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Abstract

Ultrametricity of the Gibbs measure is a fundamental feature of the Parisi solution of the
Sherrington–Kirkpatrick model of spin glasses. We will start by describing one origin
of ultrametricity in a way that requires no special knowledge, and after that review some
background and discuss some applications.
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1. Introduction
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Figure 1

New leaf n C 1 is attached to the path from a randomly chosen leaf ` 2 ¹1; : : : ; nº to the root. Because
hnC1 WD max.tnC1; h`/ � h`, it is attached at or above the height h` where the leaf ` was originally attached to
the tree.

Given a probability distribution � on Œ0; 1�, let us generate a tree with the root at
height 0 and countably many leaves at height 1 using the following simple sequential process
(see Figure 1). The height of any point on the tree refers to its coordinate on the vertical axis
(labeled “height” in the figure). In this process, h` will represent the height at which leaf `

was attached to the tree (during its turn). Proceed as follows:

(1) Attach leaf 1 by a new branch from the root and set h1 D 0.

(2) For n C 1 D 2; 3; : : :, repeat the following steps:

(2a) Pick a leaf ` 2 ¹1; : : : ; nº uniformly at random.

(2b) Generate a new random variable tnC1 from the distribution �.

(2c) Attach the leaf n C 1 to the path from the chosen leaf ` to the root at the
height hnC1 WD max.tnC1; h`/, by adding a new branch.

For any two leaves `; `0 � 1, let R`;`0 be the height at which the paths from these leaves
to the root meet. We will call R WD .R`;`0/`;`0�1 the overlap array, since these quantities
measure how much the paths overlap. We will denote by Rn WD .R`;`0/`;`0�n the n � n block
of overlaps corresponding to the first n leaves. The array R satisfies the following three
properties, which we list from the most obvious to less obvious:

(a) The conditional distribution of the overlap R1;nC1 given Rn is equal to

L
�
R1;nC1 j Rn

�
D

1

n
� C

1

n

nX
`D2

ıR1;`
: (1.1)
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(b) The array R is nonnegative definite, with diagonal elements R`;` D 1 and off-
diagonal elements R`;`0 2 Œ0; 1�.

(c) The array .R`;`0/ is weakly exchangeable, which means that

.R`;`0/`;`0�n
d
D .R�.`/;�.`0//`;`0�n

for any n � 2 and any permutation � of ¹1; : : : ; nº.

Property (a) holds because, if in step (2a) we picked ` D 1 then there would be no
constraint on where new branch is attached and so R1;nC1 D tnC1 had distribution �, and if
we picked ` � 2 then R1;nC1 D R1;`.

Property (b) can be seen in different ways, but one way to see it is to notice that,
because of the tree structure, for any q 2 Œ0; 1�, the relation ` �q `0 on the leaves defined by

` �q `0
” R`;`0 � q (1.2)

is an equivalence relation and, therefore, the array .I.R`;`0 � q//`;`0�1 is block-diagonal with
entries of each block all equal to 1 and, thus, nonnegative definite. Using that
R`;`0 D

R 1

0
I.R`;`0 � q/ dq, we see that the array R is also nonnegative definite. Another

way to express that (1.2) is an equivalence relation is to say that

R`2;`3
� min.R`1;`2

; R`1;`3
/ (1.3)

for any three leaves `1; `2, and `3. If property (b) holds then the array R satisfying (1.3) is
called an ultrametric array, because a subset ¹h` W ` � 1º of the unit sphere in a Hilbert space
such that R`;`0 D h` � h`0 will form an ultrametric set satisfying

k�`2
� �`3

k � max.k�`1
� �`2

k; k�`1
� �`3

k/:

One can also embed the entire tree isometrically into a unit ball of a Hilbert space, with the
overlap equal to the scalar product in this embedding.

