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Abstract

Spin systems with hyperbolic symmetry originated as simplified models for the Anderson
metal–insulator transition, and were subsequently found to exactly describe probabilistic
models of linearly reinforced walks and random forests. In this survey we introduce these
models, discuss their origins and main features, some existing tools available for their
study, recent probabilistic results, and relations to other well-studied probabilistic models.
Along the way we discuss some of the many open questions that remain.
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1. Introduction

Classical spin systems with spherical symmetry, such as the Ising and classical
Heisenberg models, are basic models for magnetism and have been studied extensively over
the last century. It is well-understood that the associated symmetry groups play an impor-
tant role, particularly for the critical and low-temperature behaviour of these models. For
example, the discrete Z2 symmetry of the Ising model is spontaneously broken at low tem-
peratures, and in this phase truncated correlations decay exponentially. For models with con-
tinuousO.n/ symmetries, n� 2, low temperature truncated correlations instead decay poly-
nomially, a reflection of the fact that the symmetry is spontaneously broken to an O.n � 1/

symmetry.
Spin systems with hyperbolic symmetry groups are also studied in condensed matter

physics, primarily because of their relevance for the Anderson delocalisation–localisation
(metal–insulator) transition of random Schrödinger operators and related random matrix
models [38, 69, 74]. A rigorous analysis of the Anderson transition remains an outstanding
challenge; see Section 3. The essential physical phenomena of the Anderson transition are
expected to be captured by the more tractable H2j2 model, a simplified spin system with
hyperbolic symmetry [76]. Surprisingly, the H2j2 model and its natural generalisations are
intimately connected to probabilistic lattice models. The H2 and H2j2 models, motivated by
the Anderson transition [34,72], are exactly related to (linearly) edge-reinforced random walks
and vertex-reinforced jump processes, introduced independently in the probability literature
in the 1980s [29] and early 2000s [26]. A similar connection exists between the related H0j2

model and random forests [11, 22]; random forests arose earlier (for example) in connection
with the Fortuin–Kasteleyn random cluster model [43]. The connections between hyperbolic
spin systems and probabilistic phenomena are the main topic of this survey.

More specifically, this survey focuses on probabilistic results in line with the original
physical motivation for studying hyperbolic spin systems. In particular, we focus on results
for Zd (and its finite approximations) for d � 2. Our perspective is that a central role is
played by the continuous symmetry groups of the spin systems. There are other perspectives
available, notably that of Bayesian statistics. While the latter perspective has played a role
in important results, e.g. [4,66], and has found use in statistical contexts [5,6,31], we will not
mention it further. Similarly, there are many related works we cannot discuss; fortunately,
many of these are discussed in recent surveys on closely related topics [49,61,70,71].

To set the stage, the remainder of this introduction recalls the magic formula for
edge-reinforced random walk that led to the discovery of the connections discussed in this
survey. Readers familiar with the magic formula may wish to jump to Section 2, where we
introduce hyperbolic spin systems, or to Section 3, which discusses the physical background.
The probabilistic representations and results for reinforced random walks and random forests
are discussed in Sections 4 and 5, respectively, along with questions for the future.

Magic formula for edge-reinforced random walk. Fix ˛ > 0, a graphG D .ƒ;E/, and an
initial vertex 0 2ƒ. Edge-reinforced random walk (ERRW) withX0 D 0 and initial weights ˛
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is the stochastic process .Xn/n�0 with transitions

P ERRW.˛/
0

�
XnC1 D j j.Xm/m�n; Xn D i

�
D

.˛ C L
ij
n /1ij2EP

kWik2E .˛ C Likn /
; (1.1)

where Lijn is the number of times the edge ij has been crossed up to time n (in either direc-
tion). The transition rates change rapidly if ˛ is small, and hence this is called the strong
reinforcement regime. Weak reinforcement refers to ˛ being large. The definition can be
generalised to edge-dependent weights ˛ D .˛ij / in a straightforward manner.

Some intuition about ERRW can be gained by considering the case when G is a
path on three vertices. Call one edge blue, one edge red, and start an ERRW at the middle
vertex. If ˛ D 2 then the law of the vector 1

2
L2n of (half of) the number of crossings of the

edges at time 2n is the law of a Pólya urn. Pólya’s urn is the process that starts with an urn
containing one red and one blue ball, and then sequentially draws a ball and replaces it with
two balls, both of the same colour as the drawn ball. The fundamental fact about Pólya’s
urn is that 1

2n
L2n converges to .U; 1 � U/ where U is a uniform random variable on Œ0; 1�,

i.e. the fraction of crossings of the blue edge is uniform. This can be proven by induction.
Note that for an ordinary simple random walk this limit would be deterministic. A priori it
is hard to predict how ERRW behaves on more complicated graphs. For example, is ERRW
transient if simple random walk is transient? Does the answer depend on ˛?

It turns out that the connection to Pólya’s urn has a far reaching generalisation.
The theory of partial exchangeability guarantees that ERRW is a random walk in random
environment [30]. A consequence is that 1

n
Ln has a distributional limit: it is the law of the

random environment. Coppersmith and Diaconis discovered that one can give an explicit
formula for the limiting law on any finite graph. It is surprising that an explicit formula can
be obtained; this explains why it has been termed the magic formula, see [47,55].

To precisely formulate this result, recall that an environment is a set of conductances
C WE ! Œ0;1/ with

P
ij Cij D 1. Write Cij for the conductance of the edge ¹i; j º and

Ci i D �Ci D �
P
j Cij . Associated to C is a reversible Markov chain (simple random

walk) with transition probabilities Cij =Ci whose law we denote by P SRW.C/
0 when started

from 0.

Theorem 1.1 (Magic formula for ERRW). Let G D .ƒ; E/ be finite. Edge-reinforced
random walk with X0 D 0 and initial weights ˛ D .˛ij / is a random walk in random envi-
ronment:

P ERRW.˛/
0 Œ�� D

Z
P SRW.C/
0 Œ�� d�˛.C /: (1.2)

The environment �˛ has density proportional to

C
1
2
0

Q
ij2E C

˛ij�1

ijQ
i2ƒ C

1
2 .˛iC1/

i

p
det0C (1.3)

with respect to Lebesgue measure on the unit simplex in Œ0;1/E , where ˛i D
P
j ˛ij and

det0C is the determinant of any principal cofactor of C .
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Note that the matrix-tree theorem implies the determinant in (1.3) can be written as
a weighted sum of spanning trees, reflecting that this term is non-local.

