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Abstract

Large ensembles of stochastically evolving interacting particles describe phenomena in
diverse fields including statistical physics, neuroscience, biology, and engineeering. In
such systems, the infinitesimal evolution of each particle depends only on its own state (or
history) and the states (or histories) of neighboring particles with respect to an underlying,
possibly random, interaction graph. While these high-dimensional processes are typically
too complex to be amenable to exact analysis, their dynamics are quite well understood
when the interaction graph is the complete graph. In this case, classical theorems show
that in the limit as the number of particles goes to infinity, the dynamics of the empir-
ical measure and the law of a typical particle coincide and can be characterized in terms
of a much more tractable dynamical system of reduced dimension called the mean-field
limit. In contrast, until recently not much was known about corresponding convergence
results in the complementary case when the interaction graph is sparse (i.e., with uni-
formly bounded average degree). This article provides a brief survey of classical work
and then describes recent progress on the sparse regime that relies on a combination of
techniques from random graph theory, Markov random fields, and stochastic analysis.
The article concludes by discussing ramifications for applications and posing several open
problems.
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1. Introduction

1.1. Background
A recurring theme in probability theory is the emergence of deterministic (or more

predictable) behavior when there is an aggregation of many random elements. A classical
result is the strong law of large numbers established by Kolmogorov in 1933 [43]. This states
that given a sequence of random variables .Xi /i2N that are independent and identically dis-
tributed (i.i.d.) and have finite mean (equivalently, .Xi /i2N is distributed according to some
product probability measure ˝N�, where � is a probability measure on the Borel sets of R

that satisfies
R

R jxj�.dx/ < 1), then with probability one,

Sn WD
1

n

nX
iD1

Xi ! EŒX1� D

Z
R
x�.dx/; as n ! 1: (1.1)

In a similar spirit, the Glivenko–Cantelli theorem, also established in 1933 [10,35], provides
information on the asymptotic behavior of empirical measures of i.i.d. random variables.
Specifically, it shows that with probability one,

�n WD
1

n

nX
iD1

ıXi
! EŒıX1 � D L .X1/ D �; as n ! 1; (1.2)

where ıx represents the Dirac delta measure at x and L .Y / denotes the law or distribution
of a random variable Y . The convergence in (1.2) is in the so-called Kolmogorov distance,
which in particular implies weak convergence, that is, for every bounded, continuous func-
tion f on R,

R
R f .x/�n.dx/ !

R
R f .x/�.dx/.

Similar results also hold when the random variables are not independent, but exhibit
some form of weak dependence. For instance, consider a triangular array of (dependent)
random variables .Xn

i ; i D 1; : : : ; n/n2N that have a common mean, finite variances, and
exhibit asymptotic correlation decay in the sense that there exist positive real numbers
¹fn;k ; k D 1; : : : ; nºn2N such that supk;n2N fn;k < 1,ˇ̌

Cov
�
Xn

i ; X
n
j

�ˇ̌
� fn;ji�j j and lim

n!1

1

n

nX
iD1

fn;k D 0; (1.3)

where Cov.Xn
i ; X

n
j / represents the covariance of X

n
i and Xn

j . Then it follows from Cheby-
shev’s inequality [74] that the normalized partial sum Sn D

1
n

Pn
iD1X

n
i satisfies

P
�ˇ̌
Sn � E

�
X1

1

�ˇ̌
> "

�
! 0; 8" > 0:

On the other hand, inmany interesting cases onewants to analyze large collections of
strongly dependent random elements. Such an analysis is often facilitated by graphical model
representations, which capture conditional independence properties of the random elements
via a graph. A specific class of graphical models that will be important for the present dis-
cussion is a Markov random field (MRF) (a precise definition is given in Section 4.1). The
theory of MRFs and associated Gibbs measures goes back to the late 1960s with the pio-
neering works of Dobrushin [25, 26] and Lanford and Ruelle [51], who were motivated by
models in statistical physics involving static interacting random elements. In this case a key
question is efficient computation or analytical characterization of marginal distributions of
the high-dimensional ensemble of random elements.
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1.2. Questions of interest
This article focuses on the dynamics of large ensembles of stochastic processes

whose interactions are governed by an underlying graph G D .V; E/. Here V represents
a finite or countably infinite vertex set and E is a subset of unordered pairs of distinct ver-
tices in V that represent the (undirected) edges of the graph. The graphG is always assumed
to be simple (i.e., each pair in E is comprised of two distinct vertices) and locally finite,
that is, for each v 2 V , the size of its neighborhood @G.v/ WD ¹u 2 V W uv 2 Eº is finite.
The notation u � v will often also be used to indicate uv 2 E. Given the graph G and
an initial condition � D .�v/v2V , we are interested in a collection of stochastic processes
XG;� D .X

G;�
v .t/; t � 0/v2V indexed by the vertices of G, that satisfies XG;�

v .0/ D �v

for v 2 V , and whose interaction structure is governed by the graph G. Specifically, for
each v 2 V , the infinitesimal evolution of XG;�

v at any time only depends on its own state
(or history) and the states (or histories) of neighboring particles in G at that time. Note
that this includes both the case when XG;� is Markovian, where the infinitesimal evolution
depends only on the current states of particles, as well as non-Markovian evolutions, where
the infinitesimal evolution of a particle can depend on its own history and the histories of
particles in its neighbrhood. For conciseness, we will restrict our discussion to two types of
dynamics: interacting diffusions, which are described in Section 2.1, and interacting jump
processes, which are described in Section 2.3. Given such (Markovian or non-Markovian)
interacting processes on a large finite graph, quantities of interest include the following:

A. The macroscopic behavior of the system as captured by the (global) empirical
measure process, defined by

�G;�.t/ D
1

jV j

X
v2V

ı
X

G;�
v .t/

; t � 0: (1.4)

Note that for each t > 0, �G;�.t/ is a random probability measure on the state
space that encodes the fractions of particles taking values in different (measur-
able) subsets of the state space.

B. The microscopic behavior, in particular the marginal dynamics of a “typical
particle.” By this we mean the dynamics of XG;�

o , where the vertex o, referred
to as the root, is assumed to be chosen uniformly at random from the finite vertex
set V . An important question here is to ascertain how the dynamics depends on
the graph topology?

Due to the complexity and high dimensionality of the dynamics, these quantities are typically
not amenable to exact analysis or efficient computation. The goal instead is to identify more
tractable approximations of reduced dimension that can be rigorously justified by limit theo-
rems, as the number of particles goes to infinity. A desirable goal is to obtain an autonomous
characterization of the limiting marginal dynamics of a typical particle and evolution of the
empirical measure, which does not refer to the full particle system dynamics.

In Section 2 we review the well understood case when G D Kn, the n-clique or
the complete graph on n vertices, in which all pairs of distinct vertices are connected by an
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Figure 1

edge; see Figure 1(a). For suitable initial conditions �, convergence results for �Kn;� and
X

Kn;�
o in the context of interacting diffusion models go back more than half a century to the

seminal works of McKean [57,58], and fall under the rubric of mean-field limits. As briefly
described in Section 2, under broad conditions, the limits, as n ! 1, of both �Kn;� and
the law of XKn;�

o exist and coincide, and are described by a certain nonlinear stochastic pro-
cess. More recent work has also considered interacting processes on certain dense random
graph sequences. A generic example of a random graph is the so-called Erdős–Rényi graph
G.n;pn/, which is a graph on n vertices in which each pair of vertices has an edge with prob-
ability pn 2 .0; 1/ independently of all other edges; see Figures 1(b) and 1(c) for realizations
of G.n;pn/ with n D 12 and pn D 0:8 and pn D 0:25, respectively. Motivated by the study
of synchronization phenomena, the work [19] considers suitably scaled pairwise interacting
diffusions on “dense” Erdős–Rényi graphG.n;pn/ sequences with divergent average degree
(npn ! 1), and shows that the law of XGn;�

o converges to the same mean-field limit as in
the complete graph case. The key idea is that in this regime, particles are only weakly inter-
acting and become asymptotically independent, and thus the empirical measure behaves as
in the i.i.d. case (1.2) described in Section 1.1.

Themain focus of this article is on the complementary setting of interacting stochas-
tic processes on sequences of sparse (possibly random) graphs, where the (average) degrees
of vertices are uniformly bounded as n ! 1. A typical example is the Erdős–Rényi graph
G.n; pn/ sequence when npn ! c 2 .0; 1/. There has been extensive analysis of various
interacting stochastic processes on deterministic sparse graphs, originating with the work
of Spitzer [71], followed by significant analysis of several Markovian models including the
contact process, exclusion process, and voter model. These were first studied on the d -
dimensional lattice (see the monographs [27, 41, 52, 53]) and then on d -regular trees (e.g.,
[65,72]).More recent work has also considered processes on sparse random interaction graphs
(see, e.g., [6, 12, 19, 32, 38, 61] for an incomplete list), but none of these latter works appear
to address the main question listed above of autonomous characterization of the marginal
dynamics of a typical particle. In fact, for interacting diffusions on the sequence of sparse
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Erdős–Rényi graphs Gn D G.n; c=n/, with c 2 .0;1/, obtaining such a characterization
has remained an important open question (e.g., see [19, p. 9]).

The sparse regime is more challenging because particles have strong interactions,
neighboring particles remain correlated in the limit as n! 1, and the topology of the graph
has a strong influence. Sections 3 and 4 describe recent progress that in particular provides
a resolution of the open question in [19]. The article concludes in Section 5 with generaliza-
tions and open questions. The work on both mean-field models and various other aspects of
interacting particle systems is so extensive that it will be impossible to be representative in
this short article. Instead, I hope to just provide enough pointers for the reader to get a flavor
of the classical results and set the context for more recent results. Monographs covering
various aspects of interacting particles systems include [7,20,34,41,44,52,53,73].

