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tion in quantum statistical mechanics. We explain our operator algebraic approach to these
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1. INTRODUCTION

In quantum mechanics, physical models are determined in terms of some self-
adjoint operators called Hamiltonians. Recently, Hamiltonians whose spectrum has a gap
between the lowest eigenvalue (which coincides with the infimum of the spectrum) and the
rest of the spectrum attracted a lot of attention. Physically, these models are considered to
be in normal phases, where no critical phenomena occur. Despite that, it has turned out that
the structure of these normal gapped phases is actually mathematically interesting when we
introduce some equivalence relation to them. Roughly speaking, we say that two models are
equivalent if we can connect them smoothly within those normal phases. In spacial dimen-
sions higher than one, it is believed (and partially proven) that there are multiple phases
with respect to such classifications. If we further introduce some symmetry to the game, we
obtain interesting mathematical structures, even in one dimension. In this paper, we explain
the operator-algebraic approach to those problems.

2. FINITE-DIMENSIONAL QUANTUM MECHANICS

In order to motivate us for the operator algebraic framework of quantum statistical
mechanics, we first recall finite-dimensional quantum mechanics in this section. In finite-
dimensional quantum mechanics, physical observables are represented by elements of M,,,
the algebra of n x n-matrices. Each positive matrix p with Tr p = 1 (called a density matrix)
defines a physical state by

wp M, 3 A Tr(pA) € C.

We call this map w, a state. Clearly, it is positive, i.e., w,(A*A4) > 0 and normalized
w,(I) = 1. This corresponds to the procedure of taking expectation values of each phys-
ical observables A € My, in the physical state w,. Note that the set of all states forms a
convex compact set. Its extremal points are called pure states. A state w,, is pure if and only
if p is a rank-one projection.

Time evolution (Heisenberg dynamics) is given by a self-adjoint matrix H, called
a Hamiltonian, via the formula

M, 3 A ;(A) = 4e7H | 1 e R. .1

Let p be the spectral projection of H corresponding to the lowest eigenvalue. A state
w,(A) := Tr pA on M, is said to be a ground state of H if the support of p is under p. The
ground state is unique if and only if p is a rank one projection, i.e., if the lowest eigenvalue
of H is nondegenerate. In this case, the unique ground state is of the form w,(A4) := Tr pA,
and it is pure because p has rank one.

Sometimes we consider time-dependent Hamiltonians H (¢). Then the time evolu-
tion of an observable A € M, is given by a solution t;(A) of the differential equation

%T,(A) — i[H@t),1(A)], 10(A) = A, AeM,.

When the Hamiltonian is time-dependent H(¢) = H, this reduces to the above Heisenberg

dynamics e'*H Ae=H
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Symmetry plays an important role in physics. Let G be a finite group and suppose
that there is a group action 8 : G — Aut(M,) given by unitaries V, g € G,

Bg(A) := Ad(Vg)(4), AeM,, geG.

Here and thereafter, Aut(+) for a x-algebra 4 denotes the automorphism group of #. If a
Hamiltonian H satisfies 8¢ (H) = H for all g € G, we say that H is B-invariant. If a 8-
invariant Hamiltonian H has a unique ground state w, (A4) := Tr pA, then this unique ground
state w, is B-invariant w, (B¢ (A)) = wp(A), A € My, because the spectral projection p is
B-invariant, i.e., B¢ (p) = p.

3. QUANTUM SPIN SYSTEMS

Operator-algebraic framework of quantum statistical mechanics allows us to extend
the framework of finite-dimensional quantum mechanical systems to infinite dimensions. Let
2 <d e Nand v € N be fixed. Physically, % denotes the size of on-site spin (spin quantum
number) and v denotes the spacial dimension. We denote by &zv the set of all finite subsets
of Z”. To each finite subset A € ©zv we associate a finite-dimensional C *-algebra

Ap = ®Md.
A

Here, My is the algebra of d x d-matrices. The v-dimensional quantum spin system Azv is
the C *-inductive limit of this inductive net, given by the natural inclusion. For each infinite
subset I', we may define +Ar in exactly the same manner. The C *-algebra 4Ar can be naturally
regarded as a C *-subalgebra of #Azv. We say that an element A has support in I if it belongs
to 4. If an automorphism « acts trivially on 4Arc for some I' C Z”, we say that « has support
in I". The set of all elements in 4 zv with finite support is called a local algebra and denoted
by Aloc-

A state @ on sAr is defined to be a linear functional on Ar with w(I) = 1 which
is positive in the sense that w(A* A) > 0 for any A € Ar. The map Ar > A +— w(A) € C
corresponds to the procedure of taking the expectation value of a physical observable A in
our physical state w. The set of all states on #Ar forms a convex weaksx-compact set. Its
extremal points are called pure states. By the Krein—Milman theorem, the set of states is the
weakx-closure of the convex envelope of pure states. See [6] for more details.

For each state, we can associate a representation of Ar essentially uniquely.

Theorem 3.1 (GNS representation). For each state w on Ar, there exist a representation
e of Ar on a Hilbert space #,, and a unit vector Q,, € H,, such that

w(A) = (Qw,nw(A)Qa,), A€ Ar, and Hy = 74,(Ar)Q,. 3.1
Here, = denotes the norm closure. It is unique up to unitary equivalence.

