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Abstract

After having introduced the notion of universality in statistical mechanics and its impor-
tance for our comprehension of the macroscopic behavior of interacting systems, I review
recent progress in the understanding of the scaling limit of lattice critical models, including
a quantitative characterization of the limiting distribution and the robustness of the limit
under perturbations of the microscopic Hamiltonian. Specifically, I focus on two classes
of non-exactly-solvable two-dimensional systems: nonplanar Ising models and interacting
dimers. In both settings, I describe the conjectures on the expected structure of the scaling
limit, review the progress towards their proof, and state some of the recent results on the
universality of the limit, which I contributed to. Finally, I outline the ideas and methods
involved in the proofs, describe some of the perspectives opened by these results, and
propose several open problems.
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1. Universality in Statistical Mechanics: a mathematical

challenge

Statistical Mechanics (SM) aims at explaining the macroscopic behavior of matter
in its different states, starting from a microscopic description of the system, which involves
an extremely large number of elementary components, such as atoms, molecules, or spins.
Due to the complexity of the microscopic structure of realistic materials and to the necessity
of handling models that are accessible to theoretical and numerical treatments, the mathe-
matical modeling of any system one may wish to study inevitably requires approximations
and simplifications, often quite drastic: essentially all the models studied in equilibrium and
nonequilibrium statistical mechanics are “toy models,” even the most challenging ones. As
illustrative examples, think to the description of magnets in terms of Ising, XY, or Heisen-
berg models; of disordered materials in terms of the Anderson model and the interacting
extensions thereof (in the context of electrical conduction in the presence of lattice defects)
or of the Edwards–Anderson model (in the context of spin glasses); of anisotropic liquids in
terms of monomer–dimer systems; and so on. The oversimplifications underlying the defini-
tions of these models cast a dark light on the physical reliability of their predictions. A priori,
there is no reason why the thermodynamic and correlation functions of real magnets, liquids,
or conducting materials should behave quantitatively (or even qualitatively) in the same way
as those of the Ising model, the Anderson model, the dimer–monomer model, etc.

Predictions based on these popular but oversimplified models can be reliable only
if they can be shown to be robust under the choice of the microscopic Hamiltonian, that is,
if they depend only upon general features such as symmetry, dimensionality, etc. Vaguely
speaking, robustness of the macroscopic behavior of SM systems is the content of the univer-
sality principle, which will be stated more precisely in two concrete mathematical settings
below. For the moment, let us just observe that, in view of the previous considerations, this
principle can be seen as the justification for the use of toy models in the description of com-
plex materials and, in a sense, it is what makes SM predictive and useful as a whole.

Away from the critical point, where, typically, the correlations among fluctuations
of local observables decay exponentially to zero at large distances, the universality of the
behavior of the system at the macroscopic and mesoscopic level is closely related to the Law
of Large Numbers and to the Central Limit Theorem (CLT) for weakly correlated random
variables: averages of local observables converge almost surely to their expectation (the
macroscopic value of the corresponding thermodynamic function), and their fluctuations
around the mean converge, after appropriate rescaling, to normal random variables.

Things are much more subtle and interesting in the vicinity of a phase transition,
where correlations among faraway fluctuations of local observables become so important
that the CLT has no a priori reason to hold, and will in general not hold. The understanding
of phase transitions is one of the central goals of SM since at least a hundred years. The
existence of several different kinds of phase transition and the characterization of the cor-
responding low- and high-temperature phases are among the great successes of the SM of
the 20th century. On the other hand, a complete understanding of the behavior of the system
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at, or close to, the critical point, is still missing, and poses several exciting challenges for
mathematical physics and probability. Let us focus here on the case of continuous phase
transitions. In such a case, do fluctuations of local observables admit an interesting, non-
Gaussian, mesoscopic limit? Is the limit robust under a large class of perturbations of the
interaction among the microscopic constituents of the system?

These are some of the most fundamental problems of equilibrium SM since the
1960s. The theory of Wilsonian Renormalization Group (RG) [94–96], which is among the
greatest success of theoretical physics in the last century, was developed for quantitatively
answering to these questions. It predicts that the “scaling limit” describing the large scale
behavior of correlations at a continuous phase transition is in great generality a Euclidean
Field Theory, which can be determined as the fixed point of an explicit semigroup (the Wilso-
nian RG transformation), acting on an often vaguely-defined “space of Hamiltonians.” The
Gaussian, often dubbed “trivial,” fixed points of the Wilsonian RG transformations corre-
spond to off-critical systems or to the simplest critical ones. What about nontrivial, i.e.,
non-Gaussian, fixed points? By construction, any such fixed point turns out to be scale invari-
ant. It has been argued that, under some reasonable additional hypotheses on the structure of
the correlation functions and the locality of theory, such fixed points are conformally invari-
ant [84,85,98], i.e., described by a Euclidean Conformal Field Theory (CFT). If we trust this
picture, we can take an axiomatic point of view, i.e., we can try to classify the admissible non-
trivial fixed point by classifying all the possible CFTs and, whenever possible, characterize
their structure (by, e.g., computing their correlation functions); this task has been essentially
completed in two dimensions (2D), thanks to the rich structure of the 2D conformal group
(see, e.g., [13,66] for the case of the “discrete series” of models with central charge 0 < c < 1,
and [71] for the case of Liouville theory). In three dimensions (3D), this axiomatic point of
view recently led to some spectacular developments, which allowed to compute the critical
exponents associated with the non-Gaussian behavior of local observables for several non-
trivial fixed point theories, including one that is believed to describe the scaling limit of the
3D Ising model at its critical point [83].

Once that the candidate scaling limits have been constructed in this way, one is
left with identifying the right one for any given class of microscopic Hamiltonians. While
heuristically one can appeal, e.g., to symmetry considerations or to numerical constraints
on the decay exponents of correlation functions to guess the right scaling limit for a given
microscopic Hamiltonian, the tasks of mathematically proving that the scaling limit of the
critical theory exists and it is conformal invariant, that such limit coincides with one of the
candidate Euclidean CFTs, and that it is robust under a large class of perturbations of the
microscopic interaction, are among the great challenges of modern mathematical SM.

Even in very specific, simple, settings, many of the natural questions arising from the
above premises remain open to date. However, in the last decades there has been remarkable
progress from different viewpoints, which allowed to exhibit the first examples of confor-
mally invariant, universal, scaling limits, rigorously constructed starting from lattice micro-
scopic models. These mathematical results are mostly restricted to 2D, which is the case I
will focus on from now on. Two complementary approaches that have been, and are being,

4042 A. Giuliani



successfully used to rigorously understand universality and conformal invariance of 2D lat-
tice SM systems are: a probabilistic one, based on random geometry, percolation and discrete
holomorphicity; and a field theoretic one, based on constructive RG ideas.

The first, probabilistic, method led to the complete proof of conformal invariance
of the scaling limits of the 2D planar Ising [31–33,39,55,56,91] and dimer [3,67,68,70] models.
It has the advantage of being flexible in treating geometric deformations of the domain
and of the underlying lattice, thus leading to the first proofs of universality with respect
to these kinds of deformations. The limitation of this approach is that it is mostly restricted
to exactly solved models at the “free Fermi point” (i.e., exactly solvable models, whose solu-
tion can be expressed in determinant form, as for Ising and dimers) and it is not flexible
in dealing with perturbations of the microscopic Hamiltonian (there are a few important
exceptions, notably [5,90], which suggest possible directions for future extensions and devel-
opments). The second, field theoretic, method led to the construction of the bulk scaling
limit of several interacting, non-solvable, models, such as Ashkin–Teller and 8-vertex (8V)
models [14, 45, 74], interacting dimers and 6-vertex (6V) models [48–50], the sine-Gordon
model on the Kosterlitz–Thouless critical line [40], and many others [1, 9, 10, 17, 18, 24, 34]:
remarkably, many of these models have non-determinantal scaling limits, and the results are
robust under a large class of microscopic perturbations of the lattice Hamiltonian. Moreover,
this approach led to the proof of several CFT predictions, such as scaling relations among
critical exponents and amplitudes [14,20,50], bosonization identities [10, 15], and expression
for the universal subleading contributions to the critical free energy [46]. A limitation of this
approach is that it is restricted to “weakly interacting” cases, that is, to models that are close
to a Gaussian model or to a free Fermi model. Moreover, it is not yet flexible enough for
dealing with non-translationally-invariant situations, including geometric perturbations of
the domain or of the underlying lattice. However, recent progress in simple domains with
boundaries [6, 7] opens new perspectives for applications to general geometries and for an
effective combinations of constructive RG ideas with probabilistic ones.

In the following, I will review some of these advances in the specific contexts of non-
planar 2D Ising models and of non-integrable perturbations of 2D dimer models, focusing
on a selection of results obtained via the constructive RG, whose development and applica-
tion to the theory of universality in 2D SM systems I contributed to. In Section 2, I discuss a
class of non-planar Ising models: I will first define the setting, then state the conjectures on
the universality of the scaling limit at the critical point, and then, after having reviewed the
known results in the integrable, planar, model, I will state our main results on the existence
and universality of the scaling limit for the multipoint energy correlations in the plane and in
the cylinder, see Theorems 2.1 and 2.2 below. In Section 3, I discuss a class of non-integrable
dimer models; also in this case, after having defined the setting, stated the expected structure
of the scaling limit and reviewed some of the known results in the integrable case, I will
state our main results on the fine asymptotics of the dimer–dimer correlations and on the
universality of the scaling limit of the height fluctuations, see Theorems 3.1 and 3.2. In Sec-
tion 4, I will informally describe the methods of proof, and, in Section 5, I will comment on
perspectives and open problems.
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2. The scaling limit of nonplanar Ising models

Consider a finite, simply connected, region of the plane, � � R2, and let
�a D � \ aZ2 be its discretization on the square grid of lattice spacing a > 0. At each
site x of �a, we assign an Ising spin �x 2 ¹C;�º and, given the spin configuration � 2

¹C;�º�a � †a, we assume that its energy, or Hamiltonian, has the following form:

H
�I;

a;�.�/ D �J
X
hx;yi

�x�y � �
X
X��a

V.X/�X ; (2.1)

where J > 0; the first sum runs over (unordered) nearest neighbor pairs of sites in�a; in the
second sum, given a subsetX of�a, we denoted �X WD

Q
x2X �x , and V is a translationally

invariant interaction, supported on even setsX , of finite range proportional to a1. In general,
we will require V be neither a pair interaction (i.e., to be supported on sets of cardinality
2) nor ferromagnetic (i.e., non-negative). We will refer to the first term on the right-hand
side of (2.1) as to the nearest-neighbor interaction, of strength J (to be fixed once and for
all), and to the second term as to the multi-spin interaction, of strength � (to be thought of
as being small compared to J ). The model describes the magnetic properties of thin ferro-
magnetic films with an out-of-plane easy-axis of magnetization and short range “exchange”
interactions among the magnetic moments of the ions. For � D 0, the Hamiltonian reduces
to that of the planar, nearest-neighbor, Ising model, originally introduced by Lenz in 1920
[73], which in 2D is exactly solvable in a very strong sense, as originally proved by Onsager
[81], see Section 2.1 below. For � ¤ 0, the multispin interaction breaks planarity (i.e., the
interaction cannot be represented in terms of couplings associated with the edges of a planar
graph with edge set �a), as well as the integrability of the model.