2. Classical mean-field results for interacting

stochastic processes

Given a (simple, locally finite, undirected) graph G D .V; E/ and v 2 V , we use
clG.v/ WD ¹vº [ @G.v/ to denote the closure of v in G. Note that jclG.v/j is always finite,
where jAj denotes the cardinality of a set A. We now describe the dynamics of locally
interacting diffusions and interacting jump processes. Rather than provide the most general
setting, we make simplifying assumptions whenever convenient to illustrate the key issues.

2.1. Interacting diffusions
Given an initial condition � D .�v/v2V 2 RV with EŒ�2

v � < 1 for every v 2 V ,
consider the collection XG;� D ¹X

G;�
v ºv2V of diffusive particles, indexed by the nodes of

the graph G, that evolve according to the following coupled system of stochastic differential
equations (SDEs):

dXG;�
v .t/D b

�
t;XG;�

v .t/;�G;�
v .t/

�
dt C dWv.t/; XG;�

v .0/D �v; t > 0;v 2 V; (2.1)

where .Wv/v2V are i.i.d. standard Brownian motions independent of .�v/v2V , and for any
vertex that is not isolated, �G;�

v .t/ represents the local empirical measure of a neighborhood
of v at time t � 0,

�G;�
v .t/ D

1

j@G.v/j

X
u2@v

ı
X

G;�
u .t/

;

and b is a drift coefficient that is sufficiently regular to ensure that the SDE (2.1) has a unique
weak solution. (When v is isolated, the precise definition of �G;�

v is not so important; it can
be set equal to an arbitrary quantity.)

A special case of interest is when b has linear dependence on the measure term, say,
of the form

b.t; x; �/ D

Z
R
ˇ.t; x; y/�.dy/; (2.2)
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for some interaction potential ˇ W RC � R2 ! R that is symmetric in the last two variables.
In this case, system (2.1) reduces to the following system of pairwise interacting diffusions:

dXG;�
v .t/ D

1

j@G.v/j

X
u�v

ˇ
�
t; XG;�

v .t/; XG;�
u .t/

�
dt C dWv.t/; v 2 V; t > 0; (2.3)

which models phenomena in different fields, including statistical physics and neuroscience
[21,56,68]. The trajectories of each particle lie in the space C of continuous real-valued func-
tions on Œ0;1/, which we endow with the topology of uniform convergence on compact
sets.

2.2. Mean-field limits and nonlinear diffusion processes
Now consider the SDE (2.3) withG DKn, the complete graph, and assume without

loss of generality that G has vertex set ¹1; : : : ; nº. We present a sufficient condition on the
drift under which one can establish a standard mean-field result. Given any p � 1 and Polish
space E, the Wasserstein-p metric on E is defined as follows:

WE;p.�; Q�/ WD inf
�

�Z
E�E

dp.x; y/�.dx; dy/

�1=p

; (2.4)

where the infimum is over all couplings � of � and Q�, namely probability measures � onE2

with first and second marginals � and Q�, respectively. Let P p.E/ be the space of probability
measures on E equipped with the Wasserstein-p metric WE;p .

Assumption 2.1. Suppose that b is bounded and for every t > 0, the map R � P 2.R/ 3

.x; �/ 7! b.t; x; �/ 2 R is Lipschitz continuous, uniformly with respect to t in compact
subsets of RC.

Note that Assumption 2.1 is satisfied when the drift b is of the form (2.2), where
the interaction potential ˇ is such that R2 3 .x; y/ ! ˇ.t; x; y/ is Lipschitz continuous and
bounded, uniformly with respect to t in compact subsets of RC.

Theorem 2.2. Suppose Assumption 2.1 holds, and there exists �o 2 P 2.R/ such that the
initial conditions .�n

i /iD1;:::;n, n 2 N, satisfy

E

"
WR;2

 
1

n

nX
iD1

ı�n
i
; �o

!#
! 0 as n ! 1: (2.5)

Then there is a unique strong solution to the SDE

dXo.t/ D b
�
t; B.t/; �.t/

�
dt C dB.t/; �.t/ D L

�
Xo.t/

�
; t > 0; (2.6)

with L .Xo.0// D �0. Moreover, if for each n 2 N, Xn WD XKn;�n is the unique solution to
the SDE (2.1), then the global empirical measure �n WD �Kn;�n defined in (1.4) satisfies

lim
n!1

E
h
sup

s2Œ0;t�

WR;2

�
�n.s/; �.s/

�i
D 0; 8t > 0: (2.7)
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Furthermore, for any k 2 N and t > 0, the law of .Xn
1 .t/; : : : ; X

n
k
.t// converges weakly to

the product .�.t//˝k , that is, for all bounded continuous functions fi W R ! R, i D 1; : : : ; k,

lim
n!1

E
�
f1

�
Xn

1 .t/
�
: : : fk

�
Xn

k .t/
��

D

kY
iD1

Z
R
fi .x/�.t/.dx/: (2.8)

If there were no interaction, b � 0, then the theorem would simply be a (functional)
strong law of large numbers result. However, even when b ¥ 0, the particles are only weakly
interacting because the symmetry of the interaction ensures that the influence of any particle
on the drift of another particle is O.1=n/, which vanishes in the limit. The property (2.8)
that any finite subset of random variables from ¹Xn

i .t/; i D 1; : : : ; nºn2N are asymptotically
independent is referred to as chaoticity, and is well known to be equivalent to the conver-
gence of �n.t/ to a deterministic law [73, Proposition 2.2]. Now, (2.5) implies that the initial
conditions are chaotic. Thus Theorem 2.2 asserts that the dynamics are such that this chaotic-
ity also holds for positive times t > 0, a phenomenon referred to as propagation of chaos.
In turn, this leads to an autonomous description of the limiting marginal process Xo, which
is a Markov process whose infinitesimal evolution at any time t also depends on its own
law �.t/ at that time. As a result, the forward Kolmogorov equation (or master equation),
which is the partial differential equation (PDE) describing the evolution of the marginal law
�, is nonlinear. Consequently, such a process is referred to as a nonlinear Markov process.
When the drift has the form (2.2), under suitable conditions it can be shown that the law
�.t/ is absolutely continuous with respect to Lebesgue measure and that its density satisfies
the granular media equation [58]. Thus, PDE techniques can be useful for studying nonlinear
Markov processes (see, e.g., [4]).

There are many different approaches to establishing mean-field limits, including
PDE analysis, fixed point arguments, martingale techniques and stochastic coupling con-
structions. First, one needs to establishing well-posedness of the nonlinear SDE (2.6). An
analytical approach to this problem entails proving uniqueness of the nonlinear PDE describ-
ing the evolution of the marginal law. Another, more probabilistic, approach is to first con-
sider the mapping that takes any continuous measure flow t 7! �.t/ 2 P 2.R/ to the measure
flow t 7! L .X�.t//, whereX� is the unique solution to the SDE in (2.6) when� is replaced
with �. Observing that the flow t 7! L .Xo.t//must be a fixed point for this mapping, well-
posedness is equivalent to uniqueness of the fixed point of this mapping. The latter can be
established by showing the mapping is a contraction by exploiting the Lipschitz continuity of
the drift. Given well-posedness, the coupling approach to proving convergence proceeds by
first defining NXn to be the n-dimensional process whose every coordinate is an independent
copy of the nonlinear process Xo. Then one couples this process with the original process
Xn so that they are both driven by the same Brownian motions. Using Itô’s formula, the
Lipschitz condition on the drift and standard estimates, one can then show that the WR;2 dis-
tance between the empirical measures of Xn and NXn vanishes as n ! 1: Since the strong
law of large numbers ensures that the empirical measure of the latter converges to the law of
Xo, which is equal to�, this concludes the proof. An alternative approach to proving conver-
gence is to first use the generator of the Markov processXn to identify martingales involving
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the empirical measure process �n, next show that the sequence ¹�nº is relatively compact
(or tight), then characterize any subsequential limit satisfies what is known as a nonlinear
martingale problem, and finally establish well-posedness of the latter [33,62].

Remark 2.3. One can consider more general dynamics where both the drift and diffusion
coefficients are functions of the current state and the empirical measure process, as well as
non-Markovian versions that depend on the history of the process.

