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Abstract

We consider many-body quantum systems on a finite lattice, where the Hilbert space is the
tensor product of finite-dimensional Hilbert spaces associated with each site, and where
the Hamiltonian of the system is a sum of local terms. We are interested in proving uni-
form bounds on various properties as the size of the lattice tends to infinity. An important
case is when there is a spectral gap between the lowest state(s) and the rest of the spec-
trum which persists in this limit, corresponding to what physicists call a “phase of matter.”
Here, the combination of elementary Fourier analysis with the technique of Lieb–Robinson
bounds (bounds on the velocity of propagation) is surprisingly powerful. We use this to
prove exponential decay of connected correlation functions, a higher-dimensional Lieb–
Schultz–Mattis theorem, and a Hall conductance quantization theorem for interacting
electrons with disorder.
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1. Introduction

This paper considers lattice quantum systems.1 It is worth having some concrete
examples in mind. For one specific example, consider a Hilbert space .C2/˝L, i.e., the
tensor product ofLHilbert spaces, each of dimension 2. Index these two-dimensional Hilbert
spaces (called “spins” or “sites”) with an integer i , taken periodic modulo L, and consider
the Hamiltonian

H D J1
X
i

ESi � ESiC1 C J2
X
i

ESi � ESiC2; (1.1)

where ESi D .Sxi ; S
y
i ; S

z
i / denotes the spin operators on the i th such Hilbert space, i.e.,
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For J2 D .1=2/J1 > 0, the lowest eigenvalue ofH is doubly degenerate for even L. A basis
of ground states consists of either pairing sites 2i; 2i C 1 in a singlet for all i or pairing
sites 2i; 2i � 1 in a singlet; this is called the Majumdar–Ghosh chain [16]. A slight perturba-
tion of the Hamiltonian, taking J2=J1 slightly different from 1=2, breaks the degeneracy
of the lowest eigenvalue, but there is an exponentially small difference between the two
lowest eigenvalues followed by a gap to the rest of the spectrum that remains nonvanish-
ing as L ! 1.

This system exemplifies some of the results that we will consider. The fact that for
all J1; J2 the lowest eigenvalue is either degenerate or has vanishing (in the large L limit)
difference to the next lowest eigenvalue is a corollary of the classic Lieb–Schultz–Mattis
theorem [15]. That theorem is applicable only to one-dimensional quantum systems with
periodic boundaries, meaning that sites can be arranged on a circle with short-range interac-
tions. We will explain a more general machinery that allows us to prove a similar theorem for
higher-dimensional quantum systems such as those on a two-dimensional square lattice [8].

Also, as J1; J2 vary, the properties of the Hamiltonian in (1.1) change, but for J2
close to J1=2, the connection correlation functions are exponentially decaying in the dis-
tance between the operators. Here a connected correlation function is hABi � hAPBi where
A;B are operators supported on some set of sites, P projects onto the two lowest (approx-
imately) degenerate eigenvalues, and h: : :i denotes the expectation value in an eigenvector
corresponding to such an eigenvalue. This decay follows from another theorem that we will
discuss, on exponential decay of correlation functions, again valid in any dimension under
some assumptions on the Hamiltonian.

The Hamiltonian of (1.1) obeys a symmetry, namely the Hamiltonian commutes
with the three operators

P
i S

x
i ,
P
i S

y
i , and

P
i S

z
i . Indeed, we will consider often Hamil-

tonians which just commute with a single operator, such as
P
i .S

z
i C 1=2/; here we add a

1 For simplicity, throughout we consider systems where the Hilbert space has a tensor
product structure. It is straightforward to extend these results to the case where fermions
obeying canonical anticommutation relations are present; roughly, this is done by replacing
certain commutators with anticommutators as needed. We omit this for simplicity in this
presentation.
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factor 1=2 so that the eigenvalues of Szi C 1=2 are integers and we can interpret this operator
as a “conserved charge.” Studying such Hamiltonians further in two-dimensions leads to the
question of quantum Hall conductance, also discussed here.

Surprisingly, the key to many of these results is to consider the dynamical properties
of the system, where we consider correlation functions of operators at different times, using
the technique of Lieb–Robinson bounds. Let us begin by defining the systems we consider
in some generality.

1.1. Lattice quantum systems
We consider quantum systems defined on a finite lattice. We have some finite setƒ

of sites. The setƒ is called the lattice. Associated with each site i is some finite-dimensional
Hilbert space, and the Hilbert space of the whole quantum system is the tensor product of
these Hilbert spaces. There is some metric dist.i; j / where i; j 2 ƒ. In many applications,
ƒ may indeed be a geometric lattice in Rn or in Tn for some n; in this case, we call the
system n-dimensional, and in this case the metric is inherited from the ambient space Rn

or Tn. However, in general ƒ may be an arbitrary set with arbitrary metric.
The Hamiltonian H has the form

H D

X
X

hX ; (1.2)

where the sum ranges overX �ƒ, and each hX is self-adjoint and is supported on setX �ƒ.
We use kOk to denote the operator norm (largest singular value) of O . Our interest

is in local Hamiltonians; locality is expressed as some assumption on the norms khXk as a
function of the diameter of the sets X .

One typical assumption is that the Hamiltonian has bounded strength and range
and that the set of sitesƒ has bounded local geometry, meaning that all khXk � J for some
strength J and all setsX has diam.X/ � R for some rangeR and that for all i 2ƒ, we have
j¹j 2ƒ j dist.i; j /�Rºj bounded by some constant. Other assumptions considered include
exponential decay where khXk is exponentially small in diam.X/.

