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Abstract

1+1-dimensional integrable quantum field theories correspond to a sparse subset of
quantum field theories where the calculation of physically interesting observables can
be brought to explicit, closed, and manageable expressions thanks to the factorizability of
the S matrices which govern the scattering in these models. In particular, the correlation
functions are expressed in terms of explicit series of multiple integrals, this nonperturba-
tively for all values of the coupling. However, the question of convergence of these series,
and thus the mathematical well-definiteness of these correlators, is mostly open. This
paper reviews the overall setting used to formulate such models and discusses the recent
progress relative to solving the convergence issues in the case of the 1+1-dimensional
massive integrable Sinh-Gordon quantum field theory.
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1. Introduction

1.1. Scattering matrices for quantum integrable field theories
It was discovered in the early 20th century that the description of matter at low-

scales demands to wave-off some of the existing at the time paradigms governing the motion
and very structure of particles in interactions. This led to the development of the theory of
relativity on the one hand, and quantum mechanics on the other. In the latter setting, the state
of a physical system is described by a vector, the wave function, belonging to some Hilbert
space and supposed to encapsulate all the physical degrees of freedom of that system. On
the classical level, the time evolution of particles’ momenta and positions is governed by a
set of generically nonlinear ordinary differential equations which can be written in the form
of Hamilton’s equations. In its turn, the time evolution of a wave function is governed by
a first-order ordinary linear differential equation driven by the Hamiltonian operator. This
operator is obtained through a quantization procedure: its symbol is given by the classical
Hamiltonian of the system or, said differently, it is obtained from the classical Hamiltonian
upon replacing the classical momenta and positions by operators. While the success of the
approach was astonishing relatively to the amount of experiments which could have been
explained, soon after the early development of the theory it became clear that in order to
describe physics at even smaller scales or higher energies, one needs to develop a quan-
tum theory of fields which would bring together the quantum and relativistic features in the
setting of uncountably many degrees of freedom. In loose words, such a theory would be
reached by producing operator valued generalized functions, viz. formal kernels of distribu-
tions, depending on the space-time coordinates which would satisfy analogues of nonlinear,
relativistically invariant, evolution equations arising in classical field theory. While it was
rather straightforward to construct the quantum theory of the free field (and nowadays such
a construction is fully rigorous), the construction of interacting theories which are the sole
relevant for physics appeared to be a tremendously hard task, this even on a formal level of
rigor. The various approaches that were developed quickly met serious problems: the most
prominent being the divergence of coefficients supposed to describe the formal perturba-
tive expansions of physical observables around the free theories. Eventually, these problems
could have been formally circumvented in certain cases by the use of the so-called renormal-
ization procedure. The latter, while being able to produce numbers which were measured
with great agreement in collider experiments, eluded for very long any attempts at making
it rigorous. Some progress was eventually achieved for several instances of truly interacting,
viz. nonfree, quantum field theories within the so-called constructive quantum field theory
approach, see [35] for a review. While successful in rigorously showing the existence and
certain overall properties of such theories, the approach did not lead yet to rigorous and
manageable expressions for the correlation functions, which are the quantities measured in
experiments and thus of prime interest to the theory.

Among the various alternatives to renormalization, one may single out the S-matrix
program which aimed at describing a quantum field theory directly in terms of the quantities
that are measured in experiments. This led to a formulation of the theory in terms of matrix-
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valued functions in n complex variables, with nD 0;1;2; : : : , that correspond to the entries of
the S-matrix between asymptotic states. The S-matrix program was actively investigated in
the 1960s and 1970s and numerous attempts were made to characterize the S-matrix which is
the central object in this approach, see, e.g., [14,17]. However, these investigations led to rather
unsatisfactory results in spacial dimensions higher than one, mainly due to the incapacity of
constructing viable, explicit, S-matrices for nontrivial models.

The interest in the S-matrix approach was revived by the pioneering work of Gryanik
and Vergeles [16]. These authors set forth the first features of an integrable structure based
method for determining S-matrices for the 1+1-dimensional quantum field theories whose
classical analogues exhibit an infinite set of independent local integrals of motion. Indeed,
the existence of analogous conservation laws on the quantum level heavily constrains the
possible form of the scattering basically by reducing it to a concatenation of two-body pro-
cesses and hence making the calculations of S-matrices feasible. The work [16] focused on
the case of models only exhibiting one type of asymptotic particles, the main example being
given by the quantum Sinh-Gordon model. This 1+1-dimensional quantum field theory will
be taken as a guiding example from now on. It corresponds to the appropriate quantization of
the classical evolution equation of a scalar field '.x; t/ under the partial differential equation�

@2
t � @2

x

�
' C

m2

g
sinh.g'/ D 0; .x; t/ 2 R2: (1.1)

For this model, the asymptotic “in” states of the theory are described by vectors
f D .f .0/; : : : ; f .n/; : : : / which belong to the Fock Hilbert space

hin D

C1M
nD0

L2
�
Rn

>

�
with Rn

> D
®
ˇn D .ˇ1; : : : ; ˇn/ 2 Rn

W ˇ1 > � � � > ˇn

¯
: (1.2)

This means that f .n/ 2 L2.Rn
>/ has the physical interpretation of an incoming n-particle

wave-packet density in rapidity space. More precisely, on physical grounds, one interprets
elements of the Hilbert space hin as parameterized by n-particles states, n 2 N, arriving, in
the remote past, with well-ordered rapidities ˇ1 > � � � > ˇn prior to any scattering which
would be enforced by the interacting nature of the model.

For the 1+1-dimensional quantum Sinh-Gordon model, the S-matrix proposed in
[16] is purely diagonal and thus fully described by one scalar function of the relative “in”
rapidities of the two particles:

S.ˇ/ D
tanhŒ 1

2
ˇ � i�b�

tanhŒ 1
2
ˇ C i�b�

with b D
1

2

g2

8� C g2
: (1.3)

This S-matrix satisfies the unitarity S.ˇ/S.�ˇ/ D 1 and crossing S.ˇ/ D S.i� � ˇ/ sym-
metries. These are, in fact, fundamental symmetry features of an S-matrix and arise in many
other integrable quantum field theories. Within the physical picture, throughout the flow of
time, the “in” particles approach each other, interact, scatter and finally travel again as asymp-
totically free outgoing, viz. “out,” particles. Within such a scheme, an “out” n-particle state
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is then parameterized by n well-ordered rapidities ˇ1 < � � � < ˇn and can be seen as a com-
ponent of a vector belonging to the Hilbert space

hout D

C1M
nD0

L2
�
Rn

<

�
with Rn

< D
®
ˇn D .ˇ1; : : : ; ˇn/ 2 Rn

W ˇ1 < � � � < ˇn

¯
: (1.4)

The S-matrix will allow one to express the “out” state g D .g.0/; : : : ; g.n/; : : : / which results
from the scattering of an “in” state f D .f .0/; : : : ; f .n/; : : : / as

g.n/.ˇ1; : : : ; ˇn/ D

nY
a<b

S.ˇa � ˇb/ � f .n/.ˇn; : : : ; ˇ1/: (1.5)

Note that in this integrable setting, there is no particle production and that the scattering is
a concatenation of two-body processes.

