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Abstract

The KPZ fixed point is a scaling-invariant Markov process which arises as the universal
scaling limit of a broad class of models of random interface growth in one dimension, the
one-dimensional KPZ universality class. In this survey we review the construction of the
KPZ fixed point and some of the history that led to it, in particular through the exact solu-
tion of the totally asymmetric simple exclusion process, a special solvable model in the
class. We also explain how the construction reveals the KPZ fixed point as a stochastic
integrable system, and how from this it follows that its finite-dimensional distributions
satisfy a classical integrable dispersive PDE, the Kadomtsev–Petviashvili (KP) equation.
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1. The KPZ universality class

The subject of this survey are the universal fluctuations of a large collection of
models known as the one-dimensional Kardar–Parisi–Zhang (KPZ) universality class. This
class includes many physical and probabilistic models of one-dimensional random growth, as
well as several other models, including directed polymers in a random potential, some inter-
acting particle systems, stochastic reaction–diffusion equations, and random stirred fluids,
all of which can be represented in terms of the evolution of a one-dimensional interface. Uni-
versality here refers to the idea that the long time, large-scale fluctuations of all the models
in the class share a common description, in the form of common scaling exponents and a
common scaling limit, which are independent of the microscopic description of each model.

While the belief in KPZ universality originates in statistical physics, much of the
progress in its understanding, and in particular in the description of the universal KPZ scaling
limits, has been achieved in the mathematical literature, through the study of some partic-
ular models which present a striking degree of exact solvability, and borrowing methods
from algebraic combinatorics, representation theory, mathematical physics, and integrable
systems. These integrable probabilistic systems comprise a sprawling subject, to which we
cannot do justice in this article; we refer the interested reader instead to the reviews [11, 12]

on this topic, as well as to [23, 41] for more physical perspectives. Our main focus will be
to describe part of the work in the field which in recent years has led to a very complete
description of the universal scaling limit of KPZ models and its connection with integrable
systems and random matrix theory.

Two examples. We begin by introducing a simple model which is not in the KPZ universal-
ity class. Suppose that blocks of unit height fall at each site of Z at rate 1 (i.e., at the times of a
rate-1 Poisson process). If the tower of blocks at each site grows independently of the others,
the height h.t; x/ at time t � 0 at each site x 2 Z can be described, by the classical central
limit theorem (applied to the Poisson distribution), as h.t; x/ � t C t1=2� with � a standard
normal random variable. In other words, the height grows linearly with time, with Gaussian
fluctuations of size t1=2. But since sites in this model, sometimes called random deposition,
are independent, h.t; x/ presents no interesting spatial structure. In order to obtain a more
interesting one-dimensional interface, one can add a relaxation mechanism to the model as
follows: when a block falls over site x, it lands on either x or any of its two nearest neigh-
bors, whichever has the lowest height (choosing, say, uniformly in case of ties). To first order,
h.t; x/ still grows like t , but fluctuations are now of order t1=4: the relaxation mechanism
has the effect of smoothing the interface, which now presents nontrivial correlations on a
spatial scale of order t1=2 (see [6] for a discussion). This model belongs to what physicists
call the Edwards–Wilkinson universality class [56], which still has Gaussian fluctuations.

A very different picture arises in the ballistic deposition model, first introduced in
[54] as a model for colloidal aggregates. In this model the falling blocks are sticky, and they
attach to the side of the first neighboring block they come in contact with, see Figure 1.
The interface h.t; x/, defined as the location of the highest block above x at time t , now
has overhangs. Seppäläinen [48] proved that the height still grows linearly; growth has to
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Figure 1

Random deposition with relaxation (top) and ballistic deposition (bottom), simulations on the right (different
shadings depict snapshots at different times).

be faster than for the previous models (as the aggregate grows, it is left with holes inside),
but the exact rate remains unknown. Fluctuations, on the other hand, are expected in this
case to be of order t1=3: the ballistic mechanism produces a rougher interface than random
deposition with relaxation. In the same way, the lateral growth of the interface makes for
a longer range of spatial correlations, expected in this case to be of order t2=3. These two
scaling exponents are one of the hallmarks of the KPZ universality class, but for this model
they remain out of reach of rigorous analysis.