Sabot and Tarrès showed how to relate the density (1.3) to the H2j2 model that we
will introduce in the next section. This enabled them to leverage powerful results of Disertori,
Spencer, and Zirnbauer to establish the existence of a recurrence/transience phase transition
for ERRW on Zd for d � 3, see Section 4. In Section 5 we show that connection proba-
bilities in the arboreal gas, a stochastic-geometric model of random forests, can be written
in a form very similar to the magic formula. The derivation of this connection probability
formula was inspired by [12, 13], which (at least partially) revealed the inner workings of
the magic formula: horospherical coordinates (hyperbolic symmetry) and supersymmetric
localisation.

2. Hyperbolic spin systems

This section introduces the hyperbolic spin systems that we will discuss, briefly
explains their characteristic symmetries, and discusses how these symmetries manifest them-
selves if spontaneous symmetry breaking occurs. For precise definitions of the Grassmann
and Berezin integrals that are used see, e.g. [13, Appendix A].

The H2j0 model. The H2 D H2j0 model is defined as follows. We consider the hyperbolic
plane H2 realised as H2 D ¹uD .x; y; z/ 2 R3 W x2 C y2 � z2 D �1; z > 0º and equipped
with the Minkowski inner product u � u0 D xx0 C yy0 � zz0. For a finite graphG D .ƒ;E/,
we consider one spin ui 2 H2 per vertex i 2 ƒ and define the action

Hˇ;h.u/ D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi : (2.1)

The action also has a straightforward generalisation to edge- and vertex-dependent weights
ˇ D .ˇij / and h D .hi /, and we will sometimes consider this case. For ˇ > 0 and h D 0,
the minimisers of Hˇ;0 are constant configurations ui D uj for all i; j 2 ƒ. For h > 0, the
unique minimiser is ui D .0; 0; 1/ for all i . The H2 model is the probability measure on spin
configurations whose expectation is given, for bounded F W .H2/ƒ ! R, by

hF iˇ;h D
1

Zˇ;h

Z
.H2/ƒ

Y
i2ƒ

dui F.u/e
�Hˇ;h.u/ (2.2)

where dui stands for the Haar measure on H2 and Zˇ;h is a normalisation. Parametrising
ui 2 H2 by .xi ; yi / 2 R2 with zi D

q
1C x2i C y2i , we can explicitly rewrite (2.2) as

hF iˇ;h D
1

Zˇ;h

Z
.R2/ƒ

Y
i2ƒ

dxi dyi

zi
F.u/e�Hˇ;h.u/: (2.3)

The expectation is only normalisable if h > 0 (or, more generally, hi > 0 for some vertex i )
due to the non-compactness of H2. It is useful to construct a version with h D 0 in which
the field is fixed (pinned) at some distinguished vertex 0. We denote the pinned expectation
with pinning u0 D .0; 0; 1/ by h�i0

ˇ
.
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The H0j2 model. Now we consider the Grassmann algebra�ƒ generated by two generators
�i and �i per vertex i 2 ƒ and set

zi D
p
1 � 2�i�i D 1 � �i�i ; (2.4)

and unite these into the formal supervector ui D .�i ; �i ; zi /. Thus ui has two odd (anti-
commuting) components �i and �i and one even (commuting) component zi . We define
ui � uj D ��i�j � �j�i � zizj , which is again an element of�ƒ. These definitions are such
that ui � ui D �1, as in the case of H2 spins. Define

Hˇ;h D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi : (2.5)

For F a polynomial in the �i and �i set

hF iˇ;h D
1

Zˇ;h

Z � Y
i2ƒ

@�i @�i
1

zi

�
Fe�Hˇ;h ; (2.6)

where
R Q

i2ƒ @�i @�i stands for the Grassmann integral, i.e. the top coefficient of the element
of the Grassmann algebra to its right. For example,Z

@�@�e
���

D

Z
@�@�.1 � ��/ D

Z
@�@��� D 1: (2.7)

In (2.6) and (2.7) we have used the convention that smooth functions of commuting elements
of the algebra are defined by Taylor expansion. By nilpotency the expansion is finite, i.e. a
polynomial. The H0j2 model is the expectation (2.6); while this is not a probabilistic expec-
tation, we will soon see that it often carries probabilistic interpretations. Generalisations to
edge- and vertex-dependent weights and pinning are straightforward.

The H2j2 model. The H2j2 model is defined as the H0j2 model was, but now beginning
with three commuting components xi ; yi ; zi . Formally, this means the real coefficients of
the Grassmann algebra �ƒ of the previous section are replaced by smooth functions of xi
and yi . To each vertex i we associate a formal supervector ui D .xi ; yi ; �i ; �i ; zi /, where xi
and yi are commuting, �i and �i are generators of a Grassmann algebra, and

zi D

q
1C x2i C y2i � 2�i�i D

q
1C x2i C y2i �

�i�iq
1C x2i C y2i

: (2.8)

As for H0j2, smooth functions of commuting elements of this algebra are defined by Taylor
expansion, with the expansion now performed about .xi ; yi / 2 R2ƒ; the second equality
of (2.8) is an example.

The definition (2.8) ensures that zi has positive degree zero part, and that
ui � ui D �1 for the super inner product ui � uj D xixj C yiyj � �i�j � �j�i � zizj . As
previously, we define

Hˇ;h.u/ D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi ; (2.9)
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and the associated expectation

hF iˇ;h D
1

.2�/jƒj

Z � Y
i2ƒ

dxidyi@�i @�i
1

zi

�
Fe�Hˇ;h : (2.10)

This integral combines ordinary integration and Grassmann integration and is an instance
of the Berezin integral, sometimes called a superintegral [15]. One computes the Grassmann
integral to obtain the top coefficient of the element of the Grassmann algebra; this is a smooth
function on R2ƒ. One then computes the ordinary Lebesgue integral of this function. Again
the generalisation to edge- and vertex-dependent weights and pinning is straightforward.

Note that (2.10) does not have a normalising factor as in the definitions of the
H2 and H0j2 models, aside from the factor .2�/�jƒj that does not depend on the weights.
Nonetheless, the expectation is normalised: h1iˇ;h D 1 if h > 0. This is due to an internal
supersymmetry in the model, which impliesZˇ;h D .2�/jƒj. More generally, this supersym-
metry implies a powerful localisation principle first used in this context in [34].