2.3. Interacting jump processes and their mean-field limits
2.3.1. Description of dynamics
Wewill also be interested in interacting pure jump processes, which describemodels

in statistical physics, engineering, epidemiology and the dynamics of opinion formation
[7,53]. For concreteness, consider the voter model [53] that aims to capture opinion dynamics,
in which each particle takes values in the state space X D ¹0; 1º that represents two possible
opinions. The allowed transitions or jump directions of a particle lie in the set J D ¹1;�1º.
The rate at which any particle changes its opinion is equal to the fraction of its neighbors
with the opposite opinion. Note that the dependence of the rate on the neighboring states
is symmetric. More generally, when the state of the system is .xv/v2V , the jump rate of a
particle at v could be a more complicated symmetric functional of the neighboring states
.xu/u�v and also depend on time t , in addition to its own state xv . This symmetric depen-
dence on neighboring states is most succinctly captured by saying the rate is a functional of
the unnormalized empirical measure �v D

P
u�v ıxu of the neighboring states. Note that �v

lies in the space M.X/ of locally finite nonnegative integer-valued measures on X.
In the general setup, we consider a finite state space X, a subset J � ¹i � j W i; j 2

Xº of possible jump directions, and a collection of jump rate functions Nrj W RC � X �

M.X/ ! RC, j 2 J. Given a (simple) finite graph G D .V; E/ and initial condition � D

.�v/v2V 2 XV , the XV -valued process representing the configuration of the associated IPS
evolves according to the following system of (jump) SDEs:

XG;�
v .t/ D �v C

X
j 2J

j

Z
.0;t��RC

I
¹r�Nrj .s;X

G;�
v .s�/;�

G;�
v .s�//º

Nv.ds; dr/; t � 0; v 2 V;

(2.9)
where .Nv/v2V , are i.i.d. Poisson random measures on R2

C with intensity measure Leb2,
where Leb represents Lebesgue measure on R, and for each s � 0, �G;�

v .s/ is the random
(unnormalized) empirical measure corresponding to the states of the particles in the neigh-
borhood of v at time s:

�G;�
v .s/ WD

X
u�v

ı
X

G;�
u .s/

; v 2 V; s � 0: (2.10)

The SDE (2.9) captures a simple evolution. For any j 2 J and time t , the particle at a node
v makes a transition from its state XG;�

v .t�/ to XG;�
v .t�/C j at a rate Nrj .t; x; �

G;�
v .t�//

that depends on the current time, the state of the node just prior to the current time, and
symmetrically on the states of neighboring nodes just prior to the current time, as encoded
by �G;�

v .t�/. Use of the unnormalized measure �G;�
v .t/ instead of the empirical measure
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allows one to capture a broader class of models in which jump rates depend on the number
of neighboring nodes in particular states (and not just their fractions), as is the case formodels
like the contact process [53]. Note that the trajectory of each particle lies in the càdlàg space
D of right continuous X-valued functions on Œ0;1/ that have finite left limits on .0;1/.

The solution XG;� to the jump SDE (2.9) is a Markov jump process and so its law
can also be characterized via the associated infinitesimal generator [52]: for functions f W

XV 7! R,

Atf .x/ D lim
h#0

EŒf .XG;�

tCh
/ � f .X

G;�
t /jX

G;�
t D x�

h

D

X
j 2J;v2V

Nrj

�
t; xv;

X
u�v

ıxu

��
f .x C jev/ � f .x/

�
; t > 0; x 2 XV ;

where ev 2 ¹0; 1ºV is the vector with 1 in the vth coordinate and 0 elsewhere. However, the
jump SDE representation in (2.9) is more convenient for generalizations to non-Markovian
processes (see [29]). Furthermore, the jump SDE formulation is also better suited to describ-
ing the form of limiting marginal dynamics on sparse graphs, as described in Section 4.4.

2.3.2. Mean-field limits and nonlinear jump processes
Mean-field results analogous to Theorem 2.2 also hold in the jump setting under the

following regularity assumption on the jump rate functions:

Assumption 2.4. For each j 2 J, the jump rate function takes the form Qrj .t; x; �/ D

Orj .t; x;
1

�.X/
�/ when �.X/ ¤ 0, and Qrj .t; x; �/ D 0 otherwise, where the function Orj W

R � X � P 1.X/ 7! RC is such that P 1.X/ 3 � 7! Or.t; x; �/ is Lipschitz continuous,
uniformly for x 2 X and t in compact subsets of RC.

Assumption 2.4 reflects the fact that in the mean-field setting, the dependence of the
jump rates on the neighboring particles must be a sufficiently regular function of the usual
(normalized) empirical measure. The following result is established in [62, Theorem 2]; see
also [44].

Theorem 2.5. Suppose Assumption 2.4 holds and the initial conditions are chaotic, that is,
1
n

Pn
iD1 ı�n

i
converges in the total variation metric to a deterministic limit�0, then�Kn;�n

.t/

converges weakly to L .Xo.t// where Xo.t/ D X�0.t/, t � 0, is the unique solution to the
following nonlinear jump SDE: L .Xo.0// D �0, and for t � 0,

Xo.t/ D Xo.0/C

X
j 2J

j

Z
.0;t��RC

I¹r�Nrj .s;Xo.s�/;�.s�//ºN.ds; dr/; (2.11)

�.t/ D L
�
Xo.t/

�
;

where N is a Poisson process on R2
C with intensity Leb2, independent of Xo.0/. Further-

more, for any k 2 N, the law of .XKn;�
1 ; : : : ;X

Kn;�

k
/ on Dk converges weakly to .L.Xo//

˝k .

Just as the evolution of the law of the mean-field diffusion limit in (2.6) can be
characterized by a nonlinear PDE, the evolution of the law of the nonlinear jump processXo
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in (2.11) can be characterized as the unique solution to its forward equation, which is now a
nonlinear integrodifferential equation.

Remark 2.6. Theorems 2.2 and 2.5 are meant to only provide a flavor of mean-field results.
While a survey of mean-field limits is not the current focus, it is worth mentioning that in
both the diffusive and jump process settings, one can obtain mean-field limits under weaker
assumptions and for much more general dynamics where the diffusion coefficient is also
a function of the current state and empirical measure process, as well as non-Markovian
versions where the drift coefficient or jump rates depend on the history of the process (see,
e.g., [59] for propagation of chaos results on interacting non-Markovian jump diffusions and
[3] for a large deviations analysis of non-Markovian weakly interacting diffusions).

2.4. Limitations of mean-field approximations
The mean-field limit theorems established in Theorems 2.2 and 2.5 indicate that

the law of the nonlinear Markov processes Xo in (2.6) and (2.11), respectively, can be used
to approximate quantities of interest for interacting diffusions or jump processes on finite
graphs. In particular, consider the voter model described in Section 2.3.1. Its jump rates take
the explicit form

Nr1.t; x; �/ D
I¹xD0º

j�.X/j

Z
X

y�.dy/; Nr�1.t; x; �/ D
I¹xD1º

j�.X/j

Z
X

.1 � y/�.dy/:

In this case, one would expect that the dynamics of Xo in (2.11) with these reates could
provide an approximation for the probability of agreement of any two neighboring particles
in the voter model on a sufficiently large complete graph. However, for lack of a better alter-
native, mean-field approximations are used even for dynamics on other graphs. While these
approximations may do reasonably well on dense graphs (where vertices have high degrees)
[19], they can be very inaccurate on sparse graphs. Figure 2 plots the evolution of the probabil-

Figure 2

Simulations and mean-field (MF) approximations for the voter model on a 3-tree.
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ity that the state of the root agrees with precisely two of its neighbors for the voter model on a
rooted 3-regular tree with 9 generations, given at time zero, each particle independently has
an opinion 1 with probability 0:3. The vertical bars in Figure 2 provide confidence intervals
for the simulation. The mean-field approximation assumes neighboring vertices are indepen-
dent, and thus performs poorly. Ad hoc refinements of the mean-field approximation that take
into account correlations also remain inaccurate in this setting. This strongly motivates the
development of a convergence theory for the empirical distribution and marginal dynamics
on sparse graph sequences that could lead to more principled approximations.

3. Interacting processes on sparse graphs: hydrodynamic

limits

We now turn to interacting processes .XGn;�n
/n2N on sparse graph sequences

.Gn/n2N with initial conditions .�n/n2N . Assume eachGn is finite and on is a vertex chosen
uniformly at random from the vertices of Gn. Unlike in the case of the complete graph (or
even dense graph sequences), the degree of a vertex remains bounded and so neighbor-
ing vertices do not become asymptotically independent. Thus, the number of neighbors
becomes important and so it is clear that one cannot expect .XGn;�n

on
/n2N to have a limit just

by sending the number of vertices n to infinity, without imposing any additional consistency
requirements on the graphs in the sequence. This leads to the following questions:

Q1. For what graph sequences .Gn/n2N would one expect .XGn;�n

on
/n2N to have a

limit?

Q2. For such sequences, will .�Gn;�n
/n2N converge to a deterministic limit?

Q3. When .�Gn;�n
/n2N converges to a deterministic limit, will this limit always

coincide with the limit law of XGn;�n

on
?

Q4. Is there an autonomous reduced-dimension description of the limit of the
marginal XGn;�n

on
whenever this limit exists?

In light of the first question above, we review a natural notion of convergence of
sparse graphs called local convergence in Section 3.1. This notion was used to study asymp-
totic properties of static models (Gibbs measures) of discrete-valued marked random graphs
in [20].

