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Abstract

One-dimensional interacting particle systems, 1+1 random growth models, and two-
dimensional directed polymers define 2D height fields. The KPZ universality conjecture
posits that an appropriately scaled height function converges to a model-independent uni-
versal random field for a large class of models. We survey limit theorems for a few models
and discuss changes that arise in different domains. In particular, we present recent results
on periodic domains. We also comment on integrable probability models, integrable differ-
ential equations, and universality.
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1. Introduction

The KPZ universality is concerned with, among others, one-dimensional interacting
particle systems, 1+1 random growth, and two-dimensional directed polymers. These models
define height functions h.x; t/, two-dimensional random fields, where x represents the one-
dimensional spatial position and t the time. A height function encodes the integrated current
for interacting particle systems, the height for random growth models, and the free energy
for directed polymer models. See Section 2 for an example. The KPZ universality conjecture
is that for a large class of models, the scaled height function

hT .; �/ D
h.T 2=3; �T / � c.T /

T 1=3
(1.1)

converges, up to scaling factors, to a model-independent universal 2D random field, which is
called the KPZ fixed point. Here c.T / is a nonrandom term determined by the macroscopic
limit of the height function. Since the height, position, and time scale as T 1=3, T 2=3, and T ,
respectively, we say that (1.1) is a 1:2:3 scaled height function. We also say that a KPZ
limit theorem holds if a 1:2:3 scaled height function converges in any suitable sense for the
problem at hand.

Several physics papers [45,50,58,87] conjectured the 1:2:3 scale for various models
in the mid-1980s. One of them is the paper [58] of Kardar, Parisi, and Zhang on a nonlin-
ear stochastic partial differential equation, now called the KPZ equation, from which the
term KPZ universality is derived. These papers were followed by extensive research in the
physics community. However, it remained unknown, even on a conjectural level, what the
limit should be.

The situation changed in 1999 with the publication of the paper [6] by Baik, Deift,
and Johansson, in which the authors considered the longest increasing subsequence problem
of random permutations. This problem is equivalent to the zero-temperature free energy of
a directed polymer model. The paper proved that the one-point distribution of an analog of
the height function converges in distribution. See Theorem 3.1 below. Moreover, the authors
found the limiting distribution explicitly, which turned out to be the Tracy–Widom distribu-
tion from random matrix theory. This connection between the KPZ universality and random
matrix theory was completely unexpected at that time. Soon after, Johansson [52] proved a
similar result for another model, giving yet another example of a KPZ limit theorem.

Exciting developments on KPZ limit theorems followed these results during the
next two decades. For example, one-point limit theorems were extended to equal-time, mul-
tiposition distributions, multitime distributions, and even to the 2D fields. Results were also
generalized to several, mostly isolated, models, and algebraic underpinning of these specific
models was studied. The 2D field limit, the KPZ fixed point, was determined, and various
properties of the limit were established. Limit theorems were also proved for infinite space,
half-infinite space, and recently finite space with periodic boundary condition.

In this article, we give a historical overview of some KPZ limit theorems and present
new results on the periodic domain case. We start by introducing the subjects of KPZ uni-
versality, interacting particle systems, random growth, and directed polymers, in Section 2,
focusing on one particular example. Then, we discuss some limit theorems on infinite spaces
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in Sections 3–4. After briefly discussing the half-infinite space case in Section 5, we present
new results on the periodic case in Section 6. Section 7 compares the formulas of the limiting
multipoint distributions for infinite and periodic cases, and Section 8 concerns differential
equations associated with distribution functions. We conclude the article with some com-
ments on universality in Section 9.

The research on the KPZ universality has been developing rapidly and extensively
over the last two decades. Hence, what is discussed in this article is only a small selection of
the activities. The reader may benefit from other excellent survey articles such as [32,34,70]

to see other aspects.

2. TASEP, corner growth model, and exponential DLPP

This section discusses one of the most well-studied examples of one-dimensional
interacting particle systems, 1+1 random growth, and two-dimensional directed polymers.

2.1. TASEP
The totally asymmetric simple exclusion process (TASEP), introduced by Spitzer

[80] in 1970, is a continuous-time Markov process on Z. At any given time, each integer site
of Z is occupied by at most one particle. A particle moves to the adjacent site to its right after
a random waiting time, but only if it is empty. The waiting time is exponentially distributed of
mean 1, and the clock starts once the neighboring site becomes vacant. All waiting times are
independent of each other. Note that all moves are to the right (hence, totally asymmetric),
particles can move only one step at a time (simple), and no two particles occupy the same
site at the same time (exclusion). Figure 1 is an example of the configuration at a particular
time. Black dots denote particles, and white dots mark empty sites. In this configuration,
only three particles can move, and they do so independently of each other.