Theorem 2.1 (SUSY localisation for H2j2). For F W Rƒ � Rƒ�ƒ ! R smooth and with
sufficient decay, and for all edge- and vertex-dependent weights ˇ D .ˇij / and h D .hi /

with some hi > 0, ˝
F

�
.zi /; .ui � uj /

�˛
ˇ;h

D F.1;�1/: (2.11)

On the right-hand side of (2.11), 1 stands for the vector in Rƒ with all entries equal
to 1, and �1 stands for the jƒj � jƒj matrix with all entries �1. For example, hzi iˇ;h D 1

and hui � uj iˇ;h D �1.

Beyond: Hnj2m. There is a natural generalisation of the above models to the broader class of
Hnj2m models with nC 1 commuting coordinates and 2m anticommuting coordinates. Gen-
eralising Theorem 2.1, there is an exact correspondence between observables of the Hnj2m

and HnC2j2mC2 models, see [11, Section 2]. For developments when n D 0, see [25].

Symmetries. The Hnj2m models have continuous symmetries which are analogues of the
rotations of theO.n/models. For example, for the hyperbolic plane H2, these symmetries are
Lorentz boosts and rotations. The infinitesimal generator of Lorentz boosts in the xz-plane
is the linear differential operator T acting as

T z D x; T x D z; Ty D 0: (2.12)

If H2 is parametrised by .x; y/ 2 R2, then T D z@x . For the hyperbolic sigma models, there
is an infinitesimal boost Ti D zi@xi at each vertex i . Haar measure on H2 and the actionHˇ;0
with hD 0 are invariant under these symmetries, i.e.

P
i TiHˇ;0 D 0. Analogous symmetries

exist for H0j2 and H2j2. If h > 0 then
P
i TiHˇ;h ¤ 0, and the symmetries are said to be

explicitly broken by the external field. Important consequences of these symmetries are Ward
identities. For example, when n > 0 (such as for the H2 and H2j2 models), for h > 0,

hzi iˇ;h

h
D

X
j

hxixj iˇ;h; (2.13)
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and when m > 0 (such as for the H2j2 and H0j2 models),
hzi iˇ;h

h
D

X
j

h�i�j iˇ;h: (2.14)

Here xi and .�i ; �i / stand for an even (bosonic) coordinate and pair of odd (fermionic) coor-
dinates when n;m > 0, respectively. The proofs of these identities boil down to integration
by parts; see, e.g. [34, Appendix B] or [11, Lemma 2.3].

Spontaneous symmetry breaking. For the H2 and H2j2 models on a fixed finite graph,
it is a consequence of the non-compactness of the hyperbolic symmetry that, for example,
hx20iˇ;h diverges as h # 0. Similarly, for the H0j2 model on a finite graph, symmetry implies
that hz0iˇ;h tends to 0 as h # 0. One of the main questions of statistical physics is whether
a symmetry survives in the infinite volume limit, or if it is spontaneously broken. To make
this precise, it is convenient to consider a finite volume criterion for this question. Consider
a sequence of finite graphs ƒ that approximate Zd in a suitable way (denoted ƒ ! Zd ),
and let h�iˇ;h be the corresponding finite volume expectations. For the H2 and H2j2 models,
there is spontaneous symmetry breaking (SSB) for a given ˇ if

lim
h#0

lim
ƒ!Zd

˝
x20

˛
ˇ;h

< 1; (2.15)

and similarly for the H0j2 model there is SSB if

lim
h#0

lim
ƒ!Zd

hz0iˇ;h > 0: (2.16)

These notions can be understood by noticing that when the two limits are exchanged the
inequalities do not hold: in finite volume the h D 0 symmetries are restored in the h # 0

limit, while they are not in infinite volume if SSB occurs. There are other notions of SSB
for hyperbolic spin models, but those in (2.15)–(2.16) capture the relevant phenomena from
the perspective of the Anderson transition [34, Section 4.2], as well as from the perspective
of the associated probabilistic models, as will be discussed in Sections 4 and 5.

We briefly summarise when SSB occurs for the H2, H0j2, and H2j2 models. In
d D 2, (2.15) and (2.16) do not hold for any ˇ > 0. These results are versions of the Mermin–
Wagner theorem [12,50,56,57,64]. The situation is different in d � 3. For the H2 model, SSB
occurs for any ˇ > 0 as a result of convexity [49]. The H2j2 and H0j2 models, however, have
phase transitions: SSB in the form of (2.15) and (2.16), respectively, occurs in d � 3 if and
only if ˇ is sufficiently large [10,34]. Once SSB is known to occur (or not), it is interesting
and physically relevant to ask more precise questions, e.g. about the asymptotics of the cor-
relation functions hxixj iˇ;h. Sections 4 and 5 will discuss SSB and sharper questions for the
H2j2 and H0j2 models.

Horospherical coordinates. An important tool for the study of the above models are horo-
spherical coordinates for the superspaces Hnj2m with n� 2 [33,34]. For the hyperbolic plane
H2 these are coordinates .t; s/ 2 R2 such that

x D sinh.t/ �
1

2
et jsj2; y D ets; z D cosh.t/C

1

2
et jsj2: (2.17)
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For the space Hn, these coordinates generalise by taking s D .si / 2 Rn�1. For the super-
spaces Hnj2m, in addition there are m pairs Grassmann coordinates  D . i /, N D . N i /

such that

x D sinh.t/ �
1

2
et jsj2 � et N ; y D ets; � D et ; � D et N ;

z D cosh.t/C
1

2
et jsj2 C et N ;

(2.18)

where we are using the abbreviation  N D
Pm
iD1  

i N i if there are m Grassmann compo-
nents. In these coordinates the action becomes

Hˇ;h D ˇ
X
ij

��
cosh.ti � tj / � 1

�
C
1

2
etiCtj jsi � sj j

2
C etiCtj . i �  j /. N i � N j /

�
C h

X
i

��
cosh.ti / � 1

�
C
1

2
eti jsi j

2
C eti i N i

�
; (2.19)

and the hyperbolic reference measure is dt ds @ N @ e
.n�2m�1/

P
i ti , where @ N @ denotes

Grassmann integration if m > 0. A crucial feature of (2.19) is that the s and  ; N variables
appear quadratically in Hˇ;h and hence can be integrated out via exact Gaussian computa-
tions. The t -marginal is thus proportional to the positive measure e� QHˇ;h dt where

