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ABSTRACT

Combinatorial statistics studies inference in discrete stochastic models. Inference of such
models plays an important role in the sciences. We survey research in combinatorial statis-
tics involving the tree broadcast process. We review the mathematical questions that arise
in the analysis of this process and its inference via “belief propagation.” We discuss the
mathematical connections to statistical physics, the social sciences, biological sciences,
and theoretical computer science.
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1. INTRODUCTION

Discrete probability models are used in many of the hard and soft sciences. Often
the scientific challenges lead to novel mathematical questions in combinatorial statistics. The
mathematical questions involve inference in such models. The goal of this survey paper is to
discuss some of these processes, their inference, and their connections to the sciences. We
focus on the tree broadcast process, the mathematical questions that arise in the analysis of
this process and its inference via “belief propagation.” We review some of the mathematical
connections to statistical physics, the social sciences, biological sciences, and theoretical
computer science.

1.1. A simple model on trees

In its simplest form, the model in question will be parametrized by four parameters:
d,h,q,and 6. The model is defined on the d-ary tree of & 4 1 levels. Level O consists of the
root, which has d children. Level 1 of the tree consists of the d children of the root. Each
of the nodes at level 1 has d children. The collection of d? children of the nodes at level 1
makes level 2 of the tree, etc. We will denote the tree by T = (V, E) and the & + 1 levels by
Ly, ..., Ly. We will denote the level of node v by |v|. We will denote the root by 0.

We now define a discrete stochastic process indexed by the vertices V' of T. We
will give two equivalent definitions of this process. First, a recursive definition: the random
variable X is chosen uniformly at random from the set [¢] := {1, ..., g}. Now, for each
child v of the root 0, independently, we toss a coin that lands Heads with probability 6. If it
lands Heads, we let X, = Xj. If it lands Tails, we sample X, independently and uniformly at
random from [¢]. We then apply the same procedure recursively to each node at levels 2, 3,
etc.

A moment’s thought reveals that the vector X = (X, : v € V) has the following
probability distribution:

IP>[X=(xv:ueV)]:l ]_[ (l(xu:xv)ﬁ—i-ﬂ), (1.1)
(u,v)eE 4
where here and below all edges (u, v) are directed away from the root.

Note that the measure above is well defined for 1 > 8 > —1/(¢ — 1), which will
always be assumed. The extreme case § = —1/(¢ — 1) corresponds to the uniform measure
on g-colorings of the tree. Below we will always exclude the frozen measures, where the
root color determines all colors, by assuming § < 1,and 8 > —1,if g = 2.

There are many ways in which this process was generalized. Of particular interest
are the following two. First, we may consider the process on general rooted trees, random,
or deterministic. Second, we may consider more general broadcast processes from parent to
child. In particular, assuming the state space is [g], there is no reason that different edges
(u, v) will have the same conditional law of X,, given X,. Moreover, we can consider more
general conditional laws of X, given X,. Thus for a general, possibly random, finite tree
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V = (T, E) and a collection M ¢ of Markov chains on the state space [¢], we may define

P[X = (xy:v € V)] = 7(x0) l_[ M@V (xy,, xy), (1.2)
(u,v)eE

where 7 is a given probability distribution on [¢]. We will always assume all chains M ®-¥)
are ergodic and that 7 is not a delta measure.

A lot of what we know about model (1.1) carries over to the more general setting
of (1.2). For simplicity, we will mostly discuss (1.1), and sometimes comment on how things
generalize.

1.2. Belief propagation and the reconstruction problem

Note that we may define the process X = (X, : v € V) recursively also for a d-ary
tree T = (V, E) of infinitely many levels. Moreover, if we restrict to (X, : |v| < h), it will
be distributed according to (1.1).

We are interested in studying if the nodes at level / of the tree are asymptotically
independent of X as h — oo. We first note that by ergodicity of Markov chains we know
that X and X, are asymptotically independent as |v| — oo, where |v| denotes the level of
v (for model (1.2), we need to require a bit more; we will not get into the details). In the
language of statistical physics, this means that two point correlations decay exponentially as
they do for finite ergodic Markov chains. Instead, we look at point-to-set correlations. More
formally, let us denote by X}, the vectors of X, for v at level & of the tree,

Xp = Xy : v =h).

