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Abstract

A fundamental problem in quantum mechanics is to understand the structure and the
energy of ground states of interacting systems of many particles. The quantum correla-
tions in ground states or low lying energy states are supposed to explain phenomena such
as superfluidity or superconductivity.
A long-standing conjecture in mathematical physics has been to establish a universal two-
term asymptotic formula for the ground state energy of a system of bosons in the dilute
limit of low density predicted by the theory of superfluidity. We discuss a recent proof of
this formula.
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1. Introduction

Physical systems of many interacting particles are highly complex and extremely
difficult to analyze due to the correlations between the particles.

Many-particle quantum systems are particularly difficult because of the added com-
plexity caused by entanglement leading to quantum correlations. Exotic phenomena such as
superfluidity and superconductivity are due to such quantum correlations. We are still very
far from being able to give a full mathematical explanation of these phenomena, but recent
years have seen some progress on these very fundamental issues.

We will give a short account of progress on a particularly fundamental aspect of the
analysis of quantum many-particle systems. The question is to understand the ground state,
i.e., the state of lowest energy, of an interacting quantum system of identical particles in
three dimensions. Consider a large, i.e., thermodynamic, system of density � > 0 of identical
nonrelativistic particles. The only assumption we make about the interaction between these
particles is that it is a repulsive two-body interaction. The question is what is the ground
state energy density of such a system. In a seminal paper from 1957 [12], Lee, Huang, and
Yang predicted that there is a universal asymptotic formula for the energy density e.�/ in the
dilute limit given by

e.�/ D .„2=2m/4��2a

�
1 C

128

15
p

�

p
�a3 C o.

p
�a3/

�
: (1.1)

The formula is referred to as universal because there is a two-term asymptotic expansion
depending on the interaction potential through only one parameter, the scattering length a.
We will define it below. Above „ is Planck’s constant and m is the mass of the particles.
The diluteness of the system is measured in terms of the dimensionless parameter �a3, i.e.,
the expected number of particles in a cube of size a. In [12] the prediction was based on a
heuristic analysis of the case of a hard core potential of radius a, i.e., particles move freely
except that they cannot get closer than a distance a from each other. Formula (1.1) can also
be understood heuristically from Bogolubov’s theory of superfluidity from 1947 [4]. We will
describe a recent proof [8, 9] that establishes the formula for a very large class of repulsive
interaction potentials. The Lee–Huang–Yang formula has been tested experimentally on a
gas of 7Li atoms in [18]. Here the coefficient which in the formula is 128

15
p

�
D 4:81 was

measured to be 4:5 ˙ 0:7 in excellent agreement with the theoretical value.
This paper is organized as follows. In Section 2 we explain the mathematical formu-

lation of many-particle quantum systems with two-body interactions. We, in particular, intro-
duce the thermodynamic limit of the ground state energy density for translation-invariant
systems. In Section 3 we consider the simple case of just two particles and use it to intro-
duce the scattering length and give the precise statements of the main theorems. In Section 4
we briefly introduce the second quantized formalism and give the heuristics behind Bogol-
ubov’s approximation that leads to his theory of superfluidity for weakly interacting Bose
gases. We will also explain how the Lee–Huang–Yang (LHY) formula can be heuristically
derived from the Bogolubov approximation. In Section 5 we sketch the ingredients of the
rigorous proof of the LHY formula. The details of what is being discussed here can be found
in [8,9].
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2. Quantum many-particle Hamiltonians with 2-body

interactions

We consider N identical particles moving in a box � D Œ0; L3� described by the
basic two-body Hamiltonian

HN D

NX
iD1

��i C

X
1�i<j �N

V.xi � xj / (2.1)

acting as a self-adjoint operator on an appropriate domain on HN D L2.�N / D
NN

L2.�/.
We have chosen units such that „ D 2m D 1, where m is the mass of the particles. The first
sum in the Hamiltonian describes the kinetic energy of the nonrelativistic particles. For sim-
plicity, we may assume that we have periodic boundary conditions such that � represents a
torus, but, as we shall see, this is not really important. In the periodic case we see that the
Hamiltonian above is translation invariant. The second sum in the Hamiltonian is the inter-
action. The only assumption we make about the interaction potential V is that it is repulsive,
i.e., it could be any measurable function V W R3 ! Œ0; 1�, spherically symmetric, and has
suffient decay. For simplicity, we will here assume that it has compact support, but this can
be relaxed considerably (see [9]).