QHˇ;h.t/ D ˇ
X
ij

�
cosh.ti � tj / � 1

�
C h

X
i

�
cosh.ti / � 1

�
C
n � 2m � 1

2

�
log det

�
��ˇ.t/ C h.t/

�
� 2

X
i

ti

�
: (2.20)

In (2.20), ��ˇ.t/ C h.t/ is the t -dependent matrix acting as�
��ˇ.t/f C h.t/f

�
i

D �

X
j�i

ˇetiCtj .fj � fi /C hetifi : (2.21)

The t -dependent weights ˇij .t/D ˇetiCtj and hi .t/D heti generalise immediately to edge-
and vertex-dependent reference weights. The determinant in (2.20) arises from the Gaus-
sian integration over the s and  ; N variables. Since the t -field is distributed according to a
positive measure, one can use standard tools from analysis. This is useful since, e.g. for all
Hnj2m models,

hzi iˇ;h D hzi C xi iˇ;h D
˝
eti

˛
ˇ;h
; (2.22)

where the first identity used that hxi iˇ;h D 0, by symmetry. For the pinned expectations,
analogous representations hold with h D 0 and t0 D 0.

3. Physical background: Anderson transition

This section briefly discusses the origins of hyperbolic spin systems as simplified
models for the Anderson delocalisation–localisation transition. For a more detailed survey
about this, we refer in particular to [71]. Further excellent surveys include [70] and [38,58] for
a physics perspective. For general background on the Anderson transition, see [1].
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Consider a random matrixH D .H.i; j //i;j2ƒ such as the Anderson Hamiltonian
H D Hˇ D �ˇ�C V where V D .Vi /i2ƒ is an i.i.d. Gaussian potential, ƒ is a discrete
torus approximating Zd , and � is the lattice Laplacian on ƒ. The fundamental question is
to determine whether or not the spectrum of H contains an absolutely continuous part in
the infinite volume limit, and very closely related to this, if the eigenfunctions (often called
states in this context) ofH are extended or localised. Extended states correspond to a metallic
phase while localised states correspond to an insulating phase. To discuss this further, define
the two-point correlation function

�ˇ;E;h.j; k/ D E
ˇ̌
.Hˇ �E � ih/�1.j; k/

ˇ̌2
; j; k 2 ƒ; (3.1)

where i D
p

�1. The existence of extended states for energies near E is essentially implied
by limh#0 limƒ!Zd �ˇ;E;h.j; j / < 1. For the Anderson model, it is a long-standing con-
jecture that this occurs in d � 3 for E inside the spectrum of �ˇ� when ˇ is sufficiently
large. In the same setting, the more precise quantum diffusion conjecture asserts

lim
h#0

lim
ƒ!Zd

�ˇ;E;h.j; k/ � D.E; ˇ/.��/�1.j; k/ � C.E; ˇ/jj � kj
�.d�2/; j; k 2 Zd

(3.2)
for some constants C;D, and where the asymptotics hold for jj � kj ! 1. This gives a hint
that the conjecture might be difficult: the two-point function decays slowly, like that of the
massless Gaussian free field. Such behaviour also occurs for fluctuations of spontaneously
broken continuous symmetries (Goldstone modes). In [38, 74] it was argued that the origin
of extended states is the existence of SSB for a (complicated) spin model with hyperbolic
symmetry, and that quantum diffusion is exactly the associated Goldstone mode. The spin
model is based on the supersymmetric approach to the replica trick for computing the two-
point function.

We briefly indicate some parallels between the present discussion and Section 2.
The elementary identity

1

h
E Im.Hˇ �E � ih/�1.j; j / D

X
k

E
ˇ̌
.Hˇ �E � ih/�1.j; k/

ˇ̌2
; (3.3)

which is also valid without expectations, is analogous to the Ward identities (2.13)–(2.14).
Thus the role of hzj i is played by E Im.Hˇ � E � ih/�1.j; j /. In the limit h # 0 this is
� times the density of states �.E/, i.e. the asymptotic eigenvalue distribution. The role
of the two-point functions hxjxki or h�j�ki is played by �ˇ;E;h.j; k/ D Ej.Hˇ � E �

ih/�1.j; k/j2. The absolute values in the latter correlation function are essential and the
origin of the hyperbolic symmetry [71, Section 2.3]. The non-compactness of the hyperbolic
symmetry manifests itself in the high temperature phase: the unboundedness of �ˇ;E;h.j; k/
as h # 0 signals an absence of delocalisation. The stronger notion of localisation corresponds
to

�ˇ;E;h.j; k/ �
e�cjj�kj

h
: (3.4)

The divergence as h # 0 is analogous to the behaviour of the H2j2 model, see Section 2,
and is different from that of spin systems with compact symmetry. For further discussion,
see [71].
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Dictionary. The analogies between the expected behaviours of the Anderson model and the
probabilistic models described in the next two sections are summarised below. In d D 2,
ˇc D 1, while ˇc < 1 for d � 3.

ˇ < ˇc ˇ > ˇc

Anderson Model localised (insulating) phase extended (metallic) phase
VRJP positive recurrent phase transient phase
Arboreal gas subcritical percolation phase percolating phase

Logically, there is the possibility of non-extended states that are not localised, which
would correspond to a null-recurrent phase for the VRJP and a phase of the arboreal gas
where infinite clusters do not occur, but the cluster size distribution has infinite mean.

4. Linearly reinforced walks and H2j2

Formulas arising in the study of the H2j2 model (e.g. (2.21)) have interpretations in
terms of random walks, and similarities with ERRW did not go unnoticed [34, Section 1.5].
This was given an explanation by Sabot and Tarrès [65]; the explanation passes through
another reinforced random walk, which we now introduce. Fix edge weights ˇij > 0 for
each edge ij 2 E, and set ˇij D 0 if ij 62 E. The vertex-reinforced jump process (VRJP)
withX0 D 0 is the continuous-time self-interacting random walk with transition probabilities

P VJRP.ˇ/
0

�
XtCdt D j j.Xs/s�t ; Xt D i

�
D ˇijL

j
t ; L

j
t D 1C

Z t

0

1XsDj ds: (4.1)

The quantity Ljt is the local time at j at time t , up to the shift by 1. In words, then, condi-
tionally on the shifted local times at time t and that Xt D i , a VRJP jumps to site j with
probability proportional toˇijLjt . Thus previously vertices visited are preferred. The amount
of local time accrued at i before jumping away has the distribution of an exponential random
variable with rate

P
j ˇijL

j
t . With this in mind, large edge weights ˇij heuristically corre-

spond to weak reinforcement: jumps occur quickly and do not alter the local time profile too
much.

