conjecture the nonlinear instability of AdS. The problem was
first investigated heuristically and numerically for the spherically symmetric scalar field in
the influential [25]which proposed a mechanism of energy transfer from low to high frequen-
cies based on resonant interactions. After a large body of works in the theoretical physics
literature (see [17, 53, 69] and also the discussion and references in [169]) trying to extend
the range of validity of non-linear perturbation theory, Moschidis succeeded in proving the
following result:

Theorem 5 ([169]). Anti-de Sitter spacetime is dynamically unstable as a solution to the
spherically symmetric Einstein–Vlasov system.

The proof proceeds by constructing a one-parameter family of initial data D", con-
sisting of a collection of carefully arranged (both in physical and inmomentum space) Vlasov
beams, which converges in a suitable topology to the trivial (anti-de Sitter) data as " ! 0

and is such that for all " > 0 the maximum development contains a black hole region. Hence,
remarkably, (the proof of) Theorem 5 controls the dynamics all the way to the formation of
a black hole!

The proof discovers and exploits a nonlinear growth mechanism in physical space
(which has no linear analogue and is quite different from the heuristic mechanisms based on
resonances for nonlinear perturbations) which relies on the observation that the beams trans-
fer energy to one another when they pass through each other and that this transfer depends on
where in spacetime the interaction happens. This observation is at the root of constructing
the initial configuration of the beams.

The next natural step is to generalize Theorem 5 to the spherically symmetric Ein-
stein scalar field system. A proof of singularity formation for the Einstein vacuum equation
without symmetry assumptions may then be well within reach; this would complete the pic-
ture of the vacuum (in)stability of the maximally symmetric solutions.

We finally remark that it is not clear whether instability holds for all (small) data.
The existence of geons and “islands of stability” has been widely discussed in the physics
literature [94, 122, 184]. For the problem of constructing small data time-periodic solutions
in this setting mathematically rigorous progress has recently been made (for semilinear toy
problems) in [1].

2.2. The formulation of the stability problem and overview of the results
To formulate the exterior stability problem for black holes it will be useful to dis-

tinguish informally the following concepts:3

3 These concepts can be modified in a straightforward manner so that they apply for ƒ > 0 or
ƒ < 0 as well.
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Figure 10

Penrose diagram of a (dynamical) black hole spacetime.

(1) Nonlinear stability: Given suitable (i.e., characteristic or spacelike and of suf-
ficient regularity) initial data near those of a member of the Kerr family, the
associated maximum development .M; g/ has the following properties:

(i) It contains a subset of the form given in Figure 10. In particular, future
null-infinity JC is complete and J�.JC/ is bounded to the future by a
regular future complete event horizon H C.

(ii) Orbital stability (g remains close to gM;a on M0).

(iii) Asymptotic stability (g ! g QM;Qa with jM � QM j < ", ja � Qaj < " as an
appropriate notion of time goes to infinity).

(2) Linear stability:Linearize equations (1.1) in themetricg around a fixedmember
of the Kerr family; this produces the equations of linearized gravity. Given
suitable initial data for this linearized system, prove that, in a suitable gauge,
solutions remain bounded (orbital stability) and indeed decay in time to a lin-
earized (in the parameters .M; a/) Kerr metric (asymptotic stability) on the
black hole exterior.

(3) Toy stability: Given suitable initial data for the toy problem �gM;a D 0, prove
that solutions remain bounded (orbital stability) and decay in time (asymptotic
stability) on the black hole exterior.

While the seminal works in the physics literature, starting with [177], concern aspects
of the linear stability problem, the first rigorous theorems are due to Wald and Kay [133,207]

on toy stability. The results on toy stability have reached a rather complete state in the past
decade; this is the content of Section 2.3. With the conceptual and technical insights thus
gained, linear and nonlinear black hole stability problems have become accessible, at least
in the caseƒ � 0, in the past five years. We discuss the current state of knowledge regarding
linear stability in Section 2.4, and regarding nonlinear stability in Section 2.5.

2.3. Toy stability
The following theorem summarizes the picture that has been obtained for the anal-

ysis of the toy problem in the various black hole geometries.
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Theorem 6. Consider a solution to the scalar wave equation

�gM;a;ƒ D 0 (2.1)

on the black hole exterior of a Kerr–((A)dS) spacetime arising from suitable initial data
(and, in the Kerr–AdS case, with Dirichlet boundary conditions at the conformal boundary).
Then

(1) If ƒ > 0 and jaj � M then  decays exponentially in time to a constant [73].

(2) If ƒ D 0 and jaj < M then  decays inverse polynomially in time [66]. (See
Theorem 7 below for the extremal case jaj D M .)

(3) If ƒ < 0 and the parameters .M; a;ƒ/ satisfy the Hawking–Reall bound then
 decays logarithmically in time [120].

There are three main geometric phenomena associated with black holes that are
directly relevant for understanding the global behavior of hyperbolic equations on black hole
backgrounds and which play a crucial role in the proof of Theorem 6. These are (see the
discussion in Section 1.4.4):

(1) the red-shift effect;

(2) the presence of trapped null geodesics;

(3) superradiance.

While the above phenomena are present for all black hole geometries discussed in
Section 1.4.4, their strength, coupling, and the large scale geometry of the underlying space-
time lead to the quite different dynamical behaviors exhibited by Theorem 6. We provide a
short discussion of these phenomena and how they enter the proof of Theorem 6.

2.3.1. ƒ D 0. The classical vector field approach
In the simplest case ƒ D 0, a D 0, the phenomenon of superradiance is absent

and the problem can be entirely understood in physical space. As mentioned at the end of
Section 1.4.2, the trapped geodesics are all concentrated at r D 3M , and one may prove
(using appropriate multipliers) the following two estimates [26,27,63]:

EŒ �.�/ � EŒ �.0/ for all � � 0 (boundedness); (2.2)

IdegŒ �.�1; �2/ � EŒ �.0/ for all �2 � �1 � 0 (local integrated energy decay); (2.3)

where

EŒ �.�/ D

Z
†t?

.@t? /
2

C

�
1 �

2M

r

�
.@r /

2
C j=r j

2

IdegŒ �.�1; �2/ D

Z �2

�1

d�

Z
†�

1

r3

�
.R? /2 C

�
1 �

3M

r

�2
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�
.@t? /

2
C

�
1 �

2M

r
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.@r /

2
C j=r j

2
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:
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These energies are defined in .t?; r; �; �/ coordinates in which the Schwarzschild metric
takes the regular form g D �.1 �

2M
r
/.dt?/2 C

4M
r
dt?dr C .1 C

2M
r
/dr2 C r2 V=g.

Furthermore, †� denotes a slice (which intersects the horizon) of constant � , and
R? D

2M
r
@t C .1 �

2M
r
/@r .

The degeneration at r D 3M in the estimate (2.3) is necessary (although it can be
weakened to logarithmic degeneration using microlocal techniques) and a manifestation of
the trapped null geodesics. The red-shift effect allows one to eliminate the degeneration at
r D 2M for the transversal (@r in these coordinates) derivatives in (2.2) and (2.3) and can
be realized as a physical space multiplier. From the resulting nondegenerate version of the
estimates (2.2) and (2.3) one can prove, using a very general physical space method that
merely uses the asymptotically flatness of the spacetimes (introduced in [65], see also [168])
inverse polynomial decay rates for the solutions which are in particular sufficiently strong
for nonlinear applications.

Forƒ D 0, jaj � M , superradiance is present and the Killing field @t will not pro-
duce a coercive energy on spacelike slices. The naive estimate (2.2) fails as energy associated
with the vector field @t on a later slice can be larger than that of the initial slice. Moreover,
trapped null geodesics now exist on a set of full measure (near r D 3M ) in spacetime. The
estimate (2.3) fails and it is not clear how to prove the required analogue. One approach—
which was also the one that was later generalized to the full subextremal case—was to use
the separability of equation (2.1) on Kerr and to exploit the fact that when one looks at pieces
of the solution supported on certain (angular and time) frequencies, then good uniform esti-
mates can be proven from the ordinary differential equations governing the behavior of the
frequency localized components. It is a tour de force to construct these frequency localized
multipliers which typically exploit a smallness parameter arising from the definition of the
frequency regimes. A key insight is that superradiance can be controlled by the red-shift
effect. Summing the estimates and the fact that the solution is a priori notL2 in time provide
further technical challenges. See [64]. Decay in the case jaj � M was also proved in [198]

by means of pseudodifferential multipliers near the trapped set and in [6] by exploiting the
second order Carter symmetry operator (related to a hidden symmetry of the spacetime not
related to Killing vector fields).

Two additional insights lead to a treatment of the full subextremal case ƒ D 0,
jaj < M in [66]. The first was that, in the frequency decomposition of the solution outlined
above, frequency triples that are affected by superradiance are nontrapped. Thus these two
obstacles for decay happen to be disjoint when viewed in frequency space (this breaks down
precisely in the extremal case jaj D M ). The second was a quantitative version of mode
stability for the wave equation established in [193] which allowed one to treat the range of
bounded frequencies (where roughly speaking no smallness factor is available). This also
allowed one to estimate precisely the amount of amplification of the solution through the
mechanism of superradiance, see also [67].
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2.3.2. ƒ D 0: the extremal case
We have

Theorem 7 ([15]). Consider a solution to the scalar wave equation

�gM;aDM
 D 0 (2.4)

on the black hole exterior of an extremal Kerr spacetime. Then axisymmetric decay inverse
polynomially in time. However, along the event horizon H C higher transversal derivatives
of  generically grow in time (Aretakis instability).

Theorem 7 was first proved for the spherically symmetric extremal Reissner–Nord-
ström metric in [13, 14] (without the restriction on axisymmetric solutions). The main dif-
ficulty is that the aforementioned red-shift effect degenerates and one cannot remove the
degeneration at the horizon in the estimates. In fact, there are conservation laws on the event
horizon H C (discovered by Aretakis) which constitute direct obstructions to decay.

In the case of extremal Kerr, the problems of degenerate red-shift, trapping and
superradiance are now fully coupled and cannot be studied separately even at the frequency
decomposed level. This is the reason why the global behavior of solutions is only understood
for axisymmetric solutions (which are not subject to superradiance). The general case is
an open problem that has received a lot of attention from both theoretical physics (see, for
instance, [37]) and mathematics recently and is expected to exhibit additional instabilities.
See also [1, Gajic] for recent work in this direction.

2.3.3. ƒ D 0: sharp asymptotics
It is a natural question to ask about the precise decay rates in Theorem 6(2). This

problem has a long tradition in the physics literature going back to work of Price [175, 176],
with refinements given in [99].While this question is interesting in its own right, lower bounds
on the decay rate directly inform the behavior of solutions in the black hole interior (see Sec-
tion 3.1 below). The following result is the current state-of-the-art.