� � � � � �

Figure 1

TASEP.

The TASEP is an example of interacting particle systems. General systems may
allow, for example, left moves in addition to right moves, multirange moves, or several par-
ticles at each site.

One particular initial condition we focus on in this article is the step initial condition
that the sites in Z� [ ¹0º are occupied, and all sites in ZC are empty. The leftmost picture
in Figure 2 shows the step initial condition.

2.2. Corner growth model
The configuration space for the TASEP is ¹0; 1ºZ where 1 represents the presence

of a particle and 0 an empty site. To each configuration, we can associate a zigzag graph in
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Figure 2

Corner growth model.

R2 as in Figure 2. We assign a particle to a line segment of length
p

2 and slope �1, and an
empty site to a line segment of the same length and slope 1. Juxtaposing the line segments,
we obtain a zigzag graph as in Figure 2. We call the graph a height function h W R ! R for
the configuration of the TASEP, and it is unique up to translations. The leftmost picture in
Figure 2 is a translation of h.x/ D jxj, and it corresponds to the step initial condition.

The TASEP induces a stochastic evolution of the height function, h.x; t/, in which
local valleys (corners) change to local peaks independently with rate 1. The resulting 1+1
random growth process defined by the height function is called the corner growth process.
See Figure 5 for a simulation.

2.3. Exponential DLPP
Consider the two-dimensional lattice Z2

C. Let .m; n/ 2 Z2
C. An up/right (i.e.,

directed) path from .1; 1/ to .m; n/ is a sequence p D .pi /
mCn�1
iD1 , where pi 2 Z2

C, p1 D

.1; 1/, pmCn�1 D .m; n/, and piC1 � pi 2 ¹.1; 0/; .0; 1/º. The thick lines in Figure 3 are
an example of a path in which we connected neighboring integer sites for visual aid. Let ws ,
s 2 Z2

C, be a collection of independent random variables. The normalized free energy of the
directed polymer measure, introduced by Huse and Henley [50], is

F.m; nI ˇ/ D
1

ˇ
log
�X

p

eˇE.p/

�
where E.p/ D

mCn�1X
iD1

wpi
,

the sum is over all directed paths p from .1;1/ to .m;n/, and ˇ > 0 is the inverse temperature.
The zero-temperature, ˇ D 1, case is called the directed last passage percolation (DLPP).
In this case, the normalized free energy becomes

L.m; n/ D max
p

E.p/;

which we call the last passage time, interpreting E.p/ as the travel time using path p.
For the case when ws � 0, the DLPP is related to a random growth model. For t > 0,

define the subset of R2 by

Gt D

[
s2St

�
.0; 1�2 C s

�
where St D ¹.m; n/ 2 Z2

W L.m; n/ � tº

and we set L.m; n/ D 0 if m � 0 or n � 0. See Figure 4. Since L.m; n/ is greater than or
equal to both L.m � 1; n/ and L.m; n � 1/, we see that if .m; n/ 2 Gt , then both points
.m � 1; n/ and .m; n � 1/ are in Gt . The set Gt grows with time t . If we regard Gt in the
first quadrant as a stack of boxes, we can add a new box only at the corners.
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.1; 1/

.m; n/

Figure 3

Exponential DLPP.
Figure 4

An example of Gt .

A special case is the exponential DLPP in which ws are exponentially distributed
with mean 1. In this case, each corner of Gt grows independently of rate 1, i.e., a unit box
can be added to each corner independent at rate 1. Thus, the boundary of Gt is a rotation
of the height function of the corner growth process. More precisely, for the TASEP with the
step initial condition and the exponential DLPP,

h.m � n; t/ � m C n if and only if L.m; n/ � t: (2.1)

If the TASEP starts with a different initial condition, we need to consider the exponential
DLPP on a subset of Z2, determined by the initial condition.

2.4. Hydrodynamic limit and KPZ limit
The hydrodynamic limit of TASEP is about h.x; t/ when x and t are proportional.

For the step initial condition, h.x; 0/ D jxj, Rost [75] showed in 1981 that
h.xT; tT /

T
! Nh.x; t/

almost surely as T ! 1, where Nh.x; t/ D
t2Cx2

2t
for jxj � t and Nh.x; t/ D jxj for jxj � t .

See Figure 6 for the graph. The hydrodynamic limit Nh is deterministic, and it solves Burger’s
equation [61,62].