Sabot and Tarrès gave an exact formula for the (properly scaled) limiting local times
of the VRJP, and explained that this distribution is also the distribution of the t -field of
the H2j2 model. They further showed that the magic formula for the ERRW follows from
this result, see Section 4.4 below. Similarly to the ERRW, the VRJP can be expressed as
a continuous-time random walk in a random environment. The next theorem is a slightly
informal statement of this result. The precise formulation requires looking at the VRJP in the
correct time parameterisation; see [65]. For a symmetric square matrixAwith

P
j Aij D 0 for

all rows i , we write det0.A/ for the value of any principal cofactor ofA, e.g. the determinant
with the first row and column of A removed.
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Theorem 4.1 (Magic formula for VJRP [65]). Let G D .ƒ; E/ be a finite graph with
jƒj D N . In the exchangeable time parameterisation of the VRJP,

P VJRP.ˇ/
0 Œ��D .2�/�

N�1
2

Z
Rƒn0

P SRW.c.t//
0 Œ��e�

ˇ
2

P
i;j cosh.ti�tj /

�
det0.��ˇ.t//

� 1
2

Y
k2ƒn0

e�tk dtk ;

(4.2)
where P SRW.c.t//

0 is the distribution of a continuous-time simple random walk with conduc-
tances c.t/ij D ˇetiCtj started at 0.

The measure on the right-hand side of (4.2) is exactly the horospherical t -marginal
of the H2j2 model (with hD 0 and pinned at 0). The existence of a phase transition between
a transient and a recurrent phase of the VRJP on Zd for d � 3 now essentially follows from
the following earlier results for the H2j2 model (and extensions to the pinned model):

Theorem 4.2 (SSB for H2j2 [34]). Let d � 3 and ˇ � ˇ1. There exists Cˇ > 0 such that

lim
h#0

lim
ƒ!Zd

˝
cosh.ti /8

˛
ˇ;h

� Cˇ : (4.3)

Similar statements hold for other observables and for the pinned model.

Theorem 4.3 (Localisation for H2j2 [33]). Let d � 1 and ˇ � ˇ0. There exist Cˇ ; cˇ > 0
such that

hxixj iˇ;h �
Cˇ

h
e�cˇ ji�j j: (4.4)

Similar statements hold for other observables and for the pinned model.

The existence of a recurrent phase for small ˇ has also been proved more directly
from the definition of the VRJP [4]. A proof of transience that only uses the random walk
point of view seems challenging, and would be of interest.

4.1. Hyperbolic symmetry and the VRJP
A more direct and general connection between hyperbolic spin systems and the

VRJP was found later [12]. Towards this, observe (as was already done in [65]) that the joint
process .Xt ; Lt / of the VRJP and its local time is a Markov process, where Lt D .L

j
t /j2V .

The infinitesimal generator L of the joint process acts on gWV � Œ0;1/V ! R by

Lg.i; `/ D

X
j

ˇij j̀

�
g.j; `/ � g.i; `/

�
C
@g.i; `/

@`i
: (4.5)

Write EVRJP.ˇ;`/
i for the expectation of the joint process with initial vertex i and local times

` D .`i /i2ƒ. The definition (4.1) corresponds to `i D 1 for all i .
To connect the VRJP to hyperbolic symmetry, consider the H2 model, for example,

and recall the infinitesimal generator Ti of Lorentz boosts in the xizi -plane acting at vertex i
from (2.12). Then under mild hypotheses on G, integration by parts and (2.12) yield

�

X
j

Z
.H2/ƒ

�
LG.j; z/

�
xixj e

�Hˇ;0.u/
Y
k2ƒ

duk D

Z
.H2/ƒ

.Tixi /G.j; z/e
�Hˇ;0.u/

Y
k2ƒ

duk :

(4.6)
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Thus boosts are adjoint to the generator of the VJRP. A consequence is the next theorem.

Theorem 4.4. Consider the H2 model. If F W Rƒ ! R decays fast enough, then˝
xixjF.z/

˛
ˇ;0

D

*
zi

Z 1

0

dt EVRJP.ˇ;z/
i

�
F.Lt /1XtDj

�+
ˇ

: (4.7)

Sketch of proof. Normalise (4.6) and choose G.j; `/ D Gt .j; `/ D EVRJP.ˇ;`/
j F.Lt /. Since

.Xt ;Lt / is a Markov process with generator L, we have LGt D @tGt . Integrating the result-
ing identity over t in .0;1/ gives the result.

Theorem 4.4 shows that H2 quantities can be computed in terms of the averages of
VRJP quantities, the average being over the initial local time of the VRJP. This average is
inconvenient for studying the VRJP itself. The computations above, however, immediately
generalise to other hyperbolic spin models. For the H2j2 model, one can in addition use
Theorem 2.1 to exactly compute the undesirable average. The result is the following theorem.

Theorem 4.5. Consider the H2j2 model. Then for any F W Rƒ ! R that decays fast enough,˝
xixjF.z/

˛
ˇ;0

D

Z 1

0

dt EVRJP.ˇ/
i

�
F.Lt /1XtDj

�
: (4.8)

In particular, hx2i iˇ;h is the expected time the VRJP started from i spends at i
when killed at rate h > 0. This relation can be used to prove the VRJP is recurrent in two
dimensions, irrespective of the reinforcement strength ˇ > 0, by proving a Mermin–Wagner
theorem for the H2j2 model [12]. Informally, Mermin–Wagner theorems assert that contin-
uous symmetries cannot be spontaneously broken in d D 1; 2. As discussed earlier, for the
H2j2 model SSB corresponds to a finite variance, i.e. transience.