Theorem 8 ([11,106]). Consider a solution to the scalar wave equation

�gM;a D 0 (2.5)

on the black hole exterior of a subextremal (jaj < M ) Kerr spacetime. Then the following
uniform pointwise estimates hold for some � 2 .0; 1/:ˇ̌̌̌

 �
Q0.� C r/

�2.� C 2r/2

ˇ̌̌̌
�

E0

.� C 2r/�2C�
; (2.6)ˇ̌̌̌

r�` `D1 �
Q`.r; �; �/.� C r/

�3.� C 2r/3

ˇ̌̌̌
�

E0

.� C 2r/2�3C�
; (2.7)ˇ̌̌̌

r�` �` �
Q`.r; �; �/.� C r/

�2C`.� C 2r/2C`

ˇ̌̌̌
�

E0

.� C 2r/1C`�2C`C�
when a D 0: (2.8)

Here � is a coordinate corresponding to a hyperboloidal slicing of the exterior with the
slices ending at the horizon and future null infinity, and Q` is a bounded function in r
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tending as r ! 1 to an explicitly computable initial data quantity related to the Newman–
Penrose charges. Finally,  �` denotes the projection of  to the standard spherical har-
monics defined with respect to Boyer–Lindquist .�; �/ coordinates and E0 is a constant
determined from a weighted initial data Sobolev norm.

The asymptotics (2.8) were first proved for ` D 0, on a class of asymptotically
flat spherically symmetric spacetimes including Schwarzschild and Reissner–Nordström,
by Angelopoulos–Aretakis–Gajic [8]. Their subsequent work [9] extracts also a logarith-
mic subleading term in the large � expansion of the radiation field (defined as the limit
limr!1 r .�; r; �; �/) for spherically symmetric waves. On a class of asymptotically flat
spacetimes which include subextremal Kerr spacetimes, Hintz [106] gave the first proof
of (2.6). The proof is based on a careful spectral analysis near zero energy, see Section 2.3.4,
with direct antecedents in the work of Donninger–Schlag–Soffer [71] and Tataru [197] which
proved upper bounds of j j consistent with (but for `� 1weaker than) the asymptotics stated
above. The paper [106] also proves the estimate (2.8) in spatially compact sets and identifies
r`Q`.r; �; �/ as a generalized zero mode of the wave equation, namely the unique station-
ary solution of �gƒD0;M;aD0.r

`Q`/ D 0 with the property that r`Q`.r; �; �/ D q`.r/Y ,
q` D r` C O.r`�1C"/ as r ! 1, where Y is a suitable degree ` spherical harmonic (depend-
ing on the initial data).

Angelopoulos–Aretakis–Gajic [11, 12] gave a physical space proof of Theorem 8.
This interpolates a refinement (introducing carefully constructed higher order commutators
adapted to the angular modes) of the rp-method [65], which gets one close to the optimal
rates, with a clever way to exploit the conservation of the Newman–Penrose charges along
null infinity. In fact, the Newman–Penrose charges in Theorem 8 are not the ones associated
with  itself but that of a “time-inverted”  and generically nonvanishing, even for data of
compact support. Estimates analogous to (2.7) have been derived for higher modes but take
a more complicated form, which we do not present here. We merely remark that obtaining
the rates for higher modes in the case a ¤ 0 is very delicate due to the coupling of angular
modes (Kerr being only axisymmetric).

In the extremal spherically symmetric case (Section 2.3.2), the asymptotics are quite
different [10]. In fact, the extremality of the horizon can be seen in the expansion on null
infinity giving rise to speculations about the experimental detection of extremal black holes
in the universe [7].

2.3.4. ƒ D 0: spectral theoretic approach
Another approach to the proof of Theorem 6(2) is based entirely on spectral theory

and phase space analysis. The starting point is a foliation of the spacetime by level sets of a
time function t� which are transversal to the future event horizon and asymptote to t -level
sets as r ! 1. (In practice, it is more convenient to work instead with t� whose level sets
are transversal to future null infinity.) Since j j < CeCt� for some C > 0, one can write  
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as the inverse Fourier transform4

 .t�/ D

Z
=�DCC1

e�i�t� b�.�/�1 Of .�/ d�; � D �gM;a ; (2.9)

where Of .�/ is an explicit expression involving the Cauchy data of , and the spectral familyb�.�/ is obtained from � by replacing @t� by �i� . The inverse b�.�/�1 in (2.9) is the out-
going resolvent, with range comprised of functions which decay as r ! 1. The strategy is
now to shift the contour of integration down to the real axis =� D 0. Executing this relies
on several ingredients.

The first ingredient is the analyticity of the resolvent b�.�/�1 in =� > 0 as well as
the existence the limiting resolvent as =� & 0. This is established in two steps. The first step
is that for =� � 0, one can realize b�.�/ as a Fredholm operator between suitable function
spaces (based on weightedL2-Sobolev spaces), with locally uniform estimates; we only dis-
cuss this in the case � 2 R. The operator b�.�/ satisfies elliptic estimates except in the region
where @t� D @t is not timelike, which happens precisely in the ergoregion and the black hole
interior. But microlocally, i.e., in phase space, the flow of the Hamiltonian vector field asso-
ciated to the principal symbol of b�.�/—which here means the null-geodesic flow lifted to
phase space restricted to the annihilator of @t� , and projecting out the t�-coordinate—has
useful structure: there is a source atN �¹r D rCº n o (the conormal bundle of the event hori-
zon); this is related to the classical red-shift effect. There, one gets free microlocal estimates
for u solving b�.�/u D f (2.10)

in terms of f , called radial point estimates [201, §2.4]. These take the form

kAukH s � C
�Gb�.�/u

H s�1 C k�ukH�N

�
whereA;G 2‰0 are pseudodifferential operators localizing to suitable conic neighborhoods
of N �¹r D rCº, and � localizes near r D rC in the base M. The classical Duistermaat–
Hörmander theorem on the propagation of regularity [72] allows one to propagate this control
on u along the null-geodesic flow, which in the case a ¤ 0 enters the black hole exterior, but
which in any case ultimately enters the black hole interior.

Another source of nonellipticity of b�.�/ for real � ¤ 0 is due to the presence of an
asymptotically flat end of the spatial slice t�1� .0/, and concerns the lack of arbitrary decay
rather than regularity; indeed one has to allow for u in (2.10) to have outgoing asymptotics
u � r�1ei�r . This can be captured microlocally in Melrose’s scattering calculus [162] and
indeed historically was the first instance of a microlocal radial point estimate.

Altogether, one obtains locally uniform estimates in the punctured upper half-plane

kukH s;` � C
�b�.�/u

H s�1;`C1 C kukH�N;�N

�
; =� � 0; � ¤ 0; (2.11)

4 The choice of sign of � in this formula (and thus also in the corresponding formula for the
Fourier transform) is conventional.
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where H s;` D r�`H s is a weighted Sobolev space. Analogous estimates on dual function
spaces for the adjoint b�.�/� give the claimed Fredholm property of b�.�/. The invertibility
of b�.�/, together with sharp mapping properties of the inverse, follows from the triviality
of the kernel. This is the place, finally, where the mode stability results [193, 209] enter the
analysis. Direct differentiation in � then gives high regularity of b�.�/�1 in � ¤ 0.

Uniform analysis near � D 0 is delicate due to the degeneration of b�.�/ at spatial
infinity when � & 0. Sharp Fredholm estimates were obtained by Vasy [202, 204] using a
second microlocal combination of the scattering calculus (for � ¤ 0) and the b-calculus (for
� D 0) [161], following direct resolvent estimates [29] and (in a restricted geometric setting)
direct constructions of the resolvent kernel [95–97,101]. While bounds and mild (conormal)
regularity of the resolvent near zero energy are sufficient to obtain some decay, Hintz [106]

developed a method to obtain the first few terms of a polyhomogeneous (generalised Taylor)
expansion of b�.�/�1 Of .�/ at � D 0. This uses resolvent identities and, in turns, the inver-
sion of b�.0/ and a rescaled model problem5 capturing the transition from zero to non-zero
spectral parameters. The expansion, upon restriction to bounded spatial subsets, takes the
schematic formb�.�/�1 Of .�/ D [holomorphic] C �2 log.� C i0/c C [more regular error terms] (2.12)

for some constant c 2 C. Upon taking the inverse Fourier transform, the strongest singular
term will give rise to the leading order long time asymptotics as t� ! 1, given by 2ct�3� ;
the regularity of the error terms determines the decay rate of the remainder.

The second ingredient required to execute the contour shifting in the integral (2.9)
concerns high energy estimates, i.e., quantitative bounds on b�.�/�1 as <� ! 1 (locally
uniformly in =� � 0). It is in this high frequency regime that the structure of the trapping
becomes relevant. To explain this in rough terms, consider the semiclassically rescaled equa-
tion

Ph;zu WD h2b�.h�1z/u D f; h D j� j
�1; z D

�

j� j
D 1C O.h/: (2.13)

As a guiding example, consider briefly theMinkowskian wave operator� D �D2
t�

C
P
D2
xj
;

then Ph;z D
P
.hDxj /

2 � 1 C O.h/, and thus according to geometric optics, high fre-
quency (� h�1) oscillations have momenta in ¹

P
�2j � 1 D 0º and propagate along lifted

geodesics, which are the projections to spatial coordinates and momenta of Minkowskian
null-geodesics. Generalizing to the Kerr case, high frequency oscillations of u solving (2.13)
are localized in the characteristic set of spatial momenta � so that �dt� C � is lightlike, and
propagate along projections (to the spatial phase space) of lifted null-geodesics. The dynam-
ics of this projected lifted null-geodesic flow is more ornate than in the bounded frequency
regime: there is now a trapped set (in the Schwarzschild case: the restriction of � in (1.15) to
t D 0 and � D �1 if we take t� D t near r D 3M ) at which the flow is �-normally hyperbolic
for all �. However, purely based on the dynamical nature of the trapping and its interplay
with the symplectic structure of phase space, one can apply black box results [77, 210] (see

5 It is obtained by taking Or D �r and considering the limit � ! 0 with fixed Or .
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also [108]) on the propagation of semiclassical regularity (i.e., bounds on amplitudes of high
frequency oscillations) for microlocal control of u there. Combining this with semiclassical
radial point estimates at the event horizon [201, §2.8] [78, Appendix E] and at spatial infin-
ity [203, 205], one ultimately obtains estimates in semiclassical function spaces (with each
derivative weighted by a factor of h) analogous to (2.11),

kuk
H
s;`
h

� C
�
h�1�"

kPh;zuk
H
s�1;`C1
h

C hN kuk
H

�N;�N
h

�
;

where the " > 0 loss can be sharpened to a logarithmic loss when =z � 0; this loss comes
from the trapping estimate. For small h > 0, the second, error, term on the right can be
absorbed into the left-hand side, and one obtains the invertibility (with quantitative bounds)
of Ph;z and thus of b�.�/.