Then we are interested in the asymptotic independence of Xy and X}, as h — oo. To formalize
this question, let
q
Yo = Ze,-](xo =i)eRY,
i=1

where e; is the ith unit vector.
Definition 1.1. We say that the reconstruction problem is solvable if
Jim EJE[Yo|X,] — E[Yo]|l3 # 0. (13)
—00

In other words, the reconstruction problem is solvable if X; provides some non-
vanishing information on the value of Xy. There are many other equivalent definitions of
reconstruction including some involving the limiting mutual information limy_, o (X0, X)
or softer ones in terms of the tail-triviality of the sequence Xy, X7, ..., see, e.g., [34,43,92]
and the survey [68].

Interestingly, the quantity f(Xy) = E[Yo|Xy] can be computed recursively and effi-
ciently as a function of X}, via the belief propagation algorithm. This algorithm is used also
for nontree graphical models [8e] where it provides an approximation. The accuracy of belief
propagation on trees was observed earlier, in specific contexts such as ancestral inference
in phylogenetic trees [37,44] and the study of the Ising model on trees [83]. Note that if
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E[Yo|Xn] — E[Yo] (say in probability or a.s.) then for large values of 4, there is little point
in computing E[Yy| X}], as it is most likely trivial. Below we will often write BP instead of
belief propagation.

2. LINEAR THEORY AND THE KESTEN—STIGUM BOUND

While there is an easy recursive computation of the function f(x) = E[Yy| X} = x],
computing the limiting distribution or the limiting variance of f(X}) in (1.3) is in general
difficult, as f is highly nonlinear and the coordinates of X} are dependent. To remedy the
first difficulty, it is natural to ask if there is a way to linearize the problem so that it is more
amenable to analysis.

Interestingly, there are two approaches that lead to studying the same question:

(1) We can introduce an additional noise parameter 1 > 0 that will be applied only
for the nodes at level h. For a deterministic value xj of the nodes at level A,
define the random vector

Xp = (Xy @ Jv| = h), 2.1

where for nodes v with |v| = h, we let X, = x, with probability », and it is
independently and uniformly sampled from [¢] otherwise. We can then define
a new function f of the colors at level & by letting

~ d
S (xp) = d—n|n=oE[f(fh)]-

Using the chain rule, it is easy to see that this is a linear function of the vari-
ables in x;,. More formally, it is a linear function of the d”¢ indicator variables
(1(xy =1) :|v| =h,i €[q]). We can now study the correlation between f~(Xh)
and X instead of the variance in (1.3).

(2) Perhaps the most natural function of the X that one may study is
> Yn =2 yer, Yo, where

q
Yy =) eil(X, =i)€RI.

i=1
Of course, Y _ ¥}, is just the count of how many of each of the ¢ symbols appear
at level /.

It is not hard to see that both approaches lead to studying the correlation between ) _ ¥ and
X, see, e.g., [60]. In the work of Kesten and Stigum on multitype branching processes in
the 1960s, they proved a law of large numbers for Y _ ¥}, in [52] and then more refined limit
theorems [51] which in particular imply:

Theorem 2.1. For model (1.1),

d
L. do? <1 = normalized . Yy, h(—)) a normal law independent of Xy.
—>00
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d
II. d6%>>1 = normalized) Yy @, a nonnormal law dependent on Xp.
n—>oo

1. In particular, if d6% > 1 then the reconstruction problem is solvable.

The laws in parts I and II are nondegenerate. The results of [51] are in fact general
enough to cover the more general model (1.2) on the d-ary tree if all the M matrices are
identical and ergodic. In this case we let 6 := max(|A;| : A; # 1), where the A;s denote the
eigenvalues of M. The results further carry to random branching process trees with well-
behaved degree distributions, where now d denotes the average number of offsprings.

The original proof of Theorem 2.1 uses the Fourier transform approach though mar-
tingale approaches can also be used to prove it as is hinted in [73].

Given Theorem 2.1, it is natural to ask if part I of the theorem implies nonrecon-
struction when d#? < 1. One way for this to work out would be for the higher-order terms in
the expansion of BP, E[Yy|X},] to have a bounded contribution in probability. The recursive
nature of BP allows proving it in the case of ¢ = 2:

Theorem 2.2. If g = 2 and d6? < 1, then the reconstruction problem is not solvable.

