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Abstract

The goal of this note is to present an emerging method in the analysis of high-dimensional
distributions, which exhibits applications to several mathematical fields, such as func-
tional analysis, convex and discrete geometry, combinatorics, and mathematical physics.
The method is based on pathwise analysis: One constructs a stochastic process, driven by
Brownian motion, associated with the high-dimensional distribution in hand. Quantities of
interest related to the distribution, such as covariance, entropy, and spectral gap, are then
expressed via corresponding properties of the stochastic process, such as quadratic varia-
tion, making the former tractable through the analysis the latter. We focus on one particular
manifestation of this approach, the Stochastic Localization process. We review several
results which can be obtained using Stochastic Localization and outline the main steps
towards their proofs. By doing so, we try to demonstrate some of the ideas and advantages
of the pathwise approach. We focus on two types of results relevant to high-dimensional
distributions: The first one has to do with dimension-free concentration bounds, mani-
fested by functional inequalities which have no explicit dependence on the dimension. Our
main focus in this respect will be on the Kannan–Lovász–Simonovits conjecture, con-
cerning the isoperimetry of high-dimensional log-concave measures. Additionally, we
discuss concentration inequalities for Ising models and expansion bounds for complex-
analytic sets. The second type of results concern the decomposition of a high-dimensional
measure into mixtures of measures attaining a simple structure, with applications to mean-
field approximations.
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1. Introduction

This note is concerned with probability measures on high-dimensional spaces. The
intuition derived from low-dimensional examples in various fields such as topology and
partial differential equations may suggest that an attempt to understand the behavior of
high-dimensional objects is futile, since a system’s behavior quickly becomes complex and
intractable as the dimension increases.

Nevertheless, a recently emerging theory of “high-dimensional phenomena” reveals
that some important classes of distributions turn out to be surprisingly well-behaved (some
introductory books on this theory are [2, 32, 43]). We focus on one particular facet of this
theory which concerns dimension-free phenomena: It is often the case that the behavior of
objects of interest is dictated by their marginals onto a fixed number of directions. This is
manifested, for example, in the fact that several important functional inequalities have no
explicit dependence on the dimension.

An exemplary illustration of this phenomenon is given by the Gaussian isoperimet-
ric inequality. Consider the space Rn equipped with the standard Gaussian measure whose
density is

dn

dx
WD .2�/�n=2 exp

�
�jxj

2=2
�
;

which we refer to as the Gaussian space. A subsetH � Rn is called a half-space if it has the
form H D ¹x W hx; vi � bº for some v 2 Rn and b 2 R. For A � Rn and " > 0, we define
the "-extension of A by A" WD ¹x 2 Rn W 9y 2 A; ky � xk2 � "º. Moreover, define

ˆ.t/ WD
1

p
2�

Z t

�1

e�x2=2dx;

the normal cumulative distribution function. The Gaussian isoperimetric inequality reads,

Theorem 1.1 (Borell, Sudakov–Tsirelson [8,42]). IfA� Rn is a measurable set andH � Rn

is a half-space satisfying n.A/ D n.H/ then for all " > 0 we have

n.A"/ � n.H"/ D ˆ
�
ˆ�1

�
n.A/

�
C "

�
:

This theorem highlights an important metaproperty of Gaussian space: The extrem-
izers of functional and geometric inequalities are one-dimensional objects, in the sense that
they only depend on one direction. This is, for example, the case with the logarithmic-
Sobolev inequality, Ehrhad’s inequality, and Talagrand’s transportation–entropy inequality
(see [31,32] for details). A recent breakthrough by Milman and Neeman [39] shows that the
k-set analog of the isoperimetric inequality is saturated by partitions which only depend on
k � 1 directions.

Is it reasonable to look for larger classes of measures which are Gaussian-like in
the sense that they obey similar principles? Product measures are one natural candidate: By
considering the harmonics, it is clear that several inequalities, such as the Poincaré inequality,
will be saturated by one-dimensional functions. The central limit theorem ensures us that
product distributions are Gaussian-like in the sense that, under mild conditions, marginals
onto “typical” directions are close to a Gaussian.
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In recent years, the class of measures which satisfy a convexity property, called
log-concave measures, arose as another promising candidate. One remarkable result which
supports this is Klartag’s central limit theorem for convex sets [27], which asserts that typical
one-dimensional marginals of such measures have an approximately normal law. In this note,
we discuss the aspects of isoperimetry and concentration of measure in this class, in search
of a counterpart to Theorem 1.1.

Log-concave measures and the Kannan–Lovász–Simonovits conjecture. A measure �
on Rn is log-concave if its density with respect to the Lebesgue measure is of the form
d� D e�V dx where V W Rn ! R [ ¹1º is convex. This class captures, for example, the
Gaussian measure, as well as the uniform measure on a convex set.

For a set A � Rn, define the surface area measure of A with respect to � by

�C.@A/ D lim sup
"!0C

1

"
�.A" n A/: (1.1)

(recalling thatA" D ¹x 2 Rn W 9y 2A;ky � xk2 � "º). In analogy with the Gaussian isoperi-
metric inequality, we would like to obtain a lower bound on �C.@A/ in terms of �.A/. This
gives rise to the definition

 � WD inf
A�Rn

�C.@A/

�.A/.1 � �.A//
;

known as the Cheeger constant of the measure �. Up to universal constants, 2
� is equivalent

to the Neumann spectral gap of �, see [38]. It plays a central role in the theory of concentration
of measure phenomena; a lower bound on  � implies, for example, that a Lipschitz function
is typically close to its mean (see [32] and Section 2 below).

Since the problem is not scale invariant, it is hopeless to find a lower bound on
 � that holds uniformly over all log-concave measures. Indeed, by considering the push-
forward through the map x ! �x and replacing A by �A, the Cheeger constant scales as 1

�
.

We therefore need to assume that the measure is normalized in some way. A natural way to
do so is to require that Cov.�/ D Id where Cov.�/ is the covariance matrix of �, defined by
Cov.�/i;j WD EX�� ŒXiXj �. A centered measure � satisfying Cov.�/D Id is called isotropic.
It turns out that, as a consequence of the Brunn–Minkowski inequality, this normalization
essentially corresponds to the fact that half-spaces satisfy an isoperimetric inequality.

Fact 1.2 (see [30, Section 2]). Let � by a log-concave measure in Rn. Consider the quantity

˛� WD inf
H�Rn

half-space

�C.@H/

�.H/.1 � �.H//

(the difference from  � being that the infimum is only taken over half-spaces). Then,
1

3
˛� �

Cov.�/
�1=2

OP � 3˛� :

We are now ready to state the Kannan–Lovász–Simonivits conjecture.

Conjecture 1.3 (KLS conjecture, [25]). There exists a universal constant c > 0 such that
any isotropic, log-concave measure � on Rn satisfies  � � c.

4248 R. Eldan



In light of Fact 1.2, the KLS conjecture equivalently asserts that for any log-concave
measure,

c˛� �  � � ˛�

for a universal constant c > 0. In words, up to a constant independent of the measure or
the dimension, the isoperimetric minimizer of any (not necessarily isotropic) log-concave
measure is a half-space, hence the analogy to Theorem 1.1.