A particularly interesting example is the hard core potential

V.x/ D

´
0; jxj > a;

1; jxj � a:
(2.2)

Since the Hamiltonian is symmetric under interchange of particles, it could also
be restricted to the fully symmetric subspace H B

N D
WN

L2.�/ or the fully antisymmetric
subspace H F

N D
VN

L2.�/. In the first case we describe bosons, while in the second case
we describe fermions.

The spectrum of the operator HN will be discrete. The lowest eigenvalue is referred
to as the ground state energy

E.N; �; V / D inf SpecHN
HN D inf SpecHB

N
HN : (2.3)

Note that for the ground state energy it does not play any role whether we consider
the full space HN or the bosonic subspace H B

N : By a classical theorem, the ground state
eigenvector will be symmetric. As physical particles are either bosons or fermions, we refer
to our analysis as the ground state of a Bose gas, but from a mathematical point of view this
restriction is not important. Nevertheless, we shall in Section 4.1 use the second quantized
techniques developed particularly for Bose gases.

The important quantity that we will analyze is the thermodynamic limit of the
ground state energy density

e.�; V / D lim
L!1;N=L3D�

L�3E.N; �; V /; (2.4)

where we have fixed the density of particles to be � � 0. It is not difficult to see that the
limit in (2.4) exists and it is indeed independent on the type of boundary condition that was
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chosen for the Hamiltonian. An alternative formulation would be not to fix the density but
to introduce a chemical potential � and define

egc.�; V / D lim
L!1;

L�3 inf
N �0

�
E.N; �; V / � �N

�
: (2.5)

This is referred to as the grand canonical (gc) formalism. The two “energy densities” are
related by a Legendre transform

e.�; V / D sup
�

�
egc.�; V / C ��

�
: (2.6)

3. The 2-particle case and the scattering length

In the case that we have only two particles N D 2 there exists a length a, called the
scattering length such that

E.2; �; V / D 8�aL�3
�
1 C O.a=L/

�
: (3.1)

The problem can be studied by analyzing the simple Schrödinger operator �� C
1
2
V

on L2.R3/. Indeed, we introduce the scattering solution, i.e., the unique function
' W R3 ! Œ0; 1/ satisfying the zero energy equation�

�� C
1

2
V

�
' D 0

with the limiting condition limx!1 ' D 1. Then, in terms of the scattering length, the scat-
tering solution satisfies '.x/ D 1 � a=jxj for x outside a ball containing the support of V .
Moreover, Z

V' D 8�a:

Since we also have 0 � ' � 1, we see that 8�a �
R

V . In the case of the hard core (2.2),
the scattering length is indeed the radius a of the core. In this case

R
V D 1, whereas the

scattering length is finite.
We are now in a position to state the main result on the Lee–Huang–Yang asymp-

totics. The asymptotic formula is proved by giving upper and lower bounds for the energy
density e.�; V /. The upper bound is proved by constructing approximate trial ground state
eigenfunctions that reproduce the asymptotics. Establishing a matching lower bound is usu-
ally considered more difficult as it requires ideas of how to control unimportant parts of the
Hamiltonian. The upper bound has, however, proved to be very difficult too, and today the
lower bound requires fewer assumptions on the potential than the upper bound.

The main results on the upper and lower bounds establishing the LHY formula are
given in the next two theorems.