3.1. Local convergence of sparse graph sequences
Given a graph G D .V; E/ and two vertices u; v 2 V , a path of length n between

u and v is a sequence u D u0; u1; : : : ; un D v such that ui�1 � ui for every i D 1; : : : ; n.
A graph is said to be connected if there exists a finite path between any two vertices and
the graph distance between two vertices is the minimum length of a path between them.
A rooted graph .G; o/ is a graph G D .V;E/ with a special vertex o 2 V , referred to as the
root. A useful notion of convergent sequences of (connected) rooted sparse graphs is that of
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local convergence, which was introduced by Benjamini and Schramm [5]. Other references
on local convergence include [1, 8]. We first introduce some terminology that is required
to define local convergence. An isomorphism from one rooted graph .G1; o1/ to another
.G2; o2/ is a bijection ' from the vertex set of G1 to that of G2 such that '.o1/ D o2 and
such that .u; v/ is an edge in G1 if and only if .'.u/; '.v// is an edge in G2. Two rooted
graphs are said to be isomorphic if there exists an isomorphism between them. Let G� denote
the set of isomorphism classes of connected rooted graphs. We will also need to consider
convergence of graphs that carry ”marks” representing the initial condition or trajectory of
the state dynamics at that vertex. With that in mind, given a Polish space � , we define a
�-marked rooted graph to be a tuple .G; x; o/, where .G; o/ is a rooted graph and x D

.xv/v2G 2 �G is a vector of marks, indexed by the vertices of G. We say that two marked
rooted graphs .G1; x

1; o1/ and .G2; x
2; o2/ are isomorphic if there exists an isomorphism '

from the rooted graph .G1; o1/ to the rooted graph .G2; o2/ that maps the marks of .G1; o1/

to the marks of .G2; o2/ (i.e., for which x2
'.v/

D x1
v for all v 2 G). Let G�Œ� � denote the set

of isomorphism classes of �-marked rooted graphs.
We now define the topologies of local convergence on the spaces G� and G�Œ� �. For

r 2 N and .G; o/ 2 G�, let Br .G; o/ denote the induced subgraph of G (rooted at o) con-
taining those vertices with (graph) distance at most r from the root o. The distance between
.G1; o1/ and .G2; o2/ in G� is defined to be 1=.1C Nr/, where Nr is the supremum over r 2 N0

such thatBr .G1; o1/ andBr .G2; o2/ are isomorphic, where we interpretB0.Gi ; oi /D ¹oi º.
Now, let d denote a metric that induces the Polish topology on � . We then metrize G�Œ� �

by similarly defining the distance between two �-marked graphs .Gi ; x
i ; oi /, i D 1; 2, to be

1=.1C Nr/, where now Nr is the supremum over r 2 N0 such that there exists an isomorphism
' from Br .G1; o1/ to Br .G2; o2/ for which d.x1

v ; x
2
'.v/

/ � 1=r for all v 2 Br .G1; o1/.
Under the respective topologies, G� and G�Œ� � are Polish spaces (see [8, Lemma 3.4] or [46,

Appendix A]). For any Polish space � , let Cb.�/ denote the space of bounded continuous
functions on S .

We will always assume the spaces G� and G�Œ� � are equipped with their Borel
� -algebras. One can then talk about weak convergence or convergence in distribution of
random graphs and random marked graphs as random elements in G� or G�Œ� �: Specifically,
a sequence of random G�-valued random elements ¹.Gn; on/º is said to converge in distri-
bution in the local weak sense to a G�-valued limit .G; o/ if for every bounded continuous
function f W G� ! R, EŒf .Gn; on/� ! EŒf .G; o/�: Likewise, convergence in distribution
in the local weak sense of (isomorphism classes of) random �-marked graphs is equivalent
to weak convergence on the space G�Œ� �.

Remark 3.1. Figure 3 illustrates two generic examples of locally convergent graph se-
quences. Let Gn be the n-cycle, which is the connected graph on n vertices where every
vertex has degree 2, along with the root on chosen uniformly at random from the n ver-
tices. Then .Gn; on/ converges weakly in G� to a infinite line graph rooted at some fixed
vertex; see Figure 3(a). A less trivial example is illustrated in Figure 3(b). Given c 2 .0;1/,
the sequence of Erdős–Rényi graphs G.n; c=n/ converges in distribution in the local weak
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:::

o

:::
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root
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:::
:::

Figure 3

Local convergence: (a) cycle to infinite line; (b) Erdős–Rényi graph to a UGW tree.

sense to the Galton–Watson (GW) tree with offspring distribution given by the Poisson(c)
distribution. The latter is an example of a unimodular Galton–Watson (UGW) tree, which is
defined as follows. Given a probability distribution � on N [ ¹0º that has finite nonzero first
moment, that is, satisfies 0 <

P
k2N k�.k/ <1, the random tree UGW(�) has a root whose

neighborhood size is distributed according to �. The neighbors of the vertices are referred to
as the offspring of the root and form the first generation of the tree. Recursively, for n � 1,
each vertex in the nth generation of the tree has an independent random number of offspring
(equivalently, neighbors that are further away from the root than itself) with distribution O�

O�.k/ D
.k C 1/�.k C 1/P

n2N n�.n/
; k 2 N [ ¹0º: (3.1)

The .n C 1/th generation of the tree is comprised of all offspring of vertices in the nth
generation. It is easy to verify that if � is a Poisson distribution, then O� D �. Hence, a
Galton–Watson tree with a Poisson(c) offspring distribution is in fact a UGW (Poisson(c))
distribution. Another special case is the �-regular tree, for � � 2, which is given by T� WD

UGW (ı�). UGW trees are in a sense canonical objects since they arise as local weak limits of
many sparse random graph sequences including Erdős–Rényi graphs, configuration models
and preferential attachment graphs; see [46, Section 2.2.4] for further discussion of these
examples.
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To extend this notion of convergence to graphs that are not necessarily connected,
given an (unrooted) graph G D .V; E/ and a vertex v 2 V , define Cv.G/ 2 G� to be the
isomorphism class of the connected component of G that contains v, with v as its root.
Furthermore, whenG is finite, we let o denote a random vertex ofG chosen uniformly from
the set V , in which case Co.G/ denotes the connected component of that random vertex.

Definition 3.2. A sequence of finite (random) graphs ¹Gnº is said to converge in distribution
in the local weak sense to G if

lim
n!1

E

�
1

jGnj

X
v2Gn

f
�
Cv.Gn/

��
D E

�
f .G/

�
; 8f 2 Cb.G�/: (3.2)

A sequence of finite (random) graphs ¹Gnº is said to converge in probability in the local
weak sense to G if for every " > 0,

lim
n!1

P

�ˇ̌̌̌
1

jGnj

X
v2Gn

f
�
Cv.Gn/

�
� E

�
f .G/

�ˇ̌̌̌
> "

�
! 0; 8f 2 Cb.G�/: (3.3)

Analogously, given a marked (unroooted, not necessarily connected) graph .G; x/,
Cv..G; x// denotes the connected component of G containing v, with v as its root and
with the corresponding marks. The notions of convergence in distribution and in proba-
bility in the local weak sense for marked graphs are defined in an exactly analogous fashion
as Definition 3.2, with Cv..Gn; x

n//, Cv..G;x// and .G; x/ in place of Cv.Gn/, Cv.G/ and
G, respectively. For both unmarked and marked graphs, convergence in probability clearly
implies convergence in distribution. We will use the same notation for graphs and their iso-
morphism classes and often omit the root from the notation and simply refer toG 2 G� rather
than .G; o/ 2 G�.

Remark 3.3. Given any sequence of random graphs ¹Gnºn2N that converges (either in dis-
tribution or in probability) in the local weak sense to a limit graph G, if xn D .xn

v /v2Gn are
i.i.d. marks on some Polish space � with the same distribution irrespective of n, then it is
easy to show that the marked graph sequence ¹.Gn; x

n/ºn2N also converges (in the same
local weak sense as the unmarked counterparts) to .G; x/, where x D .xv/v2G is i.i.d. with
the same distribution. In fact, as shown in [46, Proposition 2.16], convergence of the marked
graph sequence holds for the larger class of possibly dependent marks distributed according
to a Gibbs measure on the graph with respect to a fixed pairwise interaction functional.

3.2. Hydrodynamic limits
3.2.1. Interacting Diffusion processes
We now address Q1–Q3 raised at the beginning of Section 3. The first result below

states that if a sequence of graphs marked with initial conditions converges (either in prob-
ability or in distribution) in the local weak sense to a limit graph, then the graphs marked
with the trajectories that solve the corresponding SDE also converge to the limit graph in
the same sense. The result also characterizes the limit of the global empirical measure under
suitable conditions.
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Theorem 3.4. Suppose Assumption 2.1 holds, and the sequence ¹.Gn; �
n/ºn2N of (not nec-

essarily connected, finite) random marked graphs converges in distribution in the local weak
sense to a G�ŒBr .R/�-valued limit .G; �/ for some r > 0. Also, for each n 2 N, let XGn;�n

be the solution to the SDE (2.3) with initial data .Gn; �
n/ and let XG;� be the unique weak

solution to the SDE (2.3) on the limit graph .G; �/. Then ¹.Gn; X
Gn;�n

/ºn2N converges in
distribution in the local weak sense to the G�ŒC �-valued element .G; XG;�/. In particular,
¹X

Gn;�n

on
ºn2N converges weakly toXG;�

o . Moreover, if ¹.Gn; �
n/ºn2N converges in probabil-

ity in the local weak sense to .G; �/, then ¹.Gn; X
Gn;�n

/ºn2N also converges in probability
in the local weak sense to .G;XG;�/ and additionally, ¹�Gn;�n

ºn2N converges weakly to the
law of XG;�

o .

This result follows from [46, Theorems 3.3 and 3.7], which establish this result for
more general, possibly non-Markovian diffusive dynamics. A version of the first assertion
of the above theorem was also established for a slightly different class of interacting diffu-
sions in [64]. Theorem 3.4 can be seen as establishing continuity in the local weak topology
of the dynamics with respect to the initial data, comprising the graph marked with initial
conditions. It also provides conditions under which the empirical measure can be shown
to have a deterministic limit (equivalently, hydrodynamic limit) that additionally coincides
with the limit law of the root particle, thus answering in the affirmative Q2 and Q3 at the
beginning of Section 3. As discussed earlier, on complete graphs the analogous phenomena
holds due to asymptotic independence of the trajectories of any two particles. In contrast,
in the sparse regime, neighboring particles remain dependent in the limit. Instead, the proof
relies on showing that the trajectories on finite neighborhoods of two independent vertices,
both chosen uniformly at random from the graph become asymptotically independent in the
limit. The latter property relies on a certain correlation decay property of the dynamics in
the spirit of (1.3); see [46, Lemma 5.2] for details.