Equippedwith these high energy estimates, one can justify the contour shifting down
to the real axis; the loss of powers of h�1 D j� j corresponds to a necessary loss [186] of
regularity of the solution (when estimated in decaying function spaces) relative to the initial
data.

Important precursors of the low frequency analysis of [106, 204] are the works by
Donninger–Schlag–Soffer [71] (based on direct resolvent kernel constructions in spherical
symmetry) and Tataru [197] on Price’s law (based on resolvent estimates and weak versions of
the expansion (2.12)). In Tataru’s approach, uniform resolvent control down to the real axis is
deduced from the assumption of a suitable form of local energy decay; this assumption needs
to be verified separately. (Thus, [197] upgrades weak to sharp decay.) In the full subextremal
range, local energy decay was first proved in the aforementioned [66], following earlier work
for slow angular momenta [6,64]. For more on the relationship between mode stability and
local energy decay, see [165,167].

2.3.5. ƒ > 0: exponential decay and quasinormal mode expansions
For linear scalar waves on slowly rotating Kerr–de Sitter black hole spacetimes

.M; gƒ;M;a/, Dyatlov [73–75] proved a full asymptotic expansion

 .t�; x/ D

X
=�j��˛

e�i�j t� tk� ajk.x/C O.e�˛t�/; x D .r; �; �/; (2.14)

for all ˛ 2 R avoiding the discrete set of accumulation points of ¹�=�j º. Here, the �j are the
resonances or quasinormal modes (QNMs);6 they are the poles of themeromorphic continu-
ation of the resolvent 2�gƒ;M;a.�/

�1 from=� � 1 to the complex plane in � . The structure of
the set ¹�j º was analyzed in great detail in [75]; here we only record that the only resonance
with =�j � 0 is �0 WD 0 (with multiplicity 1 and a00 a constant), and thus  decays expo-
nentially fast to a constant. The existence of a meromorphic continuation of the resolvent (as
opposed to the nonalgebraic singularity (2.12) in the case ƒ D 0) is due to the presence of
the cosmological horizon and the related fact that one work with a compact spatial manifold;

6 In the absence of multiplicities (k D 0), aj0 is a corresponding mode solution (or resonant
state).
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the general microlocal framework for the relevant spectral theory (both for bounded and high
frequencies) was provided in Vasy’s seminal work [201]. (The analyticity of the quasinormal
mode solutions, for analytic choices of time functions t�, was proved in [148], based on [89].)

In the Schwarzschild–de Sitter case, (2.14) was proved by Bony–Häfner [28] in the
black hole exterior, with uniformity down to the horizons provided in [164] using the rela-
tionship of SdS and asymptotically hyperbolic spaces [160, 163]. For results on the set of
resonances and mode solutions in the small black hole limit Mƒ2 & 0, see [117]. Results
on quasinormal modes on charged black hole spacetimes were proved in [22,127]. We remark
that energy methods [62] have thus far been successful in proving superpolynomial decay to
constants.

2.3.6. ƒ < 0: stable trapping and logarithmic decay
The existence of the conformal boundary (where null geodesics are reflected) in con-

junction with the existence of trapped geodesics leads to the phenomenon of stable trapping,
which gives rise to an inverse logarithmic rate for solutions provided the Hawking–Reall
bound is satisfied. (The Hawking–Reall bound ensures the existence of a globally causal
Killing field on the exterior and hence eliminates the difficulty of superradiance.) This rate
was established as an upper bound in [120] and is in fact optimal for general solutions, as
follows either from quasimode constructions [121] or the existence of quasinormal modes
exponentially close to the real axis [90,91]; see [208] for the development of a general theory
of quasinormal modes in this setting. (Inverse logarithmic decay rates are familiar from the
obstacle problem in Minkowski space [33].) Outside the Hawking–Reall bound, Dold [70]

constructed exponentially growing solutions using techniques from [192].
Finally, the behavior is expected to be radically different if dissipative boundary

conditions are imposed on the scalar field, in which case strong decay is likely to hold.

2.4. Linear stability
Here, we only discuss the case ƒ D 0. The reason is that there are currently no

rigorous results for ƒ < 0 in the case of reflecting boundary conditions, whereas for ƒ > 0

nonlinear stability was proved directly (see Section 2.5) without prior work on linear stability.

Theorem 9 ([5,100]). Linear stability holds for slowly rotating Kerr spacetimes.

A natural approach to Theorem 9 is to try to reduce it to the toy problem. How-
ever, both the generalized harmonic gauge (Section 1.2) as well as the double null gauge
(Section 1.3) lead to a highly coupled system of linearized equations. In the following, we
describe several different approaches to address this problem.

2.4.1. The double null approach
The first linear stability result was proved by Dafermos–Holzegel–Rodnianski in

[58] and concerns the linear stability of the Schwarzschild metric. The approach of [58] is
based on expressing (1.1) in a double null gauge and linearizing the resulting system with
respect to Schwarzschild. For clarity, we describe the main ideas more generally for the
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linearization aroundKerr. Let us fix the differentiable structure of the Pretorius–Israel double
null coordinates .u; v; �/ on the Kerr manifold with parameters .M; a/ and consider a one-
parameter family of metrics expressed in these coordinates

g."/ D �4�2."/du dv C =gAB."/
�
d�A � bA."/dv

��
d�B � bB."/dv

�
(2.15)

such that " D 0 corresponds to the Kerr metric of massM and specific angular momentum
a. In other words, we identify the ingoing and outgoing null cones of each member of the
family with the respective cones of the Kerr exterior.

If � is an S2u;v-tensor denoting an arbitrary Ricci coefficient or curvature component
associated with g."/ and � denotes the analogous component for g.0/, then � � � is a map
from R into the bundle of S2u;v-tensors on M and we can hence define

.1/

� WD
d
d"
.� � �/j"D0;

which we call a linearized Ricci coefficient or curvature component, respectively. Note that
we can indeed consider the difference of the two tensors as we have identified the notion of
S2u;v-tensors for the family (2.15), i.e., we have fixed the tensor bundle of S2u;v-tensors on
the manifold independently of ".

To produce the linearized Bianchi and null structure equations, one writes down the
null structure and Bianchi equations once for general " (in bold font) and once for " D 0

(in standard font) and then subtracts the two equations ignoring terms of order "2. This lin-
earization process is entirely straightforward and particularly simple in the Schwarzschild
case where all S2u;v-one-forms and symmetric traceless tensors vanish identically for the
(spherically symmetric) background. It produces a system of equations for S2u;v-tensors
representing linearized curvature components and Ricci coefficients on the Kerr manifold
with all differential operators being defined with respect to the Kerr background metric. For
instance, in the (algebraically simpler) Schwarzschild case aD 0, where the Pretorius–Israel
double null coordinates become the familiar Eddington–Finkelstein double null coordinates,
the linearization of (1.10), (1.11) reads

�=r3

�
r�2

.1/
˛

�
D �2�2r =D

?
2

�
�
.1/

ˇ
�

�
3M

r2
�3

.1/

O� ; (2.16)

�=r4

�
r4��1

.1/

ˇ
�

D �r3 =div
�
r
.1/
˛

�
; (2.17)

and the structure equation (1.8) becomes

�=r4

�
r2
.1/

O��
�

C
2M

r2

�
r2
.1/

O��
�

D �r2�2
.1/
˛ : (2.18)

We now collect an important result, which is due to Teukolsky [200]. For this we
recall from Section 1.4.4 the algebraically special frame of Kerr .eas3 ; eas4 ; eas1 ; eas2 /. We
define an "-dependent family of frames .eas3 ; eas4 ; eas1 ; eas2 / which is null with respect to
g."/ and reduces for " D 0 to .eas3 ; eas4 ; eas1 ; eas2 /. We then define the linearized quantities

.1/
˛ as.e

as
A ; e

as
B / WD lim

"!0

Riem.eas4 ; easA ; e
as
4 ; e

as
B /

"
; (2.19)
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.1/
˛ as.e

as
A ; e

as
B / WD lim

"!0

Riem.eas3 ; easA ; e
as
3 ; e

as
B /

"
: (2.20)

Note that these quantities are generally not S2u;v-tensors unless a D 0 but can be inter-
preted as horizontal tensors by identifying the horizontal structures (i.e., the spaces g."/-
orthogonal to the distribution .eas3 ;eas4 /) for different " just as we did for S2u;v-tensors earlier.
They can also be viewed as elements of a complex line bundle of spin-˙2-weighted func-
tions, see [200] and [57, §2.2]. Note that for a D 0 we have

.1/
˛ as.e

as
A ; e

as
B / D

.1/
˛ .eA; eB/ and

.1/
˛ as.e

as
A ; e

as
B / D

.1/
˛ .eA; eB/ as the double null frame agrees with the algebraically special

frame. Also one may check that (2.19) and (2.20) do not depend on the particular choice
of frame .eas3 ; eas4 ; eas1 ; eas2 / described above. In other words, there is a gauge invariance to
order " under g."/-frame rotations.

Proposition ([200]). The quantities
.1/
˛ as and

.1/
˛ as satisfy (individually) decoupled wave

equations, called the spin ˙2 Teukolsky equations.

In the case a D 0, the Teukolsky equation takes the simple form (as easily checked
from (2.16)–(2.18))

�=r4�=r3

�
r�2

.1/
˛

�
C
2�2

r2
r2 =D

?
2
=div

�
r�2

.1/
˛

�
C
4

r

�
1 �

3M

r

�
�=r3

�
r�2

.1/
˛

�
C
6M�2

r3

�
r�2

.1/
˛

�
D 0; (2.21)

which we will focus on to convey some of the main ideas that follow. The problem with
equation (2.21) is that because of the first order term, the standard physical space techniques
for the toy problem do not apply: there is no natural conserved energy and the standard
approach to prove (2.3) fails. Nevertheless, we have the following result:

Theorem 10. [57,58,157] Solutions to the spin ˙2 Teukolsky equations arising from suitably
weighted initial data on a Kerr spacetime with jaj � M decay inverse polynomially in time
on the black hole exterior.

Proof. For a D 0, one may apply the physical space transformations

r5
.1/

P D
r3

�
=r3

�.1/
 r3�

�
; r3�

.1/

 D �
1

2

r2

�
=r3

�
r�2

.1/
˛

�
(2.22)

introduced in [58]. These transformations are physical space versions of transformation intro-
duced by Chandrasekhar in [38] at the mode-decomposed level. The point is that the quantity
.1/

P satisfies the Regge–Wheeler equation

�=r3�=r4

�
r5
.1/

P
�

C
2�2

r2
r2 =D

?
2
=div

�
r5
.1/

P
�

C V
�
r5
.1/

P
�

D 0; (2.23)

where V is a potential with favorable properties. Equation (2.23) turns out to be an equation
for which the estimates (2.2) and (2.3) can be proven, i.e., the toy model theory applies.