Theorem 3.1 (The lower bound in the LHY formula). If V W R3 ! Œ0; 1� is measurable,
spherically symmetric with compact support then there exist a constant C > 0, depending
only on the support of V , and an explicit number � > 0 such that

e.�/ � 4��2a

�
1 C

128

15
p

�

p
�a3 � C.�a3/

1
2 C�

�
: (3.2)
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This lower bound was established in [8,9].

Theorem 3.2 (The upper bound in the LHY formula). If 0 � V 2 L3.R3/, spherically sym-
metric with compact support then there exists a constant C > 0 depending on the potential V

such that
e.�/ � 4��2a

�
1 C

128

15
p

�

p
�a3 C C.�a3/

1
2 C 1

10

�
: (3.3)

The upper bound as stated here was proved in [1]. The first proof of an upper bound
giving the first two terms was established in [19].

It is not difficult to heuristically understand the leading term as we shall now explain.
In the dilute limit, it is natural to expect to find the energy to be the energy of two particles
times the number of pairs. This would then, indeed, lead to an approximation for e.�; V /

given by
lim

L!1;N=L3D�
L�3 N.N � 1/

2
E.2; �; V / D 4��2a:

It is, however, already difficult to get an upper bound that reproduces this correctly. To illus-
trate this difficulty, notice that the simple constant trial state

‰L D L�3N=2 (3.4)

that minimizes the kinetic energy gives

lim
L!1;N=LD�

L�3
h‰L; HN ‰Li D

1

2
�2

Z
V

which, as we saw above, can be much bigger than 4��2a. The main difficulty is to understand
how to improve the large value

R
V with the smaller scattering length expression 8�a.

We end this section by giving a short review of the history of the formula which
has been a major open problem in mathematical physics for over 60 years. Additional details
can be found in [14]. The leading term in the LHY expansion (1.1) was predicted by Lenz
in [13]. The first to analyze it rigorously was Freeman Dyson in [6], i.e., in the same volume
of Physical Review in which the paper of Lee, Huang, and Yang appeared. Dyson, indeed,
proved an upper bound which gave the correct leading term for the hard sphere gas. In the
case of the hard sphere gas, Dyson’s upper bound still today gives the best known error
term of order .�a3/1=3, which is unfortunately not of the LHY order. Dyson also gave a
lower bound of the right leading order, but with a wrong constant. It took another 40 years
before Lieb and Yngvason in [17] established the lower bound with the correct constant. Ten
years later Erdős, Schlein, and Yau noticed in [7] that the Gaussian or quasi-free states in
Bogolubov’s theory of superconductivity can be used to give an upper bound that is correct
to leading order and has an error term of the same order as the second term in the LHY
formula but with a wrong constant. Later Yau and Yin [19] improved on the quasi-free states
to get the correct LHY formula as an upper bound. Both [7] and [19] require some regularity
of the potential and do not work for the hard core. In [5, 10] the correct second term in the
LHY formula was derived for sufficiently soft potentials, i.e., potentials that were allowed to
depend in particular ways on the diluteness parameter. Finally, the correct LHY lower bound
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was proved first for general L1 potentials in [8] and then in the most general case stated above
in [9]. For gases confined to boxes of size .�a/�1=2, the LHY formula was derived in [2,3].
The length scale .�a/�1=2 is called the healing length and its relevance will become clear
when we discuss Bogolubov’s theory in the next section.

4. Bogolubov’s theory of superfluidity

The LHY formula for the ground state energy can heuristically be understood from
Bogoliubov’s theory of superfluidity [4]. Thus in some sense establishing the LHY formula
validates Bogolubov’s theory. We will briefly describe this here, but it will require us to take
a little detour into the second quantized formalism.