The apex ; on H�I;

a;� refers to the boundary conditions (b.c.), which we implicitly
assumed to be “open,” or “free,” i.e., we assumed that there is no spin in the complement
of �a interacting with those in �a. In a similar way, we can define the Hamiltonians H�IC

a;�

(resp. H�I�

a;� ) with C (resp. �) b.c., by including in its definition the interactions between
the spins � in �a and a configuration of spins identically equal to C1 (resp. �1) in its
complement,�ca. Analogously, if� is a 2D torus (resp. a 2D cylinder), we denote by�a its
discretization of lattice spacing a > 0 and let H�Iper

a;� (resp. H�Icyl
a;� ) be the spin Hamiltonian

defined as in (2.1), with the first sum including the nearest neighbor pairs winding up over
the torus (resp. cylinder) and the interaction V being translationally invariant with respect
to the natural translations on the torus (resp. cylinder).

The finite volume Gibbs measure with inverse temperature ˇ > 0 and # b.c., with
# 2 ¹;;C;�; per; cylº, is characterized by the probability weight

P�I#
ˇ Ia;�

.�/ D
1

Z
�I#
a;�

e�ˇH
�I#
a;�.�/; 8� 2 †a; (2.2)

where Z
�I#
a;� D

P
�2†a

e�ˇH
�I#
a;�.�/ is the partition function. Given an observable

A W†a ! R, we denote its average with respect to the probability weight (2.2) by E�I#
ˇ Ia;�

.A/.

1 More precisely, we assume V.X/DV0.X=a/ for a fixed, finite range, potential V0 W Z2 ! R.
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“Truncated,” or “connected,” expectations are denoted by semicolons, e.g., E�I#
a;�.A1IA2/D

E�I#
a;�.A1A2/ � E�I#

a;�.A1/E
�I#
a;�.A2/.

It is well known that the system displays a phase transition, in the following sense.
Fix a > 0 and take � sufficiently small compared to J . Denote by � % R2 the “thermo-
dynamic limit” obtained by (say) centering � at the origin, rescaling its linear dimensions
by L, and letting L ! 1. Then:

• If ˇ is small enough, for any finite X � aZ2, the limit E�
ˇ Ia;R2.�X / WD

lim�%R2 E�I#
ˇ Ia;�

.�X / is independent of the b.c. #, it is translationally invari-
ant and characterized by the fact that E�

ˇ Ia;R2.�x/ D 0, 8x 2 aZ2, and that the
truncated correlations E�

ˇ Ia;R2.�X I�Y / decay exponentially to zero as the distance
between the finite sets X; Y � aZ2 diverges.

• If ˇ is large enough, for any finite X � aZ2, the limits E�;˙
ˇ Ia;R2.�X / WD

lim�%R2 E�I˙

ˇ Ia;�
.�X / with b.c. C or � exist, they are translationally invariant,

but are different if jX j is odd: in particular, E�IC

ˇ Ia;R2.�x/ D �E�I�

ˇ Ia;R2.�x/ is pos-
itive and independent of x, and E�I˙

ˇ Ia;R2.�X I �Y / decay exponentially to zero as
the distance between the finite sets X; Y � aZ2 diverges.

The two scenarios described above are usually referred to as “high-temperature” and “low-
temperature” phases, respectively. If �V is a ferromagnetic pair interaction, it is known [4]

that they extend to two contiguous intervals .0; ˇc/ and .ˇc ;1/ separated by a critical
inverse temperature ˇc D ˇc.�/, at which, for any finiteX � aZ2, the limit E�

ˇc Ia;R2.�X / WD

lim�%R2 E�I#
ˇc Ia;�

.�X / is independent of #, and E�
ˇc Ia;R2.�x/ D 0, 8x 2 aZ2. The same is

expected to hold for a general (translationally invariant, even, of finite range / a) inter-
action V , provided that � is small enough. Moreover, it is expected that E�

ˇc Ia;R2.�X I �Y /

decays algebraically to zero as the distance among the finite setsX;Y � aZ2 diverges. Even
more, the scaling limit of the correlations is expected to exist and to be universal, in the fol-
lowing sense. Fix ˇ D ˇc , and let � be a prescribed subset of the plane, or a 2D torus, or a
2D cylinder. Define the rescaled spin and energy variables as

�.x/ D a�1=8�Œx�; "j .x/ D a�1
�
�Œx��Œx�Ca Oej � E�I#

ˇc Ia;�
.�Œx��Œx�Ca Oej /

�
; (2.3)

where, for x 2�, Œx�D aba�1xc, Oej is the unit coordinate vector in direction j 2 ¹1; 2º, and
# 2 ¹;;C;�;per;cylº. Then it is expected that, for any tuple of distinct points x1; : : : ; xn; y1;
: : : ; ym of � and any choice of j1; : : : ; jm 2 ¹1; 2º, the limit

lim
a!0

E�I#
ˇc Ia;�

�
�.x1/ � � � �.xn/"j1.y1/ � � � "jm.ym/

�
(2.4)

exists, it is conformally covariant under Riemann mappings of the domain� into an arbitrary
new domain �0 and, moreover, it depends on � in an extremely simple, multiplicative, way,
i.e., one expects that there exist two constants Z1 D Z1.�/ and Z2 D Z2.�/ such that the
limit in (2.4) equalsZn1Zm2 times the limit obtained in the nearest neighbor case �D 0. This
is what universality predicts in this context and whose proof represents a key challenge in
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mathematical SM for the incoming years. As anticipated in the introduction, lately there has
been remarkable progress towards its proof, as reviewed in the next subsections.

2.1. The nearest neighbor case
As mentioned above, for �D 0 the model is exactly solvable in a remarkably strong

sense [58, 60, 63, 65, 78–81, 88, 97]; in particular, the partition function can be written as the
Pfaffian of a suitable complex adjacency matrix K of a graph, known as the Fisher graph,
obtained by suitably decorating the one associated with �a [41, 64]; moreover, correlation
functions of local observables can be expressed in terms of Pfaffians of submatrices ofK�1.
The exact solution provides, among other things, closed formulas for the free energy, spe-
cific heat, magnetization, and the large distance asymptotics of the spin correlations. The
critical temperature is known to be ˇc D ˇc.0/ D .2J /�1 log.

p
2 C 1/, at which, letting

first� % R2 and then a ! 0, one finds, for any pair of distinct points x1; x2 2 R2 and any
choice of j1; j2 2 ¹1; 2º,

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
�.x1/�.x2/

�
D

A

jx � yj1=4
;

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
"j1.x1/I "j2.x2/

�
D

1

�2
1

jx � yj2
;

(2.5)

irrespective of the boundary conditions (in the first line, A D 0:70338016 : : : ). The exact
solution, in the form reviewed, e.g., in [79], also allows one to compute the multipoint energy
correlations in the infinite plane limit: for any n-tuple of distinct points x1; : : : ; xn and any
j1; : : : ; jn 2 ¹1; 2º, we have

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D ��n

ˇ̌
PfM.z1; : : : ; zn/

ˇ̌2
; (2.6)

irrespective of the boundary conditions, where zj D .xj /1 C i.xj /2 is the complex repre-
sentative of the point xj , and M.z1; : : : ; zn/ is the n � n antisymmetric matrix of elements
Mij .z1; : : : ; zn/ D

1i¤j
zi�zj

. While these results are classical, conformal covariance of the
limits in finite domain remained elusive for decades. In the case of the multipoint energy
correlations, a rigorous proof is due to Hongler [54], who proved that, for any open, simply
connected region� of the plane, letting ' W�! H be the conformal mapping from� to the
upper half-plane (both thought of as subsets of C), and defining E0I#

ˇc I�
.".z1/ � � � ".zn// WD

lima!0 E0I#
ˇc Ia;�

."j1.x1/ � � � "jn.xn// for any n-tuple x1; : : : ; xn 2 � and j1; : : : ; jn 2 ¹1; 2º

(here, as above, zj is the complex representative of xj ), then, for # 2 ¹;;C;�º,

E0I#
ˇc I�

�
".z1/ � � � ".zn/

�
D

 
nY
iD1

ˇ̌
'0.zi /

ˇ̌!
E0I#
ˇc IH

�
"
�
'.z1/

�
� � � "

�
'.zn/

��
: (2.7)

Moreover, the right side is explicit: in fact,

E0I;

ˇc IH

�
".z1/ � � � ".zn/

�
D .�1/nE0IC

ˇc IH

�
".z1/� � �".zn/

�
;

and
E0I˙

ˇc IH

�
".z1/ � � � ".zn/

�
D .i�/�n PfM.z1; : : : ; zn; zn; : : : ; z1/:
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The scaling limit of the multipoint spin correlations is more subtle. Kadanoff [61]

first guessed its expression in the special case of n colinear points. In the general case, the
result was conjectured on the basis of CFT methods: in fact, after the work of Belavin,
Polyakov, and Zamolodchikov [13], it became clear that the scaling limit of any mixed mul-
tipoint spin-energy correlation should coincide with the corresponding correlations of the
CFT minimal model with central charge c D 1=2, which can be explicitly computed via
Coulomb Gas methods. A rigorous proof of the validity of the expected formula is very
recent, compared with the history of the Ising model, and is due to Dubedat [36,37] and to
Chelkak, Hongler, and Izyurov [31, 32], who proved that for even n, letting again zj be the
complex representative of xj ,

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
�.x1/ � � � �.xn/

�
D

��
A

p
2

�n X
�1;:::;�nD˙W
�1C���C�nD0

Y
1�i<j�n

jzi � zj j
�i�j =2

�1=2
:

(2.8)

Even more, [31] proved that in a finite domain � with # 2 ¹;;C;�º boundary conditions,
the limiting spin correlations, E0I#

ˇc I�
.�.z1/ � � � �.zn// WD lima!0 E0I#

ˇc Ia;�
.�.x1/ � � � �.xn//

are conformally covariant in a sense analogous to (2.7), i.e.,

E0I#
ˇc I�

�
�.z1/ � � � �.zn/

�
D

 
nY
iD1

ˇ̌
'0.zi /

ˇ̌1=8!
E0I#
ˇc IH

�
�
�
'.z1/

�
� � ��

�
'.zn/

��
; (2.9)

and, again, the right-hand side is explicit, see [31, Eq. (1.2)].