Property (c) is not obvious and requires some calculation, but it is not difficult and
we will leave it as an exercise. The basic idea is that one can compute the probability of
observing a finite tree in a particular configuration by “unwinding” how this tree was formed
starting from clusters of closest leaves (those with the largest overlaps), and ignoring the
order, because we will end up with the factor 1=nŠ no matter what the order was. So, we
have this symmetry in distribution, although it does not appear immediately obvious from
the construction. This also means that (1.1) also holds with indices permuted.

Notice that the properties (a), (b), and (c) do not explicitly refer to the tree structure
in Figure 1. However, it turns out that these properties do imply that such a tree structure
must be present, even if it is a priori not given.

Theorem 1.1 ([102]). If the array .R`;`0/`;`0�1 satisfies properties (a), (b), and (c) then (1.3)
holds and the array can be generated as in Figure 1 with � D L.R1;2/.

The distributional identities (1.1) in property (a) are called the Ghirlanda–Guerra
identities [71] and, in all intended applications, properties (b) and (c) are, essentially, built
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into the construction. So, in words, Theorem 1.1 says that the Ghirlanda–Guerra identities
(1.1) imply ultrametricity (1.3). As we will discuss below, the result is useful because the
Ghirlanda–Guerra identities often appear rather naturally.

Below we will discuss the origin of this result in the setting of the so-called spin glass
models from statistical physics. Before we begin, let us mention that the construction of the
tree in Figure 1 is called the Goldschmidt–Martin algorithm [72] for generating a sample
from the Ruelle Probability Cascades [115] corresponding to the overlap distribution � or,
equivalently, for constructing the Bolthausen–Sznitman coalescent [34] (see also [98]). Non-
negative definite random arrays satisfying property (c) are called Gram–de Finetti arrays,
and the analogue of de Finetti’s representation for such arrays is called the Dovbysh–Sudakov
representation [66] (see, e.g., [103, Section 1.5]).

2. Some background

The name “spin glass” refers to certain dilute magnetic alloys (for example, dilute
solutions of manganese in copper, or other magnetic atoms in nonmagnetic metals), and
it seems to have been coined by Philip Anderson and Wai-Chao Kok (according to [7]). An
entertaining account of a part of the history of spin glasses in physics up to 1990 can be found
in [5–11]. Here I will only mention a few fundamental results related to the Sherrington–
Kirkpatrick model [117]. In this model, given integer N � 1, one considers a Gaussian process
HN .�/ indexed by � 2 †N WD ¹�1; C1ºN ,

HN .�/ D
1

p
N

NX
i;j D1

gij �i �j ;

where the coefficients gij are i.i.d. standard Gaussian random variables. This process is
called the Hamiltonian of the model. It is sometimes viewed as the energy function of a
random optimization problem of assigning students to two dorms, called dean’s problem.
Let i; j be indices corresponding to N students, gij be an interaction parameter describing
how much student i likes or dislikes student j , and �i be the label of one of two dorms
¹�1; C1º that student i is assigned to. If we write �i �j D 2I.�i D �j / � 1, we can see
that maximizing HN .�/ over all possible assignments � is equivalent to maximizing the
so-called comfort function

P
i 6Dj gij I.�i D �j /, which is the sum of interactions within the

same dorms. It is not difficult to check that max� HN .�/ is of order O.N /, and so one may
try to compute the exact limit of

1

N
max

�2†N

HN .�/

as N ! 1. Related to this maximum is the free energy

FN D FN .ˇ/ WD
1

N
log

X
�2†N

exp ˇHN .�/;
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where ˇ > 0 is called the inverse temperature parameter. Free energy can be viewed as a
“smooth approximation” of the maximum, because

FN .ˇ/

ˇ
�

1

N
max

�2†N

HN .�/ �
FN .ˇ/

ˇ
C

log 2

ˇ
;

which can be seen by bounding the sum from below by the largest term, or replacing all terms
by the largest one. This means that FN .ˇ/=ˇ is a good approximation of the maximum when
ˇ is large, so one can try to compute the limit of the free energy for any fixed ˇ first. This
turns out to be closely related to understanding the geometric and probabilistic structure of
the Gibbs measure of the model,