This theorem was first proved by Bleher, Ruiz, and Zagrebnov [1e]. Since then many
other alternative proofs were presented. In particular, Theorem 2.2 was extended to general
infinite trees in [34], where the general definition of d is now in terms of the branching
number of the tree [56]. See also [81] for the analysis of the critical case for general trees.
Proofs by loffe [46, 47] are formulated in terms of the FK representation from percolation
theory, see, e.g., [41]. There are some recent short proofs based on information inequalities,
see, e.g., [1,82].

Beyond the case ¢ = 2, Sly [88] proved nonreconstruction if d9? < 1 for ¢ = 3 if
d > dmin, where dp;, is some constant, and [13] proved it in the case where all the M are
identical and given by 2 x 2 matrices that are almost symmetric.

In terms of the correlation between Y Y}, and Xo, in the paper [73] it is proven that
for all ¢ the distribution of }_ Y}, is asymptotically independent of the root when d6? < 1.
The paper [49] showed that in the noisy model (2.1), for all ¢, if d 92 < 1, then there exists a
constant amount of noise 7 > 0 such that X, is asymptotically independent of X so

lim E|E[Yo|X4] — E[Yo][3 = 0.
h—o00

The last two results say that if reconstruction is possible when d6? < 1 then (1) the infor-
mation retained about Xy is not in the count Y and (2) the information retained about Xj is
not robust against a fixed amount of noise.

3. NONLINEAR THEORY

Interestingly, for large values of g, reconstruction is possible even for some values
of 6 such that d6% < 1. First, as ¢ — oo, the reconstruction threshold 6, converges to 1/d
as proven in [67].
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Theorem 3.1. Fix d and let
0 = inf(@' > 0 : such that reconstruction is possible for parameters (d, q,6), V6 > 9’).
Thenlimy_o0 8, = 1/d.

This theorem is proven using branching process techniques. An easy and well-
known argument states that reconstruction is impossible when 6 < 1/d. Indeed, if we con-
sider the branching process, where each node has Bin(d, 6) children, then Zj, the population
at level &, counts the number of nodes whose colors have been copied from the root. More-
over, conditioned on Zj, all other colors are independent of the root. Therefore if Z;, — 0, X
and X}, are asymptotically independent. Since the branching process is subcritical (Z; — 0)
if and only if 46 < 1 (see, e.g., [7]), it follows that 8, > 1/d for all q.

When df > 1, Z;, — oo with positive probability. However, since we do not know
from X}, the location of the colors that were copied from the root, it is still possible that X},
and X, are asymptotically independent, as is the case when ¢ = 2 and 0 € (d~',d~"/?).
The proof of the harder direction of Theorem 3.1 uses the fact that for large ¢ if two recent
descendants of the same node have the same color, it is very likely that node has the same
color. Thus the proof uses a function that estimates the root to have a specific value i if a
certain fractal-like subtree containing the value i at all of its leaves appears in Xj.

On the other hand, taking the asymptotics as d — oo, Sly [88] proves:

Theorem 3.2. Fix q > 5 and let
64 := inf(@’ > 0 : such that reconstruction is possible for parameters (d, q,6), V6 > 9').
Then limg o0 d8 = Cy < 1.

Similar results are obtained for 6 < 0.

Theorem 3.2 is proven by using a central limit theorem to analyze the basic belief
propagation recursion and noting that the nonlinear terms shift the threshold.

A special case that attracted a lot of attention is the case of random coloring where
0 = —1/(g — 1). Interestingly, again, for large ¢ the relationship between the critical d and
0 is almost linear, see [87,89].

4. CONNECTIONS TO STATISTICAL PHYSICS

The reconstruction problem on trees was first studied in statistical physics. The case
q = 2 corresponds to studying the extremality or tail triviality of the Ising model on the
tree [92]. Reconstruction solvability for ¢ = 2 when d 62 > 1 was proven in [43], the author
of which was unaware that a more general result is implied by the results of Kesten and
Stigum [51].