Once (2.3) is proven for
.1/

P one may derive from (2.22) the identity
1

2
�=r3

�
r
ˇ̌
r3�

.1/

 
ˇ̌2�

C
1

2
�2

ˇ̌
r3�

.1/

 
ˇ̌2

D r4
.1/

P �2 �
.1/

 r3�: (2.24)
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Applying Cauchy–Schwarz inequality on the right and using the integrated decay estimate

for
.1/

P , this can be integrated forwards to produce boundedness and integrated decay esti-

mates for
.1/

 . Repeating the same procedure for the pair .
.1/

 ;
.1/
˛ /, one obtains the desired

estimates for
.1/
˛ . Obviously, this process loses derivatives but these can be recovered by

studying the wave equations for
.1/

 and
.1/
˛ with the just obtained a priori estimates on the

lower order terms.
For jaj �M , a straightforward modification of the transformations (2.22) produces

an analogue of (2.23), which is now a coupled wave equation schematically of the form

�RW;gM;a

.1/

P D aF
�.1/
 ;

.1/
˛

�
(2.25)

where �RW;gM;a is the Regge–Wheeler operator associated with the Kerr metric gM;a to

which again the techniques from the toy problem apply and F .
.1/

 ;
.1/
˛ / denotes an explicit

expression involving up to first derivatives of
.1/

 and
.1/
˛ . However, just as for the toy problem,

proving estimates for �RW;gM;a now requires frequency decomposition and a form of sep-
arability of the equations, which makes the problem technically more involved. Moreover,
the transport estimates for the lower order quantities are now directly coupled to (2.25) so all
estimates have to be proven at the same time. Key are the smallness of jaj in the coupling as
well as a special structure in the right-hand side of (2.25), which needs to be identified and
exploited.

In the full subextremal case jaj < M , we have the following recent milestone:

Theorem 11 ([194]). Theorem 10 holds for the full subextremal range jaj < M provided
solutions are a priori assumed to be future-integrable.

We remark that the assumption of future-integrability in Theorem 11 ensures that
one can take the Fourier transform in time and hence prove estimates at the level of the radial
ODE governing the dynamics of the frequency decomposed pieces of the solution. For the
wave equation, proving these estimates (i.e., Theorem 11) is the main difficulty in the proof
of Theorem 6. Removing the assumption of future integrability is expected to follow along
the lines of [66] and would lead to a proof of Theorem 10 for the full subextremal range and
complete our picture of the dynamics of the Teukolsky equation.

The proof of Theorem 11 adds several new ideas to the proof of Theorem 10. It
requires a much more subtle construction of the multipliers and various applications of the
Teukolsky–Starobinski identities since smallness of jaj cannot be exploited. We finally note
also the papers [80,81] for related results on the Teukolsky equation.

We pause for a moment to recap what we have achieved in proving Theorem 9. We
have obtained a linearized system of equations in double null gauge and we have shown
that certain quantities within this system satisfy decay estimates. In the a D 0 case, these
are precisely

.1/
˛ and

.1/
˛ . The second and equally important step is to identify a hierarchical

structure in the linearized system that allows proving boundedness and decay for all dynam-
ical quantities, preferably without loss of derivatives (the latter with the nonlinear problem
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in mind) from the quantities that have been shown to decay. This was achieved for a D 0 in
[58]. This part of the proof relies on a complete understanding of two important classes of
special solutions, which we again discuss in the a D 0 case:

(A) An explicit 4-dimensional family of solutions to the system arising from the
fact that the Schwarzschild solution sits as a one-parameter family inside
the Kerr family. Since to specify a nearby Kerr from the point of view of
Schwarzschild metric one needs to prescribe both a direction of rotation (i.e., a
3-vector) and a change of mass (a scalar), the corresponding family is indeed
4-dimensional.

(B) An infinite-dimensional family of pure gauge solutions, parametrized by a
set of spacetime functions fi .u; v; �/. These arise from the fact that certain
infinitesimal coordinate transformations preserve the double null form (2.15)
to order "2 while changing the dynamical quantities to order " in an explicit
fashion. For instance, the coordinate transformation

Qu D u; Qv D v C "f2.v; �/; Q�A D �A C "
2

r.u; v/
=g
AB@Af2.v; �/

is easily seen to preserve the double null form (2.15) to order ". These trans-
formations are the infinitesimal versions of a change of double null foliation,
i.e., perturbing the spheres and the foliations of the cones slightly. At the lin-
earized level they generate a special class of solutions which are called pure
gauge solutions. These solutions may be added to a given reference solution of
the linearized system to achieve a specific normalization of the linearized Ricci
coefficients on suitable chosen cones of the background. Finally, one observes
that pure gauge solutions always have

.1/
˛ D 0 D

.1/
˛ , i.e., the Teukolsky quan-

tities are gauge invariant.

With these observations, we can state the following slightly more specific version of Theo-
rem 9 for a D 0.

Theorem 12 ([58]). All solutions to the linearized vacuum Einstein equations around
Schwarzschild arising from regular asymptotically flat initial data

• remain uniformly bounded on the exterior and

• decay inverse polynomially (through a suitable foliation) to a standard linearized
Kerr solution (a 4-dimensional space) after adding a pure gauge solution which
can itself be estimated by the size of the data.

The point here is that in a gauge that is normalized with respect to the cones where
the initial data is prescribed (“initial data gauge”) one will only be able to prove bounded-

ness. In order to see decay, one needs to add a pure gauge solution that achieves��1
.1/

� D 0

onH C for the sum of the two solutions, i.e., one needs to normalize the solution with respect
to the future event horizon to see decay. This is the future gauge or teleological normaliza-
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tion. While the pure gauge solution required to do this has to be determined dynamically by
solving an ODE along the event horizon, it can still be bounded uniformly by initial data.

The reason that going to the teleological normalization is required to prove decay
can be understood from the fact that while the (linearized) Bianchi equations capture the
hyperbolic nature of the Einstein equations, the (linearized) null structure equations also
involve transport equations. Solutions to transport equations do generally not decay to zero
if integrated from initial data. On the other hand, integrating them backwards from the future
(in this case, the event horizon) with zero data captures the decay (provided the right-hand
side of the relevant transport equation has been shown to decay sufficiently fast, which is,
for instance, the case if it involves a Teukolsky quantity). Geometrically, one may say that in
the initial data normalized gauge the solution converges to a linearized Kerr but not in the
standard double null coordinates.

We note that while we have described parts of the argument for the case aD 0 (which
is the one treated in [58]), the double null approach can be pursued also in the case jaj �M

by treating the errors arising from non-vanishing a in the transport equation perturbatively
and using Theorem 10. This is a problem that is likely to be solved in the near future and
would provide a complete proof of Theorem 9 in double null gauge. Finally, generalizing
carefully the transformations (2.22), linear stability of the Reissner–Nordström solution to
the coupled Einstein–Maxwell system has been proven in [92].

2.4.2. Generalized harmonic gauge
Häfner–Hintz–Vasy [100] proved the linear stability of slowly rotating Kerr black

holes for initial data with standard decay bounds on the initial data (roughly pointwise o.r�1/

and o.r�2/). Their proof is based on a precise analysis of the resolvent of a linearized gauge-
fixed Einstein operator. More precisely, when studying the linear stability of gM;a, jaj �M ,
[100] uses the linearization of the generalized harmonic gauge 1-form

W� D g��g
��

�
�.g/��� � �.gM;a/

�
��

�
around g D gM;a, which maps h 7! divg Ggh. One then considers the linearization L of the
quasilinear wave operator

P.g/ WD Ric.g/ � .ı�
g C q/W

around g D gM;a. Here q is a suitable stationary bundle map (i.e., differential operator of
order 0) from 1-forms to symmetric 2-tensors, used to implement constraint damping below.
This linearization maps

L W h 7! DgRic.h/ � .ı�
g C q/ divg Ggh:

The principal part of L is �
1
2
�g , and thus the Fredholm theory for the spectral analysis

for the scalar wave operator sketched in Section 2.3.4 is available for the analysis of OL.�/,
=� � 0, as well. High energy estimates require the verification of a sign condition on the
subprincipal symbol at trapped set (required for application of the black box high energy esti-
mates [77]), whichwas first verified in [104], and which can be shown to amount to polynomial

3954 P. Hintz and G. Holzegel



bounds for the length of vectors that are parallel transported along trapped null-geodesics (the
latter was proved in the general Kerr case in [159]).

Existence of the resolvent OL.�/�1 for nonzero � then reduces to the problem of
proving mode stability for metric perturbations; moreover, the behavior near � D 0 is com-
plicated due to the presence of stationary solutions (linearized Kerr metrics in a suitable
gauge). Furthermore, it is (for robustness under perturbations, and also for eventual nonlin-
ear purposes) important to not require the metric perturbations h to satisfy the linearized
constraint equations at the Cauchy hypersurface t� D 0. The analysis of OL.�/h D 0 (i.e.,
L acting on the metric perturbation e�i�t�h, with h outgoing) then starts off with the (lin-
earized) second Bianchi identity, which gives the decoupled equation

divg Gg.ı�
g C q/� D 0; � D divg Gg.e�i�t�h/:

This is a wave equation for the 1-form �, and for q D 0 it is indeed the tensor wave operator
on 1-forms. The latter satisfies mode stability by direct calculation similarly to [114], except
for the presence of a 0-mode corresponding to the Coulomb solution. The purpose of the
stationary map q is to perturb this stationary solution away, thus giving mode stability for
divg Gg.ı�

g C q/ in the full closed upper half plane.7 Thus, any mode solution h of OL.�/

with =� � 0 automatically verifies the linearized gauge condition

� D divg Gg.e�i�t�h/ D 0: (2.26)

Therefore, we also have a solution of the linearized Einstein equation without gauge condi-
tion,

DgRic.e�i�t�h/ D 0: (2.27)

Mode stability for this equation is well-known in the Schwarzschild case .M; a/ D .M0; 0/

[141,166,177,206,211], and [100] proceeds perturbatively off this case. Concretely, for nonzero
� , metric mode stability is the statement that e�i�t�hD ı�

g.e
�i�t�!/ is a symmetric gradient

(i.e., a Lie derivative when using vectors instead of 1-forms). Plugging this into the gauge
condition (2.26) gives another wave equation for the gauge potential ! itself,

divg Ggı�
g.e

�i�t�!/ D 0: (2.28)

Mode stability for this equation implies that ! D 0 and hence h D 0. This proves mode
stability for L in the punctured upper half-plane.

For stationary perturbations (� D 0), the mode stability for (2.27) in the Schwarz-
schild case implies that h is the sum of a linearized Kerr metric and a pure gauge term (i.e.,
a symmetric gradient). The gauge condition (2.28) then further restricts the pure gauge term
ı�
g! to a finite-dimensional space. Particular instances of such pure gauge terms, constructed

7 In fact, one can then show that solutions of divg Gg .ı�
g C q/� D 0 with sufficiently smooth

and decaying initial data decay in time to 0. Therefore, initial violations of the linearized
gauge condition � D 0 decay in time; equivalently, initial violations of the linearized
constraint equations for h decay in time. Hence, the addition of q implements constraint
damping, the roots of which go back to the numerics literature [31,98].