2.2. The nonplanar case
The remarkable results reviewed in the previous subsection are crucially based on

the underlying exact solvability and discrete holomorphicity of the model. For �¤ 0, neither
of these properties holds, and completely different methods must be employed for construct-
ing the scaling limit. As explained in the introduction, the natural framework for treating the
effect of interactions are multiscale methods, rigorously implementing Wilson’s RG ideas in
the present context. A constructive approach based on these ideas was proposed in [82,92],
and successfully used in [14, 45, 74] to compute the large distance asymptotics of correla-
tion functions and prove several instances of universality in spin and vertex models such as
Ashkin–Teller, the 8V model and non-integrable variants thereof. See [76] for a review of
these developments until 2010. In the context of non-planar Ising models, a decade ago we
successfully employed these methods to compute and prove universality of the bulk energy
correlations, as summarized in the following theorem.

Theorem 2.1 ([44]). Fix a potential V that, besides being even and translationally invariant,
has finite range proportional to a and is invariant under discrete rotations and reflections.
Then there exist �0 > 0 and two functions ˇc D ˇc.�/ and Z2.�/, real-analytic in � for
j�j � �0, such that, if�D�L is a 2D torus of side L, for any n > 1, any n-tuple of distinct
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points x1; : : : ; xn 2 R2, and any choice of j1; : : : ; jn 2 ¹1; 2º,

lim
a!0

lim
L!1

E�Iper
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2�

�n
ˇ̌
PfM.z1; : : : ; zn/

ˇ̌2
; (2.10)

where M.z1; : : : ; zn/ is the same defined after (2.6).

Note that the right-hand side of (2.10) is equal to Zn2 times the bulk scaling limit
of the nearest-neighbor model (2.6): therefore, this theorem proves the universality conjec-
ture for the full-plane multipoint energy correlations of a large class of perturbations of the
standard 2D Ising model. The proof of the theorem, which is based on multiscale cluster
expansion methods (see Section 4 below) gives much more information than that summa-
rized in its statement: for instance, it provides an explicit, and essentially optimal, speed of
convergence to the limit, as well as a constructive algorithm for computing ˇc.�/ andZ2.�/;
moreover, it can be adapted to more general cases, e.g., it requires neither that V is invariant
under discrete rotations and reflections (the assumption has just the effect of simplifying the
explicit expression on the right-hand side of (2.10)) nor that ˇ is fixed exactly at ˇc : choosing
ˇ D ˇc C am0, we prove in [44] that the scaling limit of the truncated energy correlations
is non-trivial (it realizes the so-called “massive scaling limit” in the temperature direction)
and it decays exponentially to zero at large distances, with rate proportional to m0.

Theorem 2.1 and its proof are restricted to a translational-invariant setting, which
guarantees, in particular, that the effective potentials used to describe the system at length
scales much larger than the lattice spacing, see Section 4 for details, can be parametrized by a
finite number of “relevant” and “marginal” scale-dependent couplings (using a terminology
borrowed from the Wilsonian RG jargon), which are in fact constants, rather than functions
of the position x in the domain where the system is defined on. If we are interested in con-
structing the scaling limit of the correlations in a finite domain �, then we need to keep
track of such x-dependence, and to control the boundedness of the relevant and marginal
couplings, as the length scale increases, uniformly in x. From a technical point of view, the
x-dependence of the scale-dependent couplings potentially induces additional logarithmic
divergences in the theory, arising from the integration of the degrees of freedom supported
in the vicinity of the boundary. To date, there are no systematic, well-developed methods for
dealing with these divergences and related technical issues: the multiscale cluster expansion,
which the proof of Theorem 2.1 is based on, is not well developed yet in the case of critical
theories in finite domains, where boundaries are present and affect the form of correlation
functions in the scaling limit. This is a severe limitation for the rigorous construction of
scaling limits in finite domains and for the study of their conformal covariance with respect
to deformations of the domain. Recently, we managed to overcome several of these techni-
cal issues and to provide the first construction of non-planar Ising models in a domain with
boundary, in cylindrical geometry:

Theorem 2.2 ([6,7]). Fix V as in Theorem 2.1 and let �0; ˇc D ˇc.�/ and Z2 D Z2.�/ be
the same introduced there. Let� be a 2D cylinder with arbitrary sides `1; `2 > 0, periodic in
the horizontal direction. Then, for any n > 1, any n-tuple of distinct points x1; : : : ; xn 2 R2,
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and any choice of j1; : : : ; jn 2 ¹1; 2º,

lim
a!0

E�Icyl
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2 lim

a!0
E0Icyl
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2 .��/

�n PfA.x1; : : : ; xn/: (2.11)

Here A.x1; : : : ; xn/ is the 2n � 2n antisymmetric matrix with elements A.i;a/;.j;b/.x1; : : : ;
xn/ D 1i¤jg

cyl
a;b
.xi ; xj /, where i; j 2 ¹1; : : : ; nº, a; b 2 ¹1; 2º,

g
cyl
a;b
.x; y/ D

X
n2Z2

.�1/n
�
ga;b.x � y C `n/C .�1/aga;b.x � Qy C `n/

�
; (2.12)

ga;b are the matrix elements of

g.x/ D jxj
�2

 
x1 x2

x2 �x1

!
;

`n D .n1`1; n2`2/, and Qy D .y1;�y2/.

Also in this case, as for Theorem 2.1, the proof of the theorem provides bounds on
the speed of convergence to the limit, and it does not rely on the assumptions that V is invari-
ant under discrete rotations and reflections, and that the inverse temperature is fixed exactly
at ˇc (these were made just to simplify the statement). The key new ingredients in the proof,
compared with that of Theorem 2.1, are the following (I use again the Wilsonian RG jargon,
for additional details see Section 4 below): (1) proof that the scaling dimension of boundary
operators is better by one dimension than their bulk counterparts, (2) a cancelation mecha-
nism based on an approximate image rule for the fermionic two-point function allows us to
control the RG flow of the marginal boundary terms. I expect that these novel ingredients
will play an important role in future developments in the mathematical construction of the
scaling limit of critical 2D SM models in domains with boundaries.

Let me emphasize that the result summarized in Theorem 2.2 is uniform in `1; `2.2

Letting `1; `2 ! 1, we obtain the correlations in the half-plane (or, if desired, those in the
full-plane, depending on the way in which we perform the limit). The proof can be general-
ized to the computation of the scaling limit of the boundary spin correlations, which can be
shown to be the Pfaffian of an explicit antisymmetric matrix. A limitation of our result, intrin-
sic in the multiscale cluster expansion method employed, is the restriction to small values
of �. A related result [5] is the recent proof that, if V is a ferromagnetic pair interaction, then
the scaling limit of the boundary spin correlations has a Pfaffian structure. The proof is based
on a random current representation and a multiscale application of Russo–Seymour–Welsh-
type bounds [86,89] on the crossing probabilities of the currents, and applies to ferromagnetic
pair interaction of any strength, i.e., remarkably, the result is nonperturbative. A limitation is
that the scaling limit of the boundary spin correlations constructed in [5] and the associated

2 Strictly speaking, the proof in [6] requires `1=`2 to be bounded from above and below. This
limitation can be easily overcome: if `1 � `2 or `1 � `2, one needs to separately study the
contributions from the intermediate length scales between `1 and `2, which is easy to do by
the multiscale methods of [6]: in fact, at these scales, the systems effectively behaves as a
1D Ising system (whose thermodynamic behavior is “trivial”) with dressed parameters.
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critical exponents are not explicit: in this sense, [5] offers a complementary perspective to
ours, both with respect to the results and of the techniques employed.

3. The scaling limit of interacting dimer models

Let us now consider a different setting, the one of 2D dimer models, where the notion
of universality and the nature of the scaling limit is more subtle than for Ising models. Dimer
models (possibly in the presence of vacancies, called “monomers”) were introduced in the
equilibrium setting by Fowler and Rushbrooke in 1935 [42] as simplified models for liquids
of anisotropic molecules. Here we consider such models in the limit of no vacancies. Let us
define the setting precisely: similarly to the previous section, let � be a simply connected
region of the plane, or a 2D torus, or a 2D cylinder. Let L be the infinite square grid of lattice
spacing 1=

p
2 and axes tilted by 45ı with respect to the standard horizontal and vertical

axes, and let �a be a discretization of � on aL, a > 0. Note that the graph G�a associated
with �a, i.e., the one with vertex set �a and edge set consisting of the links connecting
nearest neighbor sites of �a, is bipartite, and we color its vertices black and white so that
neighboring vertices have different colors, with the convention that the origin is black. An
edge e of G�a is said to be of type r 2 ¹1; 2; 3; 4º if its white endpoint is to the NE, NW,
SW, SE of its black endpoint, respectively. For any e, we let r.e/ be its type and x.e/ the
coordinate of its black site (note that x.e/ 2 aZ2). A dimer covering, or “allowed dimer
configuration,” of the graph G�a is a subset of its edges that covers every vertex exactly
once. We denote by D D D.�a/ the set of allowed dimer configurations in �a, and we
assume that �a has been chosen in such a way that D ¤ ;. The class of dimer models we
are interested in are defined by the following probability measure on D :

P�a;�.D/ D
1

Z�a;�

�Y
e2D

tr.e/

�
e�V.D/; 8D 2 D ; (3.1)

where tr , with r 2 ¹1; 2; 3; 4º, are the weights of the 4 different dimer types; V is a transla-
tionally invariant interaction, of finite range proportional to a; � is the interaction strength,
to be thought of as “small”; Z�a;� D

P
D2D.