The triple (Hy, 7, Q4) is called the GNS triple of w. We frequently consider the
commutant or bicommutant of 7, (#Ar). For a x-algebra M acting on a Hilbert space J,

4144 Y. OGATA



we denote by M’ the set of all elements in B(H) (the set of all bounded operators on J)
commuting with every element in M. The algebra M’ is called a commutant of M, and the
commutant of M’ is called bicommutant and denoted by M”.

For a pure state w, it is known that i, is irreducible (i.e., there is no nontrivial closed
subspace of #, invariant under 7, (Ar)) and 7, (Ar) is dense in B(H,,) with respect to
the strong operator topology. This property can be rephrased as 7, (Ar)” = B(Hy).

Given GNS representations, we can introduce some equivalence relation between
states. We say that two states @, ¢ on A are equivalent (denoted w =~ ¢) if and only if the
corresponding GNS representations are unitarily equivalent. For a state @ and an automor-
phism o on Ar, if w and w o « are equivalent, then there is a unitary u on the GNS Hilbert
space J#,, implementing « in the sense

Ad(u) oty = my 0 . (3.2)

This is because g, o « is a GNS representation of w o «. In our context of quantum spin
systems, we can see that two states w, ¢ are equivalent if they can be approximated by a
local perturbation of each other. More precisely, w can be approximated arbitrarily well in
the norm topology of 7, by states of the form ¢(A* - A), with A € o, and vice versa.
Physically, it means that @ and ¢ are macroscopically the same.

There is yet another equivalence relation between states, which is called quasiequiv-
alence. Two states w, ¢ are said to be quasiequivalent if there is a *-isomorphism ¢ :
7o (Ar)” — 7, (Ar)” such that m,(A) = t o 7, (A), for all A € Arp. Note that if two
states are equivalent, they are quasiequivalent. The converse is not true in general, but if the
states are pure, it is true.

In the operator-algebraic framework of quantum spin systems, physical models are
specified with a map called interaction. An interaction ® isamap @ : ©zv — A satisfying

B(X) = (X)* € Ay

for all X € ©zv. Physically, this (X)) indicates an interaction term between spins inside
of X.
The easiest type of interaction is an on-site interaction, satisfying

O(X)=0 if|X|#£ 1 (3.3)

It means that the only possibly nonzero interaction terms are of the form ®({x}), withx € Z".
(Here and thereafter, | X | indicates the number of elements in X.) Note that all interaction
terms commute with each other for such interactions.

Physically, we are more interested in interactions that have nonzero interaction terms
between different sites of Z". For example, let {S}};=1,2,3 be generators of the irreducible
representation of s1(2) on C¢. Then an interaction of 4z given by

3
o({x,x+1}) =D SISy ez, (3.4)
j=1

is called the antiferromagnetic Heisenberg chain, which has been extensively studied.
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Now, given an interaction, we would like to define a dynamics on #Azv out of it.
For this, we need to assume that ® is “suitably local.” The simplest condition among such is
the condition of the uniform boundedness and finite range. An interaction is of finite range if
there exists an m € N such that ®(X) = 0 for X with a diameter larger than m. It is uniformly
bounded if it satisfies supyeg,,, |P(X)| < co. We can relax this restriction extensively.
More generally, we define norms on interactions and consider interactions with finite norms;
see [40].

Given a suitably local interaction, we may define a C *-dynamics, i.e., strongly con-
tinuous one-parameter group of automorphisms on #zv. For an interaction ® and a finite
set A C Z", we define the local Hamiltonian on A by

(Ho)a := ) ®(X). (3.5)
XCA
Then we consider the Heisenberg dynamics given by the local Hamiltonian
et(Ho)n go~it(Ho)n and take the thermodynamic limit. If our interaction ® is suitably
local, for example, if it is a uniformly bounded finite-range interaction, the limit

th(A) = Jim HHN go—itHo)n ¢ R A € Agy (3.6)
— v

exists and defines a dynamics tg on Azv. The reason why we consider the dynamics t¢
instead of Hamiltonians is because there is no mathematically meaningful limit of local
Hamiltonians (He)p as A — ZY, while the limit (3.6) makes sense. For this reason, in
the operator-algebraic framework of quantum statistical mechanics, we talk about dynamics
instead of Hamiltonians.

For the same reason, a ground state is defined in terms of the dynamics 7¢. Let §o
be the generator of 7. A state w on Azy is called a tg-ground state if the inequality

—iw(A*55(4)) = 0 3.7)

holds for any element A in the domain D (8¢) of 8¢. We occasionally say a ground state of
® instead of a 7e-ground state. We denote by ¢ the set of all ground states of ®. Clearly,
Gy is a weakx-compact convex set, and it is known that its extremal points ex §p consists
of pure states (see [7, THEOREM 5.3.37]).

Let (H#y, 7y, 24) be the GNS triple of a tg-ground state w. Then there exists a
unique positive operator Hy, ¢ on #,, such that e!"Ho.2 7, (A)Q,, = 7, (t5(A4))Q,, for all
A € Azv and t € R. We call this H,, ¢ the bulk Hamiltonian associated with w. Note that
2, is an eigenvector of H,, ¢ with eigenvalue O (see [7, PROPOSITION 5.3.19]).