However, it should be emphasized that in the sparse regime the deterministic hydro-
dynamic limit result holds only when the initial data converges in the stronger sense of
convergence in probability in the local weak sense. Indeed, as shown in [46, Theorems 3.9 and

6.4], the limiting empirical measure can be stochastic when the initial data only converges in
distribution in the local weak sense. In particular, fix c 2 .0;1/ and suppose QGn is the graph
obtained by taking the connected component of a vertex chosen uniformly at random from
the Erdős–Rényi graph G.n; c=n/, and setting the root to be that chosen vertex. Also, let
the initial conditions �n D ¹�n

v ºv2Gn be i.i.d. with common distribution  , and let Q�n denote
the restriction of the initial conditions to NGn. Then both ¹.Gn; �

n/ºn2N and ¹. QGn; Q�n/ºn2N

converge in distribution in the local weak sense to .G; �/, where � D .�v/v2V is i.i.d. with
distribution  , and G D T WD UGW.Poiss.c//. However, whereas �Gn;� converges weakly
to L.X

T ;�
o /, the law of the dynamics at the root vertex in T , � QGn;Q�n converges weakly to the

following random limit Q�T ;� given by

Q�T ;�
WD

8<:�T ;� on the event jT j < 1;

Law
�
X

T ;�
o j jT j D 1

�
on the event jT j D 1:
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This limit is truly stochastic because, as is well known from the elementary theory of branch-
ing processes [2], there is always a positive probability for the UGW tree T to be finite (and
there is a positive probability of T being infinite only when c > 1). Furthermore, there also
exist examples that show that even when the limiting empirical measure is deterministic, it
need not coincide with the law of the root particle in the limit. For example, this can occur
if the graph itself is not homogeneous and the root is not chosen uniformly at random from
the vertices of the graph (see, e.g., [46, Section 3.6]). The above discussion shows that the
existence and nature of the hydrodynamic limit is far more subtle in the sparse regime than
in the case of complete or dense graphs, even for diffusive dynamics.

3.2.2. Interacting jump processes
In the setting of jump processes, additional subtleties arise. Whereas in the diffusion

setting, Assumption 2.1 ensures that the drift of a particle at a node v experiences only
an O.1=j@vj/ effect when there is a perturbation in the state of a neighboring particle, an
analogous assumption would be too stringent to cover most jumpmodels of interest on sparse
graphs. In the latter case, the effect of a neighboring particle on the jump intensity at a
vertex either remains constant or O.1/ as in the voter model, or grows with the degree of
the vertex in many other models, including the contact process (see [53]). It is precisely to
accommodate such a dependence that the jump intensity Nrj in (2.9) is expressed as a function
of the unnormalized sum of the Dirac masses at neighboring states introduced in (2.10),
rather than the normalized empirical measure. For hydrodynamic limits on sparse graphs, it
will suffice to impose the following mild assumption on the rates.

Assumption 3.5. For every T > 0, suppose there exist constants Ck;T ; k 2 N, such that
k 7! Ck;T is nondecreasing and for every j 2 J, supx2X;t2Œ0;T � Nrj .t; x; �/ � C�.X/;T .

Note that in the jump SDE (2.9) describing the dynamics, the third argument � of
Nrj is equal to the unnormalized empirical measure of the states of the neighbors of a vertex,
as defined in (2.10). Thus, �.X/ irepresents the degree of the vertex and Assumption 3.5
allows the uniform bound on the jump rates at a vertex to grow with the degree of a vertex.

We now state an analog of Theorem 3.4 for jump diffusions. Recall the definition of
a UGW tree given in Remark 3.1.

Theorem 3.6. Suppose Assumption 3.5 holds, and the sequence ¹.Gn; �
n/ºn2N of (not nec-

essarily connected, finite) random rooted marked graphs converges in probability in the local
weak sense to a limit .G; �/, where G is a UGW(�) tree with � having finite, strictly positive
first and second moments. For each n 2 N, let XGn;�n be the solution to the jump SDE (2.9)
with initial data .Gn; �

n/, and let XG;� be the unique strong solution to the SDE (2.9) on
the limit graph .G; �/. Then ¹.Gn; X

Gn;�n
/ºn2N converges in probability in the local weak

sense to the G�ŒD �-valued element .G;XG;�/. Furthermore, ¹�Gn;�n
ºn2N converges weakly

to the law of XG;�
o .

This theorem follows from more general results established in [29, Theorem 4.8 and

Corollary 5.16]. As in the diffusion case, the proof of the theorem involves establishing con-
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tinuity properties of the dynamics with respect to the graph and initial condition as well
as a correlation decay property. However, the proofs of these properties are considerably
more involved than in the diffusion case due to the weaker conditions imposed on the jump
intensities in Assumption 3.5. For one, in the jump setting even well-posedness of the par-
ticle system on an infinite random graph of unbounded degree is not automatic. As shown
in [29, Appendix B], there exist examples of simple jump particle systems with uniformly
bounded jump rate functions that can have multiple solutions on certain graphs with expo-
nential growth. To quote Liggett [54], “Given an intuitive description of the behavior of the
particles, it is often not clear whether or not there exists a ... process which corresponds to
that description. Therefore it is important to find conditions under which infinite particle sys-
tems exist.” On finite graphs, there are only finitely number of jumps in any bounded interval,
and the process remains constant between jumps. Thus, one can simply order the jumps and
define the process recursively. The problem in the infinite graph setting is that one cannot
always identify a “first” jump. In [54], Liggett used an analytical construction invoking the
theory of semi-groups to establish a general existence theorem for the law of Markovian
particle systems on infinite graphs with quite general (not necessarily finite-range) interac-
tions. In the context of nearest-neighbor interactions on lattices, an alternative, probabilistic
approach was used to establish well-posedness of Markovian interacting particle systems
in Harris [36,37]. However, both approaches seem to only apply to graphs with finite maxi-
mal degree. On the other hand, graphs of particular interest like the UGW(Poisson(c)) tree
discussed above (see Remark 3.1) have unbounded degrees. Under Assumption 3.5, well-
posedness of (possibly non-Markovian) interacting jump processes was established in [29,

Theorem 4.3] for a large class of possibly random graphs that satisfy a certain “finite disso-
ciability” property almost surely, and this property was shown to hold for UGW trees in [29,

Corollary 5.16]. The proof of Theorem 3.6 then follows on combining this well-posedness
result with continuity properties of the dynamics (with respect to the initial data) and a corre-
lation decay property (established in [29, Proposition 6.8] and [29, Theorem 4.9], respectively).

4. Marginal dynamics on trees

The hydrodynamic limit result reduces the characterization of the limit law of
X

Gn;�n

on
to the understanding of the marginal law X

G;�
o of the root dynamics on the infi-

nite limit graph G. Given that local weak limits of many random graphs are trees (see
Remark 3.1), we focus here on understanding marginal dynamics on (random) trees. The
evolution of the root XGn;�n

on
in (2.1) or (2.9) is driven by the local neighborhood empiri-

cal measure �Gn;�n

on
or its unnormalized counterpart �Gn;�n

on
. In the complete (or sufficiently

dense) graph case, in the limit as the number of particles goes to infinity, the local empirical
measure coincides with the global empirical measure. Thus, in this case the hydrodynamic
limit yields an autonomous characterization of the limit marginal dynamics. In contrast,
when the graph sequence Gn is sparse, neighboring vertices remain strongly correlated,
the local neighborhood empirical measure remains stochastic and thus the hydrodynamic
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limit results in Section 3 are not adequate to provide an autonomous characterization of the
marginal dynamics.

Instead, we adopt a different perspective, which is better suited to the analysis of
large collections of dependent random elements. As mentioned in Section 1.1, as a first step
we try to identify the conditional independence structures in such random variables. To this
end, we identify a certainMarkov randomfield (MRF) property for the trajectories ofXG;� D

¹X
G;�
v ;v 2Gº in Section 4.1 below.We then describe how to exploit this property, alongwith

filtering results from stochastic analysis and symmetry properties of the graph, to identify an
autonomously defined “local equation” satisfied bymarginal dynamics on clo, the root and its
neighborhood. We do this first for diffusions on the line in Section 4.2, then for diffusions on
UGW trees in Section 4.3, and finally for jump processes in Section 4.4. Unlike in the mean-
field case, consideration of the marginal at the root and its neighborhood (rather than just at
the root), appears necessary in order to obtain an autonomous characterization. This is also
necessary in order to capture correlations between neighboring vertices, which do not vanish
in the sparse regime. Further discussion of the local equation is given in Sections 4.2-4.4. But
it is worth noting here that since the graphs we consider are locally finite, the neighorhood of
the root is (almost surely) finite. Thus, the local equation describes the evolution of an (almost
surely) finite number of interacting particles.When combinedwith the convergence results of
Theorems 3.4 and 3.6, this finite-dimensional interacting process serves as an approximation
for the marginals of (possibly non-Markovian) interacting processes with an arbitrarily large
number of particles, and thus constitutes a significant dimension reduction.

4.1. A Markov random field property
We first introduce the definition of an MRF.

Definition 4.1. Fix a measurable space Y, and a (possibly infinite, but locally finite) graph
GD .V;E/. A random elementY D .Yv/v2V is said to be a (first-order) MRF (abbreviated as
MRF) on YV with respect toG if for every finite setA� V , YA is conditionally independent
of Y.A[@A/c given Y@A, which we denote as

YA ?? Y.A[@A/c jY@A: (4.1)

On the other hand, Y is said to be a (first-order) global MRF if (4.1) holds for all A � V ,
possibly infinite. Furthermore Y is said to be a (first-order) semi-global MRF (abbreviated
as SGMRF) if (4.1) holds for all A � V such that @A is finite. Furthermore, Y D .Yv/v2V is
said to be a second-order MRF or 2-MRF (respectively, second-order SGMRF or 2-SGMRF)
with respect to G if it is an MRF (respectively, SGMRF) with respect to the square graph
G2 D .V; E2/, where E2 contains E as well as vertex pairs that are a distance two apart
in G. In all cases, we will say � 2 P .YV / exhibits a certain MRF property whenever some
YV /-valued random element Y with law � satisfies that MRF property.