Ballistic deposition is representative both of the main features of models in the class
and of the difficulty in analyzing them. This is why progress in the field has had to take place
mostly through the analysis of some specific models with a very special structure. In the next
section we will describe one of the main examples among these special models, TASEP. Now
we introduce the model that gives the KPZ universality class its name: the (one-dimensional)
Kardar–Parisi–Zhang equation, which is the nonlinear stochastic PDE

@th D �.@xh/
2

C �@2
xhC ��; (1.1)

where � is space-time white noise and �, �, and � are physical parameters. This equation was
introduced in 1986 [26] by the physicists Kardar, Parisi, and Zhang, and was conceived as
the simplest (and has become the canonical) continuum model for random interface growth
which incorporates the physical features of models such as ballistic deposition. Using phys-
ical arguments (based on nonrigorous dynamic renormalization group methods), Forster,
Nelson, and Stephen [21] had predicted that the closely related stochastic Burgers equation
(essentially the equation satisfied by @xh.t; x/, which can be thought of as a much simplified
model of a random stirred fluid) had fluctuations of order t1=3 with nontrivial correlations
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on a scale of order t2=3. Using this method, Kardar et al. [26] then predicted that the same
should hold for the KPZ equation and for a large class of models, a fortiori identified as the
KPZ universality class.

The right-hand side of (1.1) identifies the main elements which loosely characterize
a model in the class: local dynamics, short range randomness, a smoothing mechanism (here
@2

xh), and a lateral, slope-dependent growth component (which can naturally be modeled as
F.@xh/ for some F ; the .@xh/

2 term in the equation comes from keeping only the second-
order term in the expansion F.u/ D F.0/C F 0.0/uC

1
2
F 00.0/u2, noting that the first two

terms can be removed by a change of variables in the equation). The crucial feature here
is the nonlinear lateral growth term (note how it becomes macroscopically apparent in the
ballistic deposition simulation in Figure 1). In fact, setting � D 0 yields the (simpler, linear)
additive stochastic heat equation, which identifies the Edwards–Wilkinson class mentioned
in the previous example.

In terms of solvability, the KPZ equation lies halfway between currently intractable
models such as ballistic deposition and integrable models such as TASEP (this is separate
from the delicate issue of well-posedness of (1.1), which we will not discuss, see [22]).

The KPZ universality conjecture. The Kardar–Parisi–Zhang paper marked the beginning
of a long period of intense research interest, and has been one of the main drivers for advances
the field, both in the physics and in the mathematics literature. Numerical simulations and
experiments confirmed the KPZ scaling prediction for many different systems and later on, as
results on the distribution of the fluctuations of special KPZ models were first obtained, the
following picture began to emerge: if h.t; x/ is the height function describing the evolution
of the interface associated to a model in the KPZ class, then (here .d/

D denotes equality in
distribution)

lim
t!1

t�1=3
�
h.c1t; c2t

2=3x/ � c3t
� .d/

D A.x/ (1.2)

for a universal limiting process .A.x//x2R which depends only on the initial data of the
model (more precisely, on the limit lim"!0 "

1=2h.0; c2"
�1x/). The scaling on the left-hand

side reflects the KPZ prediction: after subtracting a linear term (c3t ) which represents the
first-order (deterministic) linear growth of a typical KPZ interface, we obtain a random
variable which fluctuates at the order of t1=3, so we need to multiply by t�1=3 to obtain
a meaningful limit, while nontrivial correlations for two spatial points are observed when
they are at distance order t2=3 (i.e., at shorter scales the height function at the two points
looks the same as t ! 1, while at longer scales they become independent), so the spatial
variable x has to be observed at that scale to see a nontrivial spatial process. The constants
c1, c2, c3 are model dependent; they are used to provide a common normalization.