Let us consider the corresponding condition for a finite quantum system M,, with
dynamics given by a Hamiltonian H (2.1). Let p be the spectral projection of H correspond-
ing to the lowest eigenvalue Ey. Recall that a state w on M, is given by a density matrix p
with the formula w(A) = TrpA. Let s(p) be the support projection of this p. Then one can
check that w is a t-ground state if and only if s(p) satisfies s(p) < p. Recall that the last
condition is the very definition of the ground state in finite-dimensional quantum mechanics.
In fact, note that the generator § of t in (2.1) is §(A) = i[H, A]. If s(p) < p, then we have

—iw(A*8(A)) = w(A*(H — E¢)A) = 0, A €M,,
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hence w is a 7-ground state. Conversely, suppose that @ is a t-ground state. For any unit
eigenvectors £, n of H with HE = Egé, Hn = En, for E > Ey, set A € M,, to be a matrix
satisfying A = (n, {)& for any { € C”. Substituting this 4, we get

0 < —iw(A*8(A)) = (Eo — E){n. pn).

Because Eg — E < 0, this means that (1, pn) = 0 for any such 7. Hence we conclude that
ppp = p,namely, s(p) < p. It means that our definition in the operator-algebraic framework
can be regarded as a natural generalization of the usual definition of a ground state to infinite
systems.

Note, in general, that there can be many states satisfying condition (3.7). Namely,
the ground state need not be unique. If the ground state is unique, it is automatically an
extremal point of §p. As a result, it is pure.

The systems we are interested in, in this paper, are those with gapped ground states.

Definition 3.1. We say that ® has gapped ground states in the bulk if the following hold:

(i) The bulk Hamiltonian H, ¢ of any pure t¢-ground state w has 0 as its nonde-
generate eigenvalue.

(ii) There exists a constant y > 0 such that

0(He,0) \ {0} C [y, 00), (3.8)
for any pure 7o-ground state w. Here o (H,, o) denotes the spectrum of Hy, .

We denote by & the set of all uniformly bounded finite-range interactions with
gapped ground states in the bulk.

An interaction @ is said to have a unique gapped ground state if its ground state is
unique and gapped in the sense of Definition 3.1; see [1,17, 18, 42-44] for examples of such
models. If we consider the corresponding condition for a finite system M,, with dynamics
(2.1). This condition corresponds to the situation that “the lowest eigenvalue of H is nonde-
generate and the difference between the lowest eigenvalue and the second-lowest eigenvalue
is at least y.” One remarkable property of the unique gapped ground state is the exponential
decay of correlation functions.

Theorem 3.2 ([22,37,39]). Let ® be a uniformly bounded finite-range interaction with a
unique gapped ground state we. Then the correlation functions of we decay exponentially
fast: there exist constants i > 0 and C > 0 such that for all A € Ax, B € Ay, with finite
X, Y CZ

0o (4B) — wa(A)ws(B)| < CAl| B[ X[e#4*T)

holds. Here d(X,Y) denotes the distance between X and Y .

This means wg is “almost like a product state.”
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4. PATHS OF AUTOMORPHISMS GENERATED BY TIME-DEPENDENT

INTERACTIONS

In the previous section, we considered time-independent interactions, and derived
a C*-dynamics out of them. The same procedure can be carried out for time-dependent
interactions to derive strongly continuous paths of automorphisms. (Recall that in finite-
dimensional quantum mechanics, we also considered time-dependent Hamiltonians.) Let
®:[0,1] ¢ —> O, = (P(X;1)) be a piecewise-continuous path of interactions. Namely, for
each finite X, the matrix-valued function [0, 1] 3t — ®(X;¢) € Ay is piecewise continuous.
We then define the path of local Hamiltonians (Ho,)A := )y P(X:1) for each finite
subset A of Z" and consider the solution ae ;A (4) of the differential equation
%O@,t,A(A) =i[(Ho,)A.c0,a(A)]. 0s04(4) = A.
If the interactions along this path are suitably local, analogous to those considered in the
previous section, then the thermodynamic limit

e (A) = Alii%va@,t,A(A), A€ Azy

exists and defines a strongly continuous path of automorphisms ae,. We denote by
QAut(+Azv) the set of all automorphisms « = o, generated by some time-dependent
interactions @ in this manner. It forms a subgroup of the automorphism group Aut(Azv)
on Azv.

Due to the fact that « € QAut(+zv) is given out of local interactions, it shows some
nice locality properties. The most famous one is the Lieb—Robinson bound, which has been
extensively studied and used [4,22,37,39,4e]. It gives an estimate on ||[e(A4), B]|| for A € Ay,
B € Ay, which decays as the distance between finite subsets X and Y goes to infinity.

The other property that is satisfied by « € QAut(+Azv) is the factorization property.
It basically says that we can split « into two along any cut of the system modulo some error
terms localized around the boundary. For example, in one-dimensional systems, if we cut
the system into two parts at the origin, we have

a = Ad(v) o (0p ® ar), 4.1

where oy, is an automorphism on the left infinite chain A7 1= A co,—1]nz, While ag is
an automorphism on the right infinite chain Agr := #[0,00)nz. The term Ad(v) is an inner
automorphism given by some unitary v in #Az, which corresponds to the “error around the
boundary.” In a two-dimensional system, for example, we have the following when we cut
the system into two by the y-axis. For 0 < 6 < 7, we define a double cone Cy by

Co:={(x.y) € Z* | |y| < tan6 - |x|}. 42)

Furthermore, Hy , Hr, Hy, Hp denotes left/right and upper/lower half-planes, and Cy 1, :=
CoNHp,Cgr:=CgN Hg. Forany0 < 6 < %, there is oy, € AutAp, , ar € AutAp,,
and ©® € Aut A (c,)c such that

a = Ad()(ar ® ar) o ©. 4.3)
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Actually, o can be cut in many directions simultaneously. The factorization property is a
simple but strong analytical property, which turns out to be useful in the analysis of gapped
ground state phases [36,45-47,49].