Over the years, it turned out to be possible to characterize thoroughly the S-matrices
for more involved quantum field theories underlying to other integrable classical field theo-
ries in 1+1 dimensions. Such models possess several types of asymptotic particles which
can also form bound states. Then, the “in” Fock Hilbert space is more complicated and
takes the form

LC1

nD0 L2.Rn
>;˝nCp/ where the L2-space refers to ˝nCp valued func-

tions on Rn
>, with p corresponding to the number of different asymptotic particles in the

given theory. The most celebrated example corresponds to the Sine-Gordon quantum field
theory. Building on Faddeev–Korepin’s [22] semiclassical quantization results of the solitons
in the classical Sine-Gordon model, one concludes that the underlying quantum field theory
possesses two distinct types of asymptotic particles of equal mass, the soliton and the anti-
soliton, as well as a certain number, which depends on the coupling constant, of bound states
thereof. These all have distinct masses and are called breathers. Zamolodchikov argued the
explicit form of the S-matrix governing the soliton–antisoliton scattering [39] upon using the
factorizability of the n-particle S-matrix into two-particle processes, the independence of the
order in which a three particle scattering process arises from a concatenation of two-particle
processes as well as the fact that equal mass particles may solely exchange their momenta
during scattering, this due to the existence of many conservation laws. This enforces that the
S matrix satisfies the Yang–Baxter equation, which originally appeared in rather different
contexts [5, 37], and strongly restricts its form. We do stress that the Yang–Baxter equation
is the actual cornerstone of quantum integrability, so that it is not astonishing to recover it
also in this setting. The missing pieces of the Sine-Gordon S-matrix capturing the soliton–
breather and breather–breather scattering were then proposed in [18]. Nowadays, S-matrices
of many other models have been proposed, see e.g., [1,38].

1.2. The operator content and the bootstrap program
1.2.1. The basic operators
Having in mind the per se full construction of the quantum field theory, identifying

the content in asymptotic particles, viz. the “in” particles’ Hilbert space hin, and the S-matrix
which describes their scattering only arises as the first step. Indeed, one should build, in a way
that is compatible with the form of the scattering encapsulated in the S-matrix of interest, a
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family O˛ of operator-valued distributions, ˛ running through some set � . More precisely,
the O˛ should be distributions acting on smooth, compactly supported functions d.x/ of the
Minkowskian space-time coordinate

x D .x0; x1/ 2 R1;1 with x � y D x0y0 � x1y1: (1.6)

Then O˛Œd � is some densely defined operator on hin whose domain could, in principle,
depend on d . It is useful from the point of view of connecting this picture to physics to
express O˛ directly in terms of its generalized operator valued function

O˛Œd � D

ˆ
R2

d2x d.x/O˛.x/: (1.7)

In fact, in physics’ terminology, it is the O˛.x/s which correspond to the quantum fields of
the theory. Moreover, as will be apparent in the following, it turns out that in most handlings
O˛.x/ does actually make sense as a bona fide operator valued function on the Minkowski
space having a well-defined dense domain. Hence, unless it is mandatory so as to make an
appropriate sense out of the formula, we will make use of the generalized function notation
O˛.x/.

On top of being compatible with the scattering date, the operators O˛.x/ should
form an algebra, viz. the product O˛.x/O˛0.y/ should be a well-defined dense operator for
almost all x and y , and satisfy causality, viz. that for purely Bosonic theories as the Sinh-
Gordon model�

O˛.x/; O˛0.y/
�
� O˛.x/O˛0.y/ � O˛0.y/O˛.x/ D 0 if .x � y/2 < 0; (1.8)

namely when x � y is space-like. The family O˛.x/ should in particular contain the per se
quantized counterparts of the classical fields arising in the original evolution equation, for
instance, ˆ.x/ or e
ˆ.x/ in the Sinh-Gordon quantum field theory case. Moreover, these
operators should comply with the various other symmetries imposed on a quantum field
theory, such as invariance under Lorentz boosts of space-time coordinates or translational
invariance. In the quantum Sinh-Gordon field theory on which we shall focus from now on,
the latter means that the model is naturally endowed with a unitary operator UTy such that
for any operator O.x/

UTy � O.x/ � U�1
Ty
D O.x C y/: (1.9)

The operator UTy acts diagonally on hin given in (1.2):

UTy � f D
�
U.0/

Ty
� f .0/; : : : ; U.n/

Ty
� f .n/; : : :

�
with f D

�
f .0/; : : : ; f .n/; : : :

�
(1.10)

and where

U.n/
Ty
� f .n/.ˇn/ D exp

´
i

nX
aD1

p.ˇa/ � y

µ
f .n/.ˇn/; (1.11)

with p.ˇ/ D .m cosh.ˇ/; m sinh.ˇ// and ˇn D .ˇ1; : : : ; ˇn/.
Should the construction of quantum fields fulfilling to the above be achieved, the

ultimate goal would consist in computing in closed and explicit form the model’s vacuum-
to-vacuum n-point correlation functions:˝

O˛1.x1/ � � �O˛n.xn/
˛
D Trhin

�
P0O˛1.x1/ � � �O˛n.xn/P0

�
; (1.12)
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with P0 being the orthogonal projection on the 0-particle Fock space. We do stress that
the above objects are still generalized functions and, as such, should be considered in an
appropriate distributional interpretation. That will be made precise below.

1.2.2. The bootstrap program for the zero particle sector
By virtue of the above, in the case of the hin Hilbert space, one may represent an

operator O.x/ as an integral operator acting on the L2-based Fock space

O.x/ � f D
�
O.0/.x/ � f ; : : : ; O.n/.x/ � f ; : : :

�
(1.13)

with O.n/.x/ W hin ! L2.Rn
>/. Later on, we will discuss more precisely the structure of the

operators O.n/.x/ that one needs to impose so as to end up with a consistent quantum field
theory. However, first, we focus our attention on the 0th space operators whose action may
be represented, whenever it makes sense, as

O.0/.x/ � f D
X
m�0

ˆ
Rm

>

dmˇM
.O/
0Im.ˇm/

mY
aD1

®
e�ip.ˇa/�x

¯
f .m/.ˇm/: (1.14)

The oscillatory x-dependence is a simple consequence of the translation relation (1.9) along
with the explicit form of the action of the translation operator (1.11).

In order for O.0/.x/ to comply with the scattering data encoded by S, one needs to
impose a certain amount of constraints on the integral kernels M

.O/
0Im.ˇm/. First of all, general

principles of quantum field theory impose that, in order for these to correspond to kernels
of quantum fields, the M

.O/
0Im.ˇm/ have to correspond to a C boundary value F

.O/
mIC.ˇm/ on

Rm
> of a meromorphic function F

.O/
m .ˇm/ of the variables ˇa belonging to the strip

S D
®
z 2 C W 0 < =.z/ < 2�

¯
: (1.15)

Traditionally, in the physics literature, the functions F
.O/

m .ˇm/ are called form factors.
Further, one imposes a set of equations on the F

.O/
m s. These constitute the so-called

form factor bootstrap program. On mathematical grounds, one should understand the form
factor bootstrap program as a set of axioms that one imposes as a starting point of the theory
given the data .hin; S/. Upon solving them, one has to check a posteriori that their solutions
do provide one, through (1.14) and (1.16), with a collection of operators satisfying all of the
requirements of the theory discussed earlier on.