Isomorphism theorems. Theorems 4.4 and 4.5 are examples of isomorphism theorems,
meaning identities relating the local time field of a stochastic process to a spin system. The
first example of such a result related simple random walk to the Gaussian free field and was
obtained by Brydges, Fröhlich, and Spencer [19]. They were inspired by Symanzik [73]. The
formulation as a distributional identity is due to Dynkin [36]; sometimes the result is called
the BFS–Dynkin isomorphism. A host of other isomorphism theorems have been found in
Gaussian settings, see [53]. Other isomorphism theorems for the VRJP can be obtained by the
approach above, and it is possible to obtain Theorem 4.1 in this way, see [13]. Isomorphisms
for the VRJP can also be obtained by expressing the VRJP as a mixture of Markov processes
and using isomorphism theorems for the Markov processes; see [23].

4.2. Random Schrödinger representation and STZ field
In [33], it was observed that after conjugation by the diagonal matrix e�t D .e�ti /i ,

the matrix ��ˇ.t/ C h.t/ in (2.21) becomes a Schrödinger operator with t -dependent poten-
tial:

e�t
ı

�
��ˇ.t/ C h.t/

�
ı e�t

D ��ˇ CV.t/; Vi .t/D

X
j

ˇij .e
tj�ti � 1/C hie

�ti : (4.9)
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This point of view led to the proof of Theorem 4.3. It was later recognised that this random
Schrödinger point of view can be used to obtain a powerful representation of the t -field [67].
For the pinned H2j2 model with h D 0 and t0 D 0, the t -field measure (2.20) can be written
in terms of ��ˇ C V.t/ using that

e� QHˇ .t/ D e� 1
2

P
i Vi .t/

�
det

�
��ˇ C V.t/

��1=2
: (4.10)

This suggests it might be useful to change variables from t to V.t/. This change of variables
is not directly well-defined when t0 D 0 since the set of V such that .��ˇ C V / is posi-
tive definite is jƒj-dimensional. This can be sidestepped by treating V as the fundamental
variable, i.e. considering

e� 1
2

P
i Vi

�
det.��ˇ C V /

��1=21.��ˇ C V is positive definite/ dV: (4.11)

The random vectorBi D
1
2
.Vi C

P
j ˇij / is often called the ‘ˇ-field,’ but since we use ˇ for

edge weights (inverse temperature), we will denote it by B instead and call it the STZ field.

Theorem 4.6. The Laplace transform of the STZ field is given by

Ee�.�;B/
D

Y
i

1

.�i C 1/1=2

Y
ij

e�ˇij .
p
�iC1

p
�jC1�1/: (4.12)

Moreover, the t -field (pinned at any vertex) can be recovered in distribution from B .

In particular, the theorem implies the STZ field is 1-dependent. In [68], this remark-
able property of the STZ field was used to construct an infinite volume version on Zd , and
applied to characterise transience and recurrence of the VRJP in terms of a 0=1 law.

4.3. Phase diagram of the VRJP
The most basic qualitative question one can ask about the VRJP is whether it is recur-

rent or transient for a given reinforcement strength ˇ > 0. This may in principle depend on
the precise notion of recurrence used, as the VRJP is non-Markovian. As discussed above,
for d � 3 the existence of a phase in which the VRJP is almost surely recurrent was estab-
lished in [4, 65], and an almost surely transient phase in [65]. For d D 2, recurrence for all
ˇ > 0 in the sense of infinite expected local time at the initial vertex was established in [12].
Proofs of almost sure recurrence followed shortly [50,64]. Similar results had previously been
established for the ERRW [12,56,68].

The qualitative behaviour of the VRJP is almost completely understood on Zd due
to the following remarkable correlation inequality of Poudevigne.

Theorem 4.7. For the H2j2 model and any convex function f , the expectation hf .etj /i0
ˇ

is
increasing in all weights ˇ D .ˇij /.

The proof of Theorem 4.7 relies on the STZ field [62]. This inequality implies that
transience is a monotone property with respect to the constant initial reinforcement param-
eter ˇ. Combined with the results of the previous paragraph, this implies that the VRJP
has a sharp transition from almost sure recurrence to almost sure transience on Zd for con-
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stant ˇ: recurrence for ˇ < ˇc.d/ and transience for ˇ > ˇc.d/. The behaviour at ˇc is open.
Poudevigne’s correlation inequality also leads to a proof of recurrence in d D 2.

4.4. Further discussion
Back to edge-reinforced random walk. The connection of the ERRW to the H2j2 model is
somewhat less direct than for the VRJP: it turns out that the ERRW is an average of VRJPs
[65]. Somewhat more precisely, ERRW with initial edge weights ˛ can be obtained from the
VRJP with initial edges weights ˇ if the ˇij are chosen to be independent Gamma random
variables with mean ˛ij . While this additional randomness presents some difficulties, the
existence of a transient phase for the ERRW in d � 3 was obtained by similar methods
to that of the VRJP [32]. In terms of the spin model, the Gamma-distributed random edge
weights correspond to replacing the exponential e

P
ij ˇij .ui �ujC1/ by

Q
ij .�ui � uj /

�˛ij in the
(super)measure. Such a product weight is often called a Nienhuis interaction.

Interestingly, the recurrence of the ERRW in two dimensions was obtained before
the recurrence of the VRJP. This was possible due to insights of Merkl and Rolles, who
directly proved a Mermin–Wagner-type theorem for the ERRW by making use of the magic
formula [57]. Merkl and Rolles were able to conclude recurrence of the ERRW on Z2 for
strong reinforcement if each edge of the lattice was replaced by a long path. Sabot and Zeng’s
proved recurrence on Z2 for all reinforcement strengths by obtaining a characterisation of
recurrence in terms of the STZ field [68], and showing that an estimate from [57] implies
recurrence. The ergodic properties of the STZ field play a crucial role in this argument.

Beyond Zd . There are also results for the VRJP beyond Zd . The existence of a transition on
trees was proven in [27], and on non-amenable graphs in [4]. A fairly complete understanding
on trees has been obtained, see [7] and references therein.