Another property we note about & € QAut(4Azv) is that it does not create a long-
range entanglement. For example, it satisfies the following property. If A and B are observ-
ables localized in finite regions far away from each other, then o almost preserves the tensor
product form of A ® B, namely, there are operators A, B strictly localized in some finite
disjoint areas such that A® B approximates «(A ® B) in the norm topology. In fact, our «
can be regarded as a version of a quantum circuit with finite depth, which is regarded as a
quantum circuit which does not create long-range entanglement [3]. From this point of view,
we say a state has a short-range entanglement if it is of the form

(® px) oa, 4.4)

X€E€ZLY
with infinite tensor product state Q) <zv px and an automorphism o € QAut(Azv). Other-
wise, we say it has a long-range entanglement.

In the physics literature, the classification of states with respect to local unitaries is
considered [14]. Two states are equivalent if there is a local unitary connecting them. In our
framework, these local unitaries can be understood as automorphisms in QAut(Azv), and
the classification in [14] can be reformulated as follows. For two states wi, wg on Azv, we
write w; ~1. @y if there is an automorphism o € QAut(+Azv) such that w; = wy o . This
gives some equivalence relation. From the fact that automorphisms in QAut(4Azv) do not
create long-range entanglement, this is one physically natural criterion of classification of
states.

5. THE CLASSIFICATION OF GAPPED GROUND STATE PHASES

The automorphisms in QAut(#Azv) are of fundamental importance in the classi-
fication problem of gapped ground state phases. In a word, ground state spaces of two
interactions ®qg, ®; € P (Definition 3.1) are connected to each other via such automor-
phisms if they are equivalent in the classification of gapped ground state phases. In this
section, we introduce such a theorem, called the automorphic equivalence. The automor-
phic equivalence started as Hasting’s adiabatic lemma [23] in finite-dimensional quantum
mechanical system. There have been seminal mathematical improvements and generaliza-
tions after that [4,4e] in the context of the thermodynamic limit of quantum spin systems.
Here we introduce a version from [33], where we require the spectral gap only in the infinite
systems (i.e., the setting in Section 3).

The classification problem of gapped ground states in infinite systems can be
roughly described as follows.

We say that two interactions ®g, ®; € & are equivalent if there is a path of inter-
actions @ : [0, 1] — & satisfying the following conditions:

(1) ®(0) = Do and O(1) = Py;
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(2) [0,1] > 5 > ®(X;s) € sy is continuous and piecewise C!. The interaction
®(s) and its derivative are of finite range, bounded with respect to some norm
uniformly in s € [0, 1] (see (ii)—(iv) of Assumption 1.2 in [33]);

(3) For each pure tg,-ground state g, there is a unique smooth path of states ¢j
where each ¢ is a pure t(s)-ground state. (Here, smooth means the expecta-
tion value of some class of elements in #4zv with respect to ¢ is differentiable,
and its derivative is not too large compared to some norm; see [33, ASSUMP-
TION 1.2(v11)].) For each s € [0, 1], the map ex §p, > @o > @5 € ex Fg, gives a
bijection;

(4) The gap is uniformly bounded from below by some y > 0 along the path, i.e.,
0 (Hy, o)) \ {0} C [y, 00) forall s € [0, 1] and a pure T, -ground state V.

We write &g ~ P, if g, ®; € P are equivalent in this sense.
The automorphic equivalence in this setting is given as follows.

Theorem 5.1 ([33]). If ®g ~ Py, then there is an o € QAut(Azv) such that
Fo, = G, 0 (. 6D

Proof. We use the notation above for ®y ~ ®;. From Remark 1.4 of [33], there is a path
of automorphisms oy € QAut(Azv) satisfying ¢s = ¢ o o for each state ¢, @5 in (3).
This a is independent of the choice of ¢g. Because Fg(s) is a convex weak*-compact set, it
coincides with the weakx*-closure of the convex hull of extremal points of §¢(s). Hence we
see that this ag maps 9g(0) t0 ¥p(s) bijectively. |

Hence automorphisms in QAut(Azv) connect ground state spaces of &y and P;.
For this reason, this class of automorphisms is of fundamental importance. The point here is
that it is not only that there is some automorphism connecting the ground state spaces, but
also that we know the details of the automorphisms.

Note that for interactions ®;, ®o € £ with unique ground states we, , 0e,, P1 ~ Do
implies we, ~1.4. wa, by Theorem 5.1. At the moment of writing, it is not clear to us if the
converse is true.

We call an on-site interaction (defined in (3.3)) with a unique gapped ground state
a trivial interaction. The unique ground state wg, of a trivial interaction @ is of infinite
tensor product form. One can easily see that any two trivial interactions are equivalent. The
equivalence class #y of interactions including these trivial interactions is called a trivial
phase. Any interaction & in the trivial phase has a unique ground state, and, by Theorem 5.1,
it has a short-range entanglement (4.4).