The bootstrap program axioms take the form of a Riemann–Hilbert problem for a
collection of functions in many variables. In the case of the Sinh-Gordon model, since there
are no bound states, these take the below form.

Form Factor Axioms 1.1. Find functions F
.O/

n , n 2 N, such that, for each k 2 J1I nK and
fixed ˇa 2 S , a 6D k, the maps ˇk 7! F

.O/
n .ˇn/ are

• meromorphic on S ;

• admitC, resp. �, boundary values F
.O/

nIC on R, resp. F
.O/

nI� on RC 2i�;

• are bounded at infinity by C � cosh.`<.ˇk// for some n and k independent `.
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The F
.O/

n satisfy the multivariate system of Riemann–Hilbert problems:

(i) agreeing upon ˇab D ˇa � ˇb , one has F
.O/

n .ˇ1; : : : ; ˇa; ˇaC1; : : : ; ˇn/

D S.ˇaaC1/ � F
.O/

n .ˇ1; : : : ; ˇaC1; ˇa; : : : ; ˇn/;

(ii) For ˇ1 2 R, and given generic ˇ0
n D .ˇ2; : : : ; ˇn/ 2 S n�1, it holds

F
.O/

nI�.ˇ1 C 2i�; ˇ0
n/ D F

.O/
nIC.ˇ0

n; ˇ1/ D
Qn

aD2 S.ˇa1/ � F
.O/

nIC.ˇn/;

(iii) The only poles of F
.O/

n are simple, located at i� shifted rapidities and

� iRes
�
F

.O/
nC2.˛C i�;ˇ;ˇn/ � d˛;˛D ˇ

�
D

´
1�

nY
aD1

S.ˇ � ˇa/

µ
�F .O/

n .ˇn/I

(iv) F
.O/

n .ˇn C �en/ D e�sO � F
.O/

n .ˇn/ for some number sO and with
en D .1; : : : ; 1/.

Note that the reduction occurring at the residues of F
.O/

n .ˇn/ when ˇab D i� can
be readily inferred from .i/ and .iii/.

One may already comment on the origin of the axioms. The first one illustrates
the scattering properties of the model on the level of the operator’s kernel. The second and
third axioms may be interpreted heuristically as a consequence of the LSZ reduction [25],
and locality of the operator, see, e.g., [2, 34] for heuristics on that matter. Finally, the last
axiom is a manifestation of the Lorentz invariance of the theory. The number sO arising
in .iv/ is called the spin of the operator. Moreover, the number ` depends on the type of
operator being considered. Finally, for more complex models, one would also need to add an
additional axiom which would encapsulate the way how the presence of bound states in the
model governs certain additional poles in the form factors, cf. [34].

1.2.3. The bootstrap program for the multiparticle sector
It is convenient to represent the action of the operators O.n/.x/ in the form�

O.n/.x/ � f
�
.
n/ D

X
m�0

nY
aD1

®
eip.
a/�x

¯
� M.m/

O .x j 
n/
�
f .m/

�
: (1.16)

There M.m/
O .x j 
n/ are distribution-valued functions which act on appropriate spaces of

sufficiently regular functions in m variables. The regularity assumptions will clear out later
on, once that we provide the explicit expressions (1.18) for these distributions. In fact, it is
convenient, in order to avoid heavy notations, to represent their action as generalized integral
operators

M.m/
O .x j 
n/

�
f .m/

�
D

ˆ
Rm

>

dmˇM.O/
nIm.
nIˇm/

mY
aD1

®
e�ip.ˇa/�x

¯
f .m/.ˇm/; (1.17)

in which one understands of the kernels M
.O/
nIm.
nIˇm/ as generalized functions.

The last axiom of the bootstrap program provides one with a way to compute these
kernels. Heuristically, it can be seen as a consequence of the LSZ reduction [25]:
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(v)

M.O/
nIm.˛nIˇm/

DM
.O/
n�1ImC1

�
˛0

nI .˛1 C i�; ˇm/
�

C 2�

mX
aD1

ı˛1Iˇa

a�1Y
kD1

S.ˇk � ˛1/ �M
.O/
n�1Im�1

�
˛0

nI .ˇ1; : : : ; b̌a; : : : ; ˇm/
�
:

In the above expression, b̌a means that the variable ˇa should be omitted and ıxIy

refers to the Dirac mass distribution centered at x and acting on functions of y. Finally, the
evaluation at ˛1 C i� is understood in the sense of a boundary value of the meromorphic
continuation in the strip 0 � =.z/ � � from R up to RC i� . This axiom is to be comple-
mented with the initialization condition M

.O/
0In.;Iˇn/DF

.O/
nIC.ˇn/ when ˇn 2Rn

>. It is direct
to establish that the recursion may be solved in closed form allowing one to determine the
distributional kernel M

.O/
nIm.˛nIˇm/ in terms of F

.O/
n .ˇn/:

M.O/
nIm.˛nIˇm/ D

min.n;m/X
pD0

X
k1<���<kp

1�ka�n

X
i1 6D���6Dip
1�ia�m

pY
aD1

¹2�ı˛ka Iˇia
ºS
� �

˛ n j
 �
˛ .1/

n

�
� S

�
ˇ.1/

n j ˇn

�
� FnCm�2pI�

� �
˛ .2/

n C i�en�p; ˇ.2/
m

�
: (1.18)

There, we have used the shorthand notations ˛
.1/
n D .˛k1

; : : : ; ˛kp
/ and ˛

.2/
n D

.˛`1
; : : : ; ˛`n�p

/ where ¹`1; : : : ; `n�pº D J1InK n ¹kaº
p
1 , `1 < � � � < `n�p , and analogously

ˇ.1/
m D .ˇi1 ; : : : ; ˇip / and ˇ.2/

m D . ǰ1 ; : : : ; ǰm�p / where ¹j1; : : : ; jm�pº D J1ImK n ¹iaº
p
1 ,

j1 < � � � < jm�p . Moreover, we have introduced

S
� �

˛ n j
 �
˛ .1/

n

�
D

pY
aD1

n�pY
bD1

ka>`b

S.˛ka
� ˛`b

/;

S
�
ˇ.1/

n j ˇn

�
D

pY
aD1

mY
bD1
b<ia

S.ˇb � ˇia / �
Y
a>b
ia>ib

S.ˇia � ˇib /:

Finally, we agree upon �
 N D .
N ; : : : ; 
1/ for any 
N D .
1; : : : ; 
N /.
It is clear on the level of the explicit expression (1.18) that this generalized function

is well defined, even though it involves a multiplication of distributions.