From certain such locality assumptions, one can derive a so-called Lieb–Robinson
bound, which can be thought of as bounding the velocity of excitations in such a lattice
quantum system. For an arbitrary operator A, let

A.t/ � exp.iHt/A exp.�iHt/ (1.3)

denote the operator A evolved for time t under Hamiltonian H .
The first such bound was proven by Lieb and Robinson [14]. However, their proof

gave bounds that depended on the dimension of the Hilbert space. In Appendix A we give a
different proof that does not depend on the dimension, following the strategy in [8] as slightly
modified in [9]. Indeed, rather than proving a specific bound, we give a series expansion (A.1)
below which upper bounds kŒA.t/; B�k and different assumptions on khXk can be inserted
into this series. Using this series expansion, a typical result [9] is
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Lemma 1. Suppose there are positive constants �; s such that for all sites i we haveX
X3i

khXkjX j exp
�
� diam.X/

�
� s < 1:

Then, for any sets X; Y with dist.X; Y / > 0, and any operators A; B supported on X; Y ,
respectively, �A.t/; B� � 2kAkkBk

X
i2X

exp
�
�� dist.i; Y /

��
e2sjt j � 1

�
:

As a corollary, defining vLR D 4s=�, for dist.X; Y / � vLRt , we have�A.t/; B� � jX j � kAkkBk exp
�
�
�

2
dist.i; Y /

�
:

This quantity vLR, called the Lieb–Robinson velocity, can be thought of as defining
a “light-cone” [6], so that, up to exponentially small error, A.t/ is supported within distance
vLRt of X .

Note that Lemma 1 is applicable to the case of bounded strength and range with
bounded local geometry.

Remark 1. The fact that the commutator is not vanishing, but merely very small, outside the
light-cone is sometimes called “leakage.” In most applications of these bounds, the leakage
is negligibly small compared to the other terms. Indeed, for the rest of this paper, the leakage
terms will be negligible and we will avoid any detailed discussion of them. However, we
emphasize that the leakage really is nonzero in every case of interest; since the commutator
is an analytic function of time (this follows trivially since we have a finite-size system), if the
commutator were exactly zero on some interval of time, then it would vanish for all times.

We emphasize that we consider finite-size systems, so that many properties can be
defined in an elementary way. For example, the Hamiltonian is a finite-dimensional matrix;
the ground state energy is simply the smallest eigenvalue of the Hamiltonian; if the smallest
eigenvalue is nondegenerate, then the ground state is simply the corresponding eigenvector
(up to some arbitrary phase); and correlation functions are simply the trace of the projector
onto the ground state with some given other finite-dimensional matrices. This contrasts with
considering systems directly in the infinite size limit where one must take some care to define
an algebra of operators on an infinite system. However, although we consider finite-size sys-
tems, our interest is in bounds that are uniform in jƒj.

1.2. Outline of results and notation
We will survey some of the results that have been obtained using these methods.

A key role is played by the spectral gap. In this paper, unless stated otherwise, the spectral
gap is defined to be the absolute value of the difference between the ground state energy ofH
(assumed nondegenerate) and the next smallest eigenvalue. We denote the spectral gap�E.

We will be loose about estimates. In many cases we will simply state that a term is
small (perhaps exponentially small or some other decay), leaving the detailed proofs and pre-
cise bounds to the already-published literature. This is done to emphasize the ideas without
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getting too involved in the estimates. At the same time, we will give examples from physics
to motivate the constructions.

We use computer-science big-O notation such as �;O; : : : throughout, where we
implicitly consider a family of Hamiltonians defined on a family ofƒ with increasing cardi-
nality ƒ. The control parameter for the big-O notation may be jƒj or, in the higher dimen-
sional Lieb–Schultz–Mattis theorem later, may be some other distance scale.

We use j : : : j for the `2-norm of a state vector. We use I for the identity matrix. We
use A� to denote the Hermitian conjugate of an operator A.

When we refer to a quantum state, this will always be a normalized pure state (with
an arbitrary phase), rather than a mixed state.

In Section 2, we sketch the proof that connected correlation functions decay expo-
nentially in systems with a spectral gap [8,9]. This can be understood as a nonrelativistic ana-
logue of a familiar result in relativistic quantum field theory (where the speed of light plays
the role of vLR) that correlation functions decay exponentially in gapped theories. In Sec-
tion 3, we sketch the proof of the higher-dimensional Lieb–Schultz–Matthis theorem, proven
in [8]. In Section 4, we sketch the proof of Hall conductance quantization [10]. These last two
results have a certain topological flavor. In both cases, one of the physical ideas motivating
the mathematical proof is that although correlation functions decay exponentially in gapped
systems, it is still possible for there to be some kind of topological order in the ground state.

2. Exponential decay of connected correlation functions

In massive relativistic quantum field theories, connected correlation functions decay
exponentially. Here we consider similar results for lattice field theories. The Lieb–Robinson
velocity plays some role similar to that of the speed of light in a relativistic field theory, while
the spectral gap plays a role similar to that of a mass gap.

A typical result for exponential decay is

Theorem 1. LetAX ;BY be supported on setsX;Y . Suppose the conditions of Lemma 1 hold.
Assume there is a unique ground state with spectral gap �E to the rest of the spectrum. Let
h: : :i denote the expectation value in the ground state. Then,

hAXBY i � hAX ihBY i � kAXk � kBY k

�
exp

�
��

�
dist.X; Y /�E

vLR

��
C � � �

�
;

where “: : :” denotes a leakage term from the Lieb–Robinson bound which is bounded by
jX j � kAXkkBY k times an exponentially decaying function of dist.X; Y /.

Remark 2. This result can be readily generalized to the case thatH has a q-fold degenerate
(or almost degenerate) smallest eigenvalue and then a gap �E to the rest of the spectrum.
Then, defining P0 to project onto the ground state subspace and hOi �

1
q

tr.P0O/, one may
derive a more general bound on hAXBY i � hAXP0BY i. In this case, there is an additional
term in the bound that vanishes in the limit that the q lowest eigenvalues become exactly
degenerate.
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Remark 3. The proof follows a general outline that we will use to derive the later results
also, and, after giving the proof, we will emphasize the ideas that will be repeated later.

Proof of Theorem 1. To ease notation, replace AX by AX � hAX i and BY by BY � hBY i,
so that both AX and BY have vanishing expectation value in the ground state. Also, let
` D dist.X; Y /.

Let‰n for nD 0; 1; : : : be an orthonormal basis of eigenstates ofH , with eigenval-
ues E0 < E1 � � � � . Let h ; �i denote the inner product between states  and �. Then,˝�

AX .t/; BY
�˛

D

X
n>0

h 0; AX‰nih‰n; BY 0i exp
�
�i.En �E0/t

�
�

X
n>0

h 0; BY nih n; AX 0i exp
�
Ci.En �E0/t

�
: (2.1)

Thus, to compute the desired correlation function hAX .t D 0/BY i, we want to extract the
“negative frequency” part of hŒAX .t/;BY �i, meaning the first sum in (2.1), evaluated at t D 0.
To do this, we use the following lemma [8, 9]. It shows a typical kind of technique in this
subject: we have some function (in this case a step function) which has a singularity, and we
construct some other function (or in this case, a limit of a family of functions) which is a
good approximation to that function when the argument has absolute value � �E, and we
show that that approximation has a fast decaying Fourier transform.