4.1. Second quantized formalism
For any function f 2 L2.�/, we introduce the bosonic annihilation operator

a.f / W H B
N ! H B

N �1

defined by�
a.f /‰

�
.x1; : : : ; xN �1/ D

p
N

Z
�

f .xN /‰.x1; : : : ; xN �1; xN / dxN :

The bosonic creation operator a�.f / W H B
N �1 ! H B

N is the adjoint a�.f / D a.f /� of a.f /.
We here use the standard notation in physics to indicate the adjoint with a �. We deliberately
did not put a subscript N on the creation or annihilation operators because we want to use
the same notation independently of N . Indeed, this will allow us to write the famous com-
mutation relations �

a.f /; a.g/
�

D 0;
�
a.f /; a�.g/

�
D .g; f /L2.�/:

Using the second quantization formalism, we can rewrite the Hamiltonian HN (at least for
L large enough) as

H D

X
p2 2�

L Z3

p2a�
pap C

1

2L3

X
p;q;k2 2�

L Z3

OV .k/a
�

pCk
a

�

q�k
aqap

D

X
p2 2�

L Z3

p2a�
pap C

N � 1

2
� OV .0/ C

1

2L3

X
0¤k2 2�

L Z3

X
p;q2 2�

L Z3

OV .k/a
�

pCk
a

�

q�k
aqap;

(4.1)

where we used the short hand notation ap D a.L�3=2 exp.ipx//. These operators satisfy the
commutation relations �

ap; aq

�
D 0;

�
ap; a�

q

�
D ıp;q : (4.2)

We have also introduced the Fourier transform

OV .k/ D

Z
R3

exp.�ipx/V .x/dx:
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4.2. The Bogolubov’s approximation
In his 1947 paper [4], Bogolubov introduces an approximation to the Hamilto-

nian HN , or in fact to the operator H in (4.1), that forms the basis of his theory of superflu-
idity. Bogolubov’s approximation may be divided into three steps.

Step 1. Condensation and c-number substitution. The assumption is that the ground state
or low lying energy states represent a condensate, i.e., have many particles with momentum
p D 0. If all particles had momentum p D 0, we would get the state (3.4) which we know does
not have the correct ground state energy. It is, however, still possible that the expectation of
the operator a

�
0a0 in the ground state is close to the total number of particles N . The second

ingredient in this first step of the approximation is to replace the operators a0 and a
�
0 by the

number
p

N in the Hamiltonian H in (4.1). This is referred to as c-number substitution.
It will lead to an operator that no longer maps H B

N to itself. We consider it instead as an
operator on the bosonic Fock space

L1

M D0 H B
M .

Step 2. The Bogolubov’s Hamiltonian. The first step results in a Hamiltonian that will
have terms containing zero, two, three, or four factors a

�
p or ap with p ¤ 0. There are no

terms with only one a
�
p or ap with p ¤ 0 because of momentum conservation. The second

step in the approximation is to assume that we may consider a
�
p or ap with p ¤ 0 to be small

and therefore ignore terms with three or more such factors. This will lead to the Bogolubov’s
Hamiltonian

HBog D

X
0¤p2 2�

L Z3

��
p2

C � OV .p/
�
a�

pap C
1

2
� OV .p/

�
a�

pa�
�p C a�pap

��
C

N � 1

2
� OV .0/:

(4.3)

Step 3. Diagonalizing the Bogolubov’s Hamiltonian. It is not difficult to diagonalize the
Bogolubov’s Hamiltonian if we apply the following simple lemma whose proof is elemen-
tary.

Lemma 4.1 (Simple case of Bogoliubov’s diagonalization). For A > 0, B 2 R satisfying
jBj � A; we have the operator identity

A.a�
pap C a�

�pa�p/ C B.a�
pa�

�p C a�pap/ D D.b�
pbp C b�

�pb�p/ � .A �

p

A2 � B2/;

(4.4)
where

D WD

p

A2 � B2; (4.5)

and

bp WD .1 � ˛2/�1=2.ap C ˛a�
�p/; b�p WD .1 � ˛2/�1=2.a�p C ˛a�

p/; (4.6)

with

˛ WD B�1.A �

p

A2 � B2/: (4.7)
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Note that the operators bp and b
�
p satisfy the same commutation relations (4.2) as

the operators ap and a
�
p . We see that the Bogolubov’s Hamiltonian may be rewritten as