1.2.4. The road towards the bootstrap program
The first calculation of certain of the operators’ kernels was initiated by Weisz [36]

who built on the full characterization of the S matrix of the Sine-Gordon model to argue with
the help of general principles of quantum field theory an expression for the kernel M

.O/
1I1.˛Iˇ/

of the electromagnetic current operator only involving one-dimensional variables ˛; ˇ. The
setting up of a systematic approach allowing one to calculate all the collection of kernels
characterizing an operator starting from a given model’s S-matrix has been initiated by
Karowski and Weisz [19] who proposed a set of equation satisfied by that model’s equiv-
alent of F

.O/
n .ˇn/. These allowed them to provide closed-form expressions for two-particle
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form factors in several models. However, these equations were still far from forming the full
bootstrap program as described above.

After long investigations [30, 31, 33] which revealed a deeper structure of the form
factors of the Sine-Gordon model, Smirnov [32] formulated the equivalent of axioms .i/–.ii/
in that model. Subsequently, Kirillov and Smirnov [20] proposed the full set of the bootstrap
program axioms, exemplified in the case of the Massive Thirring model; see also [34].

2. Solving the bootstrap program

The resolution of the bootstrap program was systematized over the years and these
efforts led to explicit expressions for the form factors of local operators in numerous 1+1-
dimensional massive quantum field theories, see, e.g., [34]. The first expressions for the form
factors were rather combinatorial in nature. Later, a substantial progress was achieved in sim-
plifying the latter, in particular by exhibiting a deeper structure at their root. Notably, one can
mention the free field based approach, also called angular quantization, to the calculation of
form factors. It was introduced by Lukyanov [26] and allowed obtaining convenient represen-
tations for certain form factors solving the bootstrap program. In particular, the construction
lead to closed-form and manageable expressions [10, 27] for the form factors of the expo-
nential of the field operators in the Sinh-Gordon and the Bullough–Dodd models. Later,
Babujian, Fring, Karowski, Zapetal [2] and Babujian, Karowski [3, 4] developed the more
powerful K-transform approach which will be described below on the example of the Sinh-
Gordon model. The construction of [3,4] was improved in [15,24] so as to encompass more
complicated operators, the so-called descendants of the Sinh-Gordon exponential of the field
operator.

2.1. The 2-particle sector solution
The constructions of solutions to the bootstrap program starts from obtaining a spe-

cific solution to the equations .i/–.iv/ when n D 2, i.e., for two variables. This was first
achieved in [19].

Lemma 2.1 ([19]). Let F
.O/

2 .ˇ1;ˇ2/ solve .i/–.iv/ at nD2. Then, there exist k2¹1; : : : ;`=2º,
~a 2 C, a D 1; : : : ; k, such that, with ˇ12 D ˇ1 � ˇ2

F
.O/

2 .ˇ1; ˇ2/ D NO

kY
aD1

²
sinh

�
ˇ12 � ~a

2

�
� sinh

�
ˇ12 C ~a

2

�³
e

sO
2 .ˇ1Cˇ2/F.ˇ12/ (2.1)

for some NO 2C and where F is given by the integral representation valid for 0 <=.ˇ/ < 2�:

F.ˇ/ D exp

´
�4

ˆ C1

0

dx
sinh.xb/ � sinh.x Ob/ � sinh. 1

2
x/

x sinh2.x/
cos
�

x

�
.i� � ˇ/

�µ
; (2.2)

with Ob D 1
2
� b.

Proof. Axiom .iv/ ensures that F
.O/

2 .ˇ1; ˇ2/ D e
sO
2 .ˇ1Cˇ2/ QF.ˇ1 � ˇ2/ for some function

QF.ˇ/ that is holomorphic on the strip 0 < =.ˇ/ < 2� , bounded at infinity by C cosh.`ˇ/,
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and such that QF�.ˇC 2i�/D S.ˇ/ QFC.�ˇ/D QFC.ˇ/, ˇ 2R. One first looks for a particular
solution to this scalar Riemann–Hilbert problem, namely a holomorphic function F in the
strip 0 < =.ˇ/ < 2� which behaves as F.ˇ/ D 1C O.ˇ�2/ as <.ˇ/! ˙1 uniformly in
0 � =.ˇ/ � 2� and satisfies F�.ˇ C 2i�/ D S.�ˇ/FC.ˇ/ D FC.�ˇ/, ˇ 2 R.

Starting from the below integral representation

S.ˇ/ D exp

´
8

ˆ C1

0

dx
sinh.xb/ � sinh.x Ob/ � sinh. 1

2
x/

x sinh.x/
sinh

�
xˇ

i�

�µ
; (2.3)

one readily checks that the solution is provided by the below 2i�-periodic Cauchy transform

F.ˇ/ D exp

´ˆ
R

ds

4i�
coth

�
1

2
.s � ˇ/

�
ln S.s/

µ
: (2.4)

The s integral can then be taken by means of the integral representation (2.3) for ln S.s/ and
leads to (2.2). Now it is easy to check that the holomorphic function G.ˇ/ D QF.ˇ/=F.ˇ/ on
the strip 0 < =.ˇ/ < 2� admits˙ boundary values and satisfies G�.ˇC 2i�/D GC.ˇ/ for
ˇ 2 R and is bounded by C cosh.`<.ˇ// as <.ˇ/!1 in this strip. As a consequence, it
admits a unique extension into a 2i�-periodic entire function bounded by C cosh.`ˇ/ and
hence is of the form P`.eˇ /, where P` is a Laurent polynomial of maximal positive and
negative degree `. Since it is 2i�-periodic and even, P`.eˇ / necessarily takes the form

P`

�
eˇ
�
D

kY
aD1

²
sinh

�
ˇ � ~a

2

�
� sinh

�
ˇ C ~a

2

�³
for some 2k � `: (2.5)

2.2. The n-particle sector solution
Proposition 2.2. Consider the change of unknown functions

F .O/
n .ˇn/ D

nY
a<b

F.ˇab/ �K.O/
n .ˇn/ with ˇab D ˇa � ˇb; (2.6)

with F as defined through (2.2). Then F
.O/

n solves the bootstrap axioms .i/–.iv/ if any only if

(I) K
.O/
n is a symmetric function of ˇn;

(II) K
.O/
n is a 2i� periodic and meromorphic function of each variable taken

singly;

(III) the only poles of K
.O/
n are simple and located at ˇa � ˇb 2 i�.1C 2Z/. The

associated residues are given by

Res
�
K.O/

n .ˇn/ � dˇ1; ˇ12 D i�
�

D
i

F.i�/
�

1 �
Qn

aD3 S.ˇ2a/Qn
aD3¹F.ˇ2a C i�/F.ˇ2a/º

�K
.O/
n�2

�
ˇ00

n

�
(2.7)

where ˇ00
n D .ˇ3; : : : ; ˇn/;

(IV) K
.O/
n .ˇn C �en/ D e�sO �K

.O/
n .ˇn/.
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This first transformation simplifies the symmetry properties of the problem. How-
ever, the inductive reductions provided by the computation of the residues are still quite
intricate. The idea is then to proceed to yet another change of unknown function, this time
by means of a more involved transform. The latter will then lead to structurally much sim-
pler, and thus easier to solve, equations satisfied by the new unknown function. As already
mentioned, the dawn of this approach goes back to [10,27] and it was put in the present form
in [2–4]. In particular, we refer to [3] for the proof.