The SGMRF property, introduced in [29], can be viewed as a generalization of tree-
indexed Markov chains [34, Chapter 12] to general graphs, and is clearly strictly stronger than
the MRF property. For any t > 0, and collections of paths x D .xv/v2V (either in C or D),
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let
xvŒt � WD

�
xv.s/

�
s2Œ0;t�

and xvŒt / WD
�
xv.s/

�
s2Œ0;t/

(4.2)

represent the trajectory of xv in the intervals Œ0; t � and Œ0; t/, respectively, and for any subset
A � V , let xAŒt � WD .xvŒt �/v2A and xAŒt / WD .xvŒt //v2A. Certain MRF properties are pre-
served under the evolution of interacting processes, in a sense made precise in the following
theorem.

Theorem 4.2. Let G D .V; E/ be a (deterministic) graph with uniformly bounded degree
or the almost sure realization of a UGW tree. Suppose the RV -valued element � D .�v/v2V

forms a 2-MRF (or 2-SGMRF) with respect to G, Assumption 2.1 holds and XG;� is the
unique solution to the diffusive SDE (2.3). Then the C -valued trajectoriesXG;� D .X

G;�
v /v2V

also form a 2-MRF (respectively, 2-SGMRF) with respect to G. On the other hand, suppose
Assumption 3.5 holds, � D .�v/v2V is a XV -valued random element that forms a 2-MRF (or
2-SGMRF) with respect to G, and XG;� is the unique solution to the jump SDE (2.9). Then
XG;� D .X

G;�
v /v2V also forms a 2-MRF (respectively, 2-MRF) on G in D . In both cases,

the same assertions also hold with XG;� replaced with XG;� Œt � or XG;� Œt / for any t � 0.

The discussion in Section 4.2 provides insight into why only the second-order, and
not in general the first-order, MRF property is preserved by the dynamics. The preserva-
tion of the 2-MRF property for diffusions for graphs with bounded degree follows from [47,

Theorem 2.7]. The proof proceeds by first establishing the result on finite graphs by appeal-
ing to Girsanov’s theorem and the Gibbs–Markov theorem [34, Theorem 2.30] (also often
referred to as the Hammersley–Clifford theorem), and then suitably approximating infinite
systems by a sequence of finite systems. The proof of preservation of both the 2-MRF and 2-
SGMRF properties for jump processes in [30, Theorem 3.7] follows a rather different approach.
It exploits a certain duality between marginals of the interacting system and nonexplosive
point processes to directly establish an infinite-dimensional Girsanov theorem, obviating the
need for any approximation arguments. This approach also allows more general initial con-
ditions that can incorporate infinite histories, which is required to characterize solutions to
the local equation described in Section 4.4 as flows on a suitable path space [31]. The result
for diffusions in [47] can be generalized in a similar fashion using the approach developed
in [30].

Prior work on such questions has largely focused on interacting diffusions, specif-
ically characterizing them as Gibbs measures on path space in order to construct weak
solutions to infinite-dimensional SDEs. Deuschel [24] initiated this perspective for diffusions
with drifts of gradient type. Although not explicitly stated, the 2MRF property is implicit
in his proof of existence of the weak solution, which relies on estimates of Dobrushin’s
contraction coefficient that crucially require additional smoothness and boundedness prop-
erties of the drift. Cattiaux, Roelly, and Zessin [11] relaxed the boundedness condition to
allow Markovian, Malliavin differential drifts, using a variational characterization and an
integration-by-parts formula. Subsequent works [14,60] used a cluster expansion method that
applies to systems obtained as small perturbations of non-interacting systems. Dereudre and
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Roelly [22] established Gibbsian properties of paths of interacting one-dimensional diffu-
sions on Zm with (possibly history-dependent) drift having sublinear growth using specific
entropy, but this crucially requires shift-invariant initial conditions. In another direction, sev-
eral other works have considered the MRF (or Gibbsian) nature of marginals rather than of
paths, both in the diffusion and jump process contexts [42,45,68,69,75], but preservation of this
property holds in general only for sufficiently small time horizons or interaction strengths.
Furthermore, none of this work seems to have considered the SGMRF property, which is
crucial for the derivation of the local equation, as elaborated in Sections 4.2-4.4 below.

4.2. Outline of derivation of the local equation for diffusions on the line
We now describe how the 2-SGMRF property of Theorem 4.2 can be used to obtain

an autonomous characterization of the marginal dynamics of the root neighborhood on the
2-regular tree T2. For simplicity, we identify T2 with Z and identify the root o with 0.
Additionally, rather than consider the general form in (2.1) with G D Z, we focus on the
special case of pairwise interacting diffusions in (2.3), but without time dependence in the
drift:

dXv.t/ D
1

2

�
ˇ
�
Xv.t/; XvC1.t/

�
C ˇ

�
Xv.t/; Xv�1.t/

��
dt C dWv.t/; v 2 Z; (4.3)

where we have dropped the superscripts denoting graph dependence for notational concise-
ness. We also assume that .Xv.0//v2Z is a shift-invariant 2-SGMRF.

Given the above setup, our goal is to understand the marginal dynamicsX¹�1;0;1º D

.X�1; X0; X1/ of the root and its neighborhood. The characterization of this marginal via
the local equation entails four key ingredients, which we elaborate upon below.

(i) A mimicking theorem. By (4.3), we can rewrite the dynamics of the marginal X¹�1;0;1º of
interest as follows:

dXv.t/ D bv.t; X/dt C dWv.t/; v 2 ¹�1; 0; 1º; (4.4)

where for v 2 ¹�1; 0; 1º and X D .Xv/v2Z,

bv.t; X/ WD
1

2

�
ˇ
�
Xv.t/; XvC1.t/

�
C ˇ

�
Xv.t/; Xv�1.t/

��
; v 2 ¹�1; 0; 1º: (4.5)

Let .�;F ; F ;P / denote the filtered space that supports the F -adapted process X . For the
root node, observe that at time t , the drift b0 of X0 depends on X only through X¹�1;0;1º.t/.
However, at time t the drift b1 of X1 depends on X2.t/ and likewise the drift b�1 of node
�1 depends on X�2.t/. Since 2 and �2 do not lie in the closure ¹�1; 0; 1º of the root, the
system of equations (4.4) is not autonomous since its drift at time t depends on random
elements beyond X¹�1;0;1º.t/. Nevertheless, (4.4) and (4.5) together show that X¹�1;0;1º is
what is known as an Itô process, which means that its drift .b�1; b0; b1/ is F -progressively
measurable (as a consequence of (4.5), the continuity of ˇ and the fact that X is an F -
adapted continuous process). Therefore, one can appeal to a “mimicking” theorem for Itô
processes from filtering theory (see [55] or [48, Appendix A]), which allows one to express
X¹�1;0;1º as the solution to an SDE whose drift at time t is a functional only of the past
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of X¹�1;0;1º up to time t , rather than an arbitrary F -adapted process. Then the mimicking
theorem allows one to conclude that (by extending the probability space if necessary) there
exist independent Brownianmotions .eW �1; eW 0; eW 1/ on the extended probability space such
that X D .X�1; X0; X1/ satisfies

Xv.t/ D Qbv.t; X/dt C d eW v.t/; v 2 ¹�1; 0; 1º; (4.6)

where for v 2 ¹�1;0;1º, Qbv W Œ0;1/� C ¹�1;0;1º 7! Rd is a progressively measurable version
of the conditional expectation:

Qbv.t; x/ WD
1

2
E
�
ˇ
�
Xv.t/; XvC1.t/

�
C ˇ

�
Xv.t/; Xv�1.t/

� ˇ̌
X¹�1;0;1ºŒt � D xŒt �

�
: (4.7)

Recall from (4.2) that xŒt � D .x.s//s2Œ0;t�. Clearly, the conditioning does not alter the drift
coefficient for the root particle, which remains the same as in the original system (4.3):

Qb0.t; x/ D
1

2

�
ˇ
�
x0.t/; x1.t/

�
C ˇ

�
x0.t/; x�1.t/

��
: (4.8)

However, Qb1 and Qb�1 will be altered by the conditioning. We now see how the MRF property
can be used to simplify the expression for Qb1 and Qb�1.