Interestingly, nonreconstruction for ¢ = 2 when d? < 1 was first proven in a spin
glass variant [14,15,18]. In this context reconstruction means

Jim E|E[Yo| Xy = Ba] — E[Yo][13 # 0,
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where By, are i.i.d. Bernoulli taking each of the two colors with probability 1/2. The proof
in this case is a little easier since in the analysis of the recursion for spin glasses the contri-
butions coming from different subtrees are independent and identically distributed.

The interest in the reconstruction problem in statistical physics saw an explosion as
the cavity and replica method played a crucial role in analyzing problems on sparse random
graphs, see, e.g., [61-63,78,79]. At a very high level, for many combinatorial problems on
sparse random graphs, statistical physics predictions are based on analysis (often nonrigor-
ous) of the reconstruction problem or its variants on a corresponding tree. The connection
to the reconstruction problem as defined here was formally made in [61]. In particular, it was
conjectured in [61] that the Kesten—Stigum bound predicts the reconstruction threshold for
q = 2,3, and does not predict it for ¢ > 5. As mentioned earlier, this was partially proven [88].
We will not try to summarize the connections between belief propagation and its variants,
variants of the reconstruction problem and random constraint satisfaction problems. Some
key papers in this area are [2e,48,54,65]. This connection is also important in the work leading
to the proof of the SAT threshold [21,22,27-29,58].

We will now give more details of one example, the example of detection in the block
model. Here again we will see differences between the linear theory as reflected in the case
g = 2 vs. nonlinear theory when ¢ is large.

4.1. Detection in the block model

The block model is a random graph model generalizing the famous Erd&s—Rényi
random graph [33]. The block model is a special case of inhomogeneous random graphs,
see, e.g., [11]. The sparse block model may be defined as follows:

Definition 4.1 (The sparse block model). Let G(n,d, 0, q) denote the model of random, [g]-
labeled graphs in which each vertex u is assigned (independently and uniformly at random) a
label 0;, € [¢], and then each possible edge (u, v) is included with probability (d/n)(1 — )
if 0y, # 0y, and with probability (d/n)((1 — 6) + ¢0) if 6, = 0y.

We chose this parametrization so that for a fixed node, the distribution of the number
of neighbors of each type will asymptotically agree with the distribution of the number of
children of each type in model (1.2) with parameters ¢ and 6 on a random tree where each
node has a Poisson with parameter d number of children.

The block model was studied extensively in statistics as a model of communities [45],
see, e.g., [9,85,90], and in computer science as a model to study the average case behavior
of clustering algorithms, see, e.g., [19,23, 30,50,59] (interestingly there are very few citations
between the two communities of papers even in cases where very similar results are proven).
The papers above mostly concentrate on cases where the average degree is at least of order
log n, where n is the number of nodes in the graph.

The sparse case in Definition 4.1 became a major object of research due to a land-
mark paper in statistical physics [26] where the authors predicted that
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Conjecture 4.2. For the block model,

L. For all q, belief propagation on the graph G predicts the communities better
than random if d6? > 1.

1. Forq = 2,3, it is information-theoretically impossible to predict better than at
random if d6? < 1.

1. For g > 5, it is information-theoretically possible to predict better than at
random for some 0 with d9? < 1, but not in a computationally efficient way.

These predictions were based on a linearization of belief propagation for the tree
model.

4.2. ¢ = 2—linear theory

A major challenge in establishing the algorithmic efficiency of belief propagation for
block models stems from a fundamental difference between the application of belief propa-
gation to trees and block models. When applied to trees, the input to belief propagation is the
actual colors of the leaves. However, in the block model application, the colors are unknown.
So here belief propagation is applied to random colors at all nodes that are independent of
the actual colors.

In [55] it was conjectured that the global nonlinear operator that described one iter-
ation of belief propagation on the graph should be linearized around its trivial fixed point to
lead to a linear algebra based method to detect the communities. The resulting operator is
not normal and its spectrum is complex. It is closely related to the operators used to analyze
nonbacktracking walks [6,39,42,91].

This suggestion was followed up by an extensive body of work, including [2,5,12,72],
that led proofs that linearized versions of BP detect communities better than at random when
d6? > 1, which is in the spirit of part I of Conjecture 4.2.