The KPZ limit is about the next term, h.xT; tT / � Nh.x; t/T . Setting x D 0 for
convenience and following the 1:2:3 scale, the KPZ universality conjecture suggests that

h.T 2=3; �T / � Nh.0; �/T

T 1=3

converges to a 2D random field. If we do not set x D 0, then we should consider h.xT C

T 2=3; �T / � Nh.x;�/T in the numerator. The limiting 2D field, the KPZ fixed point, depends
on the initial condition. The step initial condition for the TASEP becomes the so-called
narrow wedge initial condition for the KPZ fixed point.

TASEP has interpretations as an interacting particle system, a random growth pro-
cess, and a last passage percolation model. Each of these interpretations has natural exten-
sions and generalizations. The KPZ universality conjecture is that a large class of models
in these generalizations has a universal limit. The exact class is not known, but for random
growth models, three key features seem to be the locality of growth, some smoothing mech-
anism, and lateral growths. For directed last passage percolation, the universality is expected
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Figure 5

Simulation of the corner growth model.

x

y

Figure 6

y D Nh.x; t/ for a few values of t .

for all random variables ws with enough moments and without a large atom at the top of the
support of the distribution. The last condition is to prevent the situation that there is always
a path connecting .1; 1/ and .m; n/ using only the top value, making the last passage time
too concentrated.

3. One-point distribution

We discuss one-point KPZ limit theorems from [6] and [52] mentioned in the intro-
duction, and extensions to other models.

3.1. Poisson DLPP
Poisson directed last passage percolation is a variation of the exponential DLPP.

Consider a realization of a 2D Poisson process in R2
C. An up/right path p this time is defined

as the graph of a continuous piecewise linear function of positive slopes connecting Poisson
points, as shown in Figure 7. Let E.p/ denote the number of the Poisson points on p. For
.t; s/ 2 R2

C, define
L.t; s/ D sup

p
E.p/;

where the supremum is taken over all up/right paths p from .0; 0/ to .t; s/. The next theorem
follows from [6]. The main theorem of [6] is stated for the case of a fixed number of points,
but the paper proves the Poisson points case first, from which the main theorem follows.
Since L.t; s/

d
D L.

p
ts;

p
ts/, the next result applies to general points .t; s/.

.t; s/

Figure 7

Poisson DLPP.
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Theorem 3.1 ([6]). For every x 2 R,

lim
t!1

P
�

L.t; t/ � 2t

t1=3
� x

�
D FTW.x/

where FTW is the Tracy–Widom distribution.

The 1=3-power in t1=3 is consistent with the height scale of the KPZ universality;
see (2.1). This result shows that the one-point marginal of the KPZ fixed point (for the narrow
wedge initial condition) must be distributed as the Tracy–Widom distribution. The Tracy–
Widom distribution is the limiting distribution of the largest eigenvalue of random Hermitian
matrices such as Gaussian unitary ensemble matrices [84]. The connection of the KPZ fixed
point and random matrix theory was surprising and unexpected. See Section 9.3 for more on
this connection.

3.2. Longest increasing subsequence
The Poisson DLPP is particularly interesting due to its connection to longest increas-

ing subsequences of random permutations. Note that finitely many points in a rectangle with
distinct x and y coordinates can be associated with a permutation by considering the rela-
tive orderings of the coordinates. For example, the points in Figure 7 are associated with the
permutation � D 475168293. For this permutation, the subsequence 45689 is an increasing
subsequence. Furthermore, it is the longest increasing subsequence, and its length, 5, is equal
to the last passage time L.t; s/.

Let `N denote the length of longest increasing subsequences of a uniformly random
permutation of size N . Then, L.t; s/ has the same distribution as `N , where N is a Pois-
son random variable of mean ts. Using this connection, Theorem 3.1 implies, after a de-
Poissonization argument, that `N �2

p
N

N 1=6 converges in distribution to the Tracy–Widom dis-
tribution.

The problem of determining the large-N behavior of `N has a long history. The
existence of the almost sure limit of `N =

p
N was proved by Hammersley in [49] using King-

man’s subadditive ergodic theorem. The fact that the limit is 2, known as Ulam’s problem,
was proved independently by two famous papers of Veršik–Kerov [88] and Logan–Shepp
[64] in 1977. However, the limiting distribution and the variance (which is of order N 2=3)
remained an open problem until the work [6]. Interested readers are encouraged to consult
[3,7,74,81].

3.3. Exponential DLPP
Soon after Theorem 3.1 was proved, Johansson showed that the exponential DLPP

model also satisfies a similar limit theorem [52]. We state the result in terms of the height
function of the TASEP.