GN .�/ D
exp ˇHN .�/P

�2†N
exp ˇHN .�/

:

The formula for the limit of FN .ˇ/ was proposed by David Sherrington and
Scott Kirkpatrick in [117] based on the so-called replica formalism: using the formula
log x D limn#0 n�1.xn � 1/, interchanging limits N ! 1 and n ! 0, computing the
N ! 1 limit for integer n � 0, and hoping that the formula survives in the n ! 0 limit.
They observed that the formula they obtained exhibited “unphysical behavior” at low tem-
perature, which meant that it could only be correct for small enough values of ˇ. Several
years later, Giorgio Parisi [112,113] proposed another formula, now called the Parisi formula,
which seemed to pass all the consistency checks. It stated that (almost surely)

lim
N !1

FN .ˇ/ D inf
�

 
ˆ.0; 0/ � ˇ2

Z 1

0

t�.t/ dt

!
;

where the infimum is taken over all probability distributions � 2 PrŒ0; 1� on Œ0; 1� with
�.t/ WD �.Œ0; t �/ being a cumulative distribution function, and ˆ.t; x/ W Œ0; 1� � R ! R

the solution of

ˆt D �ˇ2
�
ˆxx C �.t/.ˆx/2

�
; ˆ.1; x/ WD log 2 cosh.x/:

Parisi’s calculation started along the same lines of the replica formalism, but it required
breaking from conventional wisdom in more than one way, as well as making some cre-
ative choices along the way. One of these choices was the ultrametric parametrization of the
replica matrix that comes up in the calculation. Here this replica matrix appeared in a purely
algebraic way, and it was only later given a physical meaning in another paper of Parisi [114],
as the matrix of overlaps

R`;`0 D
1

N

NX
iD1

�`
i �`0

i (2.1)

of an i.i.d. sample .�`/`�1 from the Gibbs measure GN . The overlap array R discussed in the
introduction and in Theorem 1.1 arises as a limit (in distribution) of the array (2.1) and, in
the context of spin glass models, the purpose of Theorem 1.1 is to understand the distribution
of this array in the thermodynamic limit N ! 1. The reason why the overlaps (2.1) appear
in the computation of the free energy is simple. The Hamiltonian is a Gaussian process, so
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its distribution is determined by its covariance, which in this case happens to be a function
of the overlap,

EHN .�1/HN .�2/ D N.R1;2/2: (2.2)

Following the work of Parisi, there was a tremendous activity in physics using,
extending, and analyzing these ideas. A classic summary of spin glasses at the end of the
1980s is the book of Mézard, Parisi, and Virasoro “Spin Glass Theory and Beyond” [91].
Some key developments appeared in a series of papers by Marc Mézard et al. [88–90,92] in
the mid-1980s, where, in particular, an algebraic choice of ultrametric parametrization in
Parisi’s replica calculation was expressed in terms of the familiar ultrametric geometry—
in this case, the geometry of the support of the Gibbs measure in the thermodynamic limit
N ! 1. A very important role was also played by the study of toy models of spin glasses
by Bernard Derrida et al.—the random energy model, REM, in [59,60], and the generalized
random energy model, GREM, in [61, 62]. It was shown in [58, 63, 90] that various statistics
of the Gibbs sample in these toy models coincide with those in the SK model. When David
Ruelle [115] gave an explicit description of the Gibbs measure in the GREM in terms of a
certain family of Poisson processes, this meant that one now had an explicitly defined object
conjecturally describing the Gibbs measure in the SK model. This object is now called the
Ruelle probability cascades (RPC). For an explicit description, we will refer to Chapter 2 in
[103], but Figure 1 above describes how to generate a sample from RPC corresponding to the
parameter � 2 PrŒ0; 1�.

The fact that the limit of the free energy actually exists was proved by Guerra
and Toninelli in [75]. The Parisi formula was proved by Michel Talagrand in a celebrated
paper [126], following a discovery by Francesco Guerra [74] of an ingenious interpolation
that showed that the Parisi formula is an upper bound on the limit of the free energy.