The original statement of part I of Conjecture 4.2 states, furthermore, that belief
propagation is optimal for the problem in the stronger sense that it minimizes the fraction of
misclassified nodes. A combination of linearized belief propagation and belief propagation
is used in [71] to obtain an efficient algorithm that minimizes the misclassification error when
g = 2 and df? > C for some big constant C [71]. The main ingredient is proving that the
estimator in the noisy model (2.1) asymptotically agrees with the original model (1.1):

lim |E[Yo|X;] — E[Yo|X4]| = 0. (4.1)
h—o00

Even earlier, part II of Conjecture 4.2 was partially established as it was shown
in [7e] that for ¢ = 2 it is information-theoretically impossible to detect better than at random
if d9? < 1 based on coupling of the graph and tree processes. The case ¢ = 3 is still open.

4.3. Nonlinear theory
Parts of the nonlinear predictions in part III of Conjecture 4.2 were confirmed in [8]

and [4] which provided exponential-time algorithms to detect for some parameters when
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d0? < 1 wheng > 5 (also when g = 4 and 0 < 0,d6? < 1). Of course, we rarely know how
to prove that computational problems cannot be solved efficiently, so the support we have
for the predicted computational-statistical gap is quite limited, see [3] for a more detailed
discussion.

5. CONNECTIONS TO MOLECULAR BIOLOGY

The broadcast process on the tree was independently introduced in mathematical
biology as a model of evolution of genetic information such as DNA sequences [16,36,77].

Naturally, the reconstruction problem is interesting in this context. Given the detailed
evolutionary tree of some species, we want to infer as much as possible about the genetics
of extinct species from the genetics of extant species.

An even more interesting question from a biological perspective is recovering the
species tree from genetic data. Note that the details of this tree are required to study the
reconstruction problem and infer ancestral genetic data.

Since Darwin’s Origin of Species [24], a major goal of evolutionary biology is recov-
ering the relationship between different species. Since the 1970s, this is most often done
using genetic information collected from extant species. The models introduced in [16,36,77]
assume that the genetic distribution of traits (X, : v € V) is determined by a binary (rooted)
tree T = (V, E) and a collection g = (6, : e € E) via the following variant of (1.1):

P =ven]=o [T (1e=w+12%) 6
e=(u,v)eE 4

Note that 7" and 0 determine a distribution of traits X and therefore the distribu-
tion D(T, 0g) of X, = (X, : v is aleaf). A major goal of the phylogenetic reconstruction
problem is to estimate T and 6 from independent samples from the distribution D(T, 6g).
In particular, we are interested in knowing how many samples are needed to recover 7" with
good probability, as this translates to the data requirements needed for accurate estimation.

This ideal model that was introduced in the 1970s has since been generalized to
account for many additional biological factors and mechanisms. Key theoretical results in
this area include the identifiability of phylogenetic models [17] and efficient polynomial time
algorithms to reconstruct phylogenetic trees [31,32,74]. See, e.g., [38,86,93] for general refer-
ences on the phylogenetic problem.

The connection to the reconstruction problem was predicted by Steel [94] who con-
jectured that the amount of data needed to reconstruct phylogenetic trees crucially depends
on the reconstruction problem.

The easiest setting to understand the connection between phylogenetic inference and
the reconstruction problem is when ¢ = 2 and the trees are very symmetric. We call a tree an
h-level full binary tree if all the leaves are at level 4. In the symmetric phylogenetic problem,
we assume that the tree is an h-level full binary tree and that 6, = 0 foralle € E.
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To understand what is inferred in this setup, let us fix 2z = 2. In this case the data
given is
(X,’;:ve{a,b,c,d},l <i <n). (5.2)

This data can be thought of as four genetic sequences of length #, i.e., the genetic content
of species a, b, ¢, d, where a, b, ¢, d are the leaves of the tree. Alternatively, the two-
dimensional array (5.2) can be viewed as n i.i.d. samples from the process at the four leaves
a,b, c,d. The main goal of inference in this simple case is to determine which species are
siblings and which are cousins. The three possible sibling relationships are

{la.b}.{c.d}, a.c},{b.d}, {Ha.d}.{b.c).

Of course, when / is bigger, we want to determine not just the sibling relation but also
higher-order cousin relations.

Theorem 5.1. Consider the symmetric phylogenetic problem with g = 2 and n independent
samples from the distribution D(T, 0g), where T is an h-level full binary tree and 6, = 0
foralle € E.