As we will see in Section 2, the description (1.2) emerged at first only partially: it was
initially restricted only to one-point distributions (i.e., fixed x instead of the whole spatial
process A.x/) and, crucially, only to some very special choices of initial data. Remark-
ably, it was realized that in those special cases the fluctuations arising in KPZ models were
connected to random matrix theory, although to some extent the connection remained mys-
terious.
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1:2:3 scaling and the KPZ fixed point. On the other hand, (1.2) does not provide a full
description, since it loses all information about the temporal evolution of the interface. To
recover it, it is convenient to introduce a parameter " > 0, rescale the variables .t; x/ as
."�3=2t; "�1x/, as well as the height h (after subtracting the first order linear growth term)
as "1=2h, and take " ! 0 (instead of t ! 1). This is usually referred to as the 1:2:3 KPZ
scaling (reflecting the ratios of the exponents associated to the size of fluctuations, space,
and time). The KPZ universality conjecture, first expressed in this form in [14], then asserts
that for any model in the class,

lim
"!0

"1=2
�
h.c1"

�3=2t; c2"
�1x/ � c3"

�3=2t
� .d/

D h.t; x/ (1.3)

for a universal process .h.t; x//t�0;x2R which, again, should only depend on the initial data
h0.x/ WD lim"!0 "

1=2h.0;c2"
�1x/ prescribed for the model. Taking t D 1 in this limit recov-

ers the spatial processes prescribed in (1.2).
The limiting process h.t; x/ appearing on the right-hand side of (1.3) is known as

the KPZ fixed point. Since many of the models which the process should arise as a limit of
are Markovian, one expects it to be a Markov process (taking values in a suitable space of
real valued curves). The name of the process comes from the fact that, by its definition as
a limit of 1:2:3 rescaled models, it should be invariant under such rescaling: if h.t; xI h0/

denotes the KPZ fixed point with initial data h.0;x/D h0, then for ˛ > 0 one expects, writing
h

.˛/
0 .x/ D ˛�1h0.˛

2x/, that

˛h.˛�3t; ˛�2xI h
.˛/
0 /

.d/
D h.t; xI h0/: (1.4)

The rough picture one should have in mind is of h.t; x/ as an attracting fixed point, under
the renormalization map defined by the left-hand side of (1.4) with ˛ ! 0, in some (loosely
defined) space of models. As such, one can think of this fixed point alternatively as defining
the KPZ universality class (as the family of models which lie in its domain of attraction).
In other words, if the KPZ fixed point can be constructed explicitly, then (1.3) can be used
to turn the vague characterization of membership in the KPZ universality class described
above into a concrete definition.

It is worth stressing that the KPZ fixed point should not be confused with the KPZ
equation, which is just one (albeit very special) member of the class; in fact, the KPZ equation
is not invariant under the KPZ 1:2:3 scaling (1.4) (which sends the parameters .�; �; �/ to
.�; ˛�; ˛1=2�/).

Much (though certainly not all) of the progress in the field during the last 20 years
can be understood as an effort to describe the KPZ fixed point, understand its properties,
and explore its connections with objects coming from random matrix theory and integrable
systems. The purpose of this review is to describe one part of this story, which in particular
leads to the construction of the KPZ fixed point and its description as a stochastic integrable
system. There is a priori no reason to believe that any of this should be possible; as we will
see, what comes to our rescue is the remarkable exact solvability of some special discrete
models in the class, which can be used to access the KPZ fixed point in the limit.
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One of the main players in this story is the totally asymmetric simple exclusion
process. We turn to it in the next section.