6. SYMMETRY PROTECTED TOPOLOGICAL (SPT) PHASES
The trivial phase # consists of interactions that are connected to trivial interactions,
and as a result, its ground state has a short-range entanglement which is basically the same
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as product states. From this point of view, the trivial phase itself may not be that interesting.
However, if we introduce some symmetry to the game, we can extract some interesting math-
ematical structure out of it. This is so-called symmetry protected topological (SPT) phases,
which were introduced by Gu and Wen [12,13,21]. Throughout this section, wg for ® € P
indicates the unique ground state of ®.

In this talk, as a symmetry, we consider an on-site finite group symmetry, which is
defined as follows. (A study on the global reflection symmetry in one-dimensional systems
can be found in [46].) We fix a finite group G and a (projective) unitary representation U of
G on C?. Then there is a unique automorphism /3 ¢ satisfying

Bg(A) = (® U(g))A(® U(g)*), g€G, Ac Ap, AecGyg.

xeA xX€A

Clearly, this gives an action of G on gy, ie., BgBy = Bgn for g, h € G. We call this
action of G, an on-site symmetry given by G and U. We say an interaction ® is S-invariant
if Bg(P(X)) = P(X) forall X € ©z» and g € G. For a ground state ¢ of a B-invariant
interaction ®, one can check that ¢ o 8 is also a ground state of ®. Therefore, if a B-invariant
interaction @ has a unique ground state wg, the ground state is B-invariant, wg © By = We.

What we are interested in, in this section, is the set of all S-invariant interactions
in the trivial phase $p. We denote the set of all such interactions by & g. We would like
to classify them with respect to the following criterion. Two interactions ®q, ®; are f-
equivalent if there is a smooth path of interactions in $y g satisfying the conditions (1)—(4)
we saw in Section 5. We write ®g ~g @1 in this case. The difference between ~ and ~g
is that we require the symmetry to be preserved along the path. Because of this additional
condition, there can be interactions ®o, ®; € Py g, which satisfy ®y ~ P (by definition)
but not 9 ~g P;. In other words, &y g may split into possibly multiple equivalence classes.
The resulting equivalence classes are the symmetry-protected topological (SPT) phases.

For this SPT classification problem, physicists and algebraic topologists have a con-
jecture [26,56]. They say that SPT-phases should be understood in terms of the invertible
quantum field theory. As a result, for a finite group G, SPT-phases should be classified by
the Pontryagin dual of bordism group on the classifying space BG of G. In one and two
dimensions, these Pontryagin duals are H?(G,U(1)), H3(G,U(1)). In fact, we can derive
these group-cohomology-valued invariants out of our general microscopic models of in those
dimensions.

Theorem 6.1 ([45,47]1). There is an H?(G,U(1))-valued invariant for one-dimensional SPT-
phases. There is an H3(G,U(1))-valued invariant for two-dimensional SPT-phases.

For the rest of this section, we explain how to find such invariants out of general
models. In the analysis of gapped ground state phases, there is a general guiding principle
to find an invariant. That is, cut the system into two and look at the edge. This principle is
sometimes called the bulk-edge correspondence. In order to derive the invariant in Theo-
rem 6.1, we follow this principle and restrict our group action f to the half of the system.
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Namely, we consider the group actions

B =ida, ® Q) AA(U()). BY :=ida,, ® Q) Ad(U(g)). (6.1)
x=0 (x,y)eHy
in one and two dimensions, respectively. We investigate the effect of these actions on our
unique ground state wg for ® € Py g.

Let us start with one-dimensional systems. Recall that w¢ has a short-range entan-
glement, and is B-invariant. From these facts, we expect that the effect of B% is not much
recognizable on the left infinite chain, far away from the origin. On the other hand, on the
right infinite chain, far away from the origin, the differences between g and B are not much
recognizable. Combining this and the fact that w¢ is B-invariant, we conclude that the effect
of BR is not much recognizable on the right infinite chain, far away from the origin. As a
result, we expect that the effect of 8% on we should be localized around the origin. In other
words, we and we o B g are macroscopically the same. It turns out to be true, mathematically,
in the following sense.

Proposition 6.1. The states we and we o B 5 are equivalent.

This can be seen very easily. Recall from the definition that ® € £, means & ~
@, with some trivial interaction ®¢. By Theorem 5.1, we have we = we, © o with some
a € QAut(+Az). Recall that, as a trivial interaction, ®¢ has a unique ground state of infinite
tensor product form. In particular, we can write wg, as we, = wi ® wg with pure states wy,,
wr on the left and right infinite chains 4y, 4 g, respectively. Recall also that our « satisfies
the factorization property (4.1). Combining these facts, we conclude that

we ~ (v, ® wR) o (@ ® aR), (6.2)

with some automorphisms ., o on sy, # g. From this and the invariance of wg under B,
we see that a)LaLﬂé ® wrarBR ~ wrar ® wrag, where BL, BR are the restrictions of
to the left and right infinite chains, respectively. This implies wgo g ,BR ~ wRUR, hence we
get

R R
wefy = wror @ WRARPB, = WLAL ® WRAR =~ 0o, (6.3)

proving the claim.
Note from Section 3 that Proposition 6.1 means 8 g is implementable by a unitary
ug in the GNS representation (Hey,, , Tee) of ®s, ic.,

Ad(ug) 0 Twy = Ty © BE. (6.4)
Because j Risa group action, we have
Ad(UgUp) © Ty = Ty © ﬂgﬁf = g © ,th = Ad(ugp) 0 Twg, & heG. (6.5)

Recall that we is a unique ground state of @, hence it is pure. As a result, 7, (#z) is dense
in B(Hy,) With respect to the strong operator topology. From this, (6.5) implies that there
is some o (g, h) € U(1) such that

ugup =o(g. Nugn, g heG. (6.6)
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In other words, (u,) forms a projective representation. As a result, we obtain H?(G, U(1))-
valued index out of it.