HBog D

� X
p2 2�

L Z3

".p/b�
pbp

�
C EL (4.8)

with
".p/ D

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2
/; (4.9)

and where the ground state energy of HBog is

EL D
N � 1

2
� OV .0/ �

1

2

X
0¤p2 2�

L Z3

��
p2

C � OV .p/
�

�

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2�
:

(4.10)

The ground state of the Bogolubov’s Hamiltonian is the vacuum state for the operators bp .
Such vacuum states of general bosonic annihilation operators are referred to as (pure) quasi-
free or Gaussian states.

In the thermodynamic limit, we have limL!1;N=L3D�
EL

L3 D eBog.�; V /, where

eBog.�; V / D
1

2
�2

Z
V

�
1

2
.2�/�3

Z
R3

��
p2

C � OV .p/
�

�

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2�
dp:

(4.11)
We may rewrite this as

eBog.�; V / D 4��2.a0 C a1/

�
1

16�3

Z
p2

C � OV .p/ �

q
p4 C 2� OV .p/p2 � �2

OV .p/2

2p2
dp; (4.12)

where we have introduced the notation

a0 D
1

8�

Z
V; a1 D

�1

.8�/2

“
V.x/V .y/

jx � yj
dxdy D

�1

64�4

Z
OV .p/2

2p2
dp: (4.13)

In fact, a0 and a1 are the first two terms in what is called the Born series for the scattering
length a. In the last integral in (4.12), we can change variable p D

p
8��a0q and arrive atZ

p2
C � OV .p/ �

q
p4 C 2� OV .p/p2 � �2

OV .p/2

2p2
dp

D .8��a0/5=2

Z
q2

C W�.q/ �

q
q4 C 2W�.q/q2 �

W�.q/2

2q2
dq; (4.14)

where we wrote W�.q/ D .8�a0/�1 OV .
p

8��a0q/. In the dilute limit, we may assume that
.�a0/�1=2 is much longer than the range of the potential and hence we can, to leading order
in the integral, replace W�.q/ by W�.0/ D 1. SinceZ

R3

q2
C 1 �

p
q4 C 2q2 �

1

2q2
dq D �

32
p

2�

15
;
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we arrive at
eBog.�; V / � 4��2.a0 C a1/ C 4��2a0

128

15
p

�

q
�a3

0: (4.15)

If we replace the first two Born terms a0 C a1 by the scattering length a in the first term and
a0 by a in the second term above, we arrive at the Lee–Huang–Yang formula. We note that
the change of variable p D

p
8��a0q in the integral above shows that the relevant momenta

that contribute to the LHY formula are of order of the inverse healing length p
�a.

Understanding the validity of the Bogolubov’s approximation and the validity of
these last replacements above were the major challenges in establishing the LHY formula
rigorously. We address this in the next section. We will end this section with a few further
remarks about the Bogolubov’s approximation and Bogolubov’s theory of superfluidity.

In his treatment [11] of superfluidity in helium, Landau realized the importance of
a linear dispersion law, i.e., that the energies of excitations grow linearly with momentum.
The slope in the linear dispersion represents the critical velocity for superfluidity, i.e., the
velocity below which objects can move through the fluid without creating excitations. We see
that the dispersion ".p/ in (4.9), indeed, has a nonvanishing linear slope limp!0 jr".p/j Dq

2� OV .0/. This is the central point in Bogolubov’s theory of superfluidity in weakly inter-
acting Bose gases.

5. Rigorous proof of the Lee–Huang–Yang formula

In this section we very briefly sketch the rigorous arguments, leading to the lower
bound in Theorem 3.1. The details can be found in [8,9].