Theorem 3.2 ([52]). Assume the step initial condition for the TASEP. Then, for every
.�; ; h/ 2 RC � R � R,

lim
T !1

P
�

h.T 2=3; 2�T / � �T

�T 1=3
� h

�
D FTW

�
h

�1=3
C

2

4�4=3

�
:
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Note from either side of the equation that the limit remains unchanged if we rescale

.h; ; �/ 7! .˛h; ˛2; ˛3�/ (3.1)

for any ˛ > 0.

3.4. Integrable models
The above theorems were obtained by explicitly computing the finite-time distribu-

tion function and then taking the large limit of the formula. In particular, for the TASEP,
the finite-time formula is given by the Fredholm determinant of an operator. After suitable
scaling and conjugation, the operator converges to the so-called Airy operator, the Fredholm
determinant of which is the Tracy–Widom distribution.

Johansson obtained the finite-time distribution formula for TASEP using a combi-
natorial interpretation similar to the longest increasing subsequence problem and connecting
to the so-called Schur measure [67]. The Schur measure on integer partitions is defined in
terms of the Schur function and contains many parameters. The one-point distribution of the
TASEP arises by taking a special limit of the parameters.

A different proof computes the transition probabilities of the TASEP explicitly and
then takes an appropriate sum over the configuration space to obtain the finite-time dis-
tribution. To find the transition probabilities, we solve the Kolmogorov forward equation,
which is a linear differential equation with nonconstant coefficients due to the exclusion
property of the particles. This equation was solved explicitly in [78] by applying the coor-
dinate Bethe ansatz method from mathematical physics [46,82], which consists of changing
the Kolmogorov equation to a linear differential equation with constant coefficients (the free
evolution equation) but with complicated boundary conditions. Taking the sum of transition
probabilities over particular configurations is more technical, and this part was done in [73]

to rederive the result of Johansson.
Both methods, which are algebraic and exact, are significantly extended to prove

a one-point KPZ limit theorem for many other models. The following is the list of some
of such integrable (exactly solvable) models. Of course, the list and references are far from
exhaustive.

• Interacting particle systems: PushASEP, ASEP, q-TASEP, q-Hahn ASEP [18, 27,

28,86].

• Random growth models: KPZ equation, stochastic heat equation [4,24].

• DLPP and directed polymers: O’Connell–Yor semidiscrete polymer, log-gamma
polymer [23,26,66].

The underlying algebraic structures of these integrable models are generalized
greatly by Macdonald processes [22] and the stochastic six-vertex model [25, 35]. They are
umbrella models with many parameters whose specializations produce the above models.
Though many, these integrable models are still isolated examples. For instance, DLPP with
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general random variables, other than exponential and geometric random variables, does not
seem to be integrable. See Section 9 for some comments for nonintegrable models.

4. Multipoint distributions

Prähofer and Spohn [68] and Johansson [54] extended the one-point distribution
results of Theorem 3.1 and 3.2 to equal-time, multiposition distributions for the Poisson
DLPP and the TASEP with step initial condition, respectively. Their results were further
extended to other models and initial conditions by [29–31, 76] in 2005–2008. These results
confirmed, in particular, that the spatial correlations are of order T 2=3 and identified the
equal-time slice of the KPZ fixed point for several initial conditions. See also [40] for more
recent progress on other more difficult models.

On the other hand, multitime distributions and fully 2D multiposition distributions
remained uninvestigated for a while, though some short and long time correlations were
studied in [42], confirming that the time scale is T . In a breakthrough paper [65], Mateski,
Quastel, and Remenik proved the convergence of the entire 2D height field of the TASEP
in 2017. The limiting 2D field, the KPZ fixed point, is constructed as a Markov process
with explicit transition probabilities. The result applies to general initial conditions. The
authors used the result of [29, 76] on the transition probabilities of the TASEP for general
initial conditions and proved that they converge. Dauvergne, Ortmann, and Virág gave an
alternative formulation of the KPZ fixed point in terms of a variational formula and proved
the field convergence for another model, the Brownian DLPP [36]. See also [89].

In the meantime, Johansson and Rahman [57] and Liu [63] computed the limit of
2D multipoint distributions of the discrete-time TASEP and the continuous-time TASEP,
respectively, in 2019. Their results give an explicit formula of multipoint distributions for
the KPZ fixed point with the narrow wedge initial condition. See Section 7 for the formula.
Two-time distributions were previously computed in [55,56].

5. Half-infinite space

We discussed so far models on infinite spaces. For example, the TASEP was defined
on Z. In this and the following sections, we consider different domains and their effects on
the limit.