Lemma 2. Let E 2 R and ˛ > 0. Then

lim
T"1

lim
"#0

i

2�

Z T

�T

e�iEte�˛t2

t C i"
dt D

1

2�

r
�

˛

Z 0

�1

d! exp
�
�.! CE/2=.4˛/

�
D

8<: 1C O.expŒ��E2=.4˛/�/ for E � �E;

O.expŒ��E2=.4˛/�/ for E � ��E:

Using Lemma 2, one has

hˆ;AXBYˆi D lim
T"1

lim
"#0

i

2�

Z T

�T

dt
1

t C i"

˝�
AX .t/; BY

�˛
e�˛t2

C O
�
exp

�
��E2=.4˛/

��
:

(2.2)
Now we choose ˛ and apply the Lieb–Robinson bound. Fix ˛ D �EvLR=.2`/.

Then, O.expŒ��E2=.4˛/�/ D O.expŒ�`�E=.2vLR/�/. This bounds the second term on
the right-hand side of (2.2). To bound the first term, we break the integral over t into an
integral for jt j � `=vLR and an integral for jt j � `=vLR. The integral for jt j � `=vLR can
be bounded using the Lieb–Robinson bound, giving the leakage term in the theorem. The
integral for jt j � `=vLR is bounded by a triangle inequality by

2kAXk � kBY k lim
T"1

lim
"#0

1

2�

Z
`=vLR�jt j�T

dt
1

t C i"
e�˛t2 ;

which is bounded by 2kAXk � kBY k � O.expŒ�`�E=.2vLR/�/.
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3. Higher-dimensional Lieb–Schultz–Mattis

3.1. Review of one-dimensional Lieb–Schultz–Mattis theorem
One-dimensional quantum spin systems with SU.2/-invariant Hamiltonians exhibit

different behavior depending on whether the spin is integer or half-integer. For a half-integer
spin, it is found that either the ground state is degenerate or the gap vanishes in the thermo-
dynamic limit, while for an integer spin there may be a unique ground state with a gap.

One paradigmatic example is the spin-S Heisenberg spin chain,

H D J
X
i

ESi � ESiC1;

where J > 0 and the sites are labeled by integers i D 0; 1; : : : ; L � 1, which are periodic
modulo L, and corresponding to each site there is a .2S C 1/-dimensional Hilbert space
corresponding to a spin-S representation of SU.2/, and where ESi is a vector of spin opera-
tors on the i th spin. For J > 0 and spin-1=2, there is a continuous spectrum of excitations.
The spectral gap then vanishes polynomially in L. Another paradigmatic example is the
Majumdar–Ghosh chain mentioned at the start of this paper. On the other hand, for integer
spin the famous “Haldane conjecture” [7] asserts that there is a unique ground state with
a spectral gap which is �.1/, and the AKLT Hamiltonian [2] is an exactly solvable spin-1
Hamiltonian which shows this property.

This vanishing of the gap for half-integer spins is a corollary of the Lieb–Schultz–
Mattis theorem [3,15] in one-dimension. We will give the theorem in a more general setting
where the Hamiltonian isU.1/-symmetric, without using the full SU.2/ symmetry, and then
relate this to the case of spin chains.

Let us define some terms. Say that a system is one-dimensional with periodic bound-
ary conditions of sizeL, for some integerL, if the sites inƒ correspond to vertices of a cycle
graph with jƒj D L, with the shortest path metric on the graph being the distance, and if all
sites have the same Hilbert space dimension. We will label sites by integers. Define a trans-
lation operator T in the obvious way; T is a unitary operator, and conjugation by T maps
the algebra of operators supported on site i to those supported on site i C 1, and T L D I .
We say that a Hamiltonian is translationally invariant if THT �1 DH . We say that a system
has a conserved chargeQ ifQ D

P
i qi , with qi being an operator with integer eigenvalues

supported on site i with kqik � qmax for some qmax, so that qj D T j�iqiT
i�j and

ŒQ;H� D 0:

The proof that follows uses a trick of averaging over two choices of twist, to use the
minimum number of assumptions; this form of the proof seems to have first appeared in [12].

Theorem 2. Consider a one-dimensional system with periodic boundary conditions of
size L with a translation invariant Hamiltonian H and a conserved charge Q. Further,
assume H has strength J and range R.

Let  0 be a ground state of H with j 0j D 1, and suppose that h 0;Q 0i

L
is not

integer. Then, if the ground state is nondegenerate, the spectral gap of H is bounded by
O.

Jq2maxR
2

L
/.
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Proof. The proof is variational: construct another state, show that the state is orthogonal
to  0, and compute the expectation value of H in this state. Let

ULSM D exp.˙iA/;

where we will pick the sign later and where

A �

L�1X
jD0

2�qj
j

L
:

The variational state used is
ˆ D ULSM 0:

Since the ground state of H is nondegenerate and since ŒT; H� D 0, we have
T 0 D z 0 for some scalar z with jzj D 1. Note that

Tˆ D T exp

"
˙i

L�1X
jD0

2�qj
j

L

#
 0

D exp

"
˙i

L�1X
jD0

2�
�
TqjT

�1
� j
L

#
T 0

D z exp

"
˙i

L�1X
jD0

2�
�
TqjT

�1
� j
L

#
 0

D z exp

"
˙i

L�1X
jD0

2�qjC1

j

L

#
 0

D z exp

"
˙i

L�1X
jD0

2�qj
j � 1

L

#
 0

D z exp
�
�i2�

Q

L

�
ˆ

D z exp
�
�i2�

h 0;Q 0i

L

�
ˆ: (3.1)

The equality on the fifth line is a change in the index of summation, replacing j by j � 1.
Here the assumption that qj has integer eigenvalues is used so that expŒi2�qLLL � D

expŒi2�q0 0L � D I . The equality on the final line uses the assumption that ŒQ; H� D 0

so that  0 is an eigenvector of Q.
Using the assumption that h 0;Q 0i=L is noninteger, it follows thatˆ is an eigen-

vector of T with eigenvalue different from z, so it is orthogonal to  0.
Now we estimate the energy of this state. Write H D

PL�1
iD0 hi , with hj D

T j�ihiT
i�j and with each hi supported on the set of sites within distance R of i , with

khik � J .
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We average hˆ;Hˆi � h ;H i over the two choices of sign in ULSM , giving�
‰;

�
U
�
LSMHULSM C ULSMHU

�
LSM

2
�H

�
ˆ

�
D L

�
‰;

�
U
�
LSMh0ULSM C ULSMh0U

�
LSM

2
� h0

�
ˆ

�
� L

U �LSMh0ULSM C ULSMh0U
�
LSM

2
� h0


� L

�Œh0; A�; A�;
where the averaging over signs cancels terms Œh0; A�. Finally, kŒŒh0; A�; A�k D O.