Q
e2D tr.e//e

�V.D/ is the partition function.
With no loss of generality, we can fix t4 D 1, and we shall do so in the following. For �D 0,
the model is exactly solvable in a very strong sense, as originally proved by Kasteleyn [64]

and by Temperley and Fisher [93], see Section 3.1 below. In general, for � ¤ 0, the model
is not exactly solvable anymore, even though there is a special choice of the interaction V ,
of nearest neighbor type, for which it reduces to the 6V model, which is solvable by Bethe
ansatz, see [50, Section 2.3] and [11].

In analogy with the notation of the previous section, we denote by E�a;�.A/ the
average of an observable A W D ! R with respect to the probability weight in (3.1); again,
truncated expectations are denoted by semicolons. Given an edge e, we denote by 1e the
corresponding “dimer observable,” i.e., the characteristic function of the event “e belongs
to the dimer configuration”; (truncated) expectations of products of dimer observables will
be referred to as (truncated) dimer correlations. Another important observable is the height
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function h, which is defined on the faces of G�a as follows: fix arbitrarily a face �0 of G�a ,
and set h.�0/ D 0; the value of the height on the other faces is fixed by letting the gradients
be

h.�0/ � h.�/ D

X
e2C�!�0

�e.1e � 1=4/; (3.2)

where C�!�0 is a nearest neighbor path on the dual ofG�a from the face � to the face �0, the
sum is over the edges crossed by this path, and �e is a sign, equal to C or � depending on
whether the oriented pathC�!�0 crosses e with the white site on the right or left, respectively.
The definition (3.2) is well posed because the right side does not depend3 on the choice of
the path C�!�0 .

The probability measure P�a;� depends on the parameters t1; t2; t3; � and on the
interaction V . Let us fix the latter once and for all. We are interested in identifying choices
of t1; t2; t3; � producing a nontrivial scaling limit as a ! 0 and/or� % R2. However, con-
trary to the Ising case, the properties of the limiting distribution are extremely sensitive to
the shape of �, to the choice of its discretization and on the boundary conditions. Let us
first consider the case that � D �L is a torus, centered at the origin, whose horizontal and
vertical sides are both of lengthL. In the limitL! 1, the expectation of the height function
converges to a linear profile with slope � D �.t1; t2; t3; �/ 2 R2:

lim
L!1

E�a;�
�
ah.�x/

�
D � � x; 8x 2 R2 (3.3)

where, for x 2 R2, �x is the face whose bottom vertex is black, of coordinate Œx� WD aba�1xc.
An alternative way of computing the function �.t1; t2; t3; �/ is via the Legendre transform
of the free energy of the system with respect to a suitable “magnetic field” B 2 R2: let
t1.B/ D t1e

�B1 , t2.B/ D t2e
�B1�B2 , t3.B/ D t3e

�B2 , and

F.B/ WD lim
L!1

L�2 logZ�a;�.B/; (3.4)

with Z�a;�.B/ D
P
D2D.

Q
e2D tr.e/.B//e

�V.D/ the partition function with B-dependent
weights, and define the surface tension � W R2 ! R [ ¹C1º as

�.s/ D sup
B

®
s � B � .B1 C B2/=2 � F.B/

¯
: (3.5)

Then the average slope � in (3.3) is the unique minimizer of � with respect to s. If � belongs to
the region C where � is strictly convex and twice differentiable, we also expect that the height
fluctuations on top of the linear profile with slope � are universally described by a Gaussian
Free Field (GFF), in the sense that, for anyC1 compactly supported test function WR2!R

such that
R

R2 .x/dxD0 and any ˛2R, letting ha. /Da2
P
x2�a

 .x/.h.�x/� a�1� � x/,

lim
a!0

lim
L!1

E�a;�.e
i˛ha. // D e� ˛2

2

R
R2 dx

R
R2 dy  .x/ .y/G�.x;y/ (3.6)

3 More precisely, the values of the right-hand side of (3.2) computed along two paths C�!�0

and C 0
�!�0 are the same if the loop obtained by concatenating C�!�0 with the path

obtained by reversing the orientation of C 0
�!�0 is contractible. If � is a torus, then the two

values may differ by a quantity depending on the windings of such a loop.
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where G� is the Green’s function, i.e., the inverse of ��� WD �
P2
i;jD1 @i .�ij .�/@j /, with

�ij .�/ the elements of the Hessian of � at �.
We are now in the position of formulating a conjecture on the scaling limit of the

dimer model in more general domains, involving the surface tension � introduced above and
the region C of slopes where � is strictly convex and twice differentiable. Suppose, e.g., that
� is an open, finite, simply connected region of the plane. Let Nh W � ! R be a continuous
function that extends continuously to @�, which is a “dimer limit shape,” in the sense that it
is the unique minimizer of

R
�
�.rh/dx with boundary condition hj@� D Nhj@�, and suppose

that it has “no frozen regions,” in the sense that r Nh belongs to C for almost-every x 2 �.
Then we expect that there exists a sequence of discretizations�a of� such that the average
limiting height profile is exactly Nh, i.e., lima!0 E�a;�.ah.�x// D Nh.x/, 8x 2 �, and the
scaling limit of the height fluctuations around Nh is a GFF, in the sense that, for any C1

compactly supported test function  W � ! R,

lim
a!0

E�a;�
�
ei˛h

a. /
�

D e
� ˛2

2

R
R2 dx

R
R2 dy  .x/ .y/G Nh;�

.x;y/ (3.7)

where G Nh;� is the inverse of the operator �� Nh on � defined by

.�� Nhf /.x/ WD �

2X
i;jD1

@i
�
�ij
�

Nh.x/
�
@jf .x/

�
; (3.8)

with zero Dirichlet boundary conditions at @�. The expected structure of the scaling limit
is even richer than what emerges from the previous discussion, e.g., it turns out that the
GFF nature of the height fluctuations is strictly (and subtly) related to the mesoscopic and
macroscopic behavior of the dimer correlations, as it will become clearer from the discus-
sion in the next two subsections. Moreover, the conjectured GFF nature of the height field
comes together with complementary (and even harder-to-prove) predictions on the monomer
and “vertex,” or “electric,” correlation functions, whose precise description, however, goes
beyond the purpose of this review.

3.1. The non-interacting case
As anticipated above, and in analogy with what we saw for the Ising model, at �D 0

the dimer model is exactly solvable [64,93]. Let us review here a few aspects of the solution,
and let us focus for simplicity on the case that � D �L is a square torus of side L, as
described before (3.3). For any finite a and L, the partition function can be expressed as the
linear combination of the determinants of four variants of the so-called Kasteleyn matrix
K D K.t1; t2; t3/ (a complex adjacency matrix of G�a ), the four variants differing for the
boundary conditions along the edges “winding up” over the torus, which can be periodic or
antiperiodic in the horizontal and vertical directions. Moreover, the multipoint dimer corre-
lations are (linear combinations of four) determinants of minors ofK�1. Starting from these
explicit formulas, one can easily compute the limit of the dimer correlations asL! 1, thus
finding, in particular, that, for any two edges e; e0, letting r.e/ � r , r.e0/ � r 0, x.e/ � x,
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x.e0/ � x0:

lim
L!1

E0a;�.1e1e0/ D KrKr 0 det

 
K�1.x C avr ; x/ K�1.x C avr ; x

0/

K�1.x0 C avr 0 ; x/ K�1.x0 C avr 0 ; x0/

!
; (3.9)

where Kr D i r�1tr , v1 D .0; 0/, v2 D .�1; 0/, v3 D .�1;�1/, v4 D .0;�1/, and K�1 is
the inverse Kasteleyn matrix in the thermodynamic limit, which reads

K�1.x; y/ D

Z
Œ��;��2

dk

.2�/2
e�ia�1k�.x�y/

�.k/
; (3.10)

with �.k/ D t1 C i t2e
ik1 � t3e

i.k1Ck2/ � ieik2 being the “dispersion relation.” Using
also the fact that limL!1 E0a;�.1e/ D KrK

�1.x C avr ; x/ and limL!1 E0a;�.1e0/ D

Kr 0K�1.x0 C avr 0 ; x0/, one finds that the truncated dimer-dimer correlation reads:

lim
L!1

E0a;�.1eI 1e0/ D �KrKr 0K�1.x C avr ; x
0/K�1.x0

C avr 0 ; x/; (3.11)

whose large distance decay properties are dictated by those ofK�1. In turn, these depend on
the singularity structure of �.k/: if � has two simple zeros, denoted pC and p�, a simple
asymptotic computation shows that at large distances

K�1.x; y/ D
a

2�

X
!D˙

!
e�ia�1p! �.x�y/

�!.x � y/
CO

��
a=jx � yj

�2�
; (3.12)

where �!.x/D ˇ!x1 � ˛!x2, with ˛! D @k1�.p!/ and ˇ! D @k2�.p
!/. In view of (3.11),

lim
L!1

E0a;�.1eI 1e0/ D
a2

4�2

X
!D˙

K!;rK!;r 0

.�!.x � x0//2

C
a2

4�2

X
!D˙

K�!;rK!;r 0

j�!.x � x0/j2
eia

�1.p!�p�!/�.x�x0/

CO
��
a=
ˇ̌
x � x0

ˇ̌��3�
; (3.13)

whereK!;r DKre
�ip! �vr . Notice that both the first and second terms on the right-hand side

decay at large distances (compared to the lattice spacing) as .a=jx � x0j/2, but the second
term behaves differently from the first because it wildly oscillates on the lattice scale.