3955 Recent progress in general relativity



in [100, §7], are symmetric gradients of asymptotic (as r ! 1) translations ! D dxi C o.1/

(note that dxi is a Killing 1-form for the Minkowski metric) and asymptotic rotations. There
are also generalized zeromodes which are first-order polynomials in time, arising from gauge
potentials ! which are asymptotic Lorentz boosts.

We stress that it is only at this point—i.e., where one needs to know the structure
(pure gauge, or linearizedKerr) ofmode solutions of the linearized Einstein vacuum equation
for individual values of � 2 C—that the highly delicate reductions of the linearized Einstein
equations to scalar “master equations” are used (here the Regge–Wheeler [177] and Zerilli
[211] equations). The a priori information, obtained by microlocal means which only rely on
qualitative features of the null-geodesic flow, of uniform Fredholm properties of OL.�/ acting
between suitable function spaces is then easily upgraded to invertibility, regularity in � , and
the precise structure at � D 0.

Altogether, one can then show that in the Schwarzschild case OL.�/�1 has a second-
order pole at � D 0 with explicit singular terms, plus a Hölder-regular remainder. This
structure persists in the slowly rotating Kerr case, essentially since one can construct a space
of generalized zero modes for small jaj of the same dimension as for a D 0. (We remark
that this construction requires, besides knowledge of the Kerr family of solutions, only soft
perturbative arguments, and does not involve the Teukolsky equation.) Altogether, we have

Theorem 13 ([100]). Let t� be a time function with level sets transversal to the future event
horizon and equal to the level sets of the Boyer–Lindquist time function t for large r . Con-
sider a neighborhood M D Œ0;1/t� �†, † D Œ2M0 � ";1/ � S2, of the domain of outer
communications of the mass M0 Schwarzschild black hole restricted to the causal future of
the Cauchy surface t� D 0. Let ˛ 2 .0; 1/, and let h0; h1 2 C1.†IS2T �

†M/ be Cauchy data
with

jh0j . r�1�˛; jh1j . r�2�˛;

and similar bounds for 8 derivatives along r@r and spherical vector fields. For .M; a/ close
to .M0; 0/, let h denote the solution of the initial value problem

LM;ah D 0; .h;L@t�
h/jt�D0 D .h0; h1/:

Then there exist .M 0; a0/, and a vector field V lying in a 7-dimensional space VM;a of vector
fields on M so that

h D
d
ds
gMCsM 0;aCsa0 jsD0 C LV gM;a C Qh;

where j Qhj . t�1�˛
� in spatially compact regions. The space VM;a is spanned by asymptotic

translations and boosts, and an additional explicit vector field. (The latter vector field can
be eliminated by a small change of the gauge condition. Asymptotic rotations are the same
as infinitesimal changes of the black hole rotation axis.)

If the data .h0; h1/ arise from initial data for the linearized Einstein equations (i.e.,
satisfying the linearized constraint equations), this implies the linear stability of slowly rotat-
ing Kerr black holes. However, Theorem 13 is significantly more general, as it applies to
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general data .h0; h1/; this type of generality was crucial in the non-linear stability proof of
Kerr–de Sitter black holes, see Section 2.5.2.

Note that, unlike in the double null gauge, the linearized metric h typically grows
linearly in time due to the existence of asymptotic Lorentz boosts in the space VM;a. Decay
to a linearized Kerr metric can only be seen after subtracting a suitable element of the 7-
dimensional space LV gM;a, V 2 VM;a, of pure gauge solutions.

There have also been a number of works which employ vector field methods to prove
the linear stability of the Schwarzschild metric in generalised harmonic gauges (for initial
data satisfying the linearized constraints), see [124–126,131].

2.4.3. Other approaches: outgoing radiation gauge
Andersson–Bäckdahl–Blue–Ma [5] gave the first proof of linear stability, assum-

ing strong decay on the initial data. Their strategy is to assume suitable decay for solutions
.1/
˛ as;

.1/
˛ as (called  ˙2 in [5] in accord with classical Newman–Penrose notation) of the

Teukolsky equations and recover the full metric perturbation via successive integrations in
a suitable hierarchy. In order to accomplish this, [5] employs the outgoing radiation gauge.8

Decay for the metric perturbation is proved via weighted Hardy inequalities. Special care has
to be taken near null infinity, where the Teukolsky–Starobinsky identities (fourth-order dif-
ferential identities relating C2 and �2) play a key role for ensuring integrability at various
stages in the hierarchy. In order to obtain decay for the metric coefficients, the initial data for
the metric perturbation are required to have strong decay (roughly pointwise o.r�7=2/ and
o.r�9=2/ decay for the linearized metric and second fundamental form). This in particular
forces the linearized mass and angular momentum of the final linearized Kerr solution to
vanish [2], and hence a key feature of the (nonlinear) stability problem is suppressed.

Given that decay results [57,157] for the Teukolsky equation on slowly rotating Kerr
backgrounds are known (cf. Theorem 10 above), [5] gives an unconditional proof of the linear
stability (for strongly decaying data) in this regime.

2.5. Nonlinear stability
The first nonlinear stability result for any family of black hole spacetimes without

symmetry assumptions was proved for slowly rotating Kerr–de Sitter black holes (ƒ > 0)
by Hintz–Vasy [115]. The results in the asymptotically flat Kerr setting are not quite yet
complete, though stability under special symmetries [139] as well as the full codimensional
stability of the Schwarzschild family [59] are known. See also [137,138,140] for progress in the
slowly rotating case. Finally, we refer the readers to [59, §IV.2] for a discussion of (necessarily
codimension restricted) nonlinear stability statements that one could attempt to prove in the
extremal case.

8 The metric perturbation is trace-free (with respect to the background Kerr metric) and has
vanishing contraction with the ingoing principal null vector field.
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2.5.1. The case ƒ D 0

With the linear problem resolved, the road is open to address the non-linear problem,
that is to prove that the subextremal Kerr family is nonlinearly stable. Note that perturbations
of Schwarzschild initial data are generally expected to converge to a Kerr solution with small
angular momentum, so stability of the Schwarzschild family cannot hold without further
restrictions on the data. However, we have the following result, which proves the nonlinear
stability of Schwarzschild for the subset of data for which it actually holds:

Theorem 14 ([59]). Nonlinear stability holds for the Schwarzschild spacetime provided the
initial data lie on a codimension 3 submanifold of the moduli space of initial data.

We emphasize again that the codimension 3 assumption is necessary because the
Schwarzschild family is contained as the a D 0 subcase of the Kerr family. Outside the
codimension 3 submanifold, one expects solutions to necessarily asymptote to a Kerr solu-
tion with a ¤ 0, since the dimension of linearized Kerr solutions fixing the mass is equal
to 3 in our parametrization. It is in this sense that Theorem 14 encompasses all data near
Schwarzschild that converge back to a member of the Schwarzschild family. We note that
Theorem 14 had been proved previously for polarized axisymmetric initial data in [139].
That work already contains some of the difficulties of the full problem. See also [140] for
further discussion of their approach to the problem.

While capturingmany of the nonlinear difficulties such as identifying themass of the
final solution, constructing teleological gauges and identifying a version of the null condition
in them, the fact that the final state in Theorem 14 is Schwarzschild simplifies considerably
both the algebra and the analysis. In particular, Theorem 14 can be (and is) proven using
entirely physical space based techniques.

Before we provide a brief overview of the main ideas in the proof, we recall items
(i)–.iii/ from the characterization of nonlinear stability in Section 2.2. We remark that in
the proof of Theorem 14, the global closeness of statement .ii/ can be expressed at the top
order energy level with respect to the same quantity that measures a suitable “initial” energy
quantity, i.e., without loss of derivatives. In this sense, Theorem 14 contains a true orbital sta-
bility statement. Note also that Theorem 14 is indeed the nonlinear analogue of Theorem 12
as the latter can be viewed as the statement of linear asymptotic stability of Schwarzschild
up to a three-dimensional space of initial data, which, in the linear problem, can be directly
identified at the level of initial data.

Theorem 14 is proven by expressing the equations in a double null gauge and hence
the natural setup is to prescribe characteristic initial data intersecting in a topological 2-
sphere. There is a well-established procedure, indicated at the end of Section 1.3, to prescribe
initial data in this setting. We now decompose the space of initial data into disjoint 3-
parameter families D D D0 C

P1
mD�1 �mD

Kerr
m , where D0 varies over a suitable space

and is of size "0. Here DKerr
m essentially prescribes the three ` D 1 modes of the torsion on

the sphere of intersection and the vector .��1; �0; �1/ is a measure of the size of the angular
momentum of the data. We prove that given any d 2 D0 we can find a .�?�1; �?0 ; �?1/ such
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that the corresponding data setD converges to Schwarzschild. We emphasize that the vector
.�?�1; �

?
0 ; �

?
1/ (as well as the final mass of the solution) has to be determined teleologically,

i.e., from the entire dynamics of the solution.
We now come to the main ideas of the proof. One crucial ingredient, which we

already saw in the linear problem, is the use of a double null gauge which is normalized
from the future, i.e., certain Ricci coefficients have to take their Schwarzschild (with mass
to be determined!) values on the asymptotic hypersurfaces. The construction of such future
gauges, which geometrically corresponds to finding a nearby sphere and foliating the ingoing
and outgoing light cones in a prescribed fashion, is based on a implicit function theorem type
argument. This uses that in the linear case we can prescribe the desired values by adding a
pure gauge solution. However, the nonlinear argument is considerably complicated by the fact
that the `D 0 and `D 1modes (mass and angular momentum) require special treatment and
couple nonlinearly into the iteration.

Having proven the existence of the future gauges, we can consider a solution in the
initial data gauge with coordinates .udata; vdata; �data/ or in the future gauge with coordinates
.ufut; vfut; � fut/ with relations of the form ufut D udata C f1.u

data; vdata; �data/, etc., in the
region where both gauges are defined. As in the linear problem, we can estimate the f ’s
provided estimates on the Ricci and curvature components are available in both of the gauges.

The proof proceeds by a large scale bootstrap argument along the following lines.
Given our 3-parameter family, we consider the largest uf > 0 such that in the future gauge
normalized at the sphereS2uf ;v1

the following bootstrap assumptions hold in the correspond-
ing bootstrap region M0.uf / indicated in the picture below:

(I) We have jfi j � " in the shaded (“near initial data”) region of u-width � 1.
In particular, the ufut D 0 cone is "-close to the cone udata D 0.