Jq2maxR
2

L2
/.

To apply this system to SU.2/-invariant spin chains with half-integer spin, we may
take qi D 1=2C Szi , where Szi is the z-component of the i th spin. Then, if the ground state
is nondegenerate, it has total spin 0, and hence h

P
i S

z
i i D 0, so hQi=L D 1=2, noninteger.

It is instructive to consider this variational state in the case of the Majumdar–Ghosh
chain (1.1). A basis of ground states corresponds to pairing neighboring sites in singlets in
one of two ways. Taking the sum of these states gives an eigenvector ofT with eigenvalue C1.
Applying ULSM to this sum gives the difference of these two states, up to an error of order
O.1=L/. The difference of these states is an eigenvector T with eigenvalue �1.

3.2. Higher-dimensional extensions: physics
One might try to extend this theorem beyond one-dimensional systems. Note first

that translation invariance is necessary for the theorem to hold: one can easily construct
spin-1=2 systems without translation invariance with a unique ground state and a gap such as

H D

X
i

ES2i � ES2iC1:

The higher-dimensional theorem will apply to n-dimensional quantum systems, for
n � 1. However, we will be able to state the theorem in greater generality, which will also be
convenient because it will emphasize the fact that we use translation invariance in only one
direction.

We say that a system has translation invariance in one direction with periodicity L
if the sites can be labeled by a pair .i; v/, where i is an integer labeling a vertex of a cycle
graph of length L and v is a vertex in some other graph G, so that the following hold. First,
the metric is the shortest path metric on the graph given by the Cartesian product of that
cycle graph withG. Second, the Hilbert space dimension of site .i; v/ is some dv depending
only on v. Given this, define a unitary operator T such that conjugation by T maps the
algebra of operators supported on site .i; v/ to those supported on site .i C 1; v/ for all v,
and T L D I . We say that a Hamiltonian is translationally invariant if THT �1 DH . We say
that a system has a conserved charge Q if Q D

P
i;v qi;v , with qi;v being an operator with

integer eigenvalues supported on site .i; v/ with kqi;vk � qmax, so that qj;v D T j�iqi;vT
i�j

and
ŒQ;H� D 0:
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For an n-dimensional quantum system,G may be an .n� 1/-fold Cartesian product
of cycle graphs, so that sites are labeled by n different integers, each periodic modulo some
other integer.

We then have [8]

Theorem 3. Consider a system with translation invariance in one direction with periodic-
ity L, with a Hamiltonian with strength and range J and R, respectively, both O.1/, and
such that ƒ has bounded local geometry. Assume that the number of sites is O.poly.L//.
Assume that there is a conserved charge with qmax D O.1/. Assume that the ground state
 0 is unique with h 0;Q 0i=L noninteger. Then, the gap �E is O.log.L/=L/, where the
constants hidden in the big-O notation depend on J; R; qmax, on the polynomial bounding
the number of sites, and on the local geometry of G.

Note that the theorem is slightly weaker than in the one-dimensional case, with a
bound O.log.L/=L/ rather than O.1=L/. Also, for simplicity, we have been less explicit
about the dependence of the bound on the constants.

Note also one slightly unsatisfactory feature: the theorem requires that h 0;Q 0i=L

be noninteger. Suppose that we consider a two-dimensional system, of size L-by-L0, with
h 0;Q 0i=.LL

0/D 1=2. This is a typical case of interest in spin systems. Then, the theorem
is only applicable if L0 is odd.

One might attempt to use the same proof as before. Suppose that H has bounded
strength and range. Applying the same variational argument, the change in the expectation
value of every term in the Hamiltonian (e.g., hˆ;hXˆi � h 0; hX 0i) is still O.1=L2/, but
the number of such terms now is not L but rather proportional to L times the number of
vertices in G. As a typical application of interest, let Lx D L and let G be a cycle graph of
length Ly so that vertices are labeled by a pair of integers .i; j /, with i periodic modulo Lx
and j periodic moduloLy . Then if the “aspect ratio”Ly=Lx is of order unity, the variational
state may have energy of order unity above the ground state [1].

The problems with this approach were given in a very insightful physics article [17].
Indeed, the problem is not purely mathematical. The problem is that a two-dimensional quan-
tum spin system can exhibit completely different behavior from a one-dimensional quantum
spin system. A one-dimensional system with spin-1=2 can have a state like the Heisenberg
chain with a polynomially small gap and power-law decaying correlations. Alternatively,
it can have a state like the Majumdar–Ghosh chain. In this exactly solvable example, two
choices of ground state correspond to two different ways of pairing neighbors into singlets,
either pairing site 2i with 2i C 1 or pairing site 2i with 2i � 1. These two choices each
break translation symmetry, though one may take symmetric and antisymmetric combina-
tions to obtain ground states which are eigenstates of T . There is a local order parameter
which distinguishes between these states,2 i.e., indeed, there is an operator supported on a
set of bounded diameter which has nonvanishing matrix elements between symmetric and

2 See [3] for results showing that, in a sense, these are the only two possibilities for a one-
dimensional system, either translational symmetry breaking or a continuous spectrum.
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Figure 1

Schematic illustration of a two-dimensional system. Individual sites are not shown. Left- and right-hand sides of
the system are identified to give a cylinder (or torus if top and bottom are also identified). Numbers indicate the
first coordinate. The operatorQleft is the total charge on sites between the left-hand side and the dashed line. Twist
� twists terms near the left-hand side of the figure, while � 0 twists terms near the dashed line. The twist � 0 is used
as a technical trick in the proof of the higher-dimensional Lieb–Schultz–Mattis theorem.

antisymmetric states. However, in two dimensions, there is a new possibility. Spins can pair
into singlets (or dimers as they are called) but these dimers can enter into a quantum spin
liquid state [20–22]. In this case, the physics is that there is still a “topological degeneracy,”
so that there is an exponentially small splitting between the two lowest eigenstates. However,
there is no local order parameter: any operator supported on a set of bounded diameter is
exponentially close to a scalar in the subspace of the two lowest eigenstates.