Consider the TASEP on the half-infinite space ZC [ ¹0º. We introduce a parameter
˛ > 0 representing the injection rate at site 0: if the origin is empty, a new particle is injected
with rate ˛. Once injected, particles follow the usual TASEP rule. Suppose that we start with
the empty configuration. If we could inject particles freely without being blocked by existing
particles in the domain, then the height function at the origin would satisfy h.0;T /=T ! 2˛

in probability as T ! 1. However, due to the particles already in the domain, the height
grows at a slower rate, and the hydrodynamic limit at the origin turns out to be

h.0; T /

T
! max

²
2˛.1 � ˛/;

1

2

³
;
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showing that the effective injection rate is max¹˛.1 � ˛/; 1=4º. The formula changes at
˛ D 1=2.

The papers [14, 15] obtained a one-point KPZ limit theorem at the origin for the
Poisson PNG and discrete-time TASEP models. The height scales as T 1=3 for ˛ � 1=2 and
as T 1=2 for ˛ < 1=2. The limiting distribution is a variation of the Tracy–Widom distribution
for ˛ > 1=2, another variation for ˛ D 1=2, and the Gaussian distribution for ˛ < 1=2. The
result is extended to general positions and equal-time, multiposition distributions in [5,77] for
the Poisson PNG and the discrete and continuous-time TASEP. However, generalizations to
other models such as directed polymers and other interacting particle systems were missing,
even though some algebraic formulas were established. Recently, [17] was able to prove a
one-point KPZ limit theorem for the ASEP in which particles can move to the left as well as
to the right with asymmetric rates. However, in any of these models, multitime limit theorems
are not yet established.

6. Ring domain

Consider the TASEP on the integer ring ZL D Z=LZ D ¹0; 1; : : : ; L � 1º where
we identify sites L and 0. An equivalent model is the TASEP on Z that is spatially periodic,
which we may call the periodic TASEP. We call L the size of the ring or the period of the
periodic TASEP.

The number N of particles in the TASEP on the ring is preserved. We assume the
step initial condition shown in Figure 8. For the convenience of presentation, we assume that
L is an even integer and N D L=2 so that the particle density � D N=L D 1=2. The initial
height function of the periodic TASEP is the bottom curve in Figure 9. The other curves
are the hydrodynamic limits, as time t and period L tend to infinity proportionally when
t=L D 0:5n for n D 1; 2; : : : ; 6.

Consider two cases, one that t ! 1 with L fixed and the other that L ! 1 with t

fixed. If t ! 1 with L fixed, the periodic corner growth model becomes essentially a one-
dimensional growth model, and we expect that the height scales as t1=2 and converges to the
Gaussian distribution. On the other hand, if L ! 1 with t fixed, then the periodic TASEP
becomes the usual TASEP on Z. Thus, the height scales as t1=3 if we let t ! 1 after taking

Figure 8

Step initial condition on an integer ring.

Figure 9

Hydrodynamic limits of periodic height function when
t D O.t/.
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L ! 1. An interesting intermediate regime is when L; t ! 1 simultaneously such that

t D O.L3=2/: (6.1)

Since the spatial scale for KPZ limit theorems on infinite spaces is t2=3, we expect that the
height functions at all positions on the ring of size L are correlated nontrivially. If (6.1)
holds, we say that we are in the relaxation time regime.

There were some results on transition probabilities and the spectral gap of the gener-
ator in the relaxation time regime, such as [48]. However, KPZ limit theorems were obtained
only recently. The physics paper [69], which is not completely rigorous, and the mathematics
paper [9] obtained a one-point KPZ limit theorem almost at the same time independently.
This result was further extended to 2D multipoint distributions in [10,11].

Theorem 6.1 ([10]). Consider the TASEP on a ring of size L with the step initial condition
and extend it to the periodic TASEP. Assume that L is even and � D N=L D 1=2 for the
convenience of presentation. Set

T D L3=2:

For i D 1; : : : ; m, let .i ; �i ; hi / 2 R � RC � R and assume that �1 < � � � < �m. Then,

lim
T !1

P

 
m\

iD1

²
h.i T

2=3; 2�i T / � �i T

�T 1=3
� hi

³!
D F pKPZ

m .hI ; �/

for an m-point distribution function F
pKPZ
m described in the next section.