Proposition 2.3 ([3]). Let `n 2 ¹0; 1ºn and p
.O/
n .ˇn j `n/ be a solution to the below con-

straints:

(a) ˇn 7! p
.O/
n .ˇn j `n/ is a collection of 2i�-periodic holomorphic functions on

C that are symmetric in the two sets of variables jointly, viz. for any � 2 Sn it
holds p

.O/
n .ˇ�

n j `
�
n/ D p

.O/
n .ˇn j `n/ with ˇ�

n D .ˇ�.1/; : : : ; ˇ�.n//;

(b) p
.O/
n .ˇ2C i�;ˇ0

n j `n/D g.`1; `2/p
.O/
n�2.ˇ00

n j `
00
n/C h.`1; `2 j ˇ

0
n/ where h does

not depend on the remaining set of variables `00
n and

g.0; 1/ D g.1; 0/ D
�1

sin.2�b/F.i�/
I (2.8)

(c) p
.O/
n .ˇn C �en j `n/ D e�sO � p

.O/
n .ˇn j `n/.

Then, its K-transform

Kn

�
p.O/

n

�
.ˇn/ D

X
`n2¹0;1ºn

.�1/`n

nY
a<b

²
1 � i

`ab � sinŒ2�b�

sinh.ˇab/

³
� p.O/

n .ˇn j `n/; (2.9)

in which `n D
Pn

aD1 `k , solves .I/–.IV/.

Note that arguments were given in [15] in favor of some form of bijection between
certain classes of solutions to .a/–.c/ and .I/–.IV/. However, we do stress that, so far, the
question whether there does exist a clear cut correspondence between all solutions to .a/–.c/

and .I/–.IV/ is still open.

3. Towards physical observables and the convergence

problem

The resolution of the bootstrap program provides one with the expressions for the
integral kernels of certain operators which are candidates for the quantum fields of the 1+1-
dimensional Sinh-Gordon quantum field theory. However, for this construction to really
provide one with the quantum field theory of interest, one should establish several facts.
First of all, the operators so constructed should form an algebra in the sense discussed in Sec-
tion 1.2.1. By virtue of the translational invariance (1.9), this means that, for any n; m 2 N,
the series of multiple integrals arising in the operator product U�1

Tx
PnO1.x/O2.0/Pm, where

Pk is the orthogonal projector on the k-particle Fock space, should converge in the weak
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sense. Namely, for any sufficiently regular functions ˛n 7! f .n/.˛n/ and ˇm 7! g.m/.ˇm/

belonging respectively to a dense subset of L2.Rn
>/ and L2.Rm

>/, and for any d 2 C1
c .R2/,X

`�0

ˆ
R`

>

d`


.2�/`

´ˆ
Rn

>

dn˛

.2�/n
f .n/.˛n/M

.O1/

nI`
.˛nI
`/

µ

�

´ˆ
R2

d2xd.x/
Ỳ
aD1

e�ip.
a/�x

µ
�

´ˆ
Rm

>

dnˇ

.2�/m
M

.O2/

`Im
.
`Iˇm/g.m/.ˇm/

µ
(3.1)

should converge. The simplest case corresponds to establishing the convergence of the series
of multiple integrals subordinate to operator products P0O1.x/O0

2.0/P0, viz. for nD mD 0.
Since the zeroth Fock space is one-dimensional, this exactly amounts to the convergence
of the series of multiple integrals which represents the two-point generalized function
hO1.x/O0

2.0/i. However, even for this specific instance, proving this property on rigorous
grounds remained an open problem for a very long time. It has only recently been solved by
the author [23] in the case of space-like separation between the operators, viz. x2 < 0. The
scheme of proof of this result will be discussed in Section 4. From the proof’s structure, it
is rather clear that one can build on minor modifications of this method so as to establish
convergence in the time-like regime, i.e. when x2 > 0, although this has not been done yet.
Moreover, the combinatorial expressions for the kernels M

.O/
nIm.˛nIˇm/ in terms of the base

form factors F
.O/

p , 0 � p � m C n indicates that the method outlined below would also
allow one to tackle the convergence problem for general multipoint correlation functions.

Once that the convergence problem is solved in full generality, hence guaranteeing
that the operators O˛.x/ do form an algebra, one still needs to establish the local commuta-
tivity property of the quantum fields which ensures causality of the theory. The method for
doing so is now well established. Indeed, under the hypothesis of convergence of the han-
dled series of multiple integrals issuing from the operators products, Kirillov and Smirnov
showed this property in the Sine-Gordon case in [20, 21]. Their method readily applies to
the Sinh-Gordon case. Hence, convergence is the only remaining problem so as to set this
construction of quantum field theories on rigorous grounds.

3.1. The well-poised series expansion for two-point functions
First of all, by translation invariance, it is enough to focus on hO1.x/O2.0/i. Recall

that, at least in principle, this quantity is a generalised function and should thus be under-
stood, in the first place, as the formal integral kernel of the distribution hO1O2i. For d 2

C1
c .R2/, provided convergence holds, one has

hO1O2iŒd � D

ˆ
R2

d2xd.x/
˝
O1.x/O2.0/

˛
D

X
n�0

1

nŠ
I.O1;O2/

n Œd � (3.2)

with

I.O1;O2/
n Œd �D

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/M
.O2/
nI0 .ˇnI;/

ˆ
R2

d2xd.x/

nY
aD1

®
e�imŒt cosh.ˇa/�x sinh.ˇa/�

¯
:
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It is a direct consequence of the kernel reduction axiom .v/ and of Lorentz invariance .iv/

that
M

.O2/
nI0 .ˇnI ;/ D F .O2/

n .
 �
ˇ n C i�en/ D ei�sO2 F .O2/

n .
 �
ˇ n/: (3.3)

This identity, along with the growth bounds in each ˇa of the form factors F
.O/

n .ˇn/, ensures
the well definiteness of the n-fold integrals since the space-time integral over x produces
a decay in each ˇa that is faster than any exponential e˙kˇa , <.ˇa/ ! ˙1. By virtue
of the Morera theorem, this rapid decay at infinity along with the holomorphy properties
of the integrands allow one to deform, simultaneously for each integration variable ˇa,
a D 1; : : : ; n, the integration curves to R C i �

2
sgn.x/ when x is space-like and, when x

is time-like, to 
.R/ where 
.u/D uC i#.u/, where # is smooth, j#j < �=4, and such that
there exists M > 0 large enough and 0 < " < �=2 so that #.u/ D �sgn.t/sgn.u/" when
juj �M . This operation turns the ˇn integrals into absolutely convergent ones irrespectively
of the presence of d.x/. In particular, for the space-like regime, one gets that

I.O1;O2/
n D e�.x/

ˆ
R2

d2xd.x/

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/F .O2/
n .
 �
ˇ n/

nY
aD1

e�mr cosh.ˇa/;

in which r D
p

x2 � t2, tanh.#/ D t=x while

�.x/ D i�sO2 C .i �
2

sgn.x/C #/.sO1 C sO2/:

Hence, provided convergence holds, one has the well-defined in the usual sense of numbers
representation for the two-point function˝

O1.x/O2.0/
˛
D e�.x/

X
n�0

1

nŠ

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/F .O2/
n .
 �
ˇ n/

nY
aD1

e�mr cosh.ˇa/: (3.4)

3.2. Convergence of series representation for two-point functions
Thus, the well-definiteness of the two-point functions boils down to providing an

appropriate upper bound for the below class of N -fold integrals for ~ > 0,

ZN .~/ D

ˆ
RN

dN ˇ

NY
a 6Db

e
1
2 w.ˇab/

�

NY
aD1

®
e�2~ cosh.ˇa/

¯
KN

�
p

.O1/
N

�
.ˇN /KN

�
p

.O2/
N

�
.
 �
ˇ N /:

(3.5)
The two-body potential w is defined through the relation F.�/F.��/ D ew.�/.