3. The Ghirlanda–Guerra identities

Talagrand’s proof of the Parisi formula found a way around the ultrametricity (1.3)
that played such an important role in the physics literature, but there is another approach
based on the above Theorem 1.1 and the Aizenman–Sims–Starr scheme [4] (see [103, 104]).
If we look at the array of overlaps (2.1), by definition, it satisfies properties (b) and (c) in
Theorem 1.1, except for R`;`0 2 Œ0; 1�. The original SK Hamiltonian HN .�/ is symmetric
under � ! �� , so the distribution of the overlaps is symmetric. However, there are various
ways to break this symmetry in a way that enforces R`;`0 � 0 in the limit N ! 1 without
affecting the free energy much and, as a result, we can pretend that properties (b) and (c)
always hold. This means that property (a)—the so-called Ghirlanda–Guerra identities—is
really at the heart of Theorem 1.1. In fact, these identities also imply that R`;`0 � 0 (which
is known as Talagrand’s positivity principle), but, of course, their main role is to ensure that
the ultrametricity of the overlap array in (1.3) holds.

So where are the Ghirlanda–Guerra identities (1.1) coming from? If we denote by
h � i the average with respect to the Gibbs measure GN and by E the average with respect to
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the Gaussian disorder .gij / then, roughly speaking, the form (1.1) is simply another way to
express the concentration of the Hamiltonian,

E

�ˇ̌̌̌
HN .�/

N
� E

�
HN .�/

N

�ˇ̌̌̌�
! 0; (3.1)

by testing this concentration against a test function and then integrating by parts using the for-
mula for covariance of HN in (2.2). Precise details are a bit more complicated, but the main
question becomes: Where is the concentration (3.1) coming from? The particular statement
(3.1) is not easy to prove (see Section 3.7 in [103]), but, for example, the same statement on
average over the inverse temperature parameter ˇ is rather straightforward and follows read-
ily from the convexity of FN .ˇ/ and its concentration around the expectation EFN .ˇ/, as
was demonstrated by Guerra in [73] and generalized by Ghirlanda and Guerra in [71]. Once
the overall idea became clear, there was a lot of room to tweak this approach and make it
applicable in a variety of situations.

For example, given some Hamiltonian HN .�/ with maximum of order O.N /, one
can add a smaller-order Gaussian perturbation term (with covariance given by a function
of the overlap similarly to (2.2)) in such a way that the Ghirlanda–Guerra identities hold
in the limit. The only requirement from the model is that the free energy satisfies some
mild concentration assumptions. Hence, the Ghirlanda–Guerra identities become a property
of the perturbation and not the model itself. Since the perturbation is of smaller order, its
presence does not affect the limit of the free energy. Such perturbative approach even allows
considering more general overlaps, leading to further applications as will be discussed in the
next section.

Closely related to the Ghirlanda–Guerra identities is the so-called Aizenman–Con-
tucci stochastic stability [3,56]. The first approach to ultrametricity using this stochastic sta-
bility was developed by Louis-Pierre Arguin and Michael Aizenman in [12], which inspired
the line of research [99,101] that lead to Theorem 1.1 in [102]. The general idea of forcing non-
trivial properties on a model using perturbations has emerged as one of the most important
ideas on the mathematical side of spin glasses. As the physicists like to say, you can learn a
lot about the system by observing how it reacts to small perturbations, and mathematicians
like to think that in a small neighborhood of a system you might be able to find another one
with better properties.

4. Synchronization mechanism

In this section, we will describe how Theorem 1.1 can be combined with the
Ghirlanda–Guerra identities for more general overlaps to study various generalizations of
the SK model. For illustration purposes, we will use the following two examples.