1. If the reconstruction problem is solvable for binary trees at the parameter 0
(i.e., when 20% > 1) then there is an efficient algorithm that, given n = O(h)
samples, returns the correct tree with probability 1 — exp(—S2(h)).

II. If0 is strictly below the reconstruction threshold, 20% < 1, then it is information-
theoretically impossible to infer the correct tree with probability > 1/2 unless
n > exp(2(h)).

The theorem above was first proven in [68] in a more general (and biologically rel-
evant) setting.

For the proof of part I, the basic idea is that we may use correlation between different
coordinates in samples from D(T, 0g) to identify siblings, cousins, etc., in the tree. We
may then estimate the state of their ancestor somewhat accurately since the reconstruction
problem is solvable. We then use these estimates to find close relationships between the
newly identified nodes and continue recursively.

For part II, one proves that for a node v at distance ¢h from the root, X, has an
exponentially small in / correlation with X},. By taking ¢ sufficiently small, this implies that
the same is true for the correlation between X, and Xj,. Finally, this allows showing that,
unless n > exp(§2(h)), it is impossible to distinguish between the true tree and modifications
of it permuting the nodes at level ¢h and the trees below them.

More realistic phylogenetic problems are not symmetric and much of the work in [25,
68] and follow up work was devoted to extending part I of the theorem to asymmetric cases.

Note, moreover, that the proof sketch of part I extends to all (g, 6) such that the
reconstruction problem is solvable. However, the proofs in [25, 68] that do not have such a
strong symmetry assumption do not extend to all such (g, 8) as they require robustness in
various steps (the results trivially extend to even ¢ when 262 > 1). Interestingly, the results
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of part I were extended in [75] to large g for some values of # where 202 < 1 based on the
root estimator in [67]. The results of [75] require the tree to be symmetric but not that 6, = 6
for all e. The paper [75] also provided an extension of part II of Theorem 5.1 for (¢, 8) when
0 < 0’ and there is no reconstruction for parameter (¢, 6’).

It is natural to ask if there is a computational or information-theoretical barrier to
extending the more realistic phylogenetic results of [25, 68,84] to all 6’s above the recon-
struction threshold when ¢ > 5. An analog of Theorem 5.1 for the limiting case ¢ = oo is
established in [76] for general (asymmetric) trees where the critical value of 6 is 1/2.

6. CONNECTIONS TO THEORETICAL COMPUTER SCIENCE

We have already seen many connections of the reconstruction problem to theo-
retical computer science. The connections included the role it played in algorithms and
determining the satisfiability thresholds of random clustering, random graph, and random
constraint satisfaction algorithms in Section 4, and the role it played in the information the-
oretic and algorithmic analysis of phylogenetic reconstruction in Section 5. Moreover, as
belief propagation is a widely used algorithm, the analysis of the reconstruction problem
and the robustness of this algorithm provide average case understanding of this important
algorithm.

In this section we briefly discuss the computational complexity of the problem of
estimating Xy from X}, or approximately computing E[Yy|X}]. Furthermore, we review the
connections between this problem and the classical theory of noisy computation and its con-
nection to deep inference.

This question might seem strange as the belief propagation algorithm computes
E[Yo| Xy] exactly in linear time. Note, however, that despite the linear running time it has
two complex features:

(1) Tt uses real numbers. Indeed, the complexity is measured in terms of real arith-
metic, but the model we are interested in is discrete.

(2) Itis recursive. In other words, the circuit that computed BP has some depth. Is
the depth necessary?

6.1. Recursive bounded memory algorithms

Here we only consider the simple model (1.1) with ¢ = 2. In this case we know that
the reconstruction threshold is given by d6? = 1 and that ) ¥}, provides a good estimator
of Xo when d6? > 1.

Since the definition of the distribution of X7, is recursive, it is natural to ask if there
is a simple recursive algorithm that estimates X in a bottom up fashion, i.e., by a recursion
of the form X, = _f(XAw :w € L(v)), where L;(v) is the set of d* descendants of v exactly
t levels below v. The algorithm begins by initializing X, = X, for nodes v at the bottom
level Lj and terminates by estimating X by rounding X, in some fashion.
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As mentioned earlier, belief propagation can be written in this way for some real
valued function f. The majority estimator sgn(} _ ¥3) can also be written in this way by com-
puting the sum recursively. However, both of these require the domain of f to be unbounded.
Is it possible to estimate X in such recursive fashion using a function f that takes at most
a constant B values and a bounded ¢?