From these formulas, via (3.2), one can compute the average height profile and the
asymptotics of the height fluctuations around the average. In particular, using the expres-
sion for the dimer one-point function, we find that the two components of the average
slope at �D 0, in the sense of (3.3), are �j D

P
e2C�!�Ca Oej

�e.Kr.e/K
�1.x.e/ C avr.e/;

x.e//� 1=4/, with j D 1; 2, for any face � (here Oej , is the unit coordinate vector in direction
j 2 ¹1; 2º). Remarkably, � belongs to the region C where the surface tension � is strictly
convex and twice differentiable iff � has two distinct zeros. In this case, by computing the
asymptotics of the height fluctuations around the average height profile, we find, as expected,
a GFF behavior: consider, e.g., four distinct points in the plane, x1; : : : ; x4 2 R2; using (3.2),
write the covariance of the height differences between the faces at x1; x2, and at x3; x4 as

lim
a!0

lim
L!1

E0a;�
�
h.�x1/ � h.�x2/I h.�x3/ � h.�x4/

�
D lim
a!0

X
e2C�x1!�x2
e02C�x3!�x4

�e�e0 lim
L!1

E0a;�.1eI 1e0/; (3.14)
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and plug the asymptotic formula for the truncated dimer–dimer correlation (3.13) on the
right-hand side of this equation; using the independence of the right-hand side of (3.14)
from the choice of C�x1!�x2

; C�x3!�x4
, choose these lattice paths to be well separated: by

doing so, one finds that both the remainderO..a=jx � x0j/3/ and the wildly oscillating terms
in (3.13) give subdominant contributions to the right-hand side of (3.14), in the a ! 0 limit;
we are then left with the contribution from the first term on the right-hand side of (3.13) and,
using the remarkable fact that, for any x 2 R2 and j 2 ¹1; 2º,X

e2C�x!�xCaej

�eK!;r.e/ D �i!@j�!.x/; (3.15)

we finally get

lim
a!0

lim
L!1

E0a;�.h
�
�x1 � h.�x2/I h.�x3/ � h.�x4/

�
D �

1

2�2
Re
Z �C.x2/

�C.x1/

dz

Z �C.x4/

�C.x3/

dz0 1

.z � z0/2

D
1

2�2
Re log

.�C.x4/ � �C.x1//.�C.x3/ � �C.x2//

.�C.x4/ � �C.x2//.�C.x3/ � �C.x1//
: (3.16)

Similar computations can be performed for higher moments of the height fluctuations,
from which one finds that, for any n > 2 and any 2n-ple of distinct points x1; : : : ; x2n,
lima!0 limL!1 E0a;� .h.�x1/� h.�x2/I : : : Ih.�x2n�1/� h.�x2n// D 0. As a corollary, one
finds (3.6) at �D 0, withG�.x;y/D �

1
2�2

log j�C.x � y/j. Similar results can be extended
to the case of finite, simply connected, domains of arbitrary shape: in particular, the GFF
behavior of the height field in the sense of (3.7)–(3.8) has been proved in [69,72].

Note that, remarkably, the prefactor in front of the logarithm on the right-hand side
of (3.16) (the “stiffness” of the GFF) is independent of the slope; equivalently,
det �ij .�/ � �2, irrespective of �, provided � 2 C . This is a very special property of
the non-interacting model, related to the fact that the spectral curve is an algebraic Har-
nack curve [70], and it is not expected to be robust under the addition of interactions. More
in general, one expects that the GFF behavior of the height fluctuation relies on a subtle
relation between the “stiffness” coefficient of the GFF, equal to 1=.2 det �ij .�//, and the
critical exponent associated with the oscillating part of the dimer–dimer correlation. Such a
connection is a restatement, in the dimer context, of a deep universality relation predicted by
Kadanoff [62] and Haldane [53] for vertex models and Luttinger liquids, based on Coulomb
gas and bosonization methods. In the next section I will present a rigorous statement of the
Kadanoff–Haldane relation for interacting dimer models and I will discuss its role in the
proof of the GFF behavior of the height field.

3.2. Interacting dimer models
Let us now consider interacting dimers, described by (3.1) with � ¤ 0. In this case,

the exact solvability of the model and its underlying determinant structure break down, and
no thermodynamic or correlation function can be written explicitly, in closed form. This is the
same as for the Ising model, but actually, compared with the Ising case, here things are even
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more subtle: while in the class of non-planar perturbations of the Ising model the scaling limit
is expected to be described by the same critical exponents as the nearest-neighbor model,
the interacting dimer correlations are expected to display a complex behavior, with different
decay exponents associated with their oscillatory and non-oscillatory parts; in particular, the
decay exponent associated with the oscillatory part of the two-point dimer correlation (i.e.,
the analogue of the second term on the right-hand side of (3.13)) is expected to be anomalous,
i.e., to depend continuously and non-trivially on �, and to be related by a simple, universal,
relation to the stiffness coefficient of the height function.

As an illustration of the non-trivial large distance behavior of the correlation func-
tions of the interacting model, let me first state a result about the asymptotics of the two-point
dimer correlation, which generalizes equation (3.13) to the case � ¤ 0. Consider, again, the
case that � D �L is a torus of side L centered at the origin, and, given two edges e; e0, let
x.e/ � x, x.e0/ � x0, r.e/ � r , r.e0/ � r 0. Then the following holds:

Theorem 3.1 ([49,50]). Let t1; t2; t3 be such that �.k/ has two distinct nondegenerate zeros,
p˙. Then there exist constants C; �0 > 0 and functions K�!;r , H�

!;r , ˛�! , ˇ�! , p�! , �.�/,
analytic in � for j�j < �0, for which, letting ��!.x/ D ˇ�!x1 � ˛�!x2,

lim
L!1

E�a;�.1eI 1e0/ D
a2

4�2

X
!D˙

K�!;rK
�
!;r 0

.��!.x � x0//2

C
a2�.�/

4�2

X
!

H�
�!;rH

�
!;r 0

j��!.x � x0/j2�.�/
eia

�1.p�!�p��!/�.x�x0/

CO

��
a

jx � x0j

�3�C j�j�
: (3.17)

Moreover, K0!;r D H 0
!;r D K!;r , ˛0! D @k1�.p!/, ˇ0! D @k2�.p!/, p0! D p! , �.0/ D 1,

˛�! D �˛��! ; ˇ�! D �ˇ��! ; K�!;r D K��!;r ; H�
!;r D H�

�!;r ; p�C C p�� D .�; �/;

(3.18)

and, generically in the choice of the interaction V , �.�/ depends nontrivially on �, i.e.,
�0.0/ ¤ 0.

The proof of the theorem provides a constructive algorithm for computing the coef-
ficients of the convergent power series in � forK�!;r ;H�

!;r , etc., but does not provide closed
formulas for any of them. By comparing (3.17) with (3.13), it is apparent that the interaction
modifies the scaling of the oscillatory part of the dimer–dimer correlation, which acquires
the “anomalous” critical exponent �.�/: this may be larger or smaller than 1, depending on
the sign of �; therefore, depending on whether the dimer interaction is repulsive or attractive,
the oscillatory term, in absolute value, may be dominant or subdominant at large distances
with respect to the nonoscillatory term. Let us remark that an explicit computation [51] shows
that, generically, not only �0.0/ is different from zero, but it also depends explicitly upon the
average slope �j D �j .t1; t2; t3; �/ D

P
e2C�!�Ca Oej

�e.limL!1 E�a;�.1e/ � 1=4/.
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Once that the sharp asymptotics for the two-point dimer correlation is known, we can
compute the variance of height fluctuations, in analogy with (3.14) and following discussion.
With the same notation and assumptions as in (3.14), we write

lim
a!0

lim
L!1

E�a;�
�
h.�x1/ � h.�x2/I h.�x3/ � h.�x4/

�
D lim
a!0

X
e2C�x1!�x2
e02C�x3!�x4

�e�e0 lim
L!1

E�a;�.1eI 1e0/I (3.19)

then we plug the asymptotics (3.17) on the right-hand side of this equation, and by choosing
the paths C�x1!�x2

; C�x3!�x4
well separated, we find that the contributions to the variance

from the second and third terms on the right-hand side of (3.17) vanish as a ! 0. So also in
the interacting case, we are left with the contribution to the variance from the non-oscillating
term in (3.17), which we need to evaluate in the a ! 0 limit. In order for the involved sums
to converge to well-defined, path-independent integrals, we need the analogue of (3.15) to
hold in the interacting case, too. This is very hard, if not impossible, to check directly, due to
the fact that the coefficients of the convergent power series in � forK�!;r and ��! are defined
by extremely complicated, and different, algorithms. Nevertheless, we succeeded in proving
the validity of an interacting analogue of (3.15), by making use of lattice Ward Identities
(WI), in combination with hidden, chiral, WI for a continuum reference model that, in an
appropriate sense, describes the infrared fixed point of the interacting dimer model (see next
section for a few additional comments on the ideas of the proof):

Theorem 3.2 ([48,50]). Under the same assumptions as Theorem 3.1, one hasX
e2C�!�Ca Oej

�eK
�
!;r.e/ D �i!

p
�.�/ @j�

�
!.x/; (3.20)

where �.�/ is the same as in (3.17). Consequently,

lim
a!0

lim
L!1

E�a;�.h
�
�x1 � h.�x2/I h.�x3/ � h.�x4/

�
D
�.�/

2�2
Re log

.�C.x4/ � �C.x1//.�C.x3/ � �C.x2//

.�C.x4/ � �C.x2//.�C.x3/ � �C.x1//
: (3.21)

An elaboration of the proof also implies that, for any n > 2 and any 2n-tuple of
distinct points x1; : : : ; x2n, lima!0 limL!1 E�a;�..h.�x1/ � h.�x2//I : : : I .h.�x2n�1/ �

h.�x2n/// D 0, from which the asymptotic GFF behavior of the height field, in the sense
of (3.6), follows. The reader should not underestimate the fact that the proof of such GFF
behavior comes with an exact computation of the stiffness coefficient of the GFF, which
turns out to be the same as the critical exponent �.�/ of the dimer–dimer correlation. This is
a universal relation among critical exponents, equivalent to those predicted by Kadanoff and
Haldane in the closely related contexts of vertex, Ashkin–Teller, and Luttinger liquid models.
In particular, it is equivalent to the identity Xp D Xe=4 [62, Eq. (13a)] between the polariza-
tion critical exponent Xp and the energy critical exponent Xe of the Ashkin–Teller model,
an elusive exact scaling relation that Kadanoff predicted on the basis of formal bosonization
methods and Coulomb gas techniques. In this sense, our result is a rigorous confirmation of
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the predictions of bosonization in the context of interacting dimer models, and it is related
to the notion of “weak universality” discussed in Baxter’s book [11]; see also [48, Section 1]

and [76] for additional discussions on the notions of bosonization and weak universality in
the contexts of dimer, vertex, Ashkin–Teller and quantum spin chain models.