An important ingredient in the Bogolubov’s approximation was the assumption of
condensation. It is still a great mathematical challenge to establish Bose condensation in
nontrapped translation invariant Bose gases. To circumvent this, the first step in the rigor-
ous derivation of the Lee–Huang–Yang formula in [8, 9] is a localization to boxes that are
essentially of the order of the healing length. On this scale, it turns out that the gas will look
sufficiently condensed. In other words, it is not possible to show that most particles in a ther-
modynamic box are in a state of momentum zero. We can, however, show that most particles
have momenta small compared to the inverse healing length.

For the rigorous lower bound, the localization is achieved by an operator estimate
on the Hamiltonian

HN � �N �

Z
hu du; (5.1)

where we introduced the chemical potential � that we will write � D 8���a. The reason for
this choice is that if we insert the leading term in the LHY formula 4��2a for the energy den-
sity then the choice of � that minimizes 4��2a � �� D 4��2a � 8���a� is indeed � D ��.
The operators hu above represent translations by u 2 R3 of a Hamiltonian h0 localized to
a box Œ0; `�3 with length ` D K`.��a/�1=2 for a sufficiently large constant K`, i.e., we are
localizing on scales that are large compared to the healing length.
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To describe the localized Hamiltonian h0, we introduce the orthogonal projection P

that projects onto the one-dimensional space of constant functions in L2.Œ0; `�3/ and the
projection Q D I � P onto the orthogonal complement. We also introduce a sufficiently
regular function � W R3 ! Œ0; 1/ supported on Œ0; 1�3 and let �`.x/ D �.x=`/.

The localized Hamiltonian then has the form

h0 D

NX
iD1

Ti � ��

NX
iD1

Z
w1.xi ; y/dy C

X
1�i<j �N

w.xi ; xj /; (5.2)

where the localized kinetic energy is

T D Q�`K.�/�`Q C QG0Q (5.3)

with K.t/ being a function that is essentially the identity for t � `�2 and G0 an operator
that ensures a sufficient gap above zero in the kinetic energy, i.e., an important property is
G0 � .const/`�2. The exact forms of K and G0 are complicated and can be found in [8,9].
The potential function is

w.x; y/ D �`.x/
V .x � y/

� � �.x=`/
�`.y/; w1.x; y/ D w.x; y/'.x � y/; (5.4)

where we recall that ' is the scattering solution. For the potential part of the Hamiltonian,
it is not difficult to see that (5.1) is actually an identity. It is for the kinetic energy that it
becomes a lower bound.

In order to establish condensation, it is necessary to obtain an a priori lower bound
on the ground state energy of h0 of the correct LHY order. This is achieved in [8,9] by doing a
further localization that we shall not discuss here. Such an a priori lower bound establishes a
bound on the expectation of the number of noncondensed particles nC D

PN
iD1 Qi . Indeed,

the bound on the gap operator G0 and the a priori bound imply that any state that does not
already satisfy an LHY lower bound would have

.const/`�2
hnCi � hG0i � �2

�a

q
��a3`3;

i.e., hnCi � C�2
�a`5 D K2

`

p
��a3��`3. In other words, the expected number of noncon-

densed particles is smaller by the (small) factor K2
`

p
��a3 compared to the expected number

of particles ��`3 in the box. Unfortunately, it is not sufficient to control the expected number
of noncondensed particles. There are terms that require controlling powers of the number of
noncondensed particles. To achieve control of powers, we establish in [8] a stronger version
of condensation, namely that it is enough to restrict attention to the part of the Hilbert space
where we have the operator bound nC � M for some appropriately chosen parameter M.
Unfortunately, in order to treat the hard core potential, in [9] we had to work with a much
more complicated restriction, namely that nI

C � MI where nI
C represents the number of par-

ticles with kinetic energy in an interval I D .0; KI `�2/, for an appropriately large constant
KI . This means nI

C D
PN

iD1 1I .T /i . Note that nI
C would be equal to nC if KI D 1. The

point is that only restricting this operator allows us to choose a much smaller MI than we
would if we had to restrict nC. The argument required to restrict the Hilbert space uses a
method developed in [16] referred to as localization of large matrices.
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Having established control on the number of noncondensed particles we use c-
number substitution to treat the condensed particles. This can be done rigorously using the
method in [15].