2. TASEP with special initial data

The (one-dimensional, continuous time) totally asymmetric simple exclusion pro-
cess (TASEP) is an interacting particle system made out of particles at positions � � � <

Xt .2/ < Xt .1/ < Xt .0/ < Xt .�1/ < Xt .�2/ < � � � on Z [ ¹�1;1º performing totally
asymmetric nearest neighbor random walks with exclusion: each particle independently
attempts jumps to the neighboring site to the right at rate 1, the jump being allowed only if
that site is unoccupied. Placing particles at ˙1 allows for systems with a rightmost and/or
leftmost particle with no change of notation (such particles play no role in the dynam-
ics). Since its introduction (in a more general form) in 1970 by F. Spitzer [49], TASEP has
become one of the basic and most heavily studied out-of-equilibrium models in probability
and statistical physics.

In order to associate an interface to the TASEP particle system, we let X�1
t .u/ D

min¹k 2 Z W Xt .k/ � uº and define the TASEP height function as

h.t; x/ D �2
�
X�1

t .x � 1/ �X�1
0 .�1/

�
� x; t � 0; x 2 Z:

In words, this fixes h.0; 0/ D 0 and constructs the height function by moving up from x

to x C 1 whenever there is a particle at x and down from x to x � 1 if the site is empty.
By interpolating piecewise linearly (and shifting x by 1=2, which makes no difference), we
can picture h.t; x/ as a continuous function made out of line segments of slope C1 above
every particle and �1 above every hole. The dynamics of this height function is that every
local maximum ⌜ becomes a local minimum ⌜at rate 1, as in the figure; in this guise the
model is sometimes known as the corner growth model (for special initial data) or restricted
solid-on-solid model.

To see how the features of a KPZ model described in the introduction arise in TASEP, think
of writing the evolution of the height function as a stochastic equation involving a family
of independent Poisson processes at each site. Such an equation can be rewritten roughly as
dh.t;x/D �21⌜ dt C dMt .x/withMt a martingale which provides the random forcing, and
where the drift term (which says that the height function goes down by two at rate 1 at sites
where we see a local maximum) contains the smoothing and lateral growth mechanisms, as
can be seen by rewriting it as

�21⌜ D
1

2

�
.r�h/.rCh/ � 1C

1

2
r

C
r

�h

�
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with r˙ the forward/backward discrete difference operators

r
Cf .x/ D f .x C 1/ � f .x/; r

�f .x/ D f .x/ � f .x � 1/ (2.1)

(in fact, using this decomposition, it can be shown that if particles now jump to the right at
rate p 2 Œ0; 1� and to the left at rate q D 1� p, then the associated height function converges,
in the weakly asymmetric limit corresponding to p � q D "1=2 with " ! 0 under diffusive
scaling, to a solution of the KPZ equation (1.1), see [7]).

Wedge initial data. The simplest possible choice of (infinite) TASEP initial condition is the
packed, or step, initial data where particles are initially placed at every negative integer site
(i.e., X0.i/ D �i , i � 1). For the TASEP height function, it translates into the wedge initial
condition h.0; x/ D �jxj. The (essentially) first result about the limiting fluctuations for a
KPZ model was proved by Johansson in 1999 (to be more precise, a version of this result
was proved a couple of months earlier by Baik, Deift, and Johansson in their seminal paper
[4] for Poissonian last passage percolation):

Theorem 2.1 ([24]). For the TASEP height function with wedge initial data h.0; x/ D �jxj,
one has

lim
t!1

P

�
h.2t; 2t2=3x/C t

t1=3
� r

�
D FGUE.r � x2/; (2.2)

where FGUE is the Tracy–Widom GUE distribution [50].

The parabolic shift appearing on the right-hand side of (2.2) reflects the curvature
of the (deterministic, first order) hydrodynamic limit for the model in this case, which states
[42] that lim�!1 ��1h.�t; �x/D �t C x2=2t for jxj � t . What is remarkable in this result,
and was in fact very surprising, is the nature of the distribution of the limiting fluctuations:
they coincide with the asymptotic fluctuations of the largest eigenvalue of a matrix from the
Gaussian Unitary Ensemble (GUE), i.e., a Hermitian random matrix with properly scaled
(complex) Gaussian entries.