This conjecture has a wide array of implications in high-dimensional convex geom-
etry and computational geometry, see [1, 33] for extensive reviews. Here, we only mention
what is perhaps the most important of implications, a conjecture due to Bougain, known as
the hyperplane conjecture or the slicing problem.

Conjecture 1.4. There is a universal constant c > 0 such that, for every n and every convex
K � Rn of unit volume, there exists an affine hyperplane H such that

Voln�1.K \H/ > c: (1.2)

For a survey on the hyperplane conjecture and other related problems, see [30].
Denote by  n D inf�  � where the infimum is over all isotropic log-concave measures �
on Rn (so that the KLS conjecture states that  n � c for a universal constant c > 0), and by
Ln the largest (possibly dimension-dependent) constant which can replace the constant c on
the right-hand side of (1.2). It was shown by Klartag and the author [20], that  n . Ln. In
particular, Bourgain’s hyperplane conjecture is implied by the KLS conjecture (see also [5]).

Let us briefly review some of the history around the KLS and hyperplane conjec-
tures. In their original work, Kannan, Lovász, and Simonovits showed that  n & n�1=2.
The exponent 1=2 was improved in several consecutive works, by Klartag [27] (relying on
Bobkov [7]), by the author [16] (relying on Guédon–Milman [24]), and by Lee and Vempala
[34], obtaining  n & n�1=4. Regarding the hyperplane conjecture, Bourgain [12] showed that
Ln & n�1=4 log.n/�1. Until recently, the only improvement of this bound was Ln & n�1=4,
due to Klartag [26].

A recent breakthrough by Chen makes a very significant improvement upon these
bounds, nearly proving both conjectures.

Theorem 1.5 (Chen, [15]). One has  n D n�o.1/. As a corollary, Ln D n�o.1/.

The pathwise approach and the Stochastic Localization scheme. Chen’s proof is based
on the so-called Stochastic Localization scheme, introduced in [16] and described in detail
below. This scheme is one example of a more general metatechnique which we call pathwise
analysis. In recent years, this metatechnique was proven useful in obtaining a variety of
results that have to do with the analysis of high-dimensional distributions. The goal of this
note is to highlight the main ideas behind it and review several applications thereof.

The use of ideas from diffusion and heat-flow to concentration inequalities dates
back at least to the 1960s and to the seminal works of Nelson and Gross, which introduced the
hypercontractivity property of heat semigroups and derived the log-Sobolev inequality for
Gaussian space, respectively. In the following decades, heat flow (or semigroup) techniques
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were realized to be a very powerful tool in proving concentration inequalities. These are, for
example, the main ingredients in the celebrated Bakry–Emery theory [3]. These ideas rely
on differentiation formulas for the heat semigroup which can alternatively be obtained via
pathwise integration along the corresponding diffusion process.

The pathwise approach takes one more step and inspects the behavior of the process
along a single path; it turns out that, when averaging over paths, quite a bit of information
is lost, which can otherwise be revealed by using stochastic calculus. For example, bounds
on the spectral gap and mixing times of diffusion processes can be obtained by coupling
the paths of two diffusion processes. Some examples of works which manage to prove new
bounds by direct analysis of the diffusion process are [10,11,13,36]. In this note we focus on a
seemingly new type of pathwise proofs where, rather than considering the path of a diffusion
process, one constructs an evolution on the space of measures, driven by Brownian motion,
associated with a given distribution.

Structure of the paper. In what follows, in order to give an initial glimpse into pathwise
techniques, in Section 2 we begin with a warm-up where we prove a concentration inequality
for Lipschitz functions on Gaussian space using stochastic calculus. Then, in Section 3 we
prove a generalization of the Gaussian isoperimetric inequality, due to Borell. In Section 4 we
introduce the Stochastic Localization process and discuss the main ideas used in obtaining
bounds for the KLS conjecture. Finally, in Section 5 we outline several other applications of
Stochastic Localization towards (i) expansion bounds for complex-analytic sets, (ii) concen-
tration inequalities for Ising models, and (iii) structure theorems which represent measures
on the discrete hypercube as mixtures of product-like components.

2. A first taste of pathwise analysis: concentration of

Lipschitz functions in Gaussian space

A useful property of Gaussian space, due to Maurey and Pisier, is the fact that Lip-
chitz functions have a sub-Gaussian tail:

Fact 2.1. For any 1-Lipschitz function f W Rn ! R, we have

n

�²
x W

ˇ̌̌̌
f .x/ �

Z
fdn

ˇ̌̌̌
> ˛

³�
� 4

�
1 �ˆ.˛/

�
� 2e�˛2=2; 8˛ > 0:

This type of behavior is often referred to as concentration of measure. Put forth
by V. Milman, such bounds have far-reaching applications and the behavior of this type is
a cornerstone in the theory of high-dimensional phenomena (see, e.g., [41]). In this warm-
up section, we provide a proof of this fact which will highlight some of the advantages of
pathwise analysis. We assume that the reader has some familiarity with basic concepts in
stochastic calculus.

Throughout the section, we fix a measurable function f W Rn ! R. Let .Bt /t�0 be
a standard Brownian motion on Rn; recall thatB1 has law n. Consider the Doob martingale

Mt WD E
�
f .B1/ j Bt

�
:
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For a function g W Rn ! R, definePt Œg�.x/ WD
R

Rn g.xC
p
ty/n.dy/. Since the law ofB1,

conditioned on Bt , is N .Bt ; .1 � t /Id/, we have

Mt D P1�t Œf �.Bt /: (2.1)

Recall that, given a stochastic process .Xs/s�0, its quadratic variation is defined as

ŒX�t WD lim
kP D.t0D0;t1;:::;tnDt/k!0

nX
kD1

.Xtk �Xtk�1
/2;

where kP k denotes the mesh of the partition. Ito’s isometry tells us that

Varn Œf � D Var
�
f .B1/

�
D EŒM �1

(this is just the continuous version of the fact that for a discrete time martingale X0;X1; : : : ,
one has that VarŒXt � D

Pt
iD1 E.Xi �Xi�1/

2).
In order to obtain a bound on ŒM �t , using Itô’s formula, we calculate

dMt
(2.1)
D d

�
P1�t Œf �.Bt /

�
D

˝
rP1�t Œf �.Bt /; dBt

˛
C
@

@t
P1�t Œf �.Bt /dt C

1

2
�P1�t Œf �.Bt /dt

D
˝
rP1�t Œf �.Bt /; dBt

˛
;

where we used the identity d
ds
PsŒf � D

1
2
�PsŒf �. It follows that

d

dt
ŒM �t D

rP1�t Œf �.Bt /
2

2
D kVt k

2
2; (2.2)

where Vt WD rP1�t Œf �.Bt /. Since the operators r and Pt commute, we also have

Vt D E
�
rf .B1/ j Bt

�
;

which teaches us that Vt is a martingale. By the convexity of k � k2
2, we have that kVt k

2 is a
submartingale. We conclude that

Varn Œf � D EŒM �1 D

Z 1

0

EkVsk
2
2ds � EkV1k

2
2 D Enkrf k

2
2:

This is precisely the Poincaré inequality. Alternatively, it can be easily proven using spec-
tral methods. Moreover, instead of using Brownian motion, we could essentially repeat the
argument directly using the semigroup Pt . WritingZ
f 2dn �

�Z
fdn

�2

D P1

�
f 2

�
.0/ � P1Œf �.0/

2
D

Z 1

0

�
d

dt
Pt

��
P1�t Œf �

�2�
.0/

�
dt;

a simple calculation using integration by parts gives that
d

dt
Pt

��
P1�t Œf �

�2�
.0/ D Pt

�rP1�t Œf �
2

2

�
.0/;

and an application of Jensen’s inequality yields the Poincaré inequality.
Thus, in what we have seen so far, the “pathwise” aspect merely provides different

viewpoint on a proof that can be carried out via elementary calculus. To see where it has a
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real advantage, let us now assume that the function f is 1-Lipschitz. Under this assumption,
with the help of Jensen’s inequality, we learn that

kVt k
2
2 D

rP1�t Œf �.Bt /
2

2
� P1�t

�
krf k

2
2

�
.Bt / � 1; 80 � t � 1:

By equation (2.2), we have that ŒM �1 � 1 almost surely. Since M1 has the same law as the
push-forward of n under f , Fact 2.1 follows as an immediate corollary of the following:

Proposition 2.2. Let .Mt /0�t�1 be a martingale satisfying ŒM �1 � 1 almost surely. Then,

P
�
jM1 �M0j > ˛

�
� 4

�
1 �ˆ.˛/

�
; 8˛ > 0: (2.3)

The key to the proof of this proposition is the Dambis/Dubins–Schwartz theorem
which, roughly speaking, asserts that every continuous martingale can be represented as a
time-changed Brownian motion. More formally, ifMt is a continuous martingale adapted to
a filtration Ft , then one can define a process .Wt /t�0 and a filtration . QFt /t over the same
underlying probability space, such that:

(i) Wt is a Brownian motion with respect to the filtration QFt .

(ii) One has Mt �M0 D WŒM�t
and Ft D QFŒM�t

for all t � 0.

Next, we claim that � WD ŒM �1 is an QFt -stopping time. Indeed, the claim that for all t , the
event ¹� � tº is QFt -measurable is equivalent to the claim that for all t the event ¹� � ŒM �t º

is Ft -measurable, which is evident. Note that, by assumption, we have � � 1 almost surely.
We finally conclude the following: There exists a Brownian motion Wt adapted to

a filtration QFt and an QFt -stopping time � such that � � 1 almost surely and such that W� is
equal in law to M1 �M0. At this point we can write

P .M1 �M0 � ˛/ D P .W� � ˛/ � P
�
9t 2 Œ0; 1� such that Wt � ˛

�
:

The proof of Proposition 2.2 is now concluded via the following “reflection principle.”

Fact 2.3. Let Wt be a standard Brownian motion. Then, for all ˛ > 0, we have

P
�
9t 2 Œ0; 1� such that Wt � ˛

�
D 2P .W1 � ˛/ D 2

�
1 �ˆ.˛/

�
:

Proof. (sketch) Consider the stopping time � D inf¹t IWt D ˛º. Since, conditioned on � � 1,
we have that W1 �W� has a symmetric law, we have P .W1 � W� j� � 1/ D

1
2
.

Fact 2.1 may be alternatively proven by combining the Gaussian isoperimetric
inequality and the coarea formula, or by a direct coupling argument (see [41, Theorem 2.2]).
Nevertheless, the above proof highlights the advantage in considering the martingale Mt in
a “path-by-path” manner, and the reason that this approach can reveal dimension-free phe-
nomena: The process Vt extracts the “important” directions, in which the function f varies,
and the law of f .B1/ eventually only depends on the behavior of the one-dimensional pro-
cess Mt . The reduction of the analysis of an n-dimensional function, or measure, to the
behavior one-dimensional process will be a recurring motif later on.

4252 R. Eldan



3. The Gaussian isoperimetric inequality and

noise-sensitivity

As a next step towards demonstrating the pathwise technique, we provide a proof of
the Gaussian isoperimetric inequality, Theorem 1.1. In fact, we prove a stronger statement,
known as Borel’s noise stability inequality [9].

Let Bt be a standard Brownian motion in Rn, adapted to a filtration Ft . Define
Zt WD

R t

0
e�s=2dBs . Observe that Z1 WD limt!1Zt has the law n, since

R 1

0
e�tdt D 1.

For all measurable A � Rn and t > 0, define

Senst .A/ WD E
�
P .Z1 2 A j Zt /P .Z1 … A j Zt /

�
;

referred to as the t -noise sensitivity of A. From an analytic point of view, this quantity can
be understood as the rate at which heat escapes the set A under the heat flow on Gaussian
space, defined by the Ornstein–Uhlenbeck operator L D � � x � r.

A standard argument shows that noise-sensitivity is related to isoperimetry by

C
n .@A/ D lim

t!0

Senst .A/
p
t

; (3.1)

which holds, for example, under the assumption that A has finite perimeter.

Theorem 3.1 (Borell [9]). If A � Rn is a measurable set and H � Rn is a half-space sat-
isfying n.A/ D n.H/, then for all t � 0,

Senst .A/ � Senst .H/:

This theorem has far-reaching applications in statistics and theoretical computer
science which we do not discuss here, but we refer the reader to [17,40] and references therein.
Combined with equation (3.1), Theorem 1.1 follows as a corollary.

Towards proving Theorem 3.1, define for a set A � Rn,

b.A/ WD

Z
A

xn.dx/;

the Gaussian first-moment of A. Moreover, we define for s 2 R,

q.s/ D

Z 1

ˆ�1.s/

t1.dt/:

Evidently, if H � Rn is a half-space then one has kb.H/k2 D q.n.H//. At the center of
our proof lies the following simple fact.

Fact 3.2 (Level-1 inequality). For any measurable A � Rn,b.A/
2

� q
�
n.A/

�
; (3.2)

with equality when A is a half-space.

This fact is referred to as the level-1 inequality since it characterizes the sets which
maximize theL2-energy on the first-order Hermite expansion. It constitutes the only inequal-
ity in the proof to come.
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Proof. Set � D
b.A/

kb.A/k2
. Let H be a half-space of the form H D ¹xI hx; �i � ˛º with ˛

chosen so that n.H/ D n.A/. Note that, by definition,

q
�
n.A/

�
D

Z
H

xn.dx/


2

D

Z
H

hx; �in.dx/;

so we only need to show thatZ
H

hx; �in.dx/ �

Z
A

hx; �in.dx/:

Since n.A/D n.H/, we may subtract ˛ from both integrands, thus the above is equivalent
to Z

Rn

�
hx; �i � ˛

�
.1hx;�i�˛ � 1x2A/n.dx/ � 0;

which is evident.