So, while these physics arguments provide some motivation to find a generalization
of the Lieb–Schultz–Mattis theorem to higher-dimensional systems, they also show that the
variational argument does not directly generalize. To prove the theorem, we need the tool of
“quasiadiabatic continuation,” described in the next subsection.

This tool is used to turn physics arguments based on an idea of twisting boundary
conditions into precise results.

Assume H has finite range R, with L � R.
Given any site .i; v/, its first coordinate is the integer i . Let

Qleft D

X
0�i<L=2

X
v

qi;v

be the total charge on sites with the first coordinate 0 � i < L=2. This is the “left” half of
the system in Figure 1.

We say that a set has the first coordinate near i if it is within distance R of the set
of sites with the first coordinate i , treating the first coordinate periodic modulo L. Define a
two-parameter family of Hamiltonians (note the signs in the exponents)

H�;� 0 �

X
X near 0

exp.i�Qleft/hX exp.�i�Qleft/C

X
X near L=2

exp
�
�i� 0Qleft

�
hX exp

�
i� 0Qleft

�
C

X
remaining X

hX ;
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where �; � 0 are real parameters, periodic modulo 2� . The last sum is over X not near 0 or
L=2. Note that

H D H0;0

and
H�C�;� 0�� D exp.iQleft�/H�;� 0 exp.�iQleft�/: (3.2)

Physically, we can regard � as defining a “gauge field” along the line of sites with
the first coordinate 0, and � 0 as another gauge field along the lineL=2. Then (3.2) describes a
gauge transformation relating two different “choices of gauge,” with the sum � C � 0 invariant
under this. While this relation may seem trivial, it will be very useful in what follows.

Oshikawa [19] considered the effect of changing � from 0 to 2� in an attempt to
prove a higher-dimensional Lieb–Schultz–Mattis theorem. In [17], his argument was analyzed
in more detail, where it was found that what it proves is that the ground state must become
degenerate at some value of � if h 0; Q 0i=L is noninteger. Proof: suppose the ground
state is nondegenerate for all � . Then, the adiabatic evolution from � D 0 to 2� maps the
ground state to itself. However, one may show that if the ground state is an eigenvector of
the translation operator T with eigenvalue z, the adiabatically evolved state has eigenvalue
exp.i 2�

L
h 0;Q 0i/z ¤ z.
This kind of argument considering a change in boundary conditions is called a flux

insertion, and is related to Laughlin’s argument for Hall conductance quantization [13]. While
the adiabatic evolution using a flux insertion does not prove the desired result, this is still a
useful physical idea. The technical tool we use to make the idea of flux insertion rigorous is
called “quasiadiabatic continuation” [8].

3.3. Quasiadiabatic continuation
Suppose we have some family of Hamiltonians Hs which depend smoothly on a

real parameter s. Assume that for all s the ground state is nondegenerate and the spectral
gap is ��E. Let  a.s/ for a � 0 denote the (orthonormal) eigenstates ofHs , with energies
Ea.s/, with  0.s/ being the ground state.

Then, a familiar result of the first-order perturbation theory is that

@s 0.s/ D

X
a>0

1

E0.s/ �Ea.s/
 a.s/

˝
 a.s/; .@sHs/ 0.s/

˛
: (3.3)

We now use a trick similar to that used in the proof of exponential decay of correlations
above: we take some function of energy difference which has some singularity, i.e., in this
case, 1=.E0 � Ea/, and we approximate that function by a smooth function which gives a
good approximation when the energy difference is � �E. In the case of exponential decay
of correlations, the needed result is Lemma 2. Here a variety of different forms have been
used, and, rather than giving details, we simply give the approach outline.

Let f .�/ be some smooth function with some Fourier transform Qf .�/. Assume
f .x/ � �1=x for jxj � � and f .0/ D 0 and f .x/ D �f .�x/, where we will not be

4085 Gapped quantum systems



precise about the meaning of the approximation �. Then,

@s 0.s/ �

X
a>0

f .Ea �E0/ a.s/
˝
 a.s/; .@sHs/ 0.s/

˛
D

X
a

Z 1

�1

dt
2�

Qf .t/ exp
�
i.Ea �E0/t

�
 a.s/

˝
 a.s/; .@sHs/ 0.s/

˛
D

Z 1

�1

dt
2�

Qf .t/
�
exp

�
CiHs.t/

�
.@sHs/ exp

�
�iHs.t/

��
 0.s/

� iDs 0.s/; (3.4)

where the last line of the equation is interpreted as defining an operator iDs called the
quasiadiabatic continuation operator. The error in this approximation in (3.4) depends on
the error in the approximation f .x/ � �1=x and on the norm k@sHsk, and we do not go
into details here.

Since we have chosen f to be odd, Ds is Hermitian. We can integrate this quasia-
diabatic continuation operator along a path such as s 2 Œ0; 1� to give

 1.s/ � P exp

 
i

Z 1

0

Dsds

!
 0.s/;

where P denotes a path-ordered exponential and P exp.i
R 1
0

Dsds/ is a unitary.
The essential point of (3.4) is that if we choose f so that Qf is sufficiently rapidly

decaying in time, then (by the Lieb–Robinson bounds) the operator Ds enjoys certain locality
properties. In particular, if @sHs is supported on some given set (for example, @�H�;0 is
supported withinO.1/ of the line 0), then Ds can be approximated by an operator supported
within some distance ` that set, with the error in approximation depending on the choice
of Qf , and decreasing as ` is increased. Further, if @sHs is a sum of operators supported on
given sets then, by linearity, Ds can be approximated by a sum of operators supported within
some distances of those sets.

In the original application of quasiadiabatic continuation [8], there were two sources
of error. One came from the approximation in (3.4) since f .x/was not exactly equal to �1=x

for x � �, while the second came from the approximate locality of Ds .
In [18], Osborne introduced a different “exact” version where f .x/was exactly equal

to �1=x for jxj � �E, and he showed that one could choose Qf to decay superpolynomially
in time. Using an old result in analysis [11], it is possible to improve this superpolynomial
decay to an “almost exponential decay,” made more precise later.