In terms of the KPZ universality conjecture (1.3), this result can be reinterpreted as
the first computation of a marginal of the KPZ fixed point h.t; x/, for t D 1, fixed x 2 R and
initial data h.0; x/ D 0 for x D 0 and �1 everywhere else. We will denote this choice of
initial data (which may look singular, but is natural and, as we will see, is in fact the simplest
possible initial condition for the KPZ fixed point) by d0; it is known as a narrow wedge, as
it arises from wedge initial data becoming increasingly narrower in the scaling limit.

The proof of Theorem 2.1 in [24] is based on the analysis of TASEP as a determi-
nantal point process, using as a basic tool the Robinson–Schensted–Knuth (RSK) correspon-
dence from algebraic combinatorics. The eigenvalues of anN �N GUE random matrix are
also determinantal, and in fact it was later understood [9,55] (see also [33]) that using these
and related tools, these eigenvalues and the location of the first N TASEP particles (with
step initial data) can be realized as projections of a larger process. We will describe shortly
a different proof.
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Figure 2

A simulation of the KPZ fixed point with narrow wedge initial data h.1; xI d0/
.d/
D A2.x/ � x2 as the limit of the

TASEP height function.

The next step was to extend Theorem 2.1 to the full (fixed time) spatial process:

Theorem 2.2. The rescaled TASEP height function t�1=3.h.2t; 2t2=3x/ C t / with wedge
initial data converges in distribution as t ! 1, uniformly in x on compact sets, to A2.x/�

x2, where A2 is the Airy2 process.

The Airy2 process was introduced by Prähofer and Spohn in 2001 [35] as the limit (at
the level of finite-dimensional distributions) of the closely related polynuclear growth (PNG)
model; a version of the result quoted here was proved by Johansson [25] in 2003 (for a related
discrete time model, see the coming discussion about LPP). Comparing with Theorem 2.1,
we see that A2.x/ has to be stationary, with Tracy–Widom GUE marginals at each x. The
process itself is in fact closely related to random matrices. In particular, it arises as the scaling
limit of the top path of GUE Dyson Brownian motion, the eigenvalue process associated
to a GUE matrix whose entries evolve as independent (complex) Brownian motions. The
process is defined through its finite dimensional distributions, which are given by a Fredholm
determinant formula, see (4.5) below.

In terms of the KPZ fixed point, Theorem 2.2 now tells us that, as a process in x,

h.1; xI d0/
.d/
D A2.x/ � x2 (2.3)

(where d0 is the narrow wedge initial data introduced after Theorem 2.1). See Figure 2.

Last passage percolation. We make a brief detour now to introduce another model in the
KPZ universality class, last passage percolation (LPP). We focus on the discrete case; there
are similar models in other settings (e.g., Poisson LPP in the continuous case, Brownian LPP
in the semidiscrete case). Consider a family ¹wi;j ºi;j 2Z of i.i.d. random variables and define
the point-to-point last passage time

L
�
.m1; n1/ ! .m2; n2/

�
D max

�2…W.m1;n1/!.m2;n2/

X
i

w�i
;

where the max is taken over the set of all paths connecting .m1; n1/ to .m2; n2/ which take
unit steps up or right; if this set is empty, we take the max to be �1. We can associate a
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growing cluster to this model by considering the set of points with passage times less than
t , i.e.,

C0.t/ D
®
.m; n/ 2 Z2

W L
�
.0; 0/ ! .m; n/

�
� t

¯
:

If the wi;j ’s are exponentials with parameter 1 then the model can be mapped to TASEP
with step initial condition by interpreting each wi;j as the waiting time that it takes particle
j to jump from site i � j to site i � j C 1 (counted from the instant when that jump first
becomes possible); in fact, it is not too hard to check that, after a rotation by �3�=4 (and
a slight shift), the boundary of C0.t/ encodes the TASEP height function h.t; �/. In view
of Theorem 2.2, the LPP fluctuations are thus governed by the Airy2 process. Johansson’s
result in [25] was for the case when the wi;j ’s have a geometric distribution, which maps to
a discrete time version of TASEP; it gives

c1N
�1=3

�
L

�
.0; 0/ ! .N C c2N

2=3x;N � c2N
2=3x/

�
� c3N

�
����!
N !1

A2.x/ � x2

(note that, as stated, this LPP result is not quite equivalent to Theorem 2.2 even if one lets
the weights be exponential). By universality one expects the same to hold for general choices
of weights, but the problem is completely open.

To map LPP to TASEP with general initial data, one can consider paths which start
from any point in a given curve instead of just at the origin. Another, perhaps more natural,
way of changing the LPP initial data, is to let paths start at any point in the antidiagonal line
¹.`;�`/º`2Z and add an extra reward g.`/ (the boundary condition) there, i.e., to set

Lg

�
.m; n/

�
D sup

`2Z

�
L

�
.`;�`/ ! .m; n/

�
C g.`/

�
: (2.4)

In the scaling limit, g will now become the initial data for the KPZ fixed point.

Periodic initial data. Coming back to TASEP, the next case which could be solved corre-
sponds to periodic initial data X0.i/ D �2i , i 2 Z, which at the level of the TASEP height
function translates into the (asymptotically) flat initial condition of the form ⌜ ⌜ ⌜ ⌜ . This
case was first solved for Poissonian LPP with zero boundary condition [5], which translated
into the context of TASEP suggested that for periodic initial data,

lim
t!1

P

�
h.2t; 2t2=3x/C t

t1=3
� r

�
D FGOE.4

1=3r/; (2.5)

where FGOE is the Tracy–Widom GOE distribution [51], the analog of FGUE for the Gaussian
Orthogonal Ensemble (GOE), i.e., symmetric random matrices with properly scaled (real)
Gaussian entries. This was later confirmed, and extended to the full spatial process:

Theorem 2.3 ([10,45]). The rescaled TASEP height function t�1=3.h.2t; 2t2=3x/C t / with
flat initial data converges in distribution as t ! 1 to the Airy1 process A1.x/.

The Airy1 process is the analog of the Airy2 process for flat initial data. It is station-
ary, and has Tracy–Widom GOE marginals. In terms of the KPZ fixed point, Theorem 2.3
now tells us that, as a process in x,

h.1; xI 0/
.d/
D A1.x/: (2.6)
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Transition probabilities. We turn now to a sketch of the proof of Theorems 2.2 and 2.3.
It is based on Schütz’s 1997 solution [47] of TASEP with N particles, which shows that the
transition probabilities of .Xt .1/; : : : ; Xt .N // have the following determinantal form:

PX0

�
Xt .1/ D x1; : : : ; Xt .N / D xN

�
D det

�
Fj �i

�
t; xi �X0.j /

��
1�i;j �N

; (2.7)

where X0 in the subscript denotes the initial data of the process and where

Fn.t; x/ D
1

2�

I
�0;1

dw
.1 � w/�n

wx�nC1
et.w�1/; (2.8)

with �0;1 any positively oriented simple loop which includes w D 0 andw D 1. The deriva-
tion uses a method known in physics as the coordinate Bethe ansatz to find a solution of
Kolmogorov forward (or master) equation of the process. The key ingredients in the deriva-
tion become apparent after rewriting the functions Fn, n 2 Z, as

Fn.t; x/ D .rC/ne�tr�

ı0.x/ (2.9)

where r˙ are the discrete difference operators from (2.1) (with the inverse of rC defined
through .rC/�1f .x/ D