Define �t to be the law of Z1 conditioned on Zt , which easily checked to be
N .Zt ; e

�t=2Id/, or in other words,

�t .dx/ D .2�/�n=2ent=2 exp
�

�
1

2
et

jx �Zt j
2

�
dx:

Set Mt WD �t .A/ D P .Z1 2 A j Zt /. Note that, by definition,

Senst .A/ D E
�
Mt .1 �Mt /

�
D M0.1 �M0/ � VarŒMt �: (3.3)

Consider a half-spaceH satisfying n.H/ D n.A/ and, analogously, define Nt D �t .H/.
Equation (3.3) tells us that the statement of Theorem 3.1 is equivalent to the assertion that

VarŒMt � � VarŒNt �; 8t > 0: (3.4)

In order to compare the variances of the two processes, we first calculate the corresponding
quadratic variations. Using Itô’s formula, we write

dMt D d

Z
A

.2�/�n=2ent=2 exp
�

�
1

2
et

kx �Zt k
2
2

�
dx

D et

Z
A

hx �Zt ; dZt i�t .dx/

D
˝
b.At /; dBt

˛
; (3.5)

where At WD et=2.A �Zt /. Observing that Mt D �t .A/ D n.At /, with the help of (3.2),
we arrive at the inequality

d

dt
ŒM �t D

b.At /
2

2
� q.Mt /

2: (3.6)

Defining Ht WD et=2.H �Zt /, a similar calculation shows
d

dt
ŒN �t D

b.Ht /
2

2
D q.Nt /

2: (3.7)

On an intuitive level, equations (3.6) and (3.7) tell us that, in a certain sense, the mar-
tingale Nt is moving faster than Mt . Naively, we might hope that the above implies that
E d

dt
ŒN �t � E d

dt
ŒM �t for all t , which would conclude (3.4). This is not true, however.
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Observe that EŒN �1 D VarŒN1� D VarŒM1� D EŒM �1. The following lemma extracts
the power of the pathwise approach. We can couple the two processes in a way that gives us
the desired domination.

Lemma 3.3. Let v W R ! Œ0;1/ be a continuous function. Let .Mt /
1
tD0, .Nt /

1
tD0 be two

continuous real-valued martingales such that M0 D N0, and such that
d

dt
ŒN �t D v.Nt / and

d

dt
ŒM �t � v.Mt /; (3.8)

almost surely, for all t � 0. Then for all t � 0, one has

VarŒMt � � VarŒNt �:

Since equations (3.6) and (3.7) verify (3.8), an application of the above lemma
yields (3.4), which concludes the proof of Theorem 3.1. It therefore only remains to prove
this lemma.

Proof of Lemma 3.3 (sketch). Without loss of generality, assume M0 D N0 D 0. By the
Dambis/Dubins–Schwartz theorem, there exist standard Brownian motions Bt ; QBt such that
Nt D BŒN �t

and Mt D QBŒM�t
. By a standard disintegration theorem, the processes maybe

defined on the same probability space in a way that Bt D QBt . In other words, there exist two
martingales Xt ; Yt and a standard Brownian motion Bt , defined over the same probability
space, such that Xt ; Yt have the same laws as Nt ;Mt , respectively, and such that

Xt D BŒX�t
and Yt D BŒY �t

; 8t � 0:

Let �X ; �Y be the inverse functions of ŒX�t ; ŒY �t , respectively. Then the last display implies
X�X .T / D Y�Y .T / D BT , and by formula (3.8) we have

d

dt
ŒX�t jtD�X .T / D v.BT / �

d

dt
ŒY �t jtD�Y .T /; 8T � 0;

which implies that ŒX�t � ŒY �t for all t � 0. By Itô’s isometry, the lemma follows.

4. Stochastic Localization and the KLS conjecture

In this section we introduce the main technique discussed in this note, the Stochastic
Localization process, and demonstrate how it can be used to produce lower bounds on the
Cheeger constant of a log-concave measure.

4.1. Construction of the process and basic properties
Let Bt be a standard Brownian motion in Rn, adapted to a filtration Ft . As in the

previous section, define Zt WD
R t

0
e�s=2dBs and let �t be defined as the law of Z1 condi-

tioned on Zt . The measure-valued process .�t / interpolates between the standard Gaussian
measure, at time 0, and a Dirac measure at time 1. A key formula in the previous section
was (3.5), which can be restated as follows: Setting pt .x/ WD

�t .dx/
dx

, we have

8x 2 Rn; dpt .x/ D et=2pt .x/

�
x �

Z
xpt .x/dx; dBt

�
: (4.1)
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Now, let � be an arbitrary probability measure on Rn. We would like to consider a simi-
lar evolution with � taking the place of the Gaussian measure. Suppose that .Ct /t�0 is a
stochastic process adapted to Ft , such that for all t , Ct is an n � n positive semidefinite
matrix. Inspired by (4.1), consider the system of stochastic differential equations

8x 2 Rn; F0.x/ D 1; dFt .x/ D Ft .x/hx � at ; CtdBt i; (4.2)

where
at WD

Z
xFt .x/�.dx/:

We can now define a measure-valued process, .�t /t�0, by �t .dx/ D Ft .x/�.dx/. Note that
�0 D �. The choice � D n and Ct D et=2Id recovers the evolution defined by (4.1), so the
process �t can be thought of as a generalization of �t .

We remark that the system (4.2) is an infinite system of stochastic differential equa-
tions, but as we will see below, it may instead be written as a finite system. Its existence and
uniqueness is proven in [16]. Informally, we can think of equation (4.2) as

FtCdt .x/ D Ft .x/
�
1C

˝
x � at ;N

�
0; C 2

t dt
�˛�
;

so that process can be understood as a continuous version the following iterative procedure:
Start with a density on Rn, and at each iteration multiply this density by a linear function,
which is equal to 1 at the center of mass of �t , and whose gradient is distributed according
to an infinitesimal Gaussian.

Before we continue, let us point out several basic properties of this process. First,
using Itô’s formula, we calculate

d logFt .x/ D
dFt .x/

Ft .X/
�
dŒF.x/�t

2Ft .x/2
(4.2)
D hx � at ; CtdBt i �

1

2

Ct .x � at /
2

2
dt:

Consequently, the measure �t attains the form

�t .dx/ D exp
�
zt C hvt ; xi �

1

2
hGtx; xi

�
�.dx/; (4.3)

withGt WD
R t

0
C 2

s ds, where vt 2 Rn is an Itô process adapted to Ft and zt is a normalizing
constant. In particular, if we choose Ct D Id for all t , we have

�t .dx/ D exp
�
zt C hvt ; xi �

t

2
kxk

2
2

�
�.dx/: (4.4)

Next, we calculate

d�t

�
Rn

�
D

�Z
Rn

Ct .x � at /Ft .x/�.dx/; dBt

�
D 0:

Equation (4.3) shows that Ft .x/ is positive for all x and t , so we conclude that �t is almost
surely a probability measure for all t and that at is its center of mass. Finally, it is evident
from (4.2) that Ft .x/ is a martingale for every x, which immediately gives the following.

Fact 4.1. For every measurable W � Rn, the process �t .W / is a martingale.

4256 R. Eldan



4.2. Isoperimetry for log-concave measures using Stochastic Localization
Fix a log-concave measure � on Rn and a measurable setA� Rn. We would like to

use the process constructed above in order to produce a lower bound on �C.@A/. Consider
the process .�t /t defined in (4.2) with the choice Ct D Id.