(II) We have decay estimates for Ricci coefficients and null curvature compo-
nents minus their Schwarzschild value (which is determined from the spher-
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ical average of the curvature component � on S2uf ;v1
) in the future gauge,

for instance,ˇ̌̌̌
r2

�
� tr� � r�1

�
1 �

2M.uf /

r

��ˇ̌̌̌
�
"

u
;

ˇ̌
r4˛

ˇ̌
�
"

u
; etc.; (2.29)

as well as a hierarchy of higher order estimates (in L2 on spheres, null-
cones and spacetime regions) for all E� 2 R.uf / such that j.r5 =curlˇ/`D1.uf ;
v1/j �

"
uf

with equality on @R.uf /. (That is, for every uf we define a cor-

responding set R.uf / of admissible E� which satisfy this.)

The main task then is to show that uf D 1 by improving the above bootstrap assumptions.
This proceeds along the following lines:

(1) One shows that in the shaded region the curvature components ˛, ˛ defined with
respect to the future double null gauge agree with the components defined in the
initial data double null gauge up to quadratic error terms. This is a manifesta-
tion of the fact that ˛ is gauge invariant in linear theory, that is, comparing the
˛’s in the two gauges only produces terms quadratic in f which by bootstrap
assumption .I / are indeed O."2/.

(2) One estimates ˛ and ˛ in the future gauge from their (now nonlinear) Teukolsky
equations. The initial data are "0 CO."2/ by the previous step, with "0 denoting
the size of the initial data. Here the main challenge beyond linear theory is to
estimate the nonlinear error terms, which can be shown to exhibit a version of
the null condition. This improves the bounds on ˛ and ˛ from "

u
to "0C"2

u
.

(3) One estimates all Ricci and curvature coefficients in the future gauge from the
improved bounds on ˛ and ˛ and the gauge conditions on the asymptotic hyper-
surfaces. This improves all estimates from "

u
to "0C"2

u
. This step involves a

number of technical difficulties most of which are, however, present (in a milder
form) in the linear theory.

(4) One improves jf j � " from the fact that by the previous step one now has,
in the initial data region, bounds on the Ricci coefficients in the future gauge
.� "0 C "2/ and bounds on these coefficients in the initial data gauge (by Cauchy
stability). Since f can be estimated from these, we deduce jf j � "0 C "2. This
improves .II/. Note that the fact that the initial data remains close to the old
initial data is a nonlinear version of the fact that the pure gauge solution one
needed to add in Theorem 12 was uniformly bounded by initial data.

(5) Having improved all the estimates, we can extend the spacetime slightly to
retarded time uf C ı and construct a new future gauge from a new future sphere.
The key now is to show thatR.uf C ı/¨ R.uf /, i.e., that the set of admissible
� of our three parameter family shrinks. This strict monotonicity can be estab-
lished by carefully examining the evolution of angular momentum between the
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“old” sphere and the “new” sphere. Finally, it is the topological degree of the
map from the space of �’s (i.e., R.uf /) to the space of angular momenta in
the future that is bootstrapped and ensures that for every uf the set R.uf / con-
tains a tuple .��1; �0; �1/ that gets mapped to zero angular momentum. This in
turn implies that we can construct a sequence .uf /i ! 1 with corresponding
�i ! �? 2

T
R..uf /i /.

2.5.2. The case ƒ > 0

The proof of the nonlinear stability of slowly rotating Kerr–de Sitter (KdS) black
holes by Hintz–Vasy [115] applies spectral theoretic and microlocal methods to the analysis
of a variant of the quasilinear wave equation (1.5). Consider a neighborhood

M WD Œ0;1/t� �†; † D Œr1; r2� � S2 .r1 D r� � "; r2 D rC C "/

of the black hole exterior for a subextremal Schwarzschild–de Sitter metric gƒ;M0;0 in the
causal future of a spacelike hypersurface t�1� .0/Š†; here, r1; r2 are the radii of the event and
cosmological horizon, respectively, and t� is a time function whose level sets are transversal
to the future event and cosmological horizons. (See also Figure 9.) For .M; a/ near .M0; a/,
one can consider the KdS metric gƒ;M;a as a stationary metric on M with smooth depen-
dence on .M; a/; in particular, future affine complete pieces of the event and cosmological
horizons of these nearby KdS black holes are contained in M still.

The desired asymptotic stability statement suggests writing the spacetime metric g
as g D gƒ;M;a C Qg and regarding the final black hole parameters .M; a/ as unknowns; the
gravitational wave tail Qg is an unknown as well and required to be exponentially decaying.
The starting point for the gauge is the generalized harmonic gauge 1-form with coefficients
W.g/� D g��g

��.�.g/�
��

� �.g0/�
��
/ measuring the failure of .M; g/ ! .M; g0/ to be a

wave map; here we take
g0 D gƒ;M0;0:

Since a KdS metric gƒ;M;a for .M; a/ ¤ .M0; 0/ has no reason to satisfy the gauge con-
dition W.gƒ;M;a/ D 0, one should really use the gauge condition W.g/ �W.g0

ƒ;M;a/ D 0

depending on the unknown final parameters .M; a/; here

g0
ƒ;M;a D �gƒ;M0;0 C .1 � �/gƒ;M;a

interpolates between gƒ;M0;0 for t� � 1 and gƒ;M;a for t� � 2. For further flexibility, one
allows for a gauge source 1-form # with compact support (or appropriate decay) in time; #
will lie in a suitable finite-dimensional space of 1-forms.

The nonlinear equation solved in [115] is then

P.M; a; Qg; #/ WD Ric.g/ �ƒg � .ı�

g0
C q/

�
W.g/ �W.g0

ƒ;M;a/ � #
�

D 0;

g D g0
ƒ;M;a C Qg: (2.30)

Here, the stationary bundle map q is chosen so as to implement constraint damping, i.e., so
that homogeneous solutions of the wave operator divg0 Gg0.ı�

g0
C q/ decay exponentially
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in time (i.e., it satisfies mode stability in an upper half plane =� � �˛ for some ˛ > 0).
Considerable effort is required to show the existence of such a q; see [115, §8], where q is
defined using a large parameter, and the required mode stability is proved using asymptotic
analysis in the large parameter.

In order to analyze (2.30), consider first the linearization of the right-hand side
of (2.30) in g around g D g0 D gƒ;M0;0: it maps

L W h 7! Dg0Ric.h/ �ƒh � .ı�

g0
C q/ divg0 Gg0 :

The spectral and mode analysis of this equation is in parts very close to that in the Kerr
case discussed previously, namely one combines constraint damping with the metric mode
stability for linearized perturbations of the Schwarzschild–de Sitter metric [141]. Unlike in
the Kerr case, however, mode stability for the 1-form wave equation

divg0 Gg0.ı
�

g0
!/ D 0 (2.31)

(governing those gauge potentials ! whose symmetric gradients satisfy the linearized gauge
condition) is not known, and indeed can be shown to fail in the de Sitter case (i.e., without
the presence of a black hole) due to the presence of a finite number of resonances in the
upper half-plane.9

Thus, solutions of Lh D 0 have a partial resonance expansion (ignoring multiplic-
ities) of the schematic form

h.t�; x/ D

�
d
ds
gƒ;M0CsM 0;sa0 jsD0 C [gauge correction]

�
C

NX
jD1

cj ı
�

g0
.e�i�j t�!j /

C O.e�˛t�/;

where the �j are the finitely many modes with =�j � 0 corresponding to the resonances
of the wave operator in (2.31); the !j are the corresponding mode solutions, and the cj are
suitable complex scalars depending on the initial conditions of h. The terms are then handled
as follows:

(1) The gauge correction is a pure gauge term ensuring that the first summand on
the right satisfies the linearized gauge conditionDg0W D 0; it would be absent
if we hadW.gƒ;M;a/ D 0 for all .M; a/ near .M0; 0/. Changing the final black
hole parameters from .M0; 0/ to .M0 CM 0; a0/, and correspondingly changing
the final gauge condition in (2.30) gives rise to essentially the same term.

(2) The nondecaying pure gauge contributions from the terms ı�

g0
.e�i�j t�!j / can

be eliminated for late times t� by an (explicit) change of the gauge condition,
i.e., by solving

Lh � .ı�

g0
C q/# D 0

9 This is another reason why the choice of q in (2.30) requires large parameter techniques: q
cannot be small if it is to shift these resonances all the way into the lower half-plane.
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with a suitable (explicit, depending on the cj and !j ) gauge source 1-form # ;
there is one such 1-form for each of the N pure gauge mode solutions.

(3) The O.e�˛t�/ tail contributes to the exponentially decaying tail Qg.

This can be rephrased as follows: the linearization of P.M;a; Qg; #/ at .M0; 0; 0; 0/

in the argument Qg is surjective if one supplements the range by a finite-dimensional space
consisting of

(1) linearized black hole parameter (and associated gauge) changes—i.e., the range
of the linearization of P in .M; a/; and

(2) gauge modifications—i.e., the range of the linearization of P in # acting on an
N -dimensional space of 1-forms # .

Perturbative arguments prove this surjectivity for .M;a; Qg;#/ near .M0; 0; 0; 0/. Thus, small
data initial value problems for P.M; a; Qg; #/ D 0 can be solved using a Newton iteration
scheme; due to a loss of derivatives due to trapping, [115] really uses a Nash–Moser iteration
in the simple form given by Saint-Raymond [185]. Once one has a solution of the Cauchy
problem for P.M; a; Qg; #/ D 0, the standard arguments sketched in Section 1.2 imply that
g D g0

ƒ;M;a C Qg is a solution of the initial value problem for Ric.g/ �ƒg D 0.

Theorem 15 ([115]). Let ƒ > 0 and Mi > 0, ai 2 R, jai j � Mi . Let t� (given by
t� D t � F.r/ in Boyer–Lindquist coordinates for suitable F ) be a time function whose
level sets are transversal to the future event and cosmological horizons. Let † � t�1� .0/

denote a spacelike hypersurface which extends a bit beyond the event and cosmological
horizons. Suppose g; K are solutions of the constraint equations (1.3) which are close
(in the norm of H 21.†I S2T �†/) to the initial data at † of the metric gƒ;Mi ;ai . Then on
M D Œ0;1/t� �† there exists a solution g of the initial value problem for Ric.g/�ƒg D 0

which decays exponentially fast to a Kerr–de Sitter metric: there existMf > 0 and af 2 R,
with .Mf ; af / close to .Mi ; ai /, and ˛ > 0 so that

g D gƒ;Mf ;af C Qg; Qg D O.e�˛t�/:

In particular, by the stable manifold theorem, the event and cosmological horizons
of the perturbed spacetime .M; g/ are exponentially decaying (as t� ! 1) perturbations of
the horizons of gƒ;Mf ;af ; in other words, .M; g/ contains these two future affine complete
horizons. For partial results on the stability of the cosmological (asymptotically de Sitter)
part of Kerr–de Sitter spacetimes, see [190,191].