Using the automorphic equivalence Theorem 5.1 and the factorization property of
the automorphism therein, one can show that it is in fact an invariant of our classification ~g
[45]. The point of the proof is, when ®¢ ~g @, that the time-dependent interactions giving
a € QAut(Az) in Theorem 5.1 can be taken to be S-invariant. Proposition 6.1 itself holds for
general B-invariant unique gapped ground state. This is thanks to the theorem by Matsui [31]
showing the split property for unique gapped ground states. Projective representations asso-
ciated to split states have been known since the year 2000 [3e] among operator algebraists.
What is new here is that the associated cohomology class is an invariant of our classification.
In fact, this H2(G,U(1))-valued index is a complete invariant of pure B-invariant split states
with respect to some classification [48]. This index can be used to show Lieb—Schultz—Mattis-
type theorems [2,29,30,38] (no-go theorems for the existence of unique gapped ground state
under some symmetry), for finite groups symmetries [56,51].

For two dimensions, wg o ,Bgl,] is not equivalent to wg in general. However, an anal-
ogous argument as in the one-dimensional case lets us expect that the effect of ,Bg should
be localized around the x-axis. In fact, it turns out to be true mathematically.

Proposition 6.2. Forany0 < 6 < 7, there are ng,1, € Aut(sAc, ;) and ng r € Aut(Ac, )
such that

W ©° ﬂg >~ we(ng,L ® Ng,R)-
It means macroscopically that the effect of ﬂg on wg is localized around Cy ;, and
Cy,g for any 0 < 6 < Z. This ng g is our source of the H?3(G,U(1))-valued index.
Now we fix some 0 < ¢ < 7, and set y? = ,BgR o n;lR, yé = ﬂgL o n;lL with
Ng.R, Ng,r for this 6. Here, ,BgR, ,BgL are group actions of G given by

IBgR = id(H[/ﬂHR)” ® ® Ad(U(g))a
(x,y)€eHyNHR

BYE =idynmye® Q) Ad(U()).
(x,y)eHyNHL

From Proposition 6.2, we have
W © (y;“ ® yﬁ) ~we, ge<G. 6.7)

On the other hand, recall from the definition that ® € £y means ® ~ ®y with some
trivial interaction ®¢. By Theorem 5.1, we have we = we, o o, with & € QAut(Azv) sat-
isfying the factorization property, i.e.,

o =Ad(v)o (L ®ar) 0O, oL € Autihp,, dr € Autshy,. © € AutAcs, (6.8)

for our fixed 0. Recall that as a trivial interaction, ®( has a unique ground state wg, of
infinite tensor product form. In particular, we can write we, as we, = wr, @ wgr with pure
states wr,, wr on Ag, , A, respectively. Combining these, we conclude that

we >~ (wp ® wR) o (@ @ ag) o O. (6.9)
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Repeated use of (6.7) gives
0o 0 (rgvic (van) @ vivit(rn) ) = wa (6.10)
Applying (6.9) to this, we obtain
(wr ® wr) o (L ®ar)oBo (Vé)/hL(V;h)_l ® VfV}f(ygh)_l)
~ (o ® wR) o (@ ® ag) o BO. (6.11)
Note that
vEvR va) " = BYR g R(BY®) ) BUR M knenr(BUR) ™) € AutlAc, ). (6.12)

Similarly, we have ygLth(yth)_l € Aut(sc,, ). Therefore, they commute with © €
Aut(Acec). From this and (6.11), we obtain

-1 -1
(L ® wr) o (e ®ar) o (vevr (vi) @ vivR(r5) ™) = (oL ® wr) o (e ® ap).
which implies
-1
a)RaRygyf(yfh) ~ WRUR. (6.13)

Recall from Section 3 that this means the automorphism yg yf (y gfh)_l is implementable by
a unitary u(g, h) in the GNS representation (#g, 7r) of wraRg, i.e.,

Ad(u(g. )R = TRy Vi (V)

Note also that (6.9) and (6.7) imply

! (6.14)

(wp ® wr) o (0 ® g) 0B o ()/; ® )/51,2) ~ (o, @ wr) o (¢ ® ag) o O. (6.15)

Therefore, with (¥, 71, ) a GNS representation of wy oz, there is a unitary Wg on #1 ® #Hpr
implementing ® o ()/gL ® yf) o ®~! in the GNS representation (K, ® g, ® mg) of
wror, ® wraR,i.e.,

Ad(Wy) (L ®@ mR) = (mL ® mR) 0 O 0 (Yt @ yF) 0 7. (6.16)

For these u(g, 1) (6.14) and Wy (6.16), we claim that there are c(g, h, k) € U(1)
such that