P
y>x f .y/) and ıi .y/ D 1yDi . The operator e�tr� is simply

the transition semigroup of a Poisson process with jumps to the left at rate 1 (and has a
kernel acting by convolution with precisely the right-hand side of (2.8) with n D 0, which
is where (2.9) comes from); this factor encodes the dynamics of a free (i.e., not subject
to exclusion) TASEP particle. The factor .rC/n, on the other hand, encodes the exclusion
restriction: very roughly put, in a situation where one particle tries to jump on top of another
one, this factor produces two identical rows in the determinant obtained by using (2.7) on
the right-hand side of the Kolmogorov equation, and hence terms corresponding to those
transitions will not contribute.

In principle, (2.8) contains all the information one needs in order to compute a limit
like (1.3) for TASEP, at least for initial data which has a rightmost particle Xt .1/. In fact,
computing the distribution of the TASEP height function at a given (finite) set of locations
is equivalent to computing, for some given indices n1 < � � � < nm,

PX0

�
Xt .n1/ > a1; : : : ; Xt .nm/ > am

�
(2.10)

and the evolution of .Xt .i//iD1;:::;nm is independent of the particles to their left, so we may
restrict to a system with a finite number N of particles. However, (2.8) is not by itself con-
ducive to asymptotic analysis, for which we need to sum over the positions of the otherN �m

particles and then take N , which is also the dimension of the determinant, to infinity.

Biorthogonalization. This difficulty was overcome in [10,45], where the authors were able
to show that the right-hand side of (2.7) can be expressed as a marginal of a (signed) deter-
minantal point process on a larger space of Gelfand–Tsetlin patterns (i.e., triangular arrays
of integers with interlaced consecutive levels). This allowed them to use techniques from
random matrix theory (more precisely, a version of the Eynard–Mehta Theorem [19]) to
derive an explicit Fredholm determinant formula for (2.10). We will not describe the deriva-
tion, and content ourselves with stating a version of their result.
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To do so, we need to introduce some notation. Fix an initial condition .X0.n//n�1

for the particle system (which is right-finite, i.e., with a rightmost particle). Define

Q.x; y/ D 2y�x1x>y ; Q�1.x; y/ D 2y�x
r

C.x; y/ D 2y�x.1xDy�1 � 1xDy/I

Q is invertible as an operator acting on `2.Z/, with inverse given by Q�1 as defined above
(rC.x; y/ is similarly just the kernel of rC). Next, for n � 0 and k < n let

‰n
k.x/ D 2X0.n�k/�xF�k

�
t; x �X0.n � k/

�
D Q�ke� 1

2 tr�

ıX0.n�k/.x/:

The powers of 2 which we have introduced should be thought of as a convenient normaliza-
tion, the crucial point being that Q is the transition matrix of a random walk with strictly
negative GeomŒ1

2
� steps; ‰n

k
can be thought of (cf. (2.9)) as coming from applying repeat-

edly the forward difference operator to the Poisson weight wt=2.x/ D e�t=2.t=2/x=xŠ1x�0,
shifted by the initial data X0.n � k/. One checks directly then, using the classical recur-
rence equations satisfied by the Charlier polynomials Ck.x; t/ (i.e., the family of discrete
orthogonal polynomials with respect to the Poisson weight wt .x/) that

‰n
k.x/ D 2X0.n�k/�xfk

�
x C k �X0.n � k/

�
with fk.x/ D Ck.x; t/wt=2.x/:

Note that the functions‰n
k

only depend on n through a shift by the TASEP initial data. Next
for n � 0 define ¹ˆn

k
.x/ºkD0;:::;n�1 as the (unique) solution of the following biorthogonal-

ization problem:

Given the family of shifted Charlier functions ¹‰n
k
ºkD0;:::;n�1, find a family of

functions ¹ˆn
k
ºkD0;:::;n�1 on Z so that

(i) the two families are biorthogonal, i.e.,
P

x2Z‰
n
k
.x/ˆn

`
.x/D 1kD`;

(ii) 2�xˆn
k
.x/ is a polynomial of degree k.