4. Methods and ideas behind the proofs

A common feature of the problems and results stated above is that they concern non-
solvable 2D models in the vicinity of an exactly solvable reference model at its free Fermi
point: this is a way of saying that the reference nearest-neighbor Ising and dimer models are
exactly solvable in terms of determinants of appropriate, explicit, matrices. As well known
[29,43,87], this allows us to express the partition and generating function of correlations of
the reference, solvable, models in terms of Gaussian Grassmann integrals: in particular, for
any a > 0 and finite�, the partition function of the dimer model at � D 0 can be written as

Z0a;� D

Z
D�e�.�C;K��/; (4.1)

where K is the Kasteleyn matrix, and � D ¹�C
x ; �

�
x ºx2�a � .�C; ��/ is a collection

of Grassmann variables; the Ising partition function can be written analogously, with K
replaced by a different, but still explicit, matrix, and � replaced by a collection of 4j�aj
“real” Grassmann variables. Similarly, the generating functions of the dimer or energy cor-
relations, in the two cases of dimers and Ising, can be also written as Gaussian Grassmann
integrals, from which one can easily get closed formulas for the corresponding multipoint
dimer or energy correlations, and prove that they satisfy an exact fermionic Wick rule at the
lattice level, i.e., that they have determinant, or Pfaffian, form.

Another common feature of the dimer and Ising models discussed in this paper is
that their interacting, non-solvable versions can be formulated exactly, at finite a and finite�,
in terms of non-Gaussian Grassmann integrals [7,44,50]. For instance, the partition function
of the interacting dimer model can be written as follows (again, the one of the non-planar
Ising model admits an analogous representation):

Z�a;� D Z0a;�

Z
P.D�/eV.�/; (4.2)

where P.D�/ D D�e�.�C;K��/=
R
D�e�.�C;K��/, and V is a “potential” of strength �,

which can be written as the sum of monomials in � of order 2, 4, 6, etc., with kernels that are
analytic in � in a small neighborhood of the origin and decay exponentially to zero at large
distances, with rate proportional to the inverse lattice spacing. The term in V that is quadratic
in � can be isolated from the rest of the potential and combined with the Gaussian “measure”
P.D�/; after this rearrangement, the potential contains a quartic term, plus higher order
subdominant terms. In this sense, both the interacting Ising and dimer models take the form
of Grassmannian �4

d
models in dimension d D 2, somewhat reminiscent of the �4

d
models

studied by the constructive Quantum Field Theory (QFT) community since the early 1970s
[52]. Note that (4.2) provides an explicit algorithm for computing all the coefficients of the

4057 Scaling limits and universality of Ising and dimer models



perturbative series in � for the partition function (similar considerations hold for the free
energy and generating function of correlations): it is enough to expand the exponential and
compute term by term the expectation of V n with respect to the Gaussian measure P.D�/,
which can be easily done in terms of the fermionic Wick rule. What makes things non-
trivial is the fact that the covariance of the reference Gaussian measure, which for dimers
is the (finite volume analogue of the) inverse Kasteleyn matrix K�1 in (3.10), at criticality
decays algebraically to zero at large distances (criticality corresponds to the condition that
�.k/ has two simple zeros, for dimers; and to the condition that ˇ is set equal to the inverse
critical temperature, for Ising). This implies that the naive bounds one can easily derive on the
coefficient of the perturbative series are non-uniform in a and in the system size; in order to be
able to control the thermodynamic and a! 0 limits, one needs to exhibit subtle cancelations,
whose identification requires systematic, multiscale resummations of the perturbation series,
and which are very hard, if not impossible, to prove by direct inspection of the original series.

The approach developed over the years to identify these cancelations in critical sys-
tems is based on the ideas of Wilsonian RG. More specifically, the constructive RG approach
used in the proofs of Theorems 2.1 to 3.2 is that developed by Benfatto, Gallavotti, Mas-
tropietro, and coworkers [16, 17, 19] and reviewed in, e.g., [43, 75]; see also the more recent
works [7, 47, 49], which review and provide a pedagogical introduction to this method in
the specific contexts of non-planar Ising models, interacting dimer models, and fermionic
�4
d

theories with long-range interactions, respectively. At a very coarse level, the idea is
to compute (4.2) recursively, first integrating out the degrees of freedom at length scales
`02

�N ' a (here `0 is the length unit and �N D blog2.a=`0/c), then those at length scales
`02

�NC1; `02
�NC2; : : : ; `02

�hC1, etc. After each integration step, we re-express the par-
tition and generating functions in a form analogous to (4.2), with P.D�/ replaced by a
Gaussian measure with covariance supported on length scales & `02

�h and V.�/ replaced
by an effective interaction V .h/.�/ that, up to a rescaling, has a form similar to the original
V.�/, with modified coupling constants in front of the quadratic, quartic, sextic, etc., con-
tributions. A dimensional power counting shows that the terms that tend to expand under
iterations (and, therefore, to produce divergences in perturbation theory) are the quadratic
and quartic ones, which tend to grow linearly and logarithmically in 2N�h, respectively.
These are the terms to be monitored and carefully looked at, in order to identify the cance-
lations that, if present, allow one to define a resummed, convergent perturbation theory.

Let me describe the procedure at a slightly more technical level, focusing, for illus-
trative purposes, on the dimer case with � D �L a torus of side L, and neglecting in the
following discussion finite size effects, e.g., the difference between K�1 and its finite-L
counterpart. While the scheme described below has several similarities with that used in the
case of non-planar Ising models, there are also important differences (e.g., the presence for
dimers of a non-trivial effective quartic coupling, denoted �h in the following), which I will
comment about below.

In (4.2), we first rewrite the covariance K�1.x; y/ of the Gaussian measure as a
superposition of exponentially decaying “propagators,” each characterized by an exponen-
tial decay rate / 2h, h � N , that is, recalling (3.10) and (3.12), we rewrite K�1.x; y/ D
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P
!D˙

P
h�N e

�ia�1p! �.x�y/g
.h/
! .x; y/, with g.h/! .x; y/ ' 2hg

.0/
! .2hx; 2hy/, and g.0/! ,

! D ˙, two smooth functions, exponentially decaying to zero on scale `0. Next, we rewrite
the components of the random field � with reference distribution P.D�/ as �˙

x DP
!D˙ e

˙ia�1p!x�˙
!;x , and let �! D �

.N/
! C �

.�N�1/
! (equality to be understood in dis-

tribution), with �.N/! (resp. �.�N�1/
! ) a Grassmann Gaussian field with covariance g.N/!

(resp. g.�N�1/
! D

P
h�N�1 g

.h/
! ); for brevity, we shall denote by �.N/ the pair of fields

¹�
.N/
C ; �.N/� º, and similarly for �.�N�1/. Correspondingly, we re-express the interacting

partition function in (4.2) as follows (here V .N/ is the same as V , thought of as a function
of �.N/ C �.�N�1/ rather than of �):

Z�a;�=Z
0
a;� D

Z
P�N�1.D�

.�N�1//

Z
PN .D�

.N//eV
.N/.�.N/C�.�N�1//

D eL
2FN

Z
P�N�1.D�

.�N�1//eV
.N�1/.�.�N�1//; (4.3)

wherePN .D�/ andP�N�1.D�/ are the Grassmann Gaussian integrations with covariancesR
PN .D�/�

�
!;x�

C

!0;yDı!;!0g
.N/
! .x;y/ and

R
P�N�1.D�/�

�
!;x�

C

!0;yDı!;!0g
.�N�1/
! .x;y/,

respectively, andL2FN C V .N�1/.�/D log
R
PN .D�

0/eV.�
0C�/, with V .N�1/.0/D 0;FN

is a single-scale contribution to the free energy, and V .N�1/ is called the effective potential
on scale 2�NC1. Remarkably, FN and the kernels of V .N�1/ are analytic functions of �,
uniformly in a and L, thanks to the Grassmann nature of the theory (the key idea is that
the nth order term in perturbation theory can be expressed in determinant form, thanks to
a smart interpolation identity due to Battle, Brydges, Federbush, and Kennedy [8, 22, 23],
and the determinants can be bounded in an optimal way, from the combinatorial point of
view, thanks to the Gram–Hadamard inequality [43]); moreover, the kernels of V .N�1/ decay
exponentially to zero at large distances, with exponential rate / 2N�1.

In the second line of (4.3), we isolate the quadratic terms of V .N�1/.�/ from
the quartic or higher-order terms, and we insert them in the reference Gaussian integra-
tion P�N�1.D�/, thus “dressing” it a little bit, the dressing corresponding to a small,
O.�/, change of the location of the zeros p! of �.k/, to an O.�/ change of the “veloc-
ities” ˛! D @k1�.p!/ and ˇ! D @k2�.p!/, and to an overall rescaling by a multiplicative
factor ZN�1 D 1 C O.�/, which can be conveniently reabsorbed by rescaling the field
� by

p
ZN�1. After the manipulation of these quadratic terms and this rescaling we are

left with a modified effective interaction which includes a local quartic term, of the form
�N�1Z

2
N�1

R
dx�C

C;x�
�
C;x�

C
�;x�

�
�;x , the constant �N�1 playing the role of the effective

interaction strength on scale 2�NC1, plus a remainder, which is nonlocal, or involves mono-
mials in � of higher order than four.