AdWe) (I ® uh. b)) - (I ® u(g. hk))
= c(g.h.k)(IL ® u(g. hyu(gh,k)), g.h.k €G. (6.17)

To see this, consider 77, ® mg yzf y}f y,f. On the one hand, with the repeated use of (6.14),
we have

7L ® TRV VRYE = Ad(IL ® u(g. h)) (1L ® ﬂRth)//f)
= Ad(Iz ® u(g. h)u(gh.k))(mL ® mg o yﬁhk). (6.18)
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On the other hand, note that both of yf y,f ()/,fek)_1 and yf (yf y,f (J/}{ek)_l)()/[f)_1 commute

with ® as before. Hence we have
ide @ R (rRvR (i) ()"
=0t eyRHe'(d ® yfy,f(y,fk)‘l)(a(y; ® R el (6.19)

1

From this and repeated use of (6.14), (6.16), we have

m ® nryRyRvE
= (. ® 7R)O(rE @ R0~ (id @ yRyR(vR) et @ yF) ™
x 07! (idL ® yg Vi)
= Ad(Wg (I ® u(h, k) Wy (IL ® u(gh.k)))(mL ® mry ;) (6.20)

Comparing this and (6.18), we have

Ad(TL ® u(g, hyu(gh,k))(rL ® nr)
= Ad(Wg (I @ u(h. k)W (I ® u(gh.k))) (L ® 7r). (6.21)

Note that, because (#; ® H g, tr ® wr) is a GNS representation of a pure state wy o ®
WRAR, (11, ® wR)(Az2) is dense in B(Hr, ® Hr) with the strong operator topology. As a
result, (6.21) implies our claim (6.17).

The situation in (6.14), (6.17) is pretty much similar to that of cocycle actions [15,24].
In fact, following the argument in [24], we can show that c(g, &, k) satisfies the 3-cocycle
relation. Hence, out of it, we obtain an H3(G, U(1))-valued index. Using the automorphic
equivalence Theorem 5.1 and the factorization property of the automorphism therein, one
can show that it is in fact an invariant of our classification ~g.

A derivation of indices for SPT-phases was initially carried out in tensor network
models, matrix product states MPS [52-54] in one dimension, and projected entangled pair
states [32]. Our indices coincide with theirs in those models. In other words, thanks to those
works, there are many examples. Our approach introduced in this section is operator alge-
braic. Recently, some quantum information based approaches were reported [25,55].

7. ANYONS IN TOPOLOGICAL PHASES

In this section, we consider the classification ~;,. in two dimensions. Recall that
states which are equivalent to an infinite tensor product state with respect to ~,,. are said to
have a short-range entanglement, and otherwise they are said to have a long-range entangle-
ment. It is frequently said that in the two-dimensional systems, the existence of an “anyon”
means the long-range entanglement of the state [28]. In this section, we formulate this state-
ment in our operator-algebraic setting.

An anyon is a string-like excitation with a braiding structure. How to formulate an
anyon mathematically is a nontrivial question of mathematical physics. Our answer, moti-
vated by AQFT [27] and studies of Kitaev models [1e,19,34,35] is that it is a superselection
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sector. It is defined in terms of cones. By a cone we mean a subset of Z?2 of the form
Ao ={x €Z?|(x —a)-eg >cosg-||x —all},

with some a € R, 0 € R, and ¢ € (0, 7). Here we set eg := (cos 8, sin §). For a cone
A:=Agp,andb €R? e>0,weset Ay +b:=Agipgpte |arg Al :=2¢,andep 1= ey.

Definition 7.1. Let (#, 7p) be an irreducible representation of #4z>. We say that a repre-
sentation 7 of Az2 on J satisfies the superselection criterion for ¢ if

7T|=A3Ac :M.e‘. HOLAAC ’

for any cone A in Z?2. (Here, ~, .. means that the two representations are unitarily equiva-
lent.) Such representations are called superselection sectors for 7.

Superselection sectors are objects studied extensively in AQFT. In the context of
quantum spin systems, P. Naaijkens and his coauthors carried out studies on Kitaev’s quan-
tum double model from the point of view of superselection sectors [1e,19,34,35], where they
drove a braiding structure.

We can see the importance of the sector theory for us from the fact that it is an
invariant of ~ ..

Theorem 7.1 ([36]). Let (H#, o) be an irreducible representation and let o € QAut(Az2).
Suppose that a representation w satisfies the superselection criterion for mwy. Then w o o

satisfies the superselection criterion for my o «.

Let w1, wg be pure states such that w; ~,,. wo wWith w; = wg o o, ¢ € QAut(Az2).
Then, by Theorem 7.1, o gives a bijection between the set of all superselection sectors of
e, and the set of all superselection sectors of 7y, .

The proof of Theorem 7.1 is a simple argument using the factorization property. For
& > 0, analogous to (4.3), we have a decomposition

o =Ad(v) o B o (xp ® apc), 7.1

where ap, @pc, E are automorphisms on A, Aac, A, , respectively. (We choose € > 0

small enough so that A, is still a cone.) Then for a superselection sector 7 for mp, we have
7oy ~ue TOE oAy =T|a,, ©E 0],

~ue. 70|y, © B OOA|Ay ~ue. 70O uy, (7.2)

proving the claim.