Like the infinite space case, we expect that the height field of the periodic models
in the relaxation time regime converges to a universal field, which we may call the periodic
KPZ fixed point. The function F

pKPZ
m should be the m-point distribution of this conjectured

periodic KPZ fixed point with the (periodic) narrow wedge initial condition. It is naturally
periodic with respect to i 7! i C 1. However, unlike the KPZ fixed point, F

pKPZ
m is not

invariant under the rescaling (3.1). Indeed, we conjecture that F
pKPZ
m interpolates the KPZ

fixed point and one-dimensional Brownian motion. Concretely, we expect that

lim
"!0

F pKPZ
m .h"

I "; �"/ D Fm.hI ; �/ where .h"
i ; "

i ; �"
i / D ..�i "/1=3hi ; .�i "/2=3i ; �i "/

and Fm is the m-point distribution of the KPZ fixed point, and that

lim
s!1

F pKPZ
m .hs

I ; � s/ D Gm.hI �/ where .hs
i ; � s/ D .�s�i C

s1=2�1=4

p
2

hi ; s�i /

and Gm is the m-point distribution of a Brownian motion at times �1; : : : ; �m. These conjec-
tures were proved for m D 1 in [12], assuming 1 D 0 for the " ! 0 case.

Theorem 6.1 is also proved for the discrete-time TASEP on a ring [60]. However,
extending the result to other integrable models is yet to be done.
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7. Formula of multipoint distribution functions

7.1. Formula for KPZ fixed point
Let Fm be the m-point distribution of the KPZ fixed point with the narrow wedge

initial condition. The result of [63] implies that

Fm.hI ; �/ D
1

.2� i/m�1

I
� � �

I det.1 � K� /

�1.1 � �1/ � � � �m�1.1 � �m�1/
d�1 � � � d�m�1 (7.1)

where � D .�1; : : : ; �m�1/, and the contours are nested circles of radii less than 1 centered
at the origin. The operator K� acts on L2.†/, where † is the union of 4m � 2 contours in
Figure 10 that extend to infinity with angle �=5 from the x-axis. The kernel of K� can be
written [13] as a simple conjugation of the kernel

Kconj
�

.u; v/ D
a.u/T D.u/T D.v/b.v/

u � v
; u; v 2 †; (7.2)

which is zero for u D v. The .m C 1/ � .m C 1/ matrix

D.z/ D diag
�
e� 1

3 �1z3C 1
2 1z2Ch1z ; : : : ; e� 1

3 �mz3C 1
2 mz2Chmz ; 1

�
:

The .m C 1/ � 1 vectors a.z/ and b.z/ are simple and explicit, and they do not depend on
hi , i , �i . Note that the exponent �

1
3
�i z

3 C
1
2
i z

2 C hi z in D.z/ is unchanged if we rescale
as (3.1) and z 7! ˛�1z. This is consistent with the rescaling property of the KPZ fixed point.

7.2. Formula for the periodic case
The formula of [10] for the conjectured m-point distribution of the periodic KPZ

fixed point is
F pKPZ

m .hI ; �/ D

I
� � �

I
C.�/ det.1 � K� /d�1 � � � d�m: (7.3)

This time there are m integrals and C.�/ is an explicit function expressed in terms of polylog
functions. The kernel of the operator K� is of the same form as (7.2) but a.z/ and b.z/ are
slightly different. The key change is the space for K� . It is `2.S/, where S D S1 [ � � � [ Sm

and Si is the discrete set of the roots of the equation

e�s2=2
D �i ; (7.4)

shown in Figure 11. See the following subsection for how this equation arises.

Figure 10

The space † for KPZ fixed point when m D 3.
Figure 11

The space S for periodic KPZ fixed when m D 3.
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7.3. Transition probabilities
We mentioned in Section 3.4 that one way of proving a KPZ limit theorem for the

TASEP is to compute the transition probabilities explicitly and then take an appropriate sum
to find the finite-time distribution functions. The summation part is often more technical, but
here we discuss the transition probabilities to see how the equation (7.4) arises.

Suppose that there are only N particles for the TASEP on Z. Let WN D

¹.a1; : : : ; aN / 2 ZN W a1 < � � � < aN º be the ordered set of the particle locations. Schütz
[78] showed that

PY .X I t / D det
�

1

2� i

I
sj �iC1.s C 1/�xi Cyj Ci�j etsds

�N

i;j D1

(7.5)

for X and Y in WN , where the contour is a circle that encloses the points s D 0; �1.
For the periodic TASEP, the particle locations can be represented by the set

WL
N D

®
.a1; : : : ; aN / 2 ZN

W a1 < � � � < aN < a1 C L
¯
:

Note that if we consider the TASEP on a ring, this set keeps track of global circulations of
the particles. We showed in [9] that

PY .X I t / D

I
det
�

1

L

X
w

wj �iC1.w C 1/�xi Cyj Ci�j etw

w C N=L

�N

i;j D1

dz

2� iz
(7.6)

for X; Y 2 WL
N , where the integral contour for z is any circle enclosing the origin, and the

sum inside is over the roots of the equation

wN .w C 1/L�N
D z: (7.7)