We now iterate the procedure, and integrate out in the same fashion the fields on
scales labeled by N � 1;N � 2; : : : ; hC 1, so that, for any h � N , we rewrite:

Z�a;�=Z
0
a;� D eL

2
PN
h0DhC1 Fh0

Z
P�h.D�

.�h//eV
.h/.

p
Zh�

.�h//; (4.4)

where, once again, the single-scale contributions to the free energy Fh0 and the kernels of
the effective potential V .h/ are analytic functions of �, uniformly in a; L (but, in general,
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non-uniformly inN � h). The constantZh in the argument of the effective potential is the so-
called wave-function renormalization, which plays the same role as the multiplicative factor
ZN�1 introduced above, after the integration of the first scale. Moreover, V .h/.

p
Zh�/ con-

sists of: (i) quadratic terms, which can be combined with the reference Gaussian integration
P�h.D�

.�h//, thus leading to an additional, iteratively defined, dressing of the effective
covariance; (ii) a local quartic term, of the form �hZ

2
h

R
dx�C

C;x�
�
C;x�

C
�;x�

�
�;x , with �h

playing the role of the effective interaction strength at length scales / 2�h; (iii) a remainder,
including non-local interactions, or interactions of order higher than four in �, called the
irrelevant terms.

As mentioned above, while well defined at each scale, the procedure sketched above
does not lead to bounds that, in general, are uniform in the number of iterations, N � h. Of
course, in order to perform the scaling limit a ! 0 (which corresponds to the removal of
the ultraviolet cutoffN ! 1) and/or the thermodynamic limitL! 1 (which corresponds
to the removal of an infrared cutoff hL D blog2.`0=L/c ! �1), we need to prove that the
construction is well defined uniformly inN � h. Remarkably, it turns out that the bounds on
the kernels of the effective potential are uniform in the number of iterations iff �h remains
bounded and small, uniformly in the scale index: if this is the case, then all the irrelevant
terms turn out to be bounded and small, too; in fact, they can be recasted in the form of
uniformly convergent expansions in the effective couplings ¹�h0ºh�h0�N . In other words,
all the potential sources of divergences are resummed into the scale-dependent couplings
¹�h0º and the problem of proving bounds on the free energy and correlation functions of
the dimer model that are uniform in the scale index translates into that of controlling the
boundedness of the sequence of effective couplings. This is an enormous conceptual simpli-
fication because �h can be written as the solution to a finite difference equation, induced by
the iterative integration procedure sketched above, known as the beta function equation, of
the form �h�1 D �h C ˇh.�h; : : : ; �N /, with ˇh.�h; : : : ; �N / D c2;h�

2
h
C higher orders.

A priori, the same general estimates leading to the aforementioned control on the irrel-
evant contributions to the effective potential tell us that jˇh.�h; : : : ; �N /j � C0"

2
h
, with

"h D maxh�h0�N j�h0 j and C0 independent of h; therefore, using the fact that �N D O.�/,
we find j�hj �C j�j.1C j�j.N � h// for some h-independent constantC ; the point now is to
look more closely at the beta function equation and to try to identify a structure guaranteeing
that �h behaves better than such a priori, general, bound. Explicit computations show that at
second and third order ˇh.�h; : : : ; �N / is bounded by (const.) 2h�N "2

h
and (const.) 2h�N "3

h
,

respectively. Analogous estimates at all orders would imply that j�hj � C j�j uniformly in
h, as desired. However, direct inspection of perturbation theory does not appear feasible, for
bounding in a similar manner the general nth order contribution to the beta function.

The idea is to prove the desired cancelation via an indirect route: we introduce
a reference model, which has the same beta function as the dimer model, asymptotically
as N � h ! 1, up to exponentially small corrections, smaller than "2

h
2�.h�N/, for some

� 2 .0; 1/. This reference model plays the role of the “infrared fixed point” of our Grass-
mann formulation of the dimer model and is a close relative of the Luttinger model, an
exactly solvable model of interacting fermions in one dimension, originally solved by rig-
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orous bosonization techniques by Mattis and Lieb [77]. The reference model we use is a
variation of the same model, formulated in the Grassmann functional integral setting, dif-
fering from the original Luttinger model “just” by the choice of the ultraviolet regulator
(this apparently innocent modification may a priori have serious consequences because exact
integrability of the model requires a specific regularization scheme). Such a model displays
additional symmetries as compared to the dimer model, most notably “local chiral gauge
invariance”, i.e., the model is formally (up to corrections due to the ultraviolet regulator)
invariant under independent gauge transformations of the two chiral fields �! , ! D ˙.
Chiral gauge invariance implies the validity of exact equations (“chiral Ward Identities”)
for the model’s correlation functions; such equations include the so-called “anomaly terms”,
i.e., terms that would naively be zero if one neglected the effects of the ultraviolet regulator,
which, remarkably, can be computed explicitly, in closed form. Combining such chiral Ward
Identities (WI) with the so-called Schwinger–Dyson equation for the correlation functions,
we are led to a closed formula for all the correlation functions of the model. Such closed for-
mulas imply, in particular, that the effective coupling strength �h;ref of the reference model is
uniformly close to the corresponding bare coupling; and, in turn, this implies the asymptotic
vanishing of the beta function both for the reference and the dimer model. They also imply
that the large distance asymptotic behavior of the dimer correlation functions are the same as
those of appropriate correlations of the reference model: from this we derive the asymptotic
formula (3.17) and prove Theorem 3.1.

Not only that: the chiral WI imply exact identities (“scaling relations”) relating dif-
ferent critical exponents, as well as critical exponents and the multiplicative prefactor in front
of the density–density correlation of the reference model. Such exact identities, if compared
and combined with the exact lattice WI satisfied by the dimer correlation functions, imply
analogous scaling relations for the dimer model; in turn, the exact lattice WI of the dimer
model are a consequence of the local conservation law for the number of incident dimers at
each vertex. This is, at a rough level, the way in which we prove the identity (3.20), from
which Theorem 3.2 and the GFF behavior of the height fluctuations follow.

Let me conclude this section by a brief discussion of how the previous strategy must
be modified in order to prove Theorems 2.1 and 2.2 for non-planar Ising models. The gen-
eral approach is the same: also the generating function of the energy correlations of these
models can be expressed as non-Gaussian Grassmann integral, similar to (4.2). At the criti-
cal temperature, the covariance of the reference Gaussian integration decays algebraically to
zero at large distances, and this implies that, in order to derive uniform bounds on the ther-
modynamic and correlation functions, we must appeal to a rigorous RG multiscale analysis.
Therefore, also for Ising, we compute the non-Gaussian Grassmann functional integral in
an iterative fashion, and we are led to the construction of a sequence of effective potentials
V .h/, in analogy with (4.4). However, a crucial difference is in the counting of the “crit-
ical” degrees of freedom of the effective theory. In the Ising case, the effective potential
V .h/ can be written as the function of a Grassmann field � with two components per site
rather than four (remember that in the dimer case, there were four Grassmann variables per
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site, �C
C;x , ��

C;x , �C
�;x , ��

�;x ; in the Ising case, we have just two, �C;x and ��;x , no ˙ label
at the exponent): this implies that the local quartic term in the effective potential, the one
that was so hard to control in the dimer case, is automatically zero because there is no non-
vanishing quartic monomial that can be constructed (the Grassmann rule implies �2!;x D 0).
This makes the construction of the non-planar Ising theory in the full-plane limit easier than
that for interacting dimers (this also explain why Theorem 2.1, which involves non-planar
Ising models in the full-plane limit, was proved already 10 years ago [44]).

The problem now is the extension to finite domains with open, or cylindrical, bound-
ary conditions: in fact, the presence of boundaries produces an additional effective, scale-
dependent, coupling, localized at the boundary, which is potentially logarithmically diver-
gent, like the quartic effective coupling in the dimer setting. And, again, the proof that such
additional boundary scale-dependent coupling remains bounded and small, uniformly in
the scale index, requires to identify cancelations in its flow equation. In the Ising setting,
these cancelations follow from an approximate image rule for the fermionic covariance at
the boundary; once we identified this cancelation, we managed to extend the construction of
the scaling limit of energy correlations to the cylindrical setting, thus proving Theorem 2.2.
Our proof is currently restricted to a specific cylindrical geometry, which we need in order
to identify the required boundary cancelations, and in order to obtain optimal bounds on
the fermionic Green’s function in the vicinity of the boundary. However, the technique itself
underlying the proof of the theorem seems robust and I expect that it can be adapted, in
perspective, to domains of arbitrary shape (even more, I expect that it will be capable to con-
trol the scaling limit of models in the Luttinger liquid universality class, such as interacting
dimers, in finite domains). See next section for additional comments on these perspectives.

Due to space constraints, I cannot enter in more detail than this into the proofs of
the main theorems presented in this paper. The purpose of this section was just to convey the
main ideas we used and to highlight the strategy and main difficulties to be overcome in the
proofs. For additional details, I refer the reader to the original papers [6,7,44,48–50].

5. Further results, perspectives, and open problems

Let me conclude this review with a brief, certainly partial, discussion of related
results, perspectives and open problems, whose understanding would represent in my opinion
a major advance in our understanding of the scaling limit of 2D non-planar Ising models and
interacting dimers models (as well as of related classes of non-integrable statistical mechan-
ics models, such as Ashkin–Teller and vertex models). I will state explicitly only problems
that are more directly connected with the results and methods reviewed in this paper. Of
course, there are plenty of other challenging, extremely interesting, open problems, con-
cerning, e.g., the scaling limit of critical interfaces [12,30], the limiting validity of Virasoro
algebra for an appropriate class of “dressed” observables [55], and the construction of the
massive scaling limit in the magnetic field direction [25, 26] (for non-planar Ising models),
or the scaling limit of vertex and monomer correlations [37], the scaling limit of the cycle-
rooted spanning forest associated with the dimer configuration via the Temperley bijection
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[48, Sect. 2.1.2], the validity of Cardy’s formula [2,21,59] and, more generally, the computation
of the subleading corrections to the free energy [27] (for interacting dimers).

5.1. Non-planar Ising models
Let us first consider the class of non-planar Ising models described above, in Sec-

tion 2. There are a few extensions of the results of Theorems 2.1 and 2.2 which appear to
be feasible on the basis of relatively straightforward extensions of the techniques under-
lying their proofs. I refer, in particular, to the computation of boundary spin correlations
and boundary energy correlations (and mixed boundary spin, boundary energy, bulk energy
correlations): it should be easy to show, on the basis of a mild extension of the proof of The-
orem 2.2, that their scaling limit can be written as the Pfaffian of an explicit antisymmetric
matrix, whose elements (involving the two-point boundary spin–spin correlations) can be
written in closed form, and exhibit the expected boundary critical exponents. This would
complement the results of [5], by computing explicitly the scaling limit for a wide class of
nonplanar perturbations of the Ising model, not restricted to ferromagnetic pair interactions.