Applying Fact 4.1 to the set A" n A gives

�C.@A/ D E�C
t .@A/: (4.5)

To continue the analogy with Section 3, we consider the martingaleMt WD �t .A/. Recall that
the proof of the Gaussian isoperimetric inequality amounted to obtaining an upper bound on
d
dt
ŒM �t , in terms of Mt , for all t � 0. In our case, we will only be able to establish such a

bound for small enough values of t . This will be complemented by the fact that for large t ,
the measure �t satisfies an isoperimetric inequality, a consequence of the following:

Theorem 4.2 (Bakry–Ledoux [4]; see also [33, Theorem 25]). Let � be a probability measure
on Rn whose density is of the form

d�.x/ D e�V.x/� ˛
2 kxk2

2dx (4.6)

where V.x/ W Rn ! R [ ¹1º is convex and ˛ > 0. Then for all A � Rn, we have

�C.@A/ �
p
˛�.A/

�
1 � �.A/

�
: (4.7)

We sketch an alternative proof of this theorem in Section 5.1. In light of (4.4), we
may apply the theorem to the measure �t with ˛ D t , which yields

�C.@A/
(4.5)
D E�C

t .@A/

(4.4)C(4.7)
� E

�p
t�t .A/

�
1 � �t .A/

��
D

p
t
�
M0.1 �M0/ � VarŒMt �

�
: (4.8)

As in Section 3, our goal is once again to bound from above the quantity VarŒMt �D EŒM �t .
To this end, we calculate

dMt D d

Z
A

Ft .x/�.dx/
(4.2)
D

Z
A

hx � at ; dBt i�t .dx/; (4.9)

implying that

d

dt
ŒM �t D

Z
A

.x � at /�t .dx/

2

2

: (4.10)

The right-hand side can be bounded with the help of the following simple lemma.

Lemma 4.3. For every probability measure � on Rn and every measurable A � Rn,Z
A

�
x �

Z
Rn

x�.dx/

�
�.dx/

2

2

�
Cov.�/


OP: (4.11)
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Proof. Define � WD

R
A x�.dx/

k
R
A x�.dx/k2

(if the denominator vanishes, there is nothing to show).
Also, without loss of generality assume

R
Rn x�.dx/ D 0. Then we haveZ

A

x�.dx/

2

2

D

�Z
Rn

hx; �i�.dx/

�2

�

Z
Rn

hx; �i
2�.dx/ D

˝
�;Cov.�/�

˛
�

Cov.�/


OP:

In the process �t considered in Section 3 (which corresponds to �t , only with the
measure � replaced by the Gaussian measure), the matrix Cov.�t / was deterministic. The
crucial difference here is that we have to account for k Cov.�t /kOP.

Combining (4.10) and (4.11), we have

VarŒMt � D EŒM �t �

Z t

0

Cov.�s/


OPds:

Together with (4.8), the state of events can be concluded by the following proposition.

Proposition 4.4. Let � by a log-concave measure on Rn. Construct the process .�t /
1
tD0

using equation (4.2). Suppose that for some t; ˛ > 0, one has

E

"Z t

0

Cov.�s/


OPds

#
� ˛: (4.12)

Then, for everyA� Rn such that �.A/.1� �.A//� 2˛, we have the Cheeger-type inequality

�C.@A/ �
1

2

p
t�.A/

�
1 � �.A/

�
:

The condition �.A/.1� �.A//� 2˛ is not crucial; one can show that it may, in fact,
be ignored (see [38, Theorem 1.8]), so that a bound of the form (4.12) implies  � �

1
2

p
t . Our

goal will therefore be to establish (4.12).
Note that condition (4.12) does not involve the set A at all. In that sense, we have

managed to reduce a statement with a quantifier “for every A � Rn,” to a bound which
involves only the measure �. We now need to produce an upper bound on k Cov.�s/kOP. The
process Cov.�s/ becomes tractable thanks to a “moment-generating” property described in
the next subsection.

Before we proceed, let us note the trade-off between two conflicting goals, namely
controlling from above the variance of �t .A/ (which corresponds to taking t small enough),
and controlling from below the “uniform concavity” term in log d�t

d�
(which corresponds to

taking t large enough). It is reasonable to expect that a clever choice of the matrix Ct could
be fruitful: For a general choice of Ct , equation (4.9) becomes

d�t .A/ D
˝
Ctbt .A/; dBt

˛
; where bt .A/ WD

Z
A

.x � at /�t .dx/: (4.13)

Equations (4.3) and (4.13) suggest that the choice of the driving matrix Ct allows
a more intricate control of this trade-off. On the one hand, by taking Ct to be small in the
direction of bt , we gain more control of the variance of �t .A/, but, on the other hand, we
would like the matrix

R t

0
C 2

s ds to be large. In the context of the KLS conjecture, it is not
known if this strategy can produce better bounds, however, in Section 5 we give several
examples which crucially rely on a careful choice of Ct .
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4.2.1. Stochastic Localization as a moment-generating process
Recall that at is the center of mass of �t . A calculation shows that

dat D d

Z
Rn

x�t .dx/

(4.2)
D

Z
Rn

xhx � at ; CtdBt iFt .x/�.dx/

D

�Z
Rn

x ˝ .x � at /�t .dx/

�
CtdBt D Cov.�t /CtdBt : (4.14)

In words, the time-differential of the first cumulant of �t is equal to its second cumulant
multiplied by the generating increment CtdBt . A calculation of similar spirit gives

d Cov.�t / D M.3/Œ�t �CtdBt � Cov.�t /C
2
t Cov.�t /dt; (4.15)

where
M.k/Œ�t � WD

Z
.x � at /

˝k�t .dx/

is the kth moment tensor of �t . In general, the time differential of M.k/Œ�t � will involve the
term M.kC1/Œ�t �CtdBt .

This property is reminiscent of the logarithmic Laplace transform, where derivatives
with respect to the space parameter correspond to cumulants of a tilted measure. This fact
has far-reaching applications in asymptotic geometric analysis, notably it has been used in
several works of Klartag, in particular in his breakthrough on the slicing problem [26].

4.2.2. Obtaining a bound for the KLS conjecture
We now give an overview of the next steps needed to obtain a bound for the KLS con-

jecture. Going back to Proposition 4.4, such a bound is reduced to obtaining upper bounds on
the growth of k Cov.�t /kOP. According to equation (4.15), the expression for the differential
of Cov.�t / involves the process M.3/Œ�t �.

First let us consider a simple (but somewhat wasteful) way to obtain a bound for
k Cov.�t /kOP, based on the fact thatCov.�t /


OP � Tr

�
Cov.�t /

2
�
:

Equation (4.15) combined with Itô’s formula gives
d

dt
E Tr

�
Cov.�t /

2
�

� E
M.3/Œ�t �

2

HS: (4.16)

The quantity on the right-hand side involves third moments of the measure �t . On a concep-
tual level, at this point, the state of events is that we have the implications:

Upper bound on M.3/.�t / ) Upper bound on
Cov.�t /


OP ) Lower bound on  � :

(4.17)

One way to continue from here would be to look for bounds on M.3/.�/ in terms of Cov.�/
which hold universally over all log-concave measures � on Rn. This would imply that the
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rate of growth of Cov.�t / is bounded by Cov.�t / itself. Following this route, the work [16]

used a priori estimates on the “thin-shell” constant, defined as

�n WD sup
�

VarX�� kXk2;

where the supremum runs over all isotropic, log-concave probability measures � on Rn.
Upper bounds on �n imply the type of bounds on M.3/Œ�t � which, when plugged into the
implications above, give a reduction, up to a logarithmic factor, from the KLS conjecture to
a weaker conjecture called the variance conjecture stating that �n D O.1/ (see [1,16]).