To complete the discussion of the proof of Theorem 15, we explain a few aspects
of the (non-)linear analysis on asymptotically Kerr–de Sitter spaces. The nonlinear iteration
scheme used in the proof of Theorem 15 involves the global solution, at each step, of a linear
wave equation

LM;a; Qg;#h D [nonlinear error term]: (2.32)

Here LM;a; Qg;# is a wave operator (acting on symmetric 2-tensors) on the spacetime M

equipped with a metric gƒ;M;a C Qg that settles down exponentially fast to a KdS metric.
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Thus, the spectral methods which are effective for providing sharp asymptotics of stationary
problems need to be supplemented by estimates on the nonstationary spacetime which are
effective for proving the sharp regularity of linear waves. Roughly speaking, given a solu-
tion h of the linear wave equation (2.32) which, together with a large number of derivatives,
obeys a weak exponential bound hD O.eCt�/ for some fixedC (such estimates are discussed
below), one can rewrite this equation as

L0h D � QLh;

whereL0 D LM;a;0;0 is the stationary part and QLD LM;a; Qg;# �LM;a;0;0 the (second order)
remainder with exponentially decaying O.e�˛t�/ coefficients. Spectral methods for L0 thus
give precise asymptotics for h up to errors with an extra e�˛t� amount of decay relative to
the a priori information on h, i.e., QLh D O.e.C�˛/t�/. Full asymptotics for h can then be
obtained by iteration.

It thus remains to show (arbitrarily) high regularity of h in a space allowing for a
fixed amount of exponential growth. Energy estimates give a simple exponential bound in
H 1. Higher regularity of h (in the same exponentially weighted space in time) is then proved
by microlocal means: regularity of the initial data is propagated using the Duistermaat–
Hörmander theorem for finite times; uniform control as t� ! 1 requires the use of radial
point estimates (on exponentially weighted function spaces) near the horizons [111], and
simple (since we are allowing for exponential growth of solutions) estimates at the trapped
set [104, 110]. We remark that the use of Nash–Moser iteration requires the proof of tame
versions of all these microlocal estimates; these were first given in [112].

Theorem 15 was subsequently extended by Hintz to the setting of charged black
holes:

Theorem 16 ([105]). The family of Kerr–Newman–de Sitter black holes with subextremal
charge and small angular momenta is nonlinearly asymptotically stable. That is, the space-
time metric and electromagnetic 2-form evolving from a small perturbation of the initial data
of such a Kerr–Newman–de Sitter black hole settle down exponentially fast to the metric and
electromagnetic 2-form of a nearby Kerr–Newman–de Sitter metric in a suitable gauge (gen-
eralized harmonic gauge for the metric, generalized Lorenz gauge for the electromagnetic
field).

Previously, Hintz–Vasy [112] had shown the solvability of quasilinear wave equations
on slowly rotating Kerr–de Sitter spacetimes (by combining microlocal and spectral methods
as sketched above) assuming the absence of modes in the closed upper half-plane, following
earlier work on asymptotically de Sitter spacetimes [102,111].

2.5.3. The case ƒ < 0

As in the case of the maximally symmetric solutions in Section 2.1.3, the ƒ < 0

case (with reflective boundary conditions) may turn out to be the most difficult and consti-
tutes a major outstanding problem in the field. The slow logarithmic rate obtained for the
toy problem (see Section 2.3) lead [120] to conjecture nonlinear instability. However, there
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could be subtle cancelations entering the nonlinear dynamics that allow for some version
of orbital stability. Note that the nature of the slow decay (which disappears if only finitely
many modes are taken into account) makes detecting an instability in numerical simulations
difficult. Finding an appropriate nonlinear toy problem where some of the difficulties can be
understood seems to be a first step to attack this problem.

3. Singularities

We discuss results concerning singularities occurring in the interior of black holes
in Section 3.1. Recent progress on naked singularities is discussed in Section 3.2.

3.1. The interior of black holes
Whereas the exterior (or, indeed, suitable neighborhoods of the exterior) of subex-

tremal Kerr black holes is conjectured to be stable, the situation is different for the black
hole interior. Note in particular that Kerr black holes with nonzero angular momentum have
a nonempty Cauchy horizon, whereas Schwarzschild black holes have an entirely different
interior structure, namely they have a terminal spacelike singularity across which the metric
cannot be extended even as a continuous Lorentzian metric [188]. Regarding thus the interior
structure rotating Kerr black holes as a reference point, a heuristic due to Simpson–Penrose
[195] suggests that the Kerr Cauchy horizon is unstable, in the sense that for generic per-
turbations of the initial data the spacetime metric becomes singular at the Cauchy horizon.
This is the content of Penrose’s Strong Cosmic Censorship conjecture. The basic idea is that
linear waves falling into the black hole are more and more blue-shifted as one approaches
the Cauchy horizon, which when upgraded to the nonlinear setting is suggestive of the for-
mation of a singularity. This heuristic also suggests a direct relationship between decay of
perturbations in the black hole exterior and the regularity of the metric near the Cauchy
horizon.

The precise notion of singularity to be used depends on the context. One notion [44]

asks for the nonexistence of an extension of the spacetime with square integrable Christoffel
symbols since square integrability is sufficient to make sense of the Einstein equations in
a weak sense; other often used notions are C2-inextendibility, as it relates directly to the
blow-up of curvature invariants such as the Kretschmann scalar, or C0-inextendibility of the
metric. The current state-of-the-art in the vacuum case is the following regularity theorem;
its proof uses the double gauge (which is particularly convenient also for locating the Cauchy
horizon):

Theorem 17 ([60]). Assume quantitative decay rates10 of the metric and second fundamental
form, along a spacelike hypersurface†0 just beyond the event horizon, to the data of a subex-

10 These assumptions are compatible with the conjectured nonlinear stability of the Kerr
family.
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tremal Kerr metric with nonzero angular momentum. Then the future development of these
data has a nontrivial Cauchy horizon across which the metric is continuously extendible.

Related regularity results for the linear scalar wave equation were proved by Franzen
[85,86] and Hintz [103]. Reading Theorem 17 as a statement about the stability of the interior
structure of Kerr black holes, one may consider the analogous problem for the stability of
the Schwarzschild singularity (which necessarily requires working in a restricted symmetry
class to disallow Kerr behavior). This was tackled by Alexakis–Fournodavlos [3] in polarized
axial symmetry; see also [84] on the behavior of linear waves in the Schwarzschild interior.

For de Sitter black holes, waves decay in the exterior at an exponential rate, and
correspondingly the regularity of metrics or linear scalar waves is expected to be higher at
the Cauchy horizon. Quantitatively, linear waves with energy decaying like O.e�˛t�/ have
almostH 1=2C˛=�-regularity across the Cauchy horizon (and arbitrary regularity in the angu-
lar variables), where � is the surface gravity of the Cauchy horizon [113] (see also [49]). This
regularity can exceed H 1 for certain black hole parameters [34]; heuristically this corre-
sponds to the expectation that the analogue of Theorem 17 in such settings yields spacetimes
which, even upon perturbation, can be extended with square integrable Christoffel symbols.
For rigorous results in this direction, see [50–52].

The first result on the existence of singularities was obtained for the linear scalar
wave equation on Reissner–Nordström spacetimes with nonzero charge by Luk–Oh [150];
the key is the identification of a conserved quantity along null infinity, the nonvanishing of
which allows for the propagation of suitable lower bounds into the black hole interior which
imply blow-up of energy at the Cauchy horizon. The result by Luk–Sbierski [156] proves
blow-up under the assumption of pointwise lower bounds for the linear wave along the event
horizon of rotating Kerr black holes; these lower bounds were proved in [11,106], as discussed
in Section 2.3.3.

Singularity formation at the Cauchy horizon for solutions of the Einstein equation
is thus far only known in spherical symmetry for suitable matter models. Christodoulou [41]

proved the C0-formulation of the Strong Cosmic Censorship conjecture for the Einstein–
real scalar field system in spherical symmetry. In the presence of charge, Dafermos [54] with
Rodnianski [61], on the other hand, proved that C0-regularity does hold for the Einstein–
Maxwell–real scalar field system; this was complemented by the following result on the
genericity of C2-singularities (improved to C0;1 in [189]):

Theorem 18 ([151,152]). The C2 formulation of the Strong Cosmic Censorship conjecture for
the Einstein–Maxwell–real scalar field system in spherical symmetry (with 2-ended asymp-
totically flat initial data on R � S2) is true.

On charged Reissner–Nordström–AdS black hole spacetimes (thus ƒ < 0), the
behavior of linear waves near the Cauchy horizon was understood only recently in a series of
works by Kehle who provedC0 bounds [135] and generic energy blow-up [134,136] depending
on the validity of a diophantine condition on the quasinormal modes. Part of the difficulty
here is the particularly slow (logarithmic) decay on the exterior.
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3.2. Naked singularities
The singularities discussed in Section 3.1—be they spacelike or null—all share the

feature of being “behind” an event horizon of a black hole exterior possessing a complete null
infinity. Penrose’sWeak Cosmic Censorship conjecture asserts that this is generically the case
for solutions arising from asymptotically flat initial data: singularities always occur in the
causal future of an event horizon and can thus not communicate with asymptotic observers
at infinity. In [42,43] Christodoulou showed that the word “generic” is indeed necessary. He
constructed solutions to the spherically symmetric Einstein scalar field system containing
a naked singularity, i.e., spacetimes whose Penrose diagram looks as in Figure 11. In par-
ticular, the cone N is future null geodesically incomplete and does not extend to O. This
can be seen by the quantity 2m

r
being bounded uniformly from below by a positive constant

alongN , wherem denotes theHawkingmass and r the area radius function of the spherically
symmetric spacetime. In particular, one cannot make sense of the Einstein equations in any
reasonable sense (in particular, not in the class of bounded variation) on or to the future ofO.

Figure 11

The naked singularity spacetimes of [42]. Here � denotes the center of the spherical symmetry. Null infinity JC

is future incomplete.

Christodoulou’s construction relied on two fundamental ingredients. Let us denote
a solution to the spherically symmetric Einstein scalar field system by .g�� ; r; �/. First,
Christodoulou proved local well-posedness of the system in the (low regularity) class of
BV solutions. Secondly, he introduced the notion of a k-self-similar solution of the system.
This is a solution which admits a 1-parameter group of diffeomorphisms .fa/a�0 such that
f ?a g D a2g, f ?a r D ar and f ?a � D � � k loga. Imposing self-similarity and spherical sym-
metry reduces the Einstein equations to a two-dimensional autonomous dynamical system,
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Figure 12

The naked singularity spacetimes of [183] arising from solving a characteristic initial value problem. Null infinity
JC is future incomplete.

whose dynamics Christodoulou analyzed. A suitable subset of its solutions could be inter-
preted as BV solutions (in fact they have higher regularity) and could be described by the
above Penrose diagram. The key here is that the appearance of naked singularities funda-
mentally depends on k being nonzero.

In recent work, Rodnianski and Shlapentokh-Rothman transformed some of the
above ideas to prove a result for the vacuum equations without any symmetry assumptions:

Theorem 19 ([183]). There exists a large class of solutions to the vacuum Einstein equations
containing naked singularities.