Future directions. There remain many open questions. What is the critical behaviour of the
VRJP and the H2j2 model on Zd , d � 3? Is there an upper critical dimension? For d D 3

aspects of this question were studied numerically in [35], and evidence was found for the
existence of a multifractal structure in the H2j2 model. Multifractal structure is also expected
near the Anderson transition for random Schrödinger operators. For the regular tree (Bethe
lattice), further remarkable critical behaviour was observed, in part numerically, in [75]. This
reference concerns a more complicated sigma model, but the main predictions also apply to
the H2j2 model [35]. On Z2 the VRJP is believed to be positive recurrent, i.e. exponentially
localised, but this important conjecture about the H2j2 model and the VRJP remains open.
The heuristic for positive recurrence is based on the (marginal) renormalisation group flow
and goes along with the prediction of asymptotic freedom at short distances [34, Section 4.3].
Analogous predictions based on similar heuristics exist for the 2d Heisenberg model, the
2d Anderson model, 4d non-abelian Yang–Mills theory, and the 2d arboreal gas (discussed
below). Another question is to understand the VRJP in d � 3 with non-constant initial local
times: Theorem 4.4 and results of [72] suggest the VRJP is always transient if started with
initial local times given by the z-field of the H2 model. Understanding the properties of the
z-field that destroy the phase transition would be interesting.
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5. The arboreal gas and H0j2

The arboreal gas is the uniform measure on (unrooted spanning) forests of a weighted
graph. More precisely, given an undirected graph G D .ƒ; E/, a forest F D .ƒ; E.F // is
an acyclic subgraph of G having the same vertex set as G. Given an edge weight ˇ > 0

(inverse temperature) and a vertex weight h � 0 (external field), the probability of an edge
set F under the arboreal gas measure is

Pˇ;hŒF � D
1

Zˇ;h
ˇjE.F /j

Y
T2F

�
1C h

ˇ̌
V.T /

ˇ̌�
1.F is a forest/ (5.1)

where T 2 F denotes that T is a tree in the forest F , i.e. a connected component of F . We
write Pˇ D Pˇ;0. As for the VRJP, the generalisation to edge- and vertex-dependent weights
ˇ D .ˇij / and h D .hi / is straightforward, and is sometimes useful.

The arboreal gas arises naturally in the context of the q-state random cluster model
(q-RCM), which we recall is the model defined by (5.1) by omitting the indicator function
and instead weighting each component by a factor q > 0. In particular, q D 1 is Bernoulli
bond percolation. On a finite graph, the arboreal gas edge weight ˇ0 is the limit of the q-RCM
as q; ˇ ! 0 such that ˇ=q ! ˇ0, and it is natural to think of the arboreal gas as the 0-RCM.
The most fundamental question about the arboreal gas is whether or not it has a percolation
phase transition. It is straightforward to establish a subcritical phase when ˇ is small: the
arboreal gas can be stochastically dominated by bond percolation [43, Theorem 3.21], and for
ˇ small the domination is by subcritical percolation.

5.1. Phase transitions for the arboreal gas
The existence of a supercritical phase for the arboreal gas is a more subtle question

than for the q-RCM with q > 0. One way to see this subtlety is based on symmetries. To
discuss this, recall that for q 2 ¹2; 3; : : : º there is a connection between the q-RCM and
the q-state Potts model [40]. In particular, spin–spin correlations in the q-state Potts model
are equivalent to connection probabilities in the q-RCM. The results of [22, 45] extend this
relationship to q D 0: the H0j2 model is a spin representation of the arboreal gas.

Theorem 5.1. Let h�iˇ and Pˇ denote the H0j2 and arboreal gas measures on a finite graph.
For vertices i; j 2 ƒ,

Pˇ Œi $ j � D �hui � uj iˇ : (5.2)

Moreover, the partition functions of the H0j2 model and the arboreal gas coincide.

Strictly speaking, the H0j2 formulation of Theorem 5.1 first occurred in [11] as a
reformulation of [22, 45]; the hyperbolic point of view plays an important role in the proof
of Theorem 5.3 below. Theorem 5.1 suggests the existence of a supercritical phase for the
arboreal gas may depend on the dimension, as strong connection probabilities corresponds
to a symmetry breaking phase transition for the H0j2 model. Unlike the q-Potts models with
q 2 ¹2;3; : : : º, this model possesses a continuous symmetry, so one might expect a Mermin–
Wagner theorem to prevent such a transition in d D 2. This is indeed true:
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Theorem 5.2 ([11, Theorem 1.3]). Let d D 2. For any ˇ > 0, there exists c.ˇ/ > 0 such that
Pƒ
ˇ
Œ0 $ j � � jj j�c.ˇ/ for any ƒ � Z2.

It is possible to predict Theorem 5.2 without knowing about the H0j2 spin represen-
tation as follows [28]. The critical value of ˇ for the q-RCM on Z2 with q � 1 is known to
be ˇc.q/D

p
q [14], and this self-dual point is predicted to be the critical point for all q > 0.

Since the arboreal gas Pˇ 0 is the limit of the q-RCM with ˇ D ˇ0q, if the location of the
critical point is continuous as q # 0, it follows that ˇc.0/ D 1. These heuristics support the
conjecture that connection probabilities of the 2d arboreal gas decay exponentially for any
ˇ > 0. Independent support for this conjecture can be obtained by renormalisation group
heuristics, almost exactly as for the 2d VRJP [22].

Turning the preceding paragraph into a rigorous proof would be very interesting. It
would also be interesting to have a probabilistic proof (in terms of forests) that the arboreal
gas does not have a phase transition on Z2. The proof of Theorem 5.2 given in [11] follows
different lines. A key step is the following, which reduces the proof to an adaptation of [64,

Theorem 1].

Theorem 5.3 (Magic formula for arboreal gas). LetG D .ƒ;E/ be a finite connected graph.
For vertices 0; j 2 ƒ,

Pˇ Œ0 $ j � D
1

Zˇ

Z
Rƒn0

etj e�
ˇ
2

P
i;k cosh.ti�tk/.det0.��ˇ.t///3=2

Y
k2ƒn0

e�3tk dtk ; (5.3)

where det0.��ˇ.t// denotes any principal cofactor of ��ˇ.t/.

In outline, the proof of Theorem 5.3 consists of three steps: Theorem 5.1, rewriting
the H0j2 expectation in terms of H2j4 by SUSY localisation, and then changing to horo-
spherical coordinates and integrating out all but the t -field. The magic formula for the VRJP
from Theorem 4.1 has a strikingly similar form, but with the two occurrences of 3s in (5.3)
replaced by 1s. This difference in powers is due to there being two additional Grassmann
Gaussian integrals for H2j4 as compared to H2j2.