On the other hand, extension of Theorem 2.2, or of its expected analogue for bound-
ary spin correlations, to domains of more general shapes than flat cylinders, appears to be
much harder. Already in the � D 0 case, the construction of the scaling limit in domains
of arbitrary shape remained elusive for several decades, and has been completed in the last
ten years thanks to the use of the highly nontrivial methods of discrete holomorphicity, in
the form developed, among others, by Smirnov, Chelkak, Hongler, and Izyurov [31–33,56].
It would be extremely interesting to extend this construction to the interacting, non-planar
case.

Open Problem 1. Compute the scaling limit of the multipoint energy correlations of non-
planar Ising models in domains � � R2 of arbitrary shape, for different boundary condi-
tions, say open, C or �. As a corollary, prove conformal covariance of the limit.

One possibility to attack this problem is to extend the strategy sketched in the pre-
vious section to more general domains (already the case of the rectangle is non-trivial).
There are two key technical points to be understood: (1) how can we obtain sufficient control
on the fermionic Green’s function in situations where it cannot be diagonalized explicitly?
(By “control” here I mean: define its multiscale decomposition, with optimal bounds on
its asymptotic behavior in the bulk and close to the boundaries; moreover, derive a Gram
representation for the single-scale Green’s function, with optimal dimensional bounds on
the L1-norm of the Gram vectors); (2) how do we prove the required cancelations on the
boundary, “marginal,” scale-dependent couplings? I believe that the most serious technical
issue is the first. A solution may come from an effective combination of multiscale meth-
ods with those of discrete holomorphicity, which may lead to sharp bounds on the speed of
convergence to the scaling limit already at the level of the � D 0 theory.

In connection with this problem, I cannot avoid mentioning an exciting recent devel-
opment due to Duminil-Copin and collaborators [38], who proved rotational invariance for
the scaling limit (whenever it exists) of a wide class of 2D critical models, including Potts,

4063 Scaling limits and universality of Ising and dimer models



6V, and the random cluster model. The proof is based on completely different ideas than
ours, and involve the coupling of different instances of these models on different isoradial
graphs, characterized by different discrete rotational invariance properties, via a sequence of
star-triangle transformations.

The first open problem, stated above, concerns energy correlations. Of course, anal-
ogous results for the spin correlations would also be extremely interesting. However, the
study of the scaling limit of spin correlations is notoriously difficult, already in the full-plane
limit, even in � D 0 case. The reason is that the spin observable is non-local in the Grass-
mann representation, and, already in the integrable case, their understanding requires the
use of special, sophisticated techniques. In the full-plane limit at �D 0, one can use Szego’s
lemma to extract the asymptotics of the spin–spin correlations in special directions [79]; or,
alternatively, one can use a set of quadratic finite difference equations, discovered by McCoy,
Perk, and Wu [78], whose scaling limit is the Painlevé III equation. Multipoint spin correla-
tions, both in the full plane limit and in finite domains, were understood much more recently,
thanks to other, complementary techniques, namely discrete holomorphicity applied on a
two-sheet discrete Riemann surface, associated with the original graph which the model is
defined on, with cuts connecting the locations of the spin observables [31, 32, 36, 37]. It is
unclear whether these ideas can be extended, and in case how, to the interacting setting,
� ¤ 0.

Open Problem 2. Compute the scaling limit of the spin correlations of non-planar Ising
models, first in the full plane, then in finite domains.

Already the case of the two-point spin correlation in the full plane limit is highly
non-trivial, and its understanding would represent a breakthrough in the field, with a potential
big impact on other problems that, at a heuristic level, are studied by formal bosonization
and Coulomb gas techniques.

Another interesting set of open problems is related to the computation of the sub-
leading corrections to the critical free energy of non-planar Ising models, which are expected
to display subtle universality properties [27, 35]. Fix ˇ D ˇc , fix �, and compute the free
energy for a small; it is expected that

logZ�ˇc Ia;� D a�2
j�jf .�/C a�1

j@�j�.�/C c�.a; �/; (5.1)

with f .�/ and �.�/ independent of �, and c�.a; �/ of smaller order than O.a�1/. More
precisely, it is expected that the behavior of this subleading term in the a ! 0 depends upon
the Euler characteristics � of� (recall that �D V �E C F with V;E;F being the number
of vertices, edges, and faces of any triangulation of�, e.g., �D 0 for� a torus or a cylinder,
and � D 1 for � a finite, simply connected domain). If � ¤ 0, it is expected that

lim
a!0

c�.a; �/

log.a�1j@�j/
D �

1

12
�; (5.2)

while, if � D 0, then

lim
a!0

c�.a; �/ D c0� independent of �: (5.3)
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For example, if � D �.�/ is a torus with aspect ratio �,

c0� D log.�2 C �3 C �4/ �
1

3
log.4�2�3�4/; (5.4)

where �i D �i .e
���/ are Jacobi theta functions.

Open Problem 3. Prove (5.2) and (5.4) with an explicit expression for c0� for non-planar
Ising models.

So far, the only known rigorous result related to this conjecture is a proof of “Cardy’s
formula” [2,21] for toroidal domains � D �.�/ with aspect ratio going to infinity:

lim
�!1

1

�
lim
a!0

c�.a; �/ D
�

12
: (5.5)

Here, the right-hand side is the � ! 1 limit of the right-hand side of (5.4) divided by
�. Equation (5.5) was proved in [46]. I believe that the methods developed in [6, 7, 50] for
controlling finite size effects within the rigorous RG scheme described in Section 4 should
be sufficient for proving (5.4) for the torus and the cylinder. Another story, which appears
more challenging, is the case of � ¤ 0. As far as I know, formula (5.2) is unproven even in
the � D 0 case (with the exception of the rectangle, in which case it was proved in [57]).

5.2. Interacting dimer models
Let us now consider the class of interacting dimer models discussed in Section 3.

All the problems stated in the previous subsection in the context of non-planar Ising models
have their counterparts for dimers. Due to the underlying “Luttinger liquid” nature [53] of
the scaling limit, and the presence of non-trivial, anomalous, exponents, I expect that their
solution will be even more challenging than the one for the corresponding Ising’s problems.

Open Problem 4. Prove the GFF nature of the scaling limit of the height fluctuations in
arbitrary finite, simply connected, domains, in the sense of (3.7).

In order to prove such a statement via the multiscale methods sketched in Section 4,
one will need to compute the dominant boundary corrections to the effective potentials, and,
in particular, control the flow of the effective, marginal, boundary couplings (the dimer ana-
logue of those discussed at the end of Section 4 for non-planar Ising). I expect that these
boundary couplings will diverge exponentially in the limit of a large number of RG itera-
tions, with a small,�-dependent exponent, playing the role of an anomalous boundary critical
exponent.

Open Problem 5. Compute the asymptotic behavior, in the sense of (3.17), for the two-point
dimer correlation in a domain�with boundary, in the case in which at least one of the dimer
observables is close to the boundary, and establish whether their oscillatory part exhibits an
anomalous critical exponent �@.�/ different from the bulk one �.�/; in case, compute such
boundary exponent.

Other interesting directions and open problems involve generalizations of the type
of dimer interactions. For instance, rather than the class of interactions discussed in Sec-
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tion 3, one could imagine to break planarity of the model, by adding non-planar, non-nearest-
neighbor, edges to the graph, which may be occupied by “long” dimers with small proba-
bility. Under appropriate conditions on the geometry of these nonplanar edges, e.g., if there
exist lattice paths connecting faces microscopically close to any two points of the domain
that never pass under the “bridges” formed by the non-planar edges4 then it should still be
possible to introduce a well-defined notion of height function. In such a situation, it would
be interesting to test whether the GFF nature of the scaling limit of the height field persists,
notwithstanding the loss of planarity of the model.

Open Problem 6. Same as Open Problem 4, for weakly non-planar dimer models.

I expect that, at least in the case of periodic models defined on a torus of side L,
in the limit L ! 1, a generalization of the method of proof of Theorem 3.2 will allow us
to prove the convergence of a suitably defined height field to the massless GFF, in the sense
of (3.6). Further extensions to different kind of dimer interactions appear more challenging.
For instance, an extremely interesting problem that I propose here as my last Open Problem,
is whether the GFF nature of the scaling limit of height fluctuations can be extended to the
case of the interface between C and � phases in the 3D Ising model with “tilted” Dobrushin
boundary conditions, at low enough temperatures. It is well known that the interface of the
3D Ising model with standard, flat, Dobrushin boundary conditions is rigid at low tempera-
tures. This is not expected to be the case if the boundary conditions are assigned so that the
interface has non-zero average slope. The problem of understanding the nature of fluctua-
tions of this interface, even if apparently very different from those considered in this review,
has surprisingly strict connections with that of the scaling limit of the height fluctuations
for interacting dimers [28]: in fact, it is well known that the monotone height profiles of a
tilted 3D Ising interface can be mapped exactly, in an invertible way, to those of the dimer
model on the hexagonal lattice; moreover, under this mapping, the height distribution of the
3D Ising model at zero temperature is the same as that of the standard, integrable, dimer
model. From this exact correspondence, the GFF nature of the height fluctuations for the 3D
Ising tilted interface at zero temperature readily follows. At positive temperatures, there is
no known coupling between the height distribution of the 3D Ising tilted interface with that
of a dimer model; however, it is tempting to guess that the effect induced by the temperature
is qualitatively the same as that of a weak, effective, interaction among dimers. If this were
the case, then the methods of Theorem 3.2 would provide a possible strategy for proving the
existence of a “rough phase” for the 3D Ising model.

4 A concrete way of realizing this may be the following: consider a 2D periodic graph
obtained by periodizing in two directions a planar fundamental cell G0. Now make this
non-planar by adding in each fundamental cell a number of non-planar bonds, with the
restriction that they should not pass over the “corridors” between different copies of G0.
Even though the graph is non-planar, the height difference between faces in the corridors is
well defined (use definition (3.2) with lattice paths passing only through the corridors).
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Open Problem 7. Prove that the fluctuations of the interface of the 3D Ising model with
tilted Dobrushin boundary conditions at low temperatures converges in the scaling limit to
a GFF.
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