The solutions of Theorem 19 are constructed directly by solving a characteristic
initial value problem as discussed at the end of Section 1.3 leading to a Penrose diagram of
the form shown in Figure 11.

The analogue of Christodoulou’s well-posedness result for BV solutions in the proof
of Theorem 19 is provided by the well-posedness theory that has been developed in recent
years to construct low regularity solutions of the Einstein equations in a double null gauge,
in particular the Luk–Rodnianski theory of impulsive gravitational waves [153,154]11 and the
results of [182]. The idea is that one can construct solutions with very limited regularity in the
null directions u and v but high regularity in the directions tangent to the double null spheres.

The analogue of Christodoulou’s k-self-similar solutions can be described as fol-
lows. Assume momentarily that the solution has already been constructed in double null
coordinates (note that the shift vector b has been put in the other null direction)

g D �2�2.du˝ dv C dv ˝ du/C =gAB.d�
A

� bAdu/.d�B � bBdu/

D �2�2v2�.1 � 2�/�1.du˝ d Ov C d Ov ˝ du/C =gAB.d�
A

� bAdu/.d�B � bBdu/;
(3.1)

11 In this theory, the components ˛ and ˛ are not even in L2u and L2v . They can, however, be
removed from the system of double null equations by a clever renormalization of the system.
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with the two sets of double null coordinates related by Ov D v1�2� for a small and positive �.
We say that a solution is self-similar if the scaling vector field S D u@u C v@v

satisfies LSg D 2g. This directly translates into constraints on the behavior of the metric
functions, for instance �.u; v; �A/ D L�. v

u
; �A/, etc. The �-self similarity now enters by

imposing the manner in which the metric and its derivatives extend to the cone N , i.e., the
hypersurface Ov D 0. A �-self similar solution with � ¤ 0 is defined in a way that the metric
and its derivatives extend regularly (C 1; ) to N in the .u; Ov; �/ coordinates. In the .u; v; �/
coordinates, however, quantities will then be singular with specific powers of v

u
; in other

words, .u; v; �/ coordinates are not regular on N .
To view this more geometrically, note the difference of the generator of the null cone

Ov D 0 given by e3j OvD0 D @u C QbA@�A and the restriction of the scaling field S j OvD0 D u@u. If
we can construct solutions with Qb¤ 0 alongN , then there will be a twisting of the generators
by the self-similar vector field along N . The point now is that if � D 0, then the constraint
equations alongN necessitate QbD 0 onN . If � ¤ 0, then extra terms appear in the constraint
equations which allow for nontrivial Qb; this is the main mechanism for the naked singularity
formation (and for proving the analogue of 2m

r
being bounded below along N ).

The proof itself has twomain steps. The constraint equations need to be solved along
the ingoing and outgoing light cones in a way that is consistent with the self-similarity of the
solution and in a way that the low regularity well-posedness results mentioned earlier still
apply. This requires (as expected from the nongenericity of naked singularities!) fine tuning
of the “free data” (Section 1.3) and a detailed analysis of the regularity at the intersection
of the two light cones. Once the data is constructed and the local well-posedness theorem
applied, the proof proceeds in a large scale bootstrap argument to complete the picture shown
in the Penrose diagram of Figure 12. This uses the familiar scheme of energy estimates for
the curvature components and transport equations for the connection coefficients; however,
many intricate renormalizations (subtracting the singular self-similar part of any dynamical
quantity) and careful choices of v

u
-weights in the estimates are required.

4. Further topics

We briefly discuss two more topics of continued or recent interest: the construc-
tion of multi-black-hole spacetimes, and inverse problems for nonlinear wave equations on
Lorentzian manifolds.

4.1. Black hole gluing
All spacetimes discussed so far contain at most a single black hole. There exist

explicit solutions of the Einstein–Maxwell equations without or with cosmological con-
stant, called Majumdar–Papapetrou [158, 172] and Kastor–Traschen [132] spacetimes. They
are, however, very rigid, being based on a special algebraic ansatz for the metric and electro-
magnetic field, in which the functions controlling the ansatz solve a linear Laplace equation
and indeed are shifted and scaled versions of 1=jxj. These spacetimes can be regarded as
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containing black holes each of which have charge equal to their mass. A construction due to
Brill–Lindquist [30] produces a many-black-hole vacuum solution by similar rigid means.

The first flexible construction of many-black-hole spacetimes with well-controlled
asymptotic structure glues any (finite) number of Kerr–de Sitter black holes into neighbor-
hoods of points on the future conformal boundary of de Sitter space.

Theorem 20 ([107]). Let ƒ > 0. Fix points p1; : : : ; pN 2 S3, masses M1; : : : ; MN , and
angular momenta a1; : : : ; aN ; assume that a certain balance condition holds. (When all aj
vanish, this balance condition reads

PN
jD1Mjpj D 0, where one regards S3 � R4 as the

unit sphere.) Then there exists a solution g of Ric.g/ �ƒg D 0 which near the point pj on
the future conformal boundary of de Sitter space is equal to gƒ;Mj ;aj , and away from the
points pj converges to the de Sitter metric at an exponential rate.

The gluing is accomplished via a backwards (or scattering) construction: a naively
glued ansatz for the metric (which is an exact solution near the pj ) is corrected, in the gluing
region (i.e., leaving neighborhoods of the pj unaffected) [68], in Taylor series at the confor-
mal boundary in a suitable generalised harmonic gauge, and the remaining error is solved
away exactly by solving the gauge-fixed Einstein equation backwards from the conformal
boundary. (See [56] for a loosely related scattering construction for asymptotically Kerr black
holes.) The balance condition arises as an obstruction (cokernel) to the existence of a par-
ticular term in the Taylor expansion which needs to satisfy a linear divergence equation and
yet have support away from the pj .

Previous gluing constructions took place on the level of initial data sets, starting
with Corvino’s seminal work [47,48] on localized gluing and followed by many variants and
generalizations (including wormholes, localized gluing in angular sectors) [35, 46, 128, 129].
For recent gluing results for the characteristic initial value problem, see [16].

Chruściel–Mazzeo succeeded, using Friedrich’s nonlinear stability result [87], in
describing parts of the global structure of the spacetime evolving from the many-black-
hole data of [46]; in particular, they show that the complement of the causal past of suitable
observers at null infinity has several connected components, corresponding to several black
hole regions. Analyzing the structure of compact subsets of these spacetimes is, however,
entirely out of reach; the same is true for the spacetimes evolving from the initial data con-
structed numerically and used in numerical relativity for the study of black hole mergers
[173].

The problem of constructing many-black-hole spacetimes with precise asymptotic
control in the asymptotically flat setting (e.g., two Kerr black holes moving apart at a positive
speed) is an interesting and challenging problem, (variants of) which may well be within
reach in the near future.

4.2. Inverse problems
A rather different topic of investigation concerns the determination of a spacetime

from measuring the propagation of waves inside the spacetime. This is typically phrased as
the problem of reconstructing as large a spacetime region as possible from the Dirichlet-to-
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Neumann map for boundary value problems for (nonlinear) wave equations on domains with
timelike boundary, or from the source-to-solution map for forcing problems. For the linear
wave equation on backgrounds with time-independent metrics, a complete solution of the
first class of problems was obtained by Belishev–Kurylev [20] using a unique continuation
result by Tataru [196].

A beautiful recent insight by Kurylev–Lassas–Uhlmann [143] is that nonlinearities
can actually simplify the solution of the inverse problem, in particular in settings where the
corresponding problem for the linear equation is not yet solved (e.g., for nonstationary met-
rics with nonanalytic time dependence).

The basic idea is that one can produce dimM D 4 small and mildly singular (dis-
torted) plane wave solutions by imposing suitable Dirichlet boundary conditions or specify-
ing suitable forcing terms. If these distorted plane waves interact nonlinearly at a spacetime
point q, a new spherical wave is produced at q in the sense that a (very weak) singularity
emanates from q; this singularity can be detected in the Neumann data or in some open set
of the spacetime where one makes measurements. In this manner, the inverse problem is
reduced to a geometric problem of reconstructing the Lorentzian structure (typically up to
conformal diffeomorphisms) of a causal diamond D � M from the collection of the light
observation sets—intersections of future light cones from points in q with the observation
region. This geometric problem was solved in [143] for measurements in open subsets of M,
and in [109] for measurements on timelike boundaries under a convexity assumption.

There exists by now a large literature on similar inverse problems; here we only
mention the results [142–144] on inverse problems concerned directly with the Einstein–scalar
field and Einstein–Maxwell equations.

5. Conclusions and outlook

The mathematical study of Einstein’s theory of General Relativity is very natural:
the main equation of the theory is “simple” despite being fundamental, i.e., not derived from
a more general (classical) theory via any sort of approximation or averaging. And yet the
structure of its solutions is fantastically rich, which thus provides a large arena for detailed
investigations of various aspects of the theory.

It is a remarkable feature of general relativity that the simplest nontrivial vacuum
spacetime—the Schwarzschild solution or its analogues in the presence of a nonzero cosmo-
logical constant—describes a black hole. (Moreover, even if the path of history was different,
the study of (stationary) perturbations of the Schwarzschild solution could well have hinted
at the existence of the Kerr family!) The study of perturbations of Schwarzschild or Kerr
black holes in the context of the initial value problem can be regarded as a theoretical explo-
ration of the question whether these solutions bear relevance as models for physical black
holes. As discussed in Section 2, this line of investigation led to the discovery of fascinating
geometric and analytic properties of Kerr spacetimes (such as the red-shift effect and super-
radiance, normally hyperbolic trapping, and mode stability), and inspired a vast amount of
work, especially in the theory of partial differential equations, aimed at exploiting these prop-
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erties (such as refined vector field methods, microlocal radial point and trapping estimates,
flexible gauge-fixing methods). The confluence of a large variety of techniques from several
areas of mathematics is the reason both for the recent success and for the excitement in the
field. Given the progress discussed in Section 2, we anticipate a full resolution of the nonlin-
ear stability problem for subextremal Kerr black holes in the near future. But even then will
there be plenty of room for developments, e.g., coupling the Einstein equations with matter.

Analyzing the structure of singularities, whether cosmological, naked, or hidden
behind event horizons of black holes, promises to continue being a fruitful area of research. In
particular, controlling or constructing spacetimeswith singularities requires the development
of tools for the study of large data regimes (i.e., far from explicit model spacetimes), or calls
for deep insights to find settings where large data regimes can still be regarded as perturbative
in some sense.

The study of many-black-hole spacetimes has barely started. Motivated in particu-
lar by the recent experimental discoveries of black hole mergers, as well as by the advanced
understanding of individual black holes, we anticipate this area of research to become promi-
nent soon.

As the field advances, the technical demands will of course increase; however, we
are confident that conceptual insights and the development of further elegant, yet powerful
mathematical tools will act in a counterbalancing manner, thus keeping the field accessible
and vibrant.
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