In three and more dimensions the arboreal gas does, however, undergo a percolation
phase transition. To state a precise theorem, let ƒN D Zd=LNZd denote a torus of side-
length LN with L large. The next theorem immediately implies that there is a macroscopic
tree occupying most of the torus with large probability.

Theorem 5.4 ([10, Theorem 1.1]). Let d � 3. If ˇ is sufficiently large, then there exists
�d .ˇ/ D 1 �O.1=ˇ/, D.ˇ/ > 0, and � > 0 such that

PƒN
ˇ

Œ0 $ j � D �d .ˇ/
2

CD.ˇ/.��/�1.0; j /CO

�
1

ˇjj jd�2C�

�
CO

�
1

ˇL�N

�
: (5.4)

Similar asymptotics hold for other correlation functions.

The polynomial correction in Theorem 5.4 is the hallmark of critical behaviour in
statistical mechanics, and is a manifestation of the Goldstone mode associated with the
broken continuous symmetry of the H0j2 model at low temperatures. The proof of The-
orem 5.4 relies essentially on the H0j2 representation (Theorem 5.1), and is based on a
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combination of Ward identities and a renormalisation group analysis. The renormalisation
group analysis is based in part on methods developed previously in different contexts, in
particular [8,9,18,20,21].

5.2. Further discussion
In contrast to the VRJP, even the qualitative phase diagram of the arboreal gas

remains incomplete: we do not know the existence of a ˇc such that percolation occurs if
ˇ > ˇc , and does not if ˇ < ˇc . It is also more difficult to discuss the arboreal gas directly
in the infinite volume limit than the VRJP; the analogue of the STZ field does not have
finite dependence and is less obviously useful, and useful correlation inequalities to this end
remain conjectural, see below. Nonetheless, many open questions beckon.

Critical behaviour. There is strong evidence that the upper critical dimension of the arbo-
real gas is d D 6, just as for bond percolation, and that the critical behaviour is governed by
more conventional critical behaviour as compared to the H2j2 model [28], see also [39,48].

Comparison with percolation. Recall that the analogue of Theorem 5.4 for Bernoulli per-
colation has an exponentially decaying correction [24]. Informally, this means that super-
critical percolation with the giant removed behaves like subcritical percolation. This can be
given a more precise meaning in the simpler setting of the Erdős–Rényi random graph, i.e.
Bernoulli percolation on the complete graph KN , where it is known as the discrete duality
principle [2, Section 10.5].

The polynomial correction in Theorem 5.4 shows that the arboreal gas does not
satisfy a duality principle. Rather, its supercritical phase behaves like a critical model off the
giant. This can again be given a more precise formulation on the complete graphKN and on
the wired regular tree, where detailed results are known [37,51,54,63]. In particular, the exact
cluster distribution can be determined: on KN in the supercritical phase there is a unique
giant tree, and an unbounded number of trees of size ‚.N 2=3/.

It is natural to predict that the macroscopic behaviour of the arboreal gas on the
d -dimensional tori ƒN with d � 3 is similar to that on the complete graph. In particular,
one expects a unique giant tree. The next-order critical corrections can also be expected to be
similar, at least when d > 6. In particular, the second biggest tree should then have size com-
parable to jƒN j2=3. Similar results have been established for critical Bernoulli percolation
in high dimensions, see [44, Chapter 13]. More ambitiously, we expect the order statistics of
the rescaled cluster size distribution to be universal, i.e. the same as on the complete graph
as determined in [51,54]. This conjecture may be easier to explore in other settings first, e.g.
on expanders, where a phase transition can be established by elementary methods [42].

Infinite-volume geometry and the UST. There is a large body of literature in probability
theory concerning uniform spanning forests (USF), meaning weak infinite-volume limits
of uniform spanning tree (UST) measures on finite graphs, see [52, Chapter 10]. To avoid
confusion with the arboreal gas (sometimes also called the USF [46]), we will call these
infinite-volume limits the UST on Zd . While the component structure of the UST on a finite
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graph is not particularly interesting, the infinite volume limit is: Pemantle proved that there is
a unique connected component on Zd for d � 4, and infinitely many connected components
on Zd for d > 4 [59]. This happens as ‘long connections’ can be lost in the weak limit.

On a finite graph, the UST measure is the limit ˇ ! 1 of the arboreal gas with
edge weights ˇ, and it is natural to wonder if the arboreal gas at low temperatures ˇ � 1

has similar properties to the UST in infinite volume. For global properties, this can evidently
only happen when there is a percolation transition. We are therefore lead to ask: for d � 3

at low temperatures, is it the case that for d D 3; 4 the infinite-volume arboreal gas has a
unique infinite tree, while for d > 4 there are infinitely many infinite trees? Is it the case that
the infinite components of the arboreal gas are topologically one-ended, as for the UST?

Negative correlation. A key tool in studying the q-RCM with q � 1 is that it is positively
associated: for increasing functions f; gW ¹0; 1ºE ! R, the covariance of f and g is non-
negative. This is a special case of the FKG inequality [41]. Positive association fails for q < 1
and for the arboreal gas. It is believed, but not known, that these models are in fact negatively
associated: for f; gW ¹0; 1ºE ! R depending on disjoint sets of edges, the covariance of f
and g is non-positive. Negative association is more subtle than positive association, and the
development of flexible, yet powerful, theoretical frameworks is an active subject [3,16,17,60].
While some of this theory applies to the arboreal gas, it remains open to prove even the special
case of negative correlation: for distinct edges e; f 2 E,

Pˇ Œe; f 2 F � � Pˇ Œe 2 F �Pˇ Œf 2 F �: (5.5)

Negative correlation for all weights is equivalent to all connection probabilities Pˇ Œ0$ j �D

hetj i0
ˇ

being increasing in all weights ˇ D .ˇij /, where the right-hand side is in terms of the
t -field of the pinned H0j2 model. The analogue for the H2j2 model is precisely Poudevigne’s
inequality, Theorem 4.7. Does this inequality extend to other Hnj2m models?

6. Concluding remarks

This survey has focused on the connections between hyperbolic spin systems and
probabilistic models that share phenomenology with the Anderson transition, including a
number of open questions. It is also worth repeating a question from [49]: are there other
models of random walk that are related to spin systems? A partial answer was given in [13],
but we expect there is more to be discovered; see, e.g. [66]. Similarly, one may search for
probabilistic representations of Hnj2m models for values of n;m not discussed here.
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