Theorem 3.1 ([23]). Assume that there exist C1; C2, and k 2 N such that given s 2 ¹1; 2º,ˇ̌
p

.Os/
N .ˇN j `N /

ˇ̌
� C N

1 �

NY
aD1

eC2ˇk
a for any `N 2 ¹0; 1ºN ; (3.6)

uniformly in N . Then, it holdsˇ̌
ZN .~/

ˇ̌
� exp

�
�

3�2b Ob �N 2

4 � .ln N /3

²
1C O

�
1

ln N

�³�
: (3.7)

The proof of this theorem was the goal of the author’s work [23]. The proof relies on
Riemann–Hilbert problem techniques for inverting singular integral operators of truncated-
Wiener–Hopf type along with the Deift–Zhou nonlinear steepest descent method [12, 13],
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concentration of measure, and large deviation techniques which were developed for dealing
with certain ˇ-ensembles multiple integrals [7,9,28], and some generalizations thereof to the
case of N -dependent integrands in N -dimensional integrals as it was developed in [8].

4. The proof of the convergence of the form factor series

In this section we shall describe the main steps of the proof. The details can be found
in Proposition 3.1 of [23].

4.1. An simpler upper bound
The starting point consists in obtaining a structurally simpler upper bound on ZN .~/

when ~ > 0.

Proposition 4.1. There exists C > 0 such thatˇ̌
ZN .~/

ˇ̌
� .C � ln N /N

�maxp2J0IN KjZN;p.~/j; (4.1)

where ZN;p.~/ D
´

RN �p dN �p�
´

Rp dp�%N;p.�N �p; �p/ whose integrand is expressed as

%N;p.�N �p; �p/ D

pY
aD1

®
e�VN .�a/

¯
�

N �pY
aD1

®
e�VN .�a/

¯
�

pY
a<b

®
ewN .�ab/

¯
�

N �pY
a<b

®
ewN .�ab/

¯
�

pY
aD1

N �pY
bD1

®
ewtotIN .�a��b/

¯
: (4.2)

Above, we have used the N -dependent functions

VN .�/ D ~ cosh.�N �/; wN .�/ D w.�N �/; wtotIN .�/ D wtot.�N �/; (4.3)

with �N D ln N and

wtot.�/ D w.�/C v2�b;0C.�/ with v˛;�.�/ D ln
�

sinh.�C i˛/ sinh.� � i˛/

sinh.�C i�/ sinh.� � i�/

�
: (4.4)

4.2. Energetic bounds
Proposition 4.2. The partition function ZN;p.~/ admits the upper bound

ZN;p.~/ � exp
®
�N 2inf

®
EN;

p
N

Œ�; �� W .�; �/ 2M1.R/ �M1.R/
¯
C O

�
N�2

N

�¯
; (4.5)

in which the control is uniform in p 2 J0IN K, and where

EN;t Œ�; �� D
1

N

²
t

ˆ
VN .s/d�.s/C .1 � t /

ˆ
VN .s/d�.s/

³
�

t2

2

ˆ
wN .s � u/d�.s/d�.u/ �

.1 � t /2

2

ˆ
wN .s � u/d�.s/d�.u/

� t .1 � t /

ˆ
wtotIN .s � u/d�.s/d�.u/:

One may obtain such an upper bound within the standard approach to establishing
large deviation bounds for N -fold integrals as pioneered in [7], adjoined to the local regular-
ization of the empirical distribution of the integration variables proposed in [28], and some
fine bounds due to the N -dependence of the integrand which were also considered in [8].
The details can be found in Lemmata 4.2–4.3 of [23].
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4.3. Characterization of the minimizer and a lower-bound minimizer
The upper bound established in Proposition 4.2 does not allow one to conclude

directly on the convergence of the series. Indeed, even if one could prove that the infimum
in (4.5) gives a strictly positive number, the N -dependence of the energy functional could
make the infimum N -dependent and, in principle, the latter could give rise to a behaviour in
N which, when multiplied by the N 2 prefactor, could turn out to be subdominant with respect
to the corrections O.N�2

N /. Hence, the longest part of the proof is devoted to obtaining some
sharp and explicit lower bound for the infimum which can then be computed in closed form
so that one may explicitly check that the above scenario does hold.

For that purpose, one starts by showing

Proposition 4.3. For 0 < t < 1 EN;t admits a unique minimizer .�
.N;t/
eq ; �

.N;t/
eq / on

M1.R/ �M1.R/. Similarly, EN;0 and EN;1 admit unique minimizers on M1.R/.

This is established by showing that, for 0 < t < 1, EN;t is lower semicontinuous
and strictly convex on M1.R/ �M1.R/, has compact level sets, is not identicallyC1, and
is bounded from below. In principle, this result could be already enough to obtain sharp
in N estimates for EN;t Œ�

.N;t/
eq ; �

.N;t/
eq �. Indeed, by relying on the analogous to the case of

ˇ-ensembles variational characterization of the minimizers and showing that these are actu-
ally Lebesgue continuous with compact connected supports, one may establish a system of
two-coupled singular linear integral equations of truncated Wiener–Hopf type depending
on the large-parameter N . These may be analyzed within the method developed by Krein’s
school after generalizing the work [29] and solving the 4 � 4 associated Riemann–Hilbert
problem in the large-N regime by the Deift–Zhou nonlinear steepest descent method [12,13].
However, these steps would definitely lead to an extremely cumbersome and long clamber,
especially taken the minimal amount of information one needs, in the end, from such han-
dlings. Therefore, it is more convenient to reduce the numbers of minimizers which ought
to be thoroughly determined by providing a lower bound for EN;t Œ�

.N;t/
eq ; �

.N;t/
eq � whose esti-

mation would demand less effort while still leading to the desired result.
A direct calculation shows that one has a simpler representation for EN;t in terms

of functionals only acting on one copy of a space of bounded measures:

EN;t Œ�; �� D
X
�D˙

E
.�/
N

�
�

.�/
t

�
with �

.˙/
t D t� ˙ .1 � t /�; (4.6)

in which E
.C/
N is a functional on M1.R/ while E

.�/
N is a functional on M

.2t�1/
s .R/, the space

of signed, bounded, measures on R of total mass 2t � 1. These take the form

E
.C/
N Œ�� D

1

N

ˆ
VN .s/ d�.s/ �

1

2

ˆ
w

.C/
N .s � u/ � d�.s/ d�.u/; (4.7)

E
.�/
N Œ�� D �

1

2

ˆ
w

.�/
N .s � t / � d�.s/ d�.u/: (4.8)

The two-body interactions appearing above involve w and v˛;� introduced in (3.5) and (4.4)

w
.˙/
N .u/ D w.˙/.�N u/ with

8<:w.C/.u/ D w.u/C 1
2
v2�b;0C.u/;

w.�/.u/ D �1
2
v2�b;0C.u/:

(4.9)
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By going to Fourier space, one observes that

E
.�/
N Œ�� D

1

2

ˆ
d�
ˇ̌
F Œ��.�/

ˇ̌2 sinh.�b�/ � sinh.� Ob�/

� sinh. �
2

�/
� 0; (4.10)

where F Œ��.�/ stands for the Fourier transform of the signed measure � . Thus,

EN;t

�
�.N;t/

eq ; �.N;t/
eq

�
� E

.C/
N

�
t�.N;t/

eq C .1 � t /�.N;t/
eq

�
� E

.C/
N

�
� .N /

eq
�
: (4.11)

In the last line, we have used that E
.C/
N is lower-continuous, has compact level sets, is strictly

convex on M1.R/, bounded from below, and not identically C1, so as to ensure the exis-
tence of a unique minimizer thereof: E

.C/
N Œ�

.N /
eq � D inf¹E.C/

N Œ�� W � 2M1.R/º.

4.4. Singular integral equation characterization of the minimizer �
.N/
eq

By using the variational characterization of the minimizer, see e.g., [11] for an expo-
sition in the ˇ-ensemble case, one reduces the construction of �

.N /
eq to finding a solution to

a singular integral equation on the Sobolev space Hs.ŒaN I bN �/ driven by the operator

�N Œ��.�/ D

 bN

aN

�
w.C/

�0�
�N .� � �/

�
� �.�/d�: (4.12)

Indeed, upon introducing the effective potential subordinate to a function � 2Hs.ŒaN IbN �/,

VN IeffŒ��.�/ D
1

N
VN .�/ �

 bN

aN

w.C/
�
�N .� � �/

�
� �.�/d�; (4.13)

one may formulate

Proposition 4.4. Let aN < bN and %
.N /
eq 2 Hs.ŒaN I bN �/, 1=2 < s < 1, solve

1

N�N

V 0
N .x/ D �N

�
%.N /

eq
�
.x/ on �aN I bN Œ; (4.14)

be subject to the conditions

%.N /
eq .�/ � 0 for � 2 ŒaN I bN �;

ˆ bN

aN

%.N /
eq .�/d� D 1; (4.15)

and

VN Ieff
�
%.N /

eq
�
.�/ > inf

®
VN Ieff

�
%.N /

eq
�
.�/ W � 2 R

¯
for any � 2 R n ŒaN I bN �: (4.16)

Then, the equilibrium measure �
.N /
eq is supported on the segment ŒaN I bN � and continuous

in respect to Lebesgue’s measure with density %
.N /
eq . Moreover, the density takes the form

%.N /
eq .�/ D

p
.bN � �/.� � aN / � hN .�/ with hN 2 C1

�
ŒaN I bN �

�
: (4.17)

The above proposition thus provides one with the following strategy for determining
the equilibrium measure. One starts by solving the singular integral equation (4.14) for any
endpoints aN and bN . The inversion should be carried out in an appropriate functional space
which is dictated by the local structure (4.17) of the equilibrium measure’s density, as can
be inferred from an analysis of the systems of loop equations associated with the probability
measure on RN naturally subordinate to the energy functional E

.C/
N . The fact that �N should

4111 Bootstrap approach to 1+1-dimensional integrable quantum field theories



be inverted on Hs.ŒaN I bN �/, 0 < s < 1, imposes a constraint on aN and bN . A second
constraint is obtained from the fact that the equilibrium measure has unit mass (4.15). This
is still not enough so as to be sure that the solution constructed in this way provides one with
the equilibrium measure. For that to happen, one still needs to verify that the two positivity
constraints (4.15)–(4.16) are fulfilled. The realization of such a program demands to have
a thorough control on the inversion of �N . The latter may be reached within the scheme
developed in [29], by solving an auxiliary 2 � 2 Riemann–Hilbert problem.

4.5. The Riemann–Hilbert based inversion of the operator
In the following, we adopt the shorthand notations

aN D �N aN ; bN D �N bN ; xN D �N .bN � aN /: (4.18)

Consider the Riemann–Hilbert problem for a 2 � 2 matrix function � 2M2.O.C nR//:

• � has continuous˙-boundary values on R;

• there exist constant matrices �.a/ with �
.1/
12 6D 0 such that when �!1,

�.�/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

PLI".�/ �

 
�s� � ei�xN 1

�1 0

!
�

.�i�/
3
2 �3

e�i 3�
2 �3

� .I2 C
�.1/

�
C

�.2/

�2 C O.��3// � Q.�/; � 2 HC;

PLI#.�/ �

 
�1 s� � e�i�xN

0 1

!
� .i�/

3
2 �3

� .I2 C
�.1/

�
C

�.2/

�2 C O.��3// � Q.�/; � 2 H�;

in which the matrix Q takes the form

Q.�/ D

 
0 ��

.1/
12

¹�
.1/
12 º

�1 q1 C �

!
with q1 D .�

.1/
11 �

.1/
12 � �

.2/
12 / � ¹�

.1/
12 º

�1
I

• �C.�/ D G�.�/ � ��.�/ for � 2 R where

G�.�/ D

 
ei�xN 0

1
i� �R.�/ �e�i�xN

!
with R.�/ D 2

sinh.�b�/ � sinh.� Ob�/ � sinh. �
2

�/

cosh2. �
2

�/
:

Here s� D sgn.<�/, O.A/ stands for the ring of holomorphic functions on A, while the
O remainder appearing in matrix equalities should be understood entrywise. Moreover, we
point out that the matrix Q appearing in the asymptotic expansion for � is chosen such that
� has the large-� behavior

�.�/ D �
.1/

"=#
.�/ � .�i�/

1
2 �3 ; � 2 H˙; (4.19)

with �
.1/

"=#
.�/ bounded at1.
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The Deift–Zhou nonlinear steepest descent method [12,13] allows one to reduce the
above Riemann–Hilbert problem into one that is uniquely solvable by the singular integral
equation method of [6], provided that N is large enough and bN � aN > c > 0 uniformly
in N .

The solution � then provides one with a full description of the inverse of �N .