Finally, for a fixed vector a 2 Rm and indices n1 < � � � < nm let

�a.nj ; x/ D 1x>aj
and N�a.nj ; x/ D 1x�aj

; (2.11)

which we also regard as multiplication operators (actually, projections) acting on the space
`2.¹n1; : : : ; nmº � Z/, and later also on L2.¹n1; : : : ; nmº � R/. If a is a scalar, we write
similarly �a.x/ D 1 � N�a.x/ D 1x>a.

Theorem 2.4 ([10,45]). Consider TASEP with initial data .X0.n//n�1 and let n1; : : : ; nm be
distinct positive integers. Then for t > 0 we have

P
�
Xt .nj / > aj ; j D 1; : : : ; m

�
D det.I � N�aKt N�a/`2.¹n1;:::;nmº�Z/; (2.12)

where

Kt .ni ; xi Inj ; xj / D �Qnj �ni .xi ; xj /1ni <nj
CQnj �niK

.ni /
t .xi ; xj / (2.13)

with

K
.n/
t .x; y/ D

nX
kD1

‰n
n�k.x/ˆ

n
n�k.y/: (2.14)
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The determinant in (2.12) is the Fredholm determinant: for an integral operator A
acting on L2.X;�/ with kernel A.x; y/,

det.I C A/ D

X
n�0

1

nŠ

Z
Xn

d�.x1/ � � � d�.xn/ det
�
A.xi ; xj /

�n

i;j D1
:

Note that the result holds for any choice of right-finite initial dataX0. The point is that, if we
can solve the above biorthogonalization problem forX0, then we have an explicit formula for
the TASEP multipoint distributions which, at least in principle, is amenable to asymptotic
analysis (in fact, the size of the determinant is now fixed, and computing the scaling limit
will now involve only calculating suitable limits of the kernel Kt ).

The challenge is then to solve the above biorthogonalization problem. One sees
immediately why the choice of step/wedge initial data is the simplest in this setting. In
fact, in this case X0.i/ D �i , so ‰n

k
.x/ D 2k�n�xfk.x C n/ and hence by definition the

biorthogonalization problem is solved by the Charlier polynomials themselves, ˆn
k
.x/ D

ck2
xCn�kCk.x C n; t/ for a suitable normalization constant ck . This leads to a relatively

simple form for Kt in (2.13) as the (extended) Charlier kernel (related to what in random
matrix theory would be called the Charlier ensemble), from which the TASEP limit can
be extracted essentially by classical orthogonal polynomial asymptotics, leading to a kernel
in terms of Airy functions (this explains the name of the Airy2 process in Theorem 2.2),
see (4.5). To prove Theorem 2.3, one first considers the half-periodic initial condition
X0.i/ D �2i , i � 1, in which case the biorthogonalization was solved (in 2005 [45]) essen-
tially by linear algebra (the answer [10] isˆn

k
.x/ D c0

k
2x

Pn�1
`D0

t`

.2k�`/.`�1/Š

�
2k�`
k�`

�
C`.x; t/);

the full periodic case is recovered by focusing on particles far to the left and taking a suitable
limit. But for more general choices of X0 the method stalled for about a decade. (A third
choice of initial data, namely a product measure, could be analyzed [20] by other methods
which use crucially its stationarity for the TASEP evolution; also mixed versions of the three
initial conditions could be handled, with one choice on the positive integers and another on
the negative integers).

3. General solution of TASEP

As the reader can probably guess by now, what we are aiming for is to construct the
KPZ fixed point as the scaling limit (1.3) of the TASEP height function. Two obstacles lie in
our way: we only know how to compute the limit for two special choices of initial data, and
we can only do it for fixed time t (we chose t D 1 above, but other choices of fixed t follow
in the same way by adjusting the scaling). To some extent, however, the two obstacles are the
same