See Figure 12.
We now explain equation (7.7). Due to the periodicity, if A D .a1; : : : ; aN / is

in WN .L/, then A0 D .a2; : : : ; aN ; a1 C L/ also represents the same particle configura-
tion of the periodic TASEP. Thus, the transition probability should remain the same if we
replace .x1; : : : ; xN / and .y1; : : : ; yN / by .x2; : : : ; xN ; x1 C L/ and .y2; : : : ; yN ; y1 C L/,

Figure 12

Bethe roots when L D 24 and N D 8 for three values of z.
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respectively. We can check directly that the determinant in (7.6) is unchanged thanks to equa-
tion (7.7). Equation (7.7) takes care of the labeling ambiguity in the periodic case. Here the
variable z could have been any fixed constant, but making it as a free parameter turns out
to be the right choice. Since (7.5) and (7.6) were found by solving the Kolmogorov forward
equation using the Bethe ansatz method, the roots of (7.7) are called the Bethe roots.

Now, if we set L D 2N , w D �
1
2

C
s

2
p

2N
, and z D .�4/�N � in (7.7), and let

N ! 1, then the equation becomes e�s2=2 D �, which is (7.4).

8. Integrable differential equations

Distribution functions of the KPZ fixed point have connections to deterministic
integrable differential equations. As proved in 1994 [84], the Tracy–Widom distribution is
expressible in terms of the Painlevé II equation, one of a family of six special nonlinear
ordinary differential equations [43]. The papers [2, 20,71,85,90] also found differential equa-
tions for equal-time, multiposition distribution functions of the KPZ fixed point. We state
the following result for multipoint distributions for both infinite and periodic domains.

Define the parameters

ti D �i =3; yi D i ; xi D hi ;

and let

@t D

mX
iD1

@ti ; @y D

mX
iD1

@yi
; @x D

mX
iD1

@xi
:

Theorem 8.1 ([12,13]). Let K D K� be the operator in either (7.1) or (7.3). If det.1 � K/ ¤ 0,
which holds for all but at most countably many parameters, then

@2
x log det.1 � K/ D �rT p

for complex-valued m � 1 vector functions p.t; y; x/ and r.t; y; x/ which satisfy the equations

@yp D
1

2
@2

x p � prT p; @yr D �
1

2
@2

x r C rpT r (8.1)

and

@tp C @3
x p � 3.@xp/rT p � 3prT .@xp/ D 0; @tr C @3

x r � 3.@xr/pT r � 3rpT .@xr/ D 0: (8.2)

Equation (8.2) is a coupled system of vector-valued modified Korteweg–de Vries
(mKdV) equations. The scalar mKdV equation is @tf C @3

x f � 6.@xf /f 2 D 0. On the other
hand, equation (8.1) forms a coupled system of vector-valued nonlinear forward and back-
ward heat equations. They become vector-valued nonlinear Schrödinger (NLS) equations
if we change yi 7! iyi . NLS and mKdV equations are two of the most famous integrable
partial differential equations [1]. The above two systems of equations can be combined to
the Kadomtsev–Petviashvili (KP) equation, another integrable differential equation in three
variables. Theorem 8.1 was obtained using the fact that the operator is a so-called integrable
operator [37,51].
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Integrable differential equations have a long history starting with the work of Gard-
ner, Greene, Kruskal, and Miura in 1967. They found a scattering transform method, an
equation-specific nonlinear Fourier transform, to solve the Korteweg–de Vries equation. Like
the integrable models in the KPZ universality class, integrable differentiable equations are
isolated examples of nonlinear differential equations that can often be solved explicitly and
analyzed asymptotically. See, for example, [1,38]. It is intriguing that integrable probability
models are related to integrable differential equations.

9. Comments on universality

KPZ limit theorems are proved for many isolated examples of integrable models. In
this final section, we discuss a few instances that universality is proved.

9.1. Thin DLPP
The universality should hold for the last passage time L.n;k/ as n;k ! 1. It is easy

to prove it for thin rectangles. Recall from Section 2.3 that ws denotes the random variable
at site s 2 Z, representing the passage time through the site.

Theorem 9.1 ([16, 21]). Suppose that ws is an arbitrary random variable which has all
moments. Assume that the mean is zero and the variance is one. Then, for every x,

lim
n;k!1

P
�

L.n; k/ � 2
p

nk

n
1
2 k� 1

6

� x

�
D FTW.x/ for k D Œna�

with any 0 < a < 3=7.