We say that g has a trivial sector theory if any representation satisfying the super-
selection criterion for o is quasiequivalent to my. Otherwise, we say my has a nontrivial
sector theory. One can show that for a pure state of infinite tensor product form, its GNS
representation has a trivial sector theory [36]. Combing this and Theorem 7.1, we obtain the
following.

Corollary 7.1. If a pure state has a short-range entanglement, then its GNS representation

has a trivial sector theory.
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In other words, the existence of nontrivial superselection sectors implies the long-
range entanglement. If we regard superselection sectors as anyons, it is a mathematical
realization of the folklore saying that the existence of anyons implies long-range entangle-
ment of the state.

The reason why we expect superselection sectors to be related to anyons comes from
AQFT. Using the tools from AQFT, in [11] Cha—Naaijkens—Nachtergaele derived a braiding
structure in a general setting of semigroup of almost localized endomorphisms in quantum
spin systems. It is well known that anyons show up in AQFT surprisingly naturally [s, s, 9,
16,20, 27]. More precisely, under some condition called Haag duality, a braided C *-tensor
category can be associated to the irreducible representation with nontrivial sector theory.
The Haag duality is the property mo(sac) = mo(Aa)”, for all cones A in Z2.

The problem for us about introducing this condition in quantum spin systems is
that it does not look to be plausible that this condition is stable under automorphisms in
QAut(+z2). Recalling that automorphisms in QAut(472) are the fundamental operations
in the classification problem of gapped ground state phases, this situation is not convenient
for us. For this reason, we introduce a weaker version of Haag duality.

Definition 7.2 (Approximate Haag duality [49]). Let (#, i) be an irreducible representa-
tion of #Az2. We say that (J#, ) satisfies the approximate Haag duality if the following
conditions hold: For any ¢ € (0,2x) and ¢ > 0 with ¢ 4 4¢ < 27, there is some Ry ¢ > 0
and decreasing functions f, ¢ 5(f), 6 > 0 on Rx¢ with lim; o0 fy.¢,6(¢) = 0 such that

(i) for any cone A with |arg A| = ¢, there is a unitary Up , € U(H) satisfying
7o(Anc) C Ad(Up ¢) (0 (AL-Ryen).)”): (7.3)
and
(i) forany § > 0and ¢ > 0, there is a unitary Up o5, € 7o (AA, 5—te,)" satisfying

1Upe — Upesill < foes(t). (7.4)

The good point about this weaker version is that we know it is stable under auto-
morphisms in QAut(+Az2).

Proposition 7.1. Let (¥, ) be an irreducible representation of Az> satisfying the approx-
imate Haag duality. Then for any automorphism o« € QAut(Az2), (K, o o &) also satisfies
the approximate Haag duality.

It turns out that even with this weaker version of Haag duality and the setting of
gapped ground state phases (which is different from that of AQFT), we can still derive a
braided C *-tensor category (see [41] for the definition) out of superselection sectors where,
unlike endomorphisms, the multiplication rule is not a priori given [49]. The proof is a mod-
ification of the argument in AQFT and some additional argument using the gap condition
Definition 3.1. More precisely, let ® be a uniformly bounded finite range interaction on
Az2 with gapped ground states. Let w be a pure tg-ground state with a GNS representation
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(H, 7o, 2). We assume that 7y has a nontrivial sector theory, and my satisfies the approxi-
mate Haag duality. Fix some 6 € R and ¢ € (0, ), and denote by €(g ) the set of all cones
whose angle does not intersects with [0 — ¢, 6 + ¢]. We set

Bog = |J molhae). (7.5)
A€Cy,y)

Here = denotes the norm closure. Using the approximate Haag duality, using the argument
in [9], each superselection sector p : Az2 — B(H,,) for my extends to an endomorphism
on Bg,,). We denote the extension by the same symbol p. Via these extensions, we can
introduce compositions between superselection sectors. With this composition as a tensor,
the superselection sectors of 7 are the objects of our braided C *-tensor category. Our mor-
phisms are given by the intertwiners. Namely, for objects p, o, the morphisms from p to o
are bounded operators R on # such that Rp(A) = o(A)R, for any A € Az2. The set of all
morphisms from p to ¢ is denoted by (p, o). Note that (p, ) is a Banach space and (p, p) is
a C*-algebra. Following AQFT, the tensor of morphisms Ry € (p1,01), Rz € (p2,02) are
defined by

Ry ® Ry := R1p1(R2) € (p1 ® p2,01 ® 02). (7.6)

In fact, each intertwiner belongs to Bg,,) such that p;(R>) is well-defined. Using the
gap inequality and the nontriviality of the sector theory, we can show for any cone A that
o(Ap)” is either type Il or type III factor. It means that there are isometries up, vp €
mo(sAa)” such that uau’y + vavy = I. Using this, for any superselection sectors p, o, we
can define their direct sum p @ o : Az — B(Hop) by

(p@o)(A) = upp(Auy +vao (AR, A€ Ag. 7.7

From the same fact, we can also define subobjects. Namely, if p € (p, p) is a nonzero pro-
jection, we can find some superselection sector o and an isometry v such that vv™ = p and
p(A)v = vo(A) for all A € Az2. Hence we obtain the following theorem.

Theorem 7.2 ([49]). In the above setting, superselection sectors of g form a braided C*-
tensor category. If two of such states we,, wa, Satisfy e, ~1.u. ©&,, then corresponding
braided C*-tensor categories are monoidally equivalent.
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