Example 4.1 (Nonhomogeneous SK model). In the language of dean’s problem, suppose
that students are divided into two groups, Girls D ¹1; : : : ;N1º and Boys D ¹N1 C 1; : : : ;N º,
where N1=N ! � 2 .0; 1/, and suppose that the variance of the Gaussian interactions
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depends on the group membership,

Var.gij / D �2
S;S 0 ; if i 2 S; j 2 S 0 for S; S 0

2 ¹Girls; Boysº: (4.1)

Otherwise, the Hamiltonian is the same as in the SK model. In this case, the computation of
the free energy involves understanding the joints distribution of two types of overlaps,

RS
`;`0 D

1

N

X
i2S

�`
i �`0

i for S 2 ¹Girls; Boysº;

over the entire array `; `0 � 1.

Example 4.2 (Potts SK model). Here we consider K � 2 dorms, so assignments � belong
to ¹1; : : : ; KºN , and suppose that the dorm sizes are fixed,

lim
N !1

j¹i W �i D kºj

N
D pk 2 .0; 1/ for all k � K;

where
P

k�K pk D 1. Now it is more natural to define the Hamiltonian as

HN .�/ D
1

p
N

NX
i;j D1

gij I.�i D �j /:

In this case, the computation of the free energy involves understanding the joints distribution
over all `; `0 � 1 of the matrix of overlaps

R.�`; �`0

/ D
�
Rx;y.�`; �`0

/
�

x;y2Dorms; (4.2)

where, for x; y 2 Dorms WD ¹1; : : : ; Kº,

Rx;y.�`; �`0

/ D
1

N

NX
iD1

I.�`
i D x/I.�`0

i D y/;

which is the proportion of students assigned to dorm x in the assignment �` and dorm y in
another assignment �`0 .

To study joint distributions of more than one type of overlap, a synchronization
mechanism was developed in [106,110,111], which we will now describe. Let †N be the space
of assignments, for example, †N D ¹�1; C1ºN in the SK model and nonhomogeneous SK
model, and †N D ¹1; : : : ; KºN in the Potts model. Let H be a Hilbert space and

ˆN W †N ! H

be such that kˆN .�/kH D const, where for simplicity we will assume that this constant in
independent of N . We will call

R`;`0 D ˆN .�`/ � ˆN .�`0

/

a generalized overlap. Since we can define a Gaussian process with the covariance equal
to this generalized overlap (or its powers), the perturbation approach we described in the
previous section allows us to force any such generalized overlap to satisfy the Ghirlanda–
Guerra identities and, by way of Theorem 1.1, satisfy ultrametricity in the limit N ! 1.
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Moreover, if we consider two generalized overlaps R`;`0 and Q`;`0 then Rn
`;`0Q

m
`;`0 will also

be a generalized overlap for any integer n; m � 0, and the perturbative approach allows us
to simultaneously force all of them be ultrametric in the limit. The ultrametricity puts strong
constraints on how this can happen and, in fact, implies that R`;`0 and Q`;`0 have to be
synchronized in the following sense (Theorem 4 in [106]):

R`;`0 D f .R`;`0 C Q`;`0/; Q`;`0 D g.R`;`0 C Q`;`0/; (4.3)

for some deterministic 1-Lipschitz functions f and g, which depend only on the distribution
of the array .R; Q/.

In the case of nonhomogeneous SK model, this means that both overlaps RS
`;`0 for

S 2 ¹Girls; Boysº are determined by their sum, which is just the usual overlap R`;`0 . When
the matrix † D .�2

S;S 0/S;S 02¹Girls;Boysº of variances in (4.1) is nonnegative definite, this allows
computing the Parisi-type formula for the free energy [28, 106]. When † is not nonnegative
definite, the upper bound via Guerra’s interpolation [74] is missing and the problem is still
open, but the synchronization mechanism plays a crucial role in another promising approach
to this problem developed in a series of papers [2,29,94–97].