The original formulation of quasiadiabatic continuation gives tighter bounds for the
higher-dimensional Lieb–Schultz–Mattis theorem. On the other hand, the “exact” quasiadi-
abatic continuation is more convenient for the proof of Hall conductance quantization. The
exact form has the particular advantage that one may choose it so that evolution under the
quasiadiabatic continuation operator also obeys a Lieb–Robinson bound.

We omit all the details of error estimates in this review.
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3.4. Sketched proof of higher-dimensional Lieb–Schultz–Mattis theorem
We now sketch the proof of Theorem 3. The proof is variational, like the one-

dimensional proof. It is also by contradiction. Let us assume that there is a gap �E, and
for large enough �E we will derive a contradiction.

Let  0 be the ground state of H . Since H is translation invariant, T 0 D z 0 for
some z with jzj D 1.

Let U be an operator that implements a quasiadiabatic continuation of H�;0 from
� D 0 to 2� , with the quasiadiabatic parameter chosen appropriately (we do not go into the
details) to make the following estimates work.

We emphasize that we do not make any assumption that H�;0 has a gap for � ¤ 0.
Indeed, by the arguments above, we know that the gap closes at some � . Nevertheless, we
define U by integrating the quasiadiabatic evolution operator as if there were a gap �E.

Our variational state will be ˆ D U 0. This is similar to the one-dimensional
construction with the operatorULSM replaced with a quasiadiabatic evolution. As in the one-
dimensional proof, we prove two things: we bound hˆ;Hˆi � h 0;H 0i, and we compute
hˆ; Tˆi to show that ˆ is orthogonal to  0.

To bound hˆ;Hˆi � h 0;H 0i, write

H D H1 CH2;

where H1 is the sum of terms hX such that X is closer to the set of sites with the first
coordinate 0 than it is to the set of sites with the first coordinate L=2, and H2 is the sum of
the remaining terms:

H1 �

X
X closer to 0

hX

and
H2 �

X
remaining X

hX :

The term H2 commutes with U up to exponentially small (in L�E=vLR) error by
locality of the quasiadiabatic evolution operator. At the same time, kH2k is only polynomi-
ally large in L, and so, for �E sufficiently large compared to log.L/=L, the commutator of
the second term with U is polynomially small (and indeed smaller than log.L/=L/.

To estimate hˆ;H1ˆi � h 0;H1 0i, define U 0 to implement quasiadiabatic evolu-
tion ofH0;� 0 as � 0 goes from 0 to �2� . DefineW to implement the quasiadiabatic evolution
of H�;�� as � goes from 0 to 2� . Note the signs!

Since this is a sketched proof, we will write � to indicate that something holds up
to a polynomial in L times something exponentially small in L�E=vLR, so that, for �E
sufficiently large compared to log.L/=L, this � indicates a polynomially small error. One
may show the following:

hˆ;H1ˆi �
˝
U 0ˆ;H1U

0ˆ
˛

� hW 0;H1W 0i

� h 0;H1 0i; (3.5)
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where the first line is by the same locality of quasiadiabatic evolution argument as we used
in considering the commutator ŒH2; U �. The second line of (3.5) is from U 0U � W : this
result can be understood as the quasiadiabatic evolution operator that generates W is a sum
of two operators, one coming from the change in H�;� 0 with respect to � and the other the
change with respect to � 0, while the operators that generate U and U 0, respectively, come
from the change inH�;� 0 with respect to either � or � 0. This simple argument does not fully
justify the approximate equality, of course, as the evolutions are taken simultaneously in W
(� goes to 2� while � 0 goes to �2� in W ) and sequentially in U 0U , but using locality
one may show it is approximately true. The third line follows from (3.2): since H�;�� is
unitarily equivalent to H , the Hamiltonian H�;�� must also have the same gap �E and so
the quasiadiabatic evolution will approximately evolve the ground state ofH0;0 to the ground
stateH2�;�2� DH0;0, up to some phase. That is, while the gap will close forH�;0, it remains
open for H�;�� 0 . At this point in the proof, the phase is not important, since it cancels, but
in the next step a similar phase will be important.

This completes the sketch of the proof that hˆ;Hˆi � h 0;H 0i is small. We now
sketch the proof that ˆ has small overlap with  0. The ground state  0 is an eigenvector of
T with some eigenvalue z. We consider z�1hˆ; Tˆi and bound it away from 1. We have

z�1
hˆ; Tˆi D

˝
U 0; T UT

�1 0
˛
�
˝
U 0U 0; U

0
�
T UT �1

�
 0
˛
: (3.6)

We have, as discussed above, U 0U 0 � W 0, which is approximately equal to  0 up to
some phase. A similar result holds for U 0.T UT �1/: this operator can be considered as
describing the quasiadiabatic evolution in a family of Hamiltonians where instead the param-
eter � describes a gauge field near the line with the first coordinate 1, rather than the first
coordinate 0, while the parameter � 0 still describes a gauge field near the line with the first
coordinate L=2. So, U 0.T UT �1/ 0 is also equal to  0 up to a phase. However, analyzing
this phase (which is approximately the geometric phase of some adiabatic evolution) shows
that the two phases differ if h 0;Q 0i=L is noninteger, giving the desired result.

Remark 4. Note that if h 0;Q 0i=L is noninteger, then its difference from the nearest inte-
ger is�.1=L/ sinceQ has integer eigenvalues. So, even if the difference from h 0;Q 0i=L

to the nearest integer is o.1/, one may still bound the errors terms to show that the two phases
differ.

4. Hall conductance quantization

4.1. Introduction
In 1879, Edwin Hall performed an experiment in an attempt to determine the sign of

the charge of charge carriers in a metal. Was current caused by negative charge carriers flow-
ing in one direction or by positive charge carriers flowing in the opposite direction? Consider
a sample of some metal, which looks like a rectangle as viewed from above. He ran a current
from the left-hand side of the rectangle to the right-hand side, while applying a magnetic
field into the plane. Maxwell’s equations predicted that the charge carriers would experience
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a force, determined by their electric charge times the cross product of their velocity with the
magnetic field. This force is in the plane of the rectangle, and perpendicular to the direction
of current. The sign of this force is unchanged if one changes both the sign of the charge
carriers and the sign of their velocity. This force is expected to lead to an accumulation of
the charge carriers at the top or bottom edge of the rectangle, leading to a voltage between
the top and bottom edge. This effect, that a magnetic field can lead to a voltage perpendicular
to the current, is called the Hall effect.