(ii) Markov random field structure. To compute the drifts Qb1 and Qb�1 and provide a self-
contained description of the law of the dynamics ofX¹�1;0;1º, one needs to be able to express
the conditional law of X2.t/ and X�2.t/ given the past X¹�1;0;1ºŒt � in terms of the (joint)
law of X¹�1;0;1º or preferably, in terms of the law of X¹�1;0;1ºŒt � to get a nonanticipative
description of the dynamics. To this end, we invoke the property from Theorem 4.2 that the
trajectories .Xi Œt �/i2Z up to time t form a 2-SGMRF or second-order Markov chain in Z:�

Xj Œt �
�
j <i

??
�
Xj Œt �

�
j >iC1

ˇ̌ �
Xi Œt �; XiC1Œt �

�
; 8i 2 Z: (4.9)

Before we use this property, let us consider the corresponding first-order property:
namely to ask whether we should in fact expect that for every t > 0,�

Xj Œt �
�
j <i

??
�
Xj Œt �

�
j >i

ˇ̌
Xi Œt �; 8i 2 Z:

One may attempt to bolster this hypothesis by reasoning that conditioned on Xi Œt � D  ,
Xi�1Œt � and XiC1Œt � become decoupled and satisfy the following SDE: for s 2 Œ0; t �,

dXi�1.s/ D
1

2

�
ˇ
�
Xi�1.s/;  .s/

�
C ˇ

�
Xi�1.s/; Xi�2.s/

��
ds C dWi�1.s/;

dXiC1.s/ D
1

2

�
ˇ
�
XiC1.s/; XiC2.s/

�
C ˇ

�
XiC1.t/;  .s/

��
ds C dWiC1.s/;

whereWi�1 andWiC1 are independent Brownian motions. However, a more careful inspec-
tion would reveal that such a reasoning is fallacious because the evolution ofXi , and thus the
random elementXi Œt �, directly depends on the states .Xi�1.s/;XiC1.s//s2Œ0;t�, which are in
turn dependent on the Brownian motionsWi�1 andWiC1. Thus, conditioning on Xi Œt � D  

causes the driving BrownianmotionsWi�1Œt � andWiC1Œt � to become correlated. Thus, under
this conditioning, Xi�1 and XiC1 are not independent and do not follow the above SDE
driven by independent Brownian motions on Œ0; t �. However, (4.9) shows that by condition-
ing on bothXi Œt � andXiC1Œt �, the driving noise processesWi�1 andWiC2 remain decoupled
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(i.e., independent), although the conditioning does alter the distributions ofWi�1 andWiC2;
they are no longer Brownian motions or even martingales.

Returning to the simplification of the expression for the drifts Qb1 and Qb2 given
in (4.7), note that since the relation in (4.9) implies that X2.t/ is independent of X�1Œt �

when conditioned on X¹0;1ºŒt �, the drift Qb1 in (4.7) can be rewritten as

Qb1.t; x/ WD
1

2
E
�
ˇ
�
X1.t/; X0.t/

�
C ˇ

�
X1.t/; X2.t/

� ˇ̌
X¹�1;0;1ºŒt � D xŒt �

�
D
1

2
ˇ
�
x1.t/; x0.t/

�
C
1

2
E
�
ˇ
�
X1.t/; X2.t/

� ˇ̌
X¹0;1ºŒt � D x¹0;1ºŒt �

�
: (4.10)

By the same reasoning, an analogous expression holds for Qb�1.

(iii) Symmetry considerations. Despite the simplification of the last section, the second term
on the right-hand side of (4.10) still involves X2, and thus has not been written purely in
terms of X�1;0;1Œt � and its law. However, it can be rewritten in this form by exploiting the
shift-variance of the particle system on Z (since this is true of both the initial condition
and the dynamics). More precisely, the fact that .X0; X1; X2/ has the same distribution as
.X�1; X0; X1/ allows us to conclude that

Qb1.t; x/ D
1

2
ˇ
�
x1.t/; x0.t/

�
C
1

2
E
�
ˇ
�
X0.t/; X1.t/

� ˇ̌
X¹�1;0ºŒt � D x¹0;1ºŒt �

�
:

Alongwith the analogous expression for Qb�1, and equations (4.6), (4.7), and (4.8), this shows
that

dX0.t/ D
1

2

�
ˇ
�
X0.t/; X1.t/

�
dt C ˇ

�
X0.t/; X�1.t/

��
dt C d eW 0.t/;

dXk.t/ D
1

2

�
ˇ
�
Xk.t/; X0.t/

�
C Qt .Xk ; X0/

�
dt C d eW k.t/; k 2 ¹�1; 1º;

(4.11)

where eW �1; eW 0 and eW 1 are independent d -dimensional Brownian motions, and

Qt .x; y/ WD E
�
ˇ
�
X0.t/; X1.t/

� ˇ̌
.X0; X�1/Œt � D .x; y/Œt �

�
; .x; y/ 2 C2: (4.12)

Modulo some additional technical (measurability and integrability) conditions, this identifies
the form of the local equation satisfied by the ¹�1; 0; 1º marginal dynamics on the line (see
[48, Definition 3.5 with � D 2] for a complete definition).

Observe that even though the original system (4.3) describes a (linear) Markov pro-
cess, its marginal X¹�1;0;1º, characterized by the local equation system (4.11)– (4.12), is a
nonlinear, describes a nonlinear non-Markovian process since the drift functional Qt depends
on both the history of X¹�1;0;1ºŒt � up to time t and its law. However, the structure of Qt

ensures that the coupled system (4.11) no longer depends on values of the process Xv for
v … ¹�1; 0; 1º, and is thus autonomously defined.

(iv) Uniqueness of solutions to the local equation. The above argument shows that the law of
the marginal solves the local equation system (4.11) and (4.12). To complete the autonomous
characterization of the marginal it only remains to show that the law of the marginal of
X�1;0;1 is the unique solution to the local equation system (or rather, its complete specifi-
cation as stated in [48, Definition 3.5 with � D 2]). The methods described in Section 2.2 to
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prove well-posedness of nonlinear Markov processes (which characterize the limit marginal
law of a node in the complete graph case) all run into difficulties here due to the path-
dependence and, more importantly, the nonlinearity occurring through dependence on condi-
tional laws, which are less regular. Nevertheless, it is possible to prove well-posedness using
other approaches, entailing relative entropy estimates and symmetry properties, or via a cor-
respondence with the infinite particle system; further details can be found in [48, Sections

4.3.1 and 4.2].
The local equation on the root neighborhood of a �-regular tree T� , with � � 3, can

be derived in a manner similar to the case ofT2, once again invoking the mimicking theorem
and Theorem 4.2, but now exploiting the additional “rotational and transational” symmetries
arising from the automorphism groups of T� , in place of just the translational and reflection
symmetries of T2: However, the full expression of the local equation is omitted as it is a
special case of the UGW tree discussed in the next section, whose analysis is more subtle.

4.3. Local equations for diffusions on unimodular Galton–Watson trees
Let � be a probability distribution onN [ ¹0º satisfying

P
k2N k�k <1, and let T

be a UGW(�) tree as in Remark 3.1. Again, we would like to describe the marginal dynam-
ics of the particle process on the root node and its (random) neighborhood. As elucidated in
the last section, the main ingredients in the derivation of the local equation on the line are
a mimicking theorem, a conditional independence property, symmetry considerations and,
finally, well-posedness of the local equation. The mimicking theorem can be applied with-
out change also on T . However, the MRF property in Theorem 4.2 applies to deterministic
graphs and is thus not sufficient. Instead, one needs an annealed version, that is, one that
also takes into account the random structure of the tree T . For any t > 0, one has to show
that (on the event the root is not isolated) for any child k of the root, conditioned on the tra-
jectories .XT

o Œt �;X� Œt �/, the trajectories XT
Tk
Œt � of particles on the subtree Tk rooted at k are

independent of the trajectories XclT .o/Œt � on the root and its neighborhood, and, moreover,
that the conditional law ofXT

Tk
Œt � givenXT

¹o;kº
Œt � does not depend on k (see [48, Proposition

3.17]). In the case when � D ı� , this would follow from Theorem 4.2 and homogeneity of the
dynamics, but in the general case, one also has to account for the randomness of Tk and the
root neighborhood.

Furthermore, the symmetry properties are now considerably more subtle – the
appropriate notion here being unimodularity. Unimodularity can be viewed as the analog on
an infinite graph of the property on the finite graph that the root is uniformly distributed on
the graph. Since the latter statement is not well defined on an infinite graph, this is instead
phrased in terms of a “mass transport principle” that on finite graphs is equivalent to having a
uniformly distributed root. The definition of unimodularity involves the space G�� of isomor-
phism classes of doubly rooted graphs, which is defined as follows, in a fashion analogous to
G�. A doubly rooted graph .G;o;o0/ is a rooted graph .G;o/with an additional distinguished
vertex o0 (which may equal o). Two doubly rooted graphs .Gi ; oi ; o

0
i / are isomorphic if there

is an isomorphism from .G1; o1/ to .G2; o2/ which also maps o0
1 to o0

2. We write G�� for
the set of isomorphism classes of doubly rooted graphs. A double rooted marked graph is
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defined in the obvious way, and G��Œ� � denotes the set of isomorphism classes of doubly
rooted marked graphs. The space G��Œ� � is equipped with its Borel � -algebra.

Definition 4.3. For a metric space � , a G�Œ� �-valued random variable .G; o; S/ is said to be
unimodular if the followingmass-transport principle holds: for every (nonnegative) bounded
Borel measurable function F W G��Œ� � ! RC,

E

�X
o02G

F.G; S; o; o0/

�
D E

�X
o02G

F.G; S; o0; o/

�
:

Combining all these properties it was shown in [48] that the marginal of the particle
systemXT on the closure NT of the root neighborhood of the UGW (�) tree T can be charac-
terized by a local equation that has a similar form to (4.11), except that Qt is now a reweighted
version of the conditional expectation of the drift that takes into account the structure of the
tree: on the event that the root is not isolated,

t .Xo; X1/ D 2
EŒ˛tˇ.Xo; X@ NT .o// j XoŒt �; X1Œt ��

EŒ˛t j XoŒt �; X1Œt ��
;

where ˛t WD j@ NT .o/j=.1C OC 1/, with OC1 being a random variable distributed according to O�

(representing the number of offspring of a child of the root) that is independent of the root
neighborhood structure, the initial conditions and the driving Brownian motions, and the
factor of 2 in the expression arises just to compensate for the 1=2 that arises in (4.11). This
extra weighting by ˛t arises due to the unimodularity property and significantly complicates
the proof of well-posedness of the local equation.