The restriction a < 3=7 is technical. If we assume only finite p moments for p > 2,
then the result holds for thinner rectangles satisfying 0 < a < 3.p�2/

7p
.

For the case of fixed k and large n, a directed path looks like that in Figure 13. Since
the sum of ws on each row converges to a Brownian motion, Donsker’s theorem implies that

L.n; k/
p

n
) Dk where Dk D sup

0Dt0�t1�����tkD1

kX
iD1

.Bi .ti / � Bi .ti�1//

and Bi .t/, i D 1; : : : ; k, are independent Brownian motions. On the other hand, it is known
[19] that

lim
k!1

P
�
.Dk � 2

p
k/k1=6

� x
�

D FTW.x/:

.n; k/

0 t1n t2n n

Figure 13

Thin DLPP.
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This limit is a consequence of an explicit formula of the exponential DLPP by letting n ! 1

first and then taking k ! 1. We prove Theorem 9.1 by showing that if n;k ! 1 but k grows
slowly enough, we can take n ! 1 first and k ! 1 later. This argument is achieved by
the Skorohod embedding or the Komlós–Major–Tusnády embedding. However, the proof
breaks down if ˛ � 3=7 since we cannot ignore the upward parts of the paths anymore. For
k D O.n/, limit theorems are proved only for a few examples.

9.2. Interacting particle systems
The particles in the TASEP move only one site to the right. Consider a more general

finite-range exclusion process in which a particle at site 0 can potentially move to site v at rate
p.v/. Assume that ¹v W p.v/ > 0º is a finite set generating Z additively, and

P
v vp.v/ ¤ 0. In

a recent paper [72], Quastel and Sakar proved a KPZ limit theorem for finite-range exclusion
processes started from a certain class of initial conditions. They compared the transition
probabilities of the general process with those of the TASEP using energy estimates. This
work is the first universality result in the k D O.n/ regime. It is exciting to see how the
method generalizes further.

9.3. TASEP, Coulomb gas, and random matrices
In proving Theorem 3.2, Johansson also proved an unexpected connection of TASEP

to Coulomb gas and random matrices [52]. Consider the probability density function on Rn
C

given by

p.x1; : : : ; xn/ D cn;me2
P

1�i<j �n log jxj �xi j�
Pn

iD1 V.xi /; V .x/ D x � .m � n/ log x; (9.1)

where cm;n is the normalization constant. Let xmax D max¹x1; : : : ; xnº. Johansson proved
that for m � n, the last passage time L.m; n/ of the exponential DLPP has the same distri-
bution as xmax. The density function (9.1) is said to define a Coulomb gas with potential V

on RC since the term log jxi � xj j is the 2D Coulomb potential of two equal charges at xi

and xj . The function V.x/ represents the confining potential.
Let X be an n � m random matrix with entries that are independent complex normal

variables of mean zero and variance 1=2. The random matrix W D XX� is called the com-
plex Wishart matrix, and its eigenvalue density function is precisely (9.1) [44]. Thus, L.m;n/

has the same distribution as the largest eigenvalue of a complex Wishart matrix. See also [33].
The connection of the exponential DLPP to Coulomb gas and the random matrix is special,
and we do not expect to hold for general random variables ws .

There are universality results for both Coulomb gas and random matrices. The
Tracy–Widom limit theorem is proved for the Coulomb gases with a general potential V .
The paper [39] showed the limit theorem for generic analytic potentials, and [8] proved for
discrete Coulomb gases in which particles are restricted to be only on a discrete set.

Universality is a central question in random matrix theory, and there have been
remarkable successes. The largest eigenvalue of a large class of random Hermitian matri-
ces with independent entries converges to the Tracy–Widom distribution [41,59,79,83].
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9.4. Universality in many directions
We discussed that the TASEP with the step initial condition is connected to several

areas:

• interacting particle system

• 1+1 random growth process

• two-dimensional directed last passage percolation and directed polymer

• Coulomb gas

• random matrix

The TASEP also has interpretations as a random tiling model, and nonintersecting paths
[47, 53]. We expect universality results to hold in all of these seven areas. The meaning of
universality is different in each area. For example, in random matrix theory, the largest eigen-
value of any random Hermitian matrix with independent and identically distributed entries
with 4+" finite moments converges to the same limit, the Tracy–Widom distribution. On the
other hand, the 2D field limit of interacting particle systems depends on the initial condition,
a special case of which has the Tracy–Widom distribution as its marginal.

Even though many universality results are proved for Coulomb gases and random
matrices, it remains to establish similar results for other areas and develop a general theory
that encompasses all of these areas and possibly more.
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