A very central point in our analysis is a decomposition of the localized interaction
potential using in a very particular way the scattering solution '. As 0 � ' � 1, it is con-
venient to introduce the function ! D 1 � ' satisfying 0 � ! � 1 and tending to zero at
infinity. The following decomposition is an elementary, but crucial, identity from [8]:

���

NX
iD1

Z
w1.xi ; y/ dy C

X
1�i<j �N

w.xi ; xj / D Qren
0 C Qren

1 C Qren
2 C Qren

3 C Qren
4 ;

where

Qren
4 WD

1

2

X
i¤j

�
Qi Qj C .Pi Pj C Pi Qj C Qi Pj /!.xi � xj /

�
w.xi ; xj /

�
�
Qj Qi C !.xi � xj /.Pj Pi C Pj Qi C Qj Pi /

�
;

Qren
3 WD

X
i¤j

Pi Qj w1.xi ; xj /Qj Qi C h:c:;

Qren
2 WD

X
i¤j

Pi Qj w2.xi ; xj /Pj Qi C

X
i¤j

Pi Qj w2.xi ; xj /Qj Pi

� ��

NX
iD1

Qi

Z
w1.xi ; y/ dyQi C

1

2

X
i¤j

�
Pi Pj w1.xi ; xj /Qj Qi C h:c:

�
;

Qren
1 WD

X
i;j

Pj Qi w2.xi ; xj /Pi Pj � ��

X
i

Qi

Z
w1.xi ; y/ dyPi C h:c:;

Qren
0 WD

1

2

X
i¤j

Pi Pj w2.xi ; xj /Pj Pi � ��

X
i

Pi

Z
w1.xi ; y/ dyPi :

Here w2.x; y/ D w1.x; y/.1 C !.x; y//. The main observation is that the term Qren
4 is

nonnegative and can be ignored for a lower bound. We think of the terms with zero to four
Q’s as being similar to the corresponding terms in the Bogolubov’s analysis with zero to
four factors of ap or a

�
p with p ¤ 0. Note that in ignoring the term Qren

4 we are not simply
ignoring the term with four Q’s as Bogolubov did.

The term Qren
2 , together with the kinetic energy, can be rewritten in a form similar to

a Bogolubov’s Hamiltonian and can be diagonalized using a Bogolubov-type diagonalization
argument. Note that Qren

2 contains the potentials w1 and w2. The potential w1 is a localization
of V' that satisfies cV'.0/ D 8�a. This is the reason that our analysis will immediately lead
to the scattering length appearing and not only the Born approximations a0 and a0 C a1.

The appearance of w2 in Qren
2 means that the analysis of the Qren

2 does not directly
give the LHY formula. The additional contributions from the difference between w1 and
w2 will, however, be exactly canceled by a careful analysis of the term Qren

3 . This term can
again be approximately diagonalized, this time together with the excitation Hamiltonian from
the Bogolubov’s diagonalization, i.e., the analog of the first term in (4.8). This, however,
first requires estimating the operator PQw1QQ appearing in Qren

3 in terms of an operator
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PQLw1QH QH where QL essentially projects onto appropriately low (but still nonzero)
momenta and QH projects onto high momenta disjoint from the low momenta. Note that
the operator PQLw1QH QH is quadratic in QH which is why it allows for a Bogolubov’s
treatment similar to the treatment of Qren

2 .
In Bogolubov’s case there was no term corresponding to Qren

1 because of momentum
conservation. Here our spatial localization breaks momentum conservation, and we therefore
have a term Qren

1 . This term can fairly easily be treated together with the Qren
2 term in the first

Bogolubov’s diagonalization.
Putting these ingredients together is rather technical but eventually leads to the rig-

orous lower bound in Theorem 3.1.
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