4.4. Marginal dynamics for pure jump processes
As in the last section, let T D .V;E/ be the UGW(�) tree, and given initial condi-

tions � D .�/v2V , letX DXT ;� be the solution of the jump SDE (2.9) withG D T , and also
denote �v D �

G;�
v . We are once again interested in obtaining an autonomous characterization

of the marginal law of X on the root and its neighborhood in terms of a corresponding local
equation. The derivation of this local equation follows the same broad outline that was used
in the case of diffusions, although the justification of each step require substantially differ-
ent arguments. For simplicity, we flesh out a few details in the special case when T is the
rooted �-regular tree T� for � � 2. Let QT� denote the subtree of T� consisting of the root
and its neighborhood. Then, on verifying certain technical conditions, one can first appeal to
filtering results for point processes (see, e.g., [15]) to establish an analogous mimicking theo-
rem for jump processes. Specifically, we use the latter result to argue that X restricted to QT�

can be expressed (on a possibly extended probability space) as the solution to the following
functional jump SDE: for t � 0,

Xv.t/ D Xv.0/C

X
j 2J

j

Z
.0;t��RC

I¹r�Qrj .s;X/º
QNv.ds; dr/; v 2 QT� ; (4.13)

where . QNv/v2V , are i.i.d. Poisson randommeasures onR2
C with intensity measure Leb2, and

Qrj W RC � D�C1 ! RC is a predictable version of the conditional expectation

Qrv
j .t; x/ D E

h
Nrv
j .t; Xv.t�/; �v.t�//jX QT�

Œt / D xŒt/
i
;
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for a.s. every x.
Combining this with the 2-SGMRF property for X established in Theorem 4.2 for

interacting jump processes withG D T� , and invoking the symmetries of the law of X with
respect to the automorphisms of T� , the equation (4.13) can be further simplified into an
autonomous local equation of the following form (see [31]):

Xo.t/ D Xo.0/C

X
j 2J

Z
Œ0;t��RC

I¹r�Nrj .s;Xo.s�/;�o.s�//º
QN0.ds; dr/;

(4.14)
Xk.t/ D Xk.0/C

X
j 2J

Z
Œ0;t��RC

I¹r� Qj .s;Xk ;Xo/º
QNk.ds; dr/; k D 1; : : : ; �;

where recall �o.s�/ D
P�

kD1 ıXk.s�/ and Q W RC � D2 7! RC is defined by

Qj .t; x; y/ WD EŒ Nrj
�
t; Xo.t/; �o.t/

�
j .Xo; X1/Œt/ D .x; y/Œt/�: (4.15)

Here, once again, we have omitted various measurability and other technical conditions
required to define a solution to the local equation, referring the reader to [31] for full details.
As in the case of diffusions, it is evident from the local equation the marginal dynamics is
non-Markovian even when the original dynamics in (2.9) is, and it is also nonlinear in the
sense that the evolution of the process depends on its own law. The local equations identify
precisely the nature of this nonlinear non-Markovian dynamics. As in the diffusion case, it is
also possible to define analogous local equations describing marginal dynamics on the UGW
tree, which rely on a more involved (annealed) SGMRF property and a more complicated
proof of well-posedness of the local equation.

4.5. Generalizations and approximations
For both diffusive and jump dyncamis, one could also consider non-Markovian inter-

acting processes. For example, consider solutions to the SDE (2.1) in which the drift b at the
vertex v is replaced by a suitably regular nonanticipative functional Fv W RC � CV ! R.
For example, consider Fv.t; x/ D b.t; xv.t � �/; �v.t � �//, with �v.s/ D

1
@v

P
u�v ıxu.s/

for some � > 0. Or likewise, consider solutions to the jump SDE (2.9) in which the jump
rate Nrv

j at vertex v is replaced with a suitable predictable functional of the paths such as
Fj;v.t; x/ D Nrj .t; xv.t � �/; �v.t � �//, where �v.s/ D

P
u�v ıxu.s/. It is not too difficult

to see from the discussions of the derivation of the local equation given in Sections 4.2-4.4
that even in the non-Markovian setting, under suitable regularity conditions, the marginal
law of the process on the root and its neighborhood could be characterized by an analogous
local equation. Indeed, the frameworks in both [46–48] and [29–31] allow for quite general
non-Markovian dynamics. Furthermore, one can also allow more general initial conditions
that are not necessarily i.i.d. but form a 2-SGMRF and (in the non-Markovian setting) incor-
porate histories of the process up to time 0. The latter is useful for studying flow properties of
the local equation dynamics and gaining insight into stationary measures for the local equa-
tions [31]. Furthermore, the framework in [29] can also be used to handle interacting particle
systems on directed graphs (see [29, Remark 2.2]).
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In the case when the full system is non-Markovian, the local equation yields a signif-
icant dimension reduction parallel to that achieved in mean-field limits, since it approximates
the marginal of a non-Markovian system on an arbitrarily large high-dimensional (random)
graph by a nonlinear non-Markovian process of a fixed finite (average) dimension. On the
other hand, when one seeks to use the local equations to approximate the marginal of a
Markovian system, since the local equation is still non-Markovian. Thus, in terms of com-
puting or simulating the process, there is a tradeoff between the size of the time interval
one is interested in and the size (or number of particles) in the original Markovian system.
It is thus natural to ask if any further principled approximations are possible in that case
to make the local equations more analytically and computationally tractable even over long
time intervals.

Recall from Figure 2 that for the voter model on the 3-regular tree T3 (truncated
after 9 generations) the mean-field approximation for the probability of agreement of the
root with precisely two of its neighbors was rather inaccurate. Figure 4 plots, for the same
tree and parameters, an ad hoc Markovianization of the local equation, wherein Qj in (4.15)
is replaced with a modified state-dependent version Nj W RC � X2 ! RC given by

Nj .t; x; y/ WD EŒ Nrj
�
t; Xo.t/; �o.t/

�
j .Xo; X1/Œt�/ D .x; y/Œt�/�:

The good agreement of the simulation with the Markovian version of the local equation in
Figure 4 suggests that such a Markovian local equation may serve as a good approxima-
tion for several models. This motivates a more rigorous investigation of the accuracty of
the Markovian local equation for various classes of models and derivation of rigorous error
bounds between the laws of the solution to the Markovianized local equation and the original
local equation.

Figure 4

Comparing simulations, the mean-field approximation and a Markovian version of the local equation
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5. Open questions

This article describes the first reduced dimension characterization of marginal
dynamics on sparse random graphs, thereby resolving an open question raised in [19] in
the context of interacting diffusions. A plethora of open questions remain, related to the
structure of the solution to the local equation such as ergodic properties, as well as theoret-
ical guarantees for developing more computationally tractable principled approximations,
and also applications (see, for example, [67]). A few open questions are listed below.

A. Long-time behavior and invariant measures for the local equations

The results thus far have focused on transient dynamics over finite time intervals. There are
several open questions about equilibrium behavior and long-time behavior.

Q1. Can one can establish general conditions for existence and uniqueness of sta-
tionary or invariant measures for the local equation?

Q2. Can one identify which of these stationary measures correspond to a station-
ary measure of the evolution on the corresponding infinite graph? Can the local
equation be used to identify phase transitions (i.e., identify parameters for exis-
tence of multiple stationary distributions on random trees)?

Q3. Can one study ergodic properties and use the local equation to sample from
marginal stationary distributions on random graphs?

Recent work [31,50] has analyzed some stationarity properties for interacting systems indexed
by a regular tree. The work [50] studies limits of systems of diffusions with gradient drift
that have an explicit Gibbs measure (i.e., 1-MRF) as the unique invariant measure on any
finite graph, and relates the stationary distribution of the full system to that of a modified
local equation. Continuous-state MRFs on infinite trees can also be studied via recursions
(see, e.g., [28, 70]). On the other hand, the work [31] studies jump processes with possibly
nonreversible dynamics.

B. Refined convergence results

A natural question is whether one can obtain more refined convergence results, that provide
concentration results and rates of convergence, as well as a characterization of fluctuation
and large deviations from the hydrodynamic limit. Large deviations principles also provide
an alternative way of characterizing hydrodynamic limits.

Q4. Can one establish large deviation principles and concentration results for inter-
acting particle systems on sparse random graphs?

Such results have been obtained for weakly interacting particle systems on complete and
dense graphs (see, e.g., [3,9,13,16,18,63,66]).

C. Analytic characterizations

In the mean-field setting, the corresponding nonlinear process and its stationary distribution
can also be described by nonlinear PDEs (in the diffusive case) or nonlinear integrodifferen-
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tial equations (in the jump case).

Q5. Is it possible to develop a corresponding theory for these new types of path-
dependent nonlinear equations that involve conditional laws? Also, can one
determine when the marginal laws are absolutely continuous with respect to
Lebesgue measure?

D. From interacting particle systems to games

Mean-field approximations have been used to study not only interacting particle systems but
also games where where strategic agents control their dynamics to maximize an objective
function. When the dynamics and objective functions are symmetric, a limit problem called
the mean-field game has shown to provide tractable approximations to Nash equilibria in
finite-agent games, which are notoriously hard to compute (see [17] for surveys on different
aspects of mean-field games).

Q6. Can one establish limit theorems for Nash equilibria of games with a large
number of agents in which the interaction network of agents is sparse rather
than the complete graph? While there have been several recent results looking
at mean-field games on networks with nodes whose degrees diverge to infinity,
there are only a few works studying this on graphs with uniformly bounded
degree (see [49] for the study of linear–quadratic games and the works [23,39,40]
for games on directed graphs).
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