Later on, Lee and Vempala ([35, Lemma 33]) realized that, when taking the driving
matrix Ct to be the identity, one could instead use the bound

E
M.3/Œ��

2

HS . Tr
�
Cov.�/2

�3=2 (4.18)

which holds uniformly for all log-concave measures. Together with equation (4.16) and an
application of Gronwall’s inequality, this gives that E Tr.Cov.�t /

2/ D O.n/ for all t �
1p
n

.
Plugging this into Proposition 4.4 yields the bound  � & n�1=4.

Let us now briefly discuss the additional steps needed to produce Chen’s bound,
 � D n�o.1/. First of all, by rather direct arguments, one can reverse implication (4.17) in
the sense that

Lower bound on  �

for all � isotropic, log-concave )
Improved upper bounds on M.3/Œ��

in terms of Cov.�/: (4.19)

In other words, if we have a priori bounds for the KLS conjecture we can improve, in some
sense, on (4.18). Lee and Vempala speculated that the implications (4.17) and (4.19) can
be chained in a way that “bootstraps” an a priori bound on the KLS constant yield a better
bound, however, they were not able to successfully implement this strategy.

Chen added another important ingredient to the mix: In light of equation (4.4), we
know that for large enough t , the measure �t is not only log-concave, but is t -uniformly
log-concave in the sense of (4.6). According to Theorem 4.2, it has concentration properties
which do not a priori hold for log-concave measures. The main strategy is then to split the
interval Œ0; t �, in Proposition 4.4, into two intervals: In the first interval, the “bootstrap” bound
on  n is used, whereas in the second, he manages to leverage on the uniform log-concavity
of �t in order to find a version of the implication (4.19) which gives a yet stronger lower
bound on  n, thereby closing the implication circle of (4.17) and (4.19).

5. Decomposition of measures and further applications of

Stochastic Localization

In this section we describe several additional applications of the Stochastic Local-
ization process. Common to these applications is that they rely on the fact that this process
gives rise to a decomposition scheme which expresses a given measure as a mixture. We fix
a measure � on Rn and use the same notation as in Section 4.1.

Recall that, according to Fact 4.1, for every fixed measurable setA� Rn, the process
�t .A/ is a martingale, which implies in particular that � D E�t . More generally, the optional
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stopping theorem implies that, for every Ft -stopping time � , one has � D E�� . Therefore,
every such stopping time induces a decomposition of the measure �, in the sense that it can
be viewed as a mixture whose components are the measures �� .

To summarize, every stopping time � may be associated with a probability measure
m D m� on an abstract index set I, and every ˛ 2 I may be associated with a probability
measure �˛ on Rn, so that

�.W / D

Z
I

�˛.W /m.d˛/; 8W � Rn measurable: (5.1)

Above, the random measure �˛ with˛�m has the same distribution as �� where �t is defined
by equations (4.2). In the next sections, we review several applications of this decomposition.

5.1. Needle decompositions
At the heart of the argument found in the original paper of Kannan, Lovász, and

Simonovits [25] lies a procedure that takes the uniform measure on a convex set in Rn and rep-
resents it as a decomposition into measures whose support is contained in a one-dimensional
affine subspace (referred to as “needles”). This was done using an iterative scheme which
repeatedly cuts the set via hyperplane bisections which preserve the relative volume of the
set A. This type of scheme, referred to as “localization” generalizes an earlier lemma by
Lovász and Simonovits [37], and is based on ideas going back to Gromov and Milman [23].
Klartag [28] gives a somewhat canonical construction which generalizes this concept to Rie-
mannian manifolds (where needles are supported on geodesics).

We will not discuss the aforementioned localization schemes in detail here. Instead,
we describe an alternative way to obtain a “needle decomposition” (hence, a decomposi-
tion into measures with one-dimensional support) for a prescribed measure on Rn, using
the (generalized) stochastic localization equations. We first demonstrate this by outlining an
alternative proof of the Gaussian isoperimetric inequality, as well as to Theorem 4.2.

Take �D n and consider the process generated by (4.2). The main idea is the follow-
ing one: In view of equation (4.13), by choosing Ct D Projb?

t
, we have that �t .A/ remains

constant along the process. By doing so, we obtain a decomposition of n into measures
which satisfy �˛.A/ D n.A/. Next, we will argue that as t ! 1, we obtain a decomposi-
tion into measures with one-dimensional support.

Denote Gt D
R t

0
C 2

s ds. Since Ct is a projection matrix of codimension 1, we have
Tr.Gt / D .n � 1/t and kGt kOP � t . This implies that all but one of the eigenvalues of Gt

are at least t=2. According to (4.3), the measure �t is a Gaussian measure whose covariance
matrix Cov.�t / converges, as t ! 1, to a matrix M of rank at most 1. For all A � Rn,
define �1.A/ D limt!1 �t .A/ (the limit exists by the martingale convergence theorem). It
is straightforward to show that �1 is � -additive and therefore a probability measure, and
in fact, it is a Gaussian measure whose covariance is limt!1 Cov.�t /. Moreover, since
�.A/ D E�t .A/ for all t and A � Rn, by taking limits we have that �.A/ D E�1.A/.

In light of equation (5.1) (taking � D 1), we arrive at the following lemma.
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Lemma 5.1. For every measurableA� Rn, there exist a probability measurem on an index
set I and, for every ˛ 2 I, a probability measure �˛ on Rn such that

n.W / D

Z
I

�˛.W /m.d˛/; 8W � Rn measurable: (5.2)

Moreover, for every ˛ 2 I, the measure �˛ has a Gaussian law with covariance matrix C˛

such that (i) rank.C˛/ D 1, (ii) kC˛kOP � 1, and (iii) �˛.A/ D n.A/.

We now use this decomposition to show that the n-dimensional Gaussian measure
“inherits” the isoperimetric properties of the one-dimensional Gaussian measure. Indeed,
assuming the bound

C
1 .@W / � I

�
1.W /

�
; 8W � R measurable; (5.3)

for some function I W Œ0; 1� ! Œ0;1/, and given any measurable set A � Rn, we can find a
decomposition of n as in (5.2) such that every �˛ is a one-dimensional Gaussian measure
of variance at most 1 and �˛.A/ D n.A/. We get that

n.A" n A/
(5.2)
D

Z
I

�˛.A" n A/m.d˛/ �

Z
I

�˛

��
A \ Supp.�˛/

�
"

n A
�
m.d˛/:

By taking limits,

C
n .@A/ �

Z
I

�C
˛ .@A/m.d˛/

(5.3)
�

Z
I

I
�
�˛.A/

�
m.d˛/ D I

�
n.A/

�
:

We have therefore reduced the proof of the Gaussian isoperimetric inequality in dimension n
to the same inequality in dimension 1.