The sign of the voltage for most materials agrees with what one would expect for
charge carriers with a negative electric charge (i.e., electrons), though in some semiconduc-
tors, the sign is reversed and it is more natural to think of holes in the band as carrying the
charge.

The Hall conductance has units of
current
voltage

D
charge
time

�
charge
energy

D
charge2

time � energy
;

so that it has the same units as e2=h where e is the charge of the electron and h is Planck’s
constant.

Surprisingly, in 1980, von Klitzing found experimentally that, in two-dimensional
semiconductors at low temperatures and large magnetic field, the Hall conductance was
quantized in integer multiples of e2=h to very high accuracy.3 The fundamental physi-
cal argument for this quantization was given by Laughlin [13] but a mathematical proof
remained open.

One surprising feature is that this very accurate quantization persists even though
the actual physical samples were disordered. In [5], noncommutative geometry techniques
were used to prove Hall conductance quantization for free (i.e., noninteracting) electrons
with disorder.

In [4], Avron and Seiler made another important advance, proving Hall conductance
quantization under a certain averaging assumption. They considered a system on a torus and
introduced two fluxes, � and �, on a longitude and meridian of the torus, respectively. See
Figure 2. We writeH�;� to denote a Hamiltonian as a function of these two parameters; both
� and � are periodic modulo 2� . The space of parameters �; � is called the flux torus.

They assumed that H�;� has a unique ground state for all �; �. Consider adiabati-
cally transporting the ground state around some infinitesimal loop in the flux torus near some
given �; �. The ground state acquires some Berry phase. This Berry phase is related, by the
Kubo formula, to the quantum Hall conductance at that �; �. Physically, we can understand
this relation as follows. If we imagine changing one parameter (say, � ), this corresponds to a
changing magnetic field which induces a voltage. This voltage induces a perpendicular cur-
rent proportional to the Hall conductance, and this current will couple to the other parameter
(in this case, �), changing the phase of the wavefunction.

3 There is also a fractional quantum Hall effect, where the Hall conductance is a rational
multiple of e2=h. This can occur if the ground state is (approximately) degenerate.
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Figure 2

Schematic illustration of a two-dimensional system. Individual sites are not shown. Left- and right-hand sides of
the figure are identified to give a cylinder, as well as top and bottom sides. Numbers indicate the first coordinate.
Twists �; � twist terms near the left-hand side and top side of the figure, respectively, and are used in the averaging
proof of [4]. Twists � 0; �0 twist terms near the dashed lines. Twists � 0; �0 are used as a technical trick in the proof
of [10].

The problem then is reduced to computing the Berry phase around such an infinites-
imal loop, i.e., computing a Berry curvature. The average of this curvature over the torus is
quantized in integer multiples of .2�/�1. Thus, Avron and Seiler proved that the average of
the Hall conductance over the torus is quantized.

However, this left open the question of quantization of the Hall conductance at a
specific values of �; �, assuming only a spectral gap at those �; �.

4.2. Results
We now state the results of [10], which proved Hall conductance quantization for

interacting electrons without the averaging assumption. The results are quantitative, giving
error bounds that decay almost exponentially fast as L! 1. A function f is called almost-
exponentially decaying, if for all c with 0 � c < 1 there is a constant C such that f .x/ �

C exp.�xc/ for all sufficiently large x, and a quantity is almost-exponentially small if it is
bounded by an almost-exponentially decaying function.

We consider a two-dimensional quantum system, with sites on a torus T , with sites
labeled by a pair .i; j / periodic modulo L for some L. We assume that there is a conserved
charge Q D

P
v qv as in the Lieb–Schultz–Mattis theorem and that the Hamiltonian has

bounded strength and range. We assume that the Hamiltonian has a unique groundstate, with
a spectral gap at least �E.

Specifically, one proves:

Theorem 4. For any fixed, L-independent R; J; qmax and spectral gap �E > 0, for any
Hamiltonian satisfying the above assumptions, the difference between the Hall conductance
�xy and the nearest integer multiple of e2=h is almost-exponentially small inL, where e2=h
denotes the square of the electron charge divided by Planck’s constant.

The proof of this theorem takes several steps. First, one replaces the Berry connec-
tion used to compute the Berry phase with the quasiadiabatic evolution operator, to relate the
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Hall conductance to the phase for quasiadiabatic evolution around a small loop. One con-
siders a quasiadiabatic evolution around a small, but not infinitesimal loop, on the flux torus
near .�; �/ D .0; 0/. Keeping the loop sufficiently small (the size of the loop polynomially
small in the system size), the gap remains open on evolution on this loop. Indeed, we may
assume that the gap remains at least .1 � o.1//�E, so that we may choose the function in
the quasiadiabatic evolution so that it matches the adiabatic evolution on this loop. Thus, the
ground state returns to itself after the quasiadiabatic evolution around this loop, up to a Berry
phase. For a small loop size, this phase is proportional to the area times the Berry curvature
plus higher-order corrections in loop size.

Second, one considers various other choices of .�;�/¤ .0;0/. For each such choice,
one defines a path from .0; 0/ to the given .�; �/, around a small loop, and back to .0; 0/.
Note that since we move now a large distance away from .0; 0/, the gap may become small,
or even vanish. So, we do not have a guarantee that we return to the ground state at the end of
the path. However, we can make energy estimates to show that we indeed return to the ground
state. To do this, we use a similar trick to that done in the proof of the higher-dimensional
Lieb–Schultz–Mattis theorem. In that proof, we introduced an additional twist � 0 and used it
to show that our variational state had energy close to the ground state. Here we introduce two
extra twists � 0; �0, and we use them to show that the state at the end of the path has energy
close to the ground state. In this case, since we assume that the ground state is unique, this
proves that we do return to the ground state up to small error. Further, we may show that the
phase acquired is approximately independent of the choice of .�; �/.