In the case of the Potts SK model, the quadratic formX
x;y2Dorms

Rx;y.�`; �`0

/m�x�y

is a generalized overlap for any m 2 N and � 2 RK , and, again, one can force all of them to
be synchronized in the sense of equation (4.3). This yields even more surprising constraints
on the overlap matrix (4.2) in the limit N ! 1. Namely, in this case, one can show that

R.�`; �`0

/ D ˆ
�
tr
�
R.�`; �`0

/
��

for some deterministic function ˆ W R ! SPD (where SPD is the set of symmetric non-
negative definite matrices) that depends only on the distribution of the array R. Moreover,
ˆ is Lipschitz elementwise, and nondecreasing in SPD, i.e., ˆ.a/ � ˆ.b/ 2 SPD for any
a � b. The reason such constraints are surprising is that a priori the matrix R.�`; �`0

/ in
(4.2) is not even symmetric. However, synchronization of the generalized overlaps above
enforces such strong symmetries and, in particular, all the overlaps are determined by the
trace tr.R.�`; �`0

//. This yields a Parisi-type formula for the free energy [110,111].
Besides the above two examples, some more general results include showing that the

upper bounds of Talagrand [128,129] for multiple systems with overlap constraints are sharp.
These results and the synchronization mechanism itself were used in a variety of applications
(see, e.g., [1,31,44,57,65,77,83]).

5. Other applications of ultrametricity

Theorem 1.1 or the ideas in its proof were used in a number of other places. We
will not describe them in detail, but will at least mention briefly. One application is to show
the so-called chaos in temperature for generic mixed p-spin models [108]. The phenomenon
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of chaos in temperature in spin glass models was first studied in the physics literature by
Fisher and Huse [70] and Bray and Moore [36], and its states that, if we change the inverse
temperature parameter ˇ even a little, configurations sampled from the Gibbs measure will
become uncorrelated with those sampled at the original temperature. In other words, the
Gibbs measure is chaotic under small changes in temperature.

Thouless–Anderson–Palmer approach [130] to computing the free energy in the SK
model is a landmark work in the physics literature and its ideas play an important role also
in connection to the Parisi solution [91]. In [50,51], the so-called generalized TAP free energy
was studied, extending the ideas of Eliran Subag from the setting of spherical models [121] to
the original SK and related models. Theorem 1.1 played a role there in computing the TAP
correction, similarly to the approach in [104].

The Ghirlanda–Guerra identities and Theorem 1.1 also played a key role in the series
of papers [105,107,109] that studied the so-called Mézard–Parisi ansatz [87] in the setting of
diluted spin glass models. The main problem here (the so-called reproducibility hypothesis)
is still open, but quite general special case was proved in [109].

6. Some related work

Finally, we will briefly summarize some related work in spin glasses. It is not really
feasible to give a detailed overview, so we will only list some important results. Talagrand
first discovered in [124] that the Ghirlanda–Guerra identities hold in the setting of the simplest
Ruelle probability cascades (Poisson–Dirichlet processes) and, following a similar idea, the
Ghirlanda–Guerra identities in the setting of the general Ruelle probability cascades were
proved by Bovier and Kurkova in [35], where the Gibbs measure of the GREM was studied
rigorously. The Ghirlanda–Guerra identities in a strong sense (not on average over ˇ) were
derived in [18, 38, 100]. The ultrametricity of the overlap array in the thermodynamic limit
can be translated to a similar description for finite-size systems in some approximate sense,
which was done in [41,76]. The properties of the Parisi formula were studied in [15,16,19,23,78,

80,127,131], and the Parisi formula at zero temperature (for the maximum of the Hamiltonian)
was obtained and studied in [17,45,52,79]. Various results related to chaos in temperature and
chaos in disorder appeared in [32, 37, 39,40,43,47, 48, 69]. A tiny sample of results related to
diluted spin glass models is [54,55,64]. Spherical analogues of the SK and related models were
studied in [24–27,42,52,79,81–86,119, 122, 125]. The complexity of critical points in spherical
models was analyzed in great detail in [13,14,20,118,123]. Various results related to the TAP
approach and optimization can be found in [21,22,30,33,46,49,53,67,68,93,116,120].
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