The case B = 2 was studied in [66] assuming f is antisymmetric. In this case we
can find the optimal function: f is the majority function. And the overall estimator of X is a
recursive majority function applied to X},. This in turn allows computing for each ¢ a critical
threshold 6, such that X, is correlated with X¢ asymptotically if 8 > 6, and is uncorrelated

12 and limy— oo 0; = d V2.

if 6 < 6;. The computation in [66] shows that for all ¢, 6, < d~

There is an interesting connection between the derivation of the thresholds 6;(d)
and a derivation of von Neumann in the context of noisy computation [35,95]. In his work
on noisy computation, von Neumann considered circuits with noisy gates with the goal of
designing circuits that, by duplicating inputs and applying majority gates to correct inter-
mediate computations, are robust to some amount of noise. The derivation of the amount
of noise that can be tolerated reduces to the question if the noisy recursive majority func-
tion with the all 1 inputs has limiting expectation bounded away from 1/2. Interestingly, the
broadcast model and the noisy computation model yields the same recursion and therefore
we derive the same threshold for 8 (d). In the noisy computation setting, the case d = 3
was derived by von Neumann [95], and was generalized to all d in [35]. The same recursion
also appears in other models of noisy broadcast, see, e.g., [57].

In the context of the reconstruction problem, it was conjectured in [34] that any
algorithm with bounded B cannot achieve the reconstruction threshold. This was recently
established in [48] where it is shown that with B bits of memory, the critical fp satisfies
B~€ < 0p — 0 < B~, for some positive constants C > ¢ > 0.

6.2. The complexity of P[X¢|X}]

Recent efforts are devoted to studying the complexity of inference of Xy from X,
in the linear regime when d6? > 1 vs. the nonlinear regime where d? < 1, ¢ is large, and
the reconstruction problem is solvable.

Part of the motivation for studying this problem is to identify natural data-generating
processes, where inference is possible but requires some nontrivial complexity.

The polynomial degree is one such measure of complexity. Thus we can ask if there
is a low degree polynomial of the d"q indicator variables (1(x, = i) : |v| = h,i € [g]) that
has nonvanishing correlation with Xy as # — oo. We can say that:

(1) In the linear regime where df? > 1, there is a linear function of the variables
in X}, that is correlated with X by Theorem 2.1.

(2) In [67]1 it is shown that for the model (1.2) on the d-ary tree, where M¢ = M
for all e, there are chains M with 6 = 0 for which the reconstruction problem
is solvable. The paper [53] shows that for such chains any polynomial of X}, of
degree < (2¢") are uncorrelated with X, for some positive constant c.
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(3) The authors of [53] ask if a similar phenomenon holds through the nonlinear
regime. For example, is it true that polynomials of bounded degree have van-
ishing correlation with X in the regime where d6? < 1?

In an earlier work [64], circuit complexity measures were used to study the inference
of X from Xj,. The conjectured gap between the linear and nonlinear cases is reflected in
the circuit class TC? vs. NC!:

(1) Since the class TC? of bounded depth circuits contains majority gates, it can
trivially estimate Xg better than at random when d6? > 1. Moreover, when-
ever (4.1) holds, TC? can estimate X, o With minimal error.

(2) Itis not too hard to show that the computation of BP can always be carried out
in NC!, the class of circuits of logarithmic depth. The paper [64] constructed a
chain M with 6 = 0 for which estimating X from X}, better than at random is
NC'-complete.

(3) It is conjectured in [64] that estimating better than at random is NC'-complete
when d6? < 1 and the reconstruction problem is solvable.

It is important to note that it is a major open problem to determine if NC! = TC?.

In an even earlier work, the paper [69] considered a semisupervised version of the
phylogenetic problem in the regime d6? < 1 and proved that in this regime it is information-
theoretically impossible to classify the unlabeled data for algorithms that ignore correlations
between features in the labeled data, while algorithms that do use high-order correlation can
classify the data accurately. Moreover, in the regime d6? > 1, high-order correlations are
not needed.
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