Proposition 4.5. Let 0 < s < 1. The operator �N W Hs.ŒaN I bN �/! Hs.R/ is continuous
and invertible on its image:

Xs.R/ D

´
H 2 Hs.R/ W

ˆ
RCi"0

�12.�/F ŒH �.�N �/e�i�bN �
d�

.2i�/2
D 0

µ
: (4.20)

More specifically, one has the left and right inverse relations

WN ı �N D id on Hs

�
ŒaN I bN �

�
and �N ıWN ŒH �.�/ D H.�/ a.e. on ŒaN I bN �

for any H 2Xs.R/. The operator WN WXs.R/!Hs.ŒaN IbN �/ is given, whenever it makes
sense, as an encased oscillatorily convergent Riemann integral transform

WN ŒH �.�/ D
�2

N

�

ˆ
RC2i"0

d�

2i�

ˆ
RCi"0

d�

2i�
e�i�N �.��aN /W.�; �/e�i�bN F ŒH �.�N �/;

(4.21)
where "0 > 0 is small enough. The integral kernel

W.�; �/ D
1

� � �

²
�

�
� �11.�/�12.�/ � �11.�/�12.�/

³
(4.22)

is expressed in terms of the entries of the matrix �.

These pieces of information, along with the explicit, uniform on C, large-N expan-
sion of the solution � to the above Riemann–Hilbert problem and several technical estimates
which allow one to check that (4.15)–(4.16) hold, allow one to formulate

Theorem 4.6. Let N � N0 with N0 large enough. Then the unique minimizer �
.N /
eq of the

functional E
.C/
N introduced in (4.7) is absolutely continuous in respect to the Lebesgue mea-

sure with density %
.N /
eq and is supported on the segment ŒaN I bN �. The endpoints are the

unique solutions to the equations

aN C bN D 0 and # �
.bN /2ebN

N
� t.2bN / �

®
1C O

�
.bN /5e�2bN .1�"/

�¯
D 1;

for any 1 > " > 0, and the remainder is smooth and differentiable in bN . Above, one has

# D
2~

3.2�/
5
2

�
�.b; Ob/

bb Ob Ob
;

while, upon using the constants wk introduced below in (4.24),

t.xN / D
6

.xN /2

²
2C w2 � w1 �

w1w3

w2

³
�

xN !C1
1C O

�
1

xN

�
: (4.23)

In particular, bN is uniformly away from zero and admits the large-N expansion

bN D ln N � 2 ln ln N � ln # C O
�

ln ln N

ln N

�
:
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Finally, the density %
.N /
eq of the equilibrium measure is expressed in terms of the

integral transform of the potential %
.N /
eq D WN ŒV 0

N �=.N�N /.

In the statement of the theorem, we made use of the coefficients wk arising in the
�! 0 expansion below

2i
b2ib� Ob2i Ob�2i�

�3b Obei�xN

�2

 
1
2
C i �

2

1
2
� i �

2

!
�

 
1 � ib�; 1 � i Ob�; 1 � i �

2

ib�; i Ob�; i �
2

!
D

3X
`D0

.�i/`w`

�3�`
C O.�/:

(4.24)

4.6. Estimation of the minimum
The closed-form expression for �

.N /
eq in terms of the solution � to the above Rie-

mann–Hilbert problem and the close relation between the two-body interaction in the poten-
tial and the �N operator’s kernel allow one to exploit the system of jumps for � so as to recast
E

.C/
N Œ�

.N /
eq � only in terms of N , bN , and � evaluated at special points:

E
.C/
N

�
� .N /

eq
�
D

~

2N
cosh.bN /C

~2e2bN

8�N 2

®
�2

12.i/C 2
�
�12.i/�0

11.i/ � �11.i/�0
12.i/

�¯
�

~ebN

4N

®
1C e�xN C �22I�.0/

�
2�11.i/C i�12.i/

�
� 2�21I�.0/�12.i/

¯
:

Once that one arrives to the above closed expression, it is a matter of direct calculations which
build on the uniform on C large-N asymptotic expansion for � provided by the nonlinear
steepest descent so as to infer the large-N asymptotics

Proposition 4.7. One has the large-N asymptotic behavior

E
.C/
N

�
� .N /

eq
�
D

3�4b Ob Qw1

4.bN /3 Qw2t.2bN /
C

9�4b Ob

8.bN /4t2.2bN /

²
1 �

2 Qw1

bN Qw2

³
C O

�
e�2bN .1�"/

�
;

(4.25)

where t is as introduced in Theorem 4.6 and we have rescaled the wk variables:

w1 D 2bN Qw1; w2 D 2.bN /2
Qw2; with Qwk D 1C O

�
1

bN

�
as N !C1: (4.26)

Together with Propositions 4.2–4.3 and the lower bound in (4.11), the above theorem
yields Theorem 3.1.

5. Conclusion

In this paper we reviewed the bootstrap program approach to the rigorous construc-
tion of 1+1-dimensional integrable quantum field theories arising as appropriate quantiza-
tions of integrable classical evolution equations of 1+1-dimensional field theory. This was
done on the example of the Sinh-Gordon quantum field theory which is the simplest and
nontrivial instance of such model. The approach starts by proposing an appropriate Hilbert
space on which such a model is realized. Then, it produces the form of the S-matrix which
governs the scattering in such a case. This S-matrix arises as a solution of certain symmetry
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constrains on the scattering in a relativistically-invariant theory along with the requirement
of the factorizability of scattering into a concatenation of two-particle processes. Then, the
quantum fields, which are operator-valued distributions on functions of the space-time vari-
ables, are constructed as integral operators whose integral kernels satisfy a set of equations,
the bootstrap program axioms .i/–.v/, which should be taken as the basic axioms of the
theory. These axiomatic equations strongly depend on the form of the S-matrix for the given
theory. It turns out that the bootstrap program equations can be solved explicitly with the
help of the algebraic setting provided by the quantum integrability of the model and, in par-
ticular, the Yang–Baxter equation satisfied by the S-matrix. Once one ends up with the set of
explicit solutions to .i/–.v/, it remains to check the consistency of the whole construction, in
particular, that the so-constructed quantum fields do form an algebra and that they commute
at space-like separations. The latter requirement is crucial for guaranteeing the causality of
the so-constructed theory and thus it being viable as a per se quantum field theory. To check
these last steps of the construction, one must show that the series of multiple integrals result-
ing from the integral operator’s multiplications do converge. This was a long standing open
question in this field and its solution [23], in the simplest case scenario, was discussed by the
author in the last section of this paper.

There are still numerous open questions related to these topic: first of all, to imple-
ment the method of [23], for establishing the convergence of form factor expansions for the
time-like separated two-point functions as well as the multipoint correlation functions in all
possible regimes of separation between the operators. These questions definitely seem to
be manageable within a finite time. Further, one would like to extend the methods of prov-
ing the convergence to more challenging but also more physically relevant models such as
the 1+1-dimensional integrable Sine-Gordon quantum field theory. There, the multitude of
asymptotic particles, along with the presence of bound states and equal mass asymptotic
particles, will definitely be a challenging, but hopefully surmountable task.

Last but not least, one should provide a thorough description of the correlation
functions in the infrared limit, viz. when the Minkowski separation between the operator
approaches zero. In the case of the two-point function given in (3.4) that would correspond
to extracting the r ! 0C limit.
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