If � has density of the form d� D exp.�V.x/ � ˛jxj2/dx with ˛ > 0 and
V W Rn ! R convex, then the same procedure gives rise to a decomposition into one-
dimensional needles whose potential exhibits uniform convexity of a similar form. Thus
an analogous argument gives a reduction of Theorem 4.2 to the one-dimensional case of the
theorem (which has an elementary proof that we omit due to space considerations).

Next, we discuss a needle decomposition obtained by Stochastic Localization, in a
different setting, where the role of convexity is replaced by complex-analyticity.

5.1.1. A waist inequality for complex-analytic functions
In [29], Klartag uses a decomposition of the Gaussian measure n, via Stochastic

Localization, to prove several expansion inequalities for complex-analytic sets. For example,
he obtains the following bound.

Theorem 5.2 (Klartag [29]). Let f W Cn ! Ck be a holomorphic function such that
f .0/ D 0. Write Z D f �1.0/. Then one has

n.Z"/ � k

�®
x 2 Ck

W kxk2 � "
¯�
; 8" > 0; (5.4)

whereZ" is the "-extension ofZ and m is the complex standard Gaussian measure on Cm.
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The above may be thought of in context of Gromov’s waist inequality [22], accord-
ing to which, every continuous function f W Rn ! Rk has a level set Z D f �1.a/ which
satisfies (5.4). The key to the proof is to find a decomposition of n of the form

n D

Z
I

�˛m.d˛/

such that:

(i) The measures �˛ are Gaussian measures with covariance matrix of rank at most
k and operator norm bounded by 1.

(ii) The center of mass of each �˛ lies on Z.

Such a decomposition effectively reduces the proof of the theorem to the trivial case k D n.
We give a high-level sketch of ideas used to obtain such a decomposition. Consider

the Stochastic Localization process of equation (4.2) taking the background measure � to be
the Gaussian measure n. Our goal is to find a control matrix Ct so that the two properties
above hold. In order to obtain property (ii), the idea is to make sure that the at 2 Z for all
t � 0 (the center of mass of �t ). The evolution of at obeys the equation (as in (4.14))

dat D Cov.�t /CtdBt ;

where now Bt is a Brownian motion in Cn and Ct is an n � n Hermitian matrix. We want
to make sure that f .at / remains constant. The key observation is that, due to the fact that f
is holomorphic, there will be no quadratic variation terms in the formula for df .at /, and we
have that

dfi .at / D rfi .at /
T Cov.�t /CtdBt ; 81 � i � k:

For each t , by dimension considerations, we can find a projection matrix Ct of rank n � k

such that df .at /D 0. With this choice of driving-matrix, all but k eigenvalues of the matrix
Gt D

R t

0
C 2

s ds must converge to infinity as t ! 1 and, in light of (4.3), we get that Cov.�t /

tends to a matrix of rank k, as required by property (i).

5.2. Measures on the discrete hypercube
Up to this point, we were focused on absolutely continuous measures on Rn (or Cn).

In this section, we discuss applications of Stochastic Localization to discrete measures, where
there is no natural notion of convexity and heat-flow techniques typically do not apply.

5.2.1. Concentration for Ising models via decomposition into low-rank systems
An Ising model is a measure � on the discrete hypercube ¹�1; 1ºn whose potential

is a quadratic function or, in other words, its density is of the form

�
�
¹xº

�
D Z�1

� exp
�
hx; J xi C hh; xi

�
; 8x 2 ¹�1; 1ºn (5.5)

for some n � n symmetric matrix J (called an interaction matrix) and some h 2 Rn (an
“external field”), and whereZ� is a normalization constant. An important question in statis-
tical mechanics is to characterize the pairs .J;h/ for which the model is in high temperature.
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One interpretation of high temperature is that
p

VarhX; Y i � nwhereX;Y are independent
vectors with law �.

It is a common belief that for most cases of interest, measures in the high-tempera-
ture regime will admit stronger forms of concentration. For example, it is expected that the
so-called Glauber dynamics admits a polynomially-large spectral gap in the high-temperature
regime, which implies the existence of a polynomial-time sampling algorithm for �, see [21]

for definitions and background.
In what follows, we outline a way to obtain a concentration inequality for high-

temperature Ising models using Stochastic Localization. In order to keep things simple and
avoid encumbering the reader with definitions, we will derive a weaker form of concentration
than what the method allows. A function ' W Rn ! R is 1-Hamming–Lipschitz (1-Lipschitz
in short) if j'.x/ � '.y/j � kx � yk1 for all x; y 2 ¹�1; 1ºn. We will show the following.

Theorem 5.3. For every � of the form (5.5) such that kJ kOP � 1=2 and every 1-Lipschitz
test function ' W ¹�1; 1ºn ! R,

Var� Œ'� �
n

1
2

� kJ kOP
:

The above bound was first obtained as a corollary of a result by Bauerschmidt and
Bodineau [6]. A modification of the argument below produces a stronger bound which also
establishes polynomial mixing of the Glauber dynamics, see [21]. We now outline the proof.

Without loss of generality, we may assume that J is positive semidefinite (we can
always add a multiple of the identity without changing the distribution). Given an Ising model
� and a test function ' W ¹�1; 1ºn ! R, consider the Stochastic Localization equations (4.2),
with the matrix Ct to be defined later on. Define

bt WD

Z
¹�1;1ºn

'.x/.x � at /�t .dx/

so that, by (4.13), we have

d

Z
'.x/�t .dx/ D hCtbt ; dBt i:

Set Jt WD J �
1
2

R t

0
C 2

s ds. Equation (4.3) implies that �t is an Ising model with interaction
matrix Jt . The idea now is to choose Ct to be the orthogonal projection on the intersection
Im.Jt / \ b?

t . By continuity, the matrix Jt is decreasing in the positive definite sense, but
remains positive semidefinite. Since Ctbt D 0, we have, using (4.13), that

E

Z
'd�t D

Z
'd�; 8t � 0:

By dimension considerations, Ct is nonzero as long as dim.Im.Jt // > 1. By running the
process until Jt is of rank at most 1 and using the decomposition (5.1), we arrive at the
“needle decomposition” theorem formulated below. For every u; h 2 Rn, define

�u;h

�
¹xº

�
D Z�1

u;h exp
�
hx; ui

2
C hh; xi

�
; (5.6)

with Zu;h being a constant normalizing �u;h to be a probability measure.
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Theorem 5.4. Let � be an Ising measure on ¹�1; 1ºn of the form (5.5) with J positive
semidefinite, and let ' W ¹�1; 1ºn ! R. There exists a probability measure m on Rn � Rn

such that � admits the decomposition

� D

Z
Rn�Rn

�u;hdm.u; h/ (5.7)

and such thatm-almost surely the pair .u;h/ satisfies
R
'd�u;h D

R
'd� and kuk2 � kJ kOP.

This decomposition theorem allows us to show that an Ising measure inherits the
concentration properties satisfied by rank-one Ising models whose interaction matrix has a
corresponding norm. For models of rank-one, we rely on the following fact.