Next, one takes a product of the evolution over several such paths (each path going
from .0;0/ to some .�;�/¤ .0;0/, around a loop, and back to .0;0/). We do this such that the
result is equivalent to evolution around a single large loop, i.e., certain segments of the paths
cancel, leaving just the evolution around the large loop. This large loop starts at .0; 0/, then
increases � from 0 to 2� , keeping � fixed. Then it increases � to 2� , keeping � fixed. Then,
it decreases � from 2� to 0, keeping � fixed. Finally, it decreases � from 2� to 0, keeping
� fixed. Each of those four segments of the evolution approximately returns the ground state
to itself, up to some phase; this again is shown by an energy argument. However, using
the 2� periodicity in the parameters �; �, the phases cancel. Thus, the combined evolution
gives a phase which is approximately an integer multiple of 2� , and since this phase is
approximately the product of the phases around the small loops, the phase for each small
loop is approximately an integer multiple of .2�/�1 times the area of the loop. This part of
the proof is, of course, very similar to one way to show that the average of the Berry curvature
over flux torus is quantized; essentially, it is a form of Stokes’ theorem. However, since we
have used a quasiadiabatic evolution so that all the small loops contribute approximately the
same phase, and since we have related the phase for the small loop near .�;�/D .0; 0/ to the
Berry curvature, it proves quantization without the averaging assumption and without any
assumption of the gap remaining open.
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A. Lieb–Robinson bounds

A.1. Lieb–Robinson bound
Here we show

Lemma 3. Given operators A supported on X and B supported on Y with X \ Y D ;, we
have�A.t/; B� � 2kAk � kBk

�
2jt j

� X
Z1WZ1\X¤;;Z1\Y¤;

khZ1k

C 2kAk � kBk
.2jt j/2

2Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;;Z2\Y¤;

khZ2k

C 2kAk � kBk
.2jt j/3

3Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

�

X
Z3WZ3\Z2¤;;Z3\Y¤;

khZ3k

C � � � (A.1)

Remark 5. The kth term of the above series is equal to 2kAk � kBk
.2jt j/k

kŠ
times the sum

over sets Z1; : : : ; Zk with Z1 \X ¤ ;, Zj \ZjC1 ¤ ; for 0 � j < k, and Zk \ Y ¤ ;,
of the product

Qk
jD1 khZj k.

Proof. We assume t > 0 because negative t can be treated in the same way. Let " D t=N

with a large positive integer N , and let

tn D
t

N
n for n D 0; 1; : : : ; N:

Then we have�A.t/; B� �
�A.0/; B� D

N�1X
iD0

" �
kŒA.tnC1/; B�k � kŒA.tn/; B�k

"
: (A.2)

In order to obtain the bound (A.10) below, we want to estimate the summand in the right-hand
side. To begin with, we note that the identity kU �OU k D kOk holds for any observable O
and for any unitary operator U . Using this fact, we have�A.tnC1/; B

� �
�A.tn/; B�

D
�A."/; B.�tn/� �

�A;B.�tn/�
�
�AC i"Œhƒ; A�; B.�tn/

� �
�A;B.�tn/�C O

�
"2
�

D
�AC i"ŒIX ; A�; B.�tn/

� �
�A;B.�tn/�C O

�
"2
�
; (A.3)

with
IX D

X
ZWZ\X¤;

hZ ; (A.4)

where we have used
A."/ D AC i"Œhƒ; A�C O

�
"2
�

(A.5)
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and the triangle inequality. Further, by using

AC i"ŒIX ; A� D ei"IXAe�i"IX C O
�
"2
�
; (A.6)

we have�AC i"ŒIX ; A�; B.�tn/
� �

�ei"IXAe�i"IX ; B.�tn/
�C O

�
"2
�

D
�A; e�i"IXB.�tn/e

i"IX
�C O

�
"2
�

�
�A;B.�ti / � i"

�
IX ; B.�tn/

��C O
�
"2
�

�
�A;B.�tn/�C "

�A; �IX ; B.�tn/��C O
�
"2
�
: (A.7)

Substituting this into the right-hand side in the last line of (A.3), we obtain�A.tnC1/; B
� �

�A.tn/; B� � "
�A; �IX ; B.�tn/��C O

�
"2
�

� 2"kAk
�IX .tn/; B�C O

�
"2
�
: (A.8)

Further substituting this into the right-hand side of (A.2) and using (A.4), we have�A.t/; B� �
�A.0/; B� � 2kAk

N�1X
nD0

" �
�IX .tn/; B�C O."/

� 2kAk

X
ZWZ\X¤;

N�1X
nD0

" �
�hZ.tn/; B�C O."/: (A.9)

Since hZ.t/ is a continuous function of the time t for a finite volume, the sum in the right-
hand side converges to the integral in the limit "# 0 (i.e.,N " 1) for any fixed finite latticeƒ.
In consequence, we obtain�A.t/; B� �

�A.0/; B� � 2kAk

X
ZWZ\X¤;

Z jt j

0

ds
�hZ.s/; B�: (A.10)

We define
CB.X; t/ WD sup

A2AX

kŒA.t/; B�k

kAk
; (A.11)

where AX is the algebra of observables supported on the set X . Then we have

CB.X; t/ � CB.X; 0/C 2
X

ZWZ\X¤;

khZk

Z jt j

0

ds CB.Z; s/ (A.12)

from the above bound (A.10). Assume dist.X; Y / > 0. Then we have CB.X; 0/ D 0 from
the definition of CB.X; t/, and note that

CB.Z; 0/ � 2kBk; (A.13)

for Z \ Y ¤ ;, and
CB.Z; 0// D 0 (A.14)
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otherwise. Using these facts and the above bound (A.12) iteratively, we obtain

CB.X; t/ � 2
X

Z1WZ1\X¤;

khZ1k

Z jt j

0

ds1 CB.Z1; s1/

� 2
X

Z1WZ1\X¤;

khZ1k

Z jt j

0

ds1 CB.Z1; 0/

C 22
X

Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

Z jt j

0

ds1

Z js1j

0

ds2 CB.Z2; s2/

� � � � :

So,
CB.X; t/ � 2kBk

�
2jt j

� X
Z1WZ1\X¤;;Z1\Y¤;

khZ1k

C 2kBk
.2jt j/2

2Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;;Z2\Y¤;

khZ2k

C 2kBk
.2jt j/3

3Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

�

X
Z3WZ3\Z2¤;;Z3\Y¤;

khZ3k C � � � :
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