Fact 5.5 (see [21]). For all u; h 2 Rn such that juj < 1
2

and for all 1-Lipschitz ' W Rn ! R,
we have

Var�u;h
Œ'� �

n

1=2 � juj
: (5.8)

Now, given an Ising model � with positive semidefinite interaction matrix J of norm
at most 1=2 and given a 1-Lipschitz test function ', use Theorem 5.4 to find a measure m
corresponding to �; '. We have, by the law of total variance,

Var� Œ'�
(5.7)
D

Z
Rn�Rn

Var�u;h
Œ'�dm.u; h/

(5.8)
�

Z
Rn�Rn

n

1=2 � juj
dm.u; h/ �

n

1=2 � kJ kOP
:

5.2.2. Entropy-efficient decomposition of discrete measures
In the previous subsections we saw how the Stochastic Localization process allows

us to decompose a measure into well-behaved “needles.” We now present a family of related
applications which has proven useful in the context of interacting particle systems, random
graphs, and large deviation theory.

We begin the discussion with a simple example referred to as the Curie–Weiss
model: Fix ˇ > 0 and consider the measure � on ¹�1; 1ºn, defined by

�
�
¹xº

�
D Z�1

ˇ exp
�
ˇ

n

X
i¤j

xixj

�
;

with Zˇ a normalizing constant. Let X � �. It is well known that this measure exhibits the
following phase transition: Ifˇ < 1=2, then Cov.X1;X2/! 0 as n! 1, whereas ifˇ > 1=2
then Cov.X1;X2/ is bounded away from 0 as n! 1 (and hence, also VarŒ

P
i Xi �D�.n2/).

On the other hand, in the latter case, there exist two measures �˙ such that � D
1
2
.�C C ��/

and such that �˙ are approximate product measures in the sense that k Cov.�˙/kOP D O.1/

and, in fact, in a much stronger sense discussed later on.
This simple, yet somewhat prototypical example motivates the question of finding

sufficient conditions on a measure � on ¹�1;1ºn under which it can be expressed as a decom-
position � D

PN
iD1 �i where the measures �i attain a simple form, and N is not too large.

Here, we consider a more general form of decomposition where our goal is to express � as

� D

Z
I

�˛m.d˛/
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such that the �˛’s have a simple form. In this context, it is natural to replace the requirement
that N is not too large by an upper bound on the entropic-deficit of the decomposition,
defined as

EntŒ�� �
Z

I

EntŒ�˛�m.d˛/;

where, for a measure � on ¹�1; 1ºn, we define Ent.�/ WD �
R

¹�1;1ºn log.�.¹xº//�.dx/.
Stochastic Localization is a useful tool in obtaining decompositions of this sort, via

equation (5.1). The key is to analyze the evolution of the processes Cov.�t / and EntŒ�t �,
which turn out to be quite tractable. As an initial idea of how it can be done, observe that
choosing Ct D Id and taking expectations on both sides of equation (4.15), we have that

d

dt
E Cov.�t / D �E

�
Cov.�t /

2
�
:

One may interpret the last display as follows: The localization process “shrinks,” in expec-
tation, the large directions of the covariance matrix. Let us now outline an argument which
builds on this intuition.

Fix a measure � on ¹�1; 1ºn and consider the process �t obtained by running the
process of equation (4.2) with the initial condition �0 D �. For every t , take Ct to be the
projection onto the span of the top eigenvector of Cov.�t /. Using (4.15), we have that

d Tr
�
Cov.�t /

�
D �

Cov.�t /
2

OPdt C martingale term:

A straightforward calculation using Itô’s formula yields that

d Ent.�t / D � Tr
�
Ct Cov.�t /

�
dt C martingale term

D �
Cov.�t /


OPdt C martingale term:

By comparing that last two displays, we see that as long as kCov.�t /kOP is large, the trace
of the covariance matrix of �t decays, in expectation, much faster than its entropy. Now fix
� > 0 and consider the stopping time

� WD min
®
t I

Cov.�t /


OP � �
¯
:

By the above, we have that � Ent.�t / � Tr.Cov.�t // is a submartingale up to the stopping
time � . Using the optional stopping theorem, we have that

E
�
EntŒ�� � EntŒ�� �

�
�
1

�
E

�
Tr

�
Cov.�/

�
� Tr

�
Cov.�� /

��
�

Tr.Cov.�//
�

�
n

�
:

Using the decomposition (5.1), we arrive at the following theorem.

Theorem 5.6. Let � be a measure on ¹�1;1ºn. Then for every �� 1, there exist a probability
measurem on an index set I and a family of probability measures ¹�� º�2I on ¹�1; 1ºn such
that the measure � admits the decomposition

�.W / D

Z
I

�� .W /dm.�/; 8W � Rn measurable; (5.9)

such that Cov.�˛/


OP � �; 8˛ 2 I
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and
EntŒ�� �

Z
I

EntŒ�˛�m.d˛/ �
n

�
:

A related argument can also produce bounds on the Frobenius norm of Cov.�˛/. We
refer the reader to [19] for other inequalities of this form, as well as application to mean-field
approximation, which we do not discuss here.

The measures �˛ given by the above theorem are close to product measures in
a rather weak sense, and one may consider stronger notions of approximating a product
measure. A particularly useful notion is defined in terms of the transportation distance to a
product measure. For probability measures �1; �2 on ¹�1; 1ºn, we define

W.�1; �2/ D sup
k'kLip�1

�Z
¹�1;1ºn

'd�1 �

Z
¹�1;1ºn

'd�2

�
;

where k � kLip denotes the Hamming–Lipschitz norm. This quantity is referred to as the
(Wasserstein) transportation distance with respect to the Hamming metric. Given a prob-
ability measure � on ¹�1; 1ºn, let �.�/ be the unique product measure having the same
center of mass of �. Consider the quantity

P .�/ WD W
�
�; �.�/

�
which quantifies how close � is to a product measure. What conditions on a measure � on
¹�1; 1ºn ensure that it admits a decomposition of the form (5.9) such that both the entropic
deficit and P .�/ are nontrivially small (say, both are o.n/)? The work [18] establishes this
under a condition inspired by an earlier work of Chatterjee and Dembo [14] and referred to
as low complexity. For a measure � on ¹�1; 1ºn, denote by f� its density with respect to the
uniform measure. Define the complexity of � by

D.�/ WD E��N .0;Id/ sup
x2¹�1;1ºn

hr logf� ; �i

(which can be understood as the Gaussian-width of the gradient of its potential). The follow-
ing decomposition theorem can be obtained via Stochastic Localization.

Theorem 5.7 ([18]). For every measure � on ¹�1; 1ºn and every " > 0, there exists a decom-
position of the form (5.9) such that its entropic deficit satisfies

EntŒ�� �
Z

I

EntŒ�˛�m.d˛/ � "n

and such that Z
I

P .�˛/m.d˛/ .
r
nD.�/

"
:

Note that, as long as D.�/ D o.n/, we may obtain a decomposition with entropic
deficit o.n/, such that P .�˛/ D o.n/ for all but an o.1/ fraction of ˛’s (with respect to m).
This type of structure theorem has several applications, in particular to the emerging field
of nonlinear large deviations pioneered by Chatterjee and Dembo in [14] and to mean-field
approximations. We refer the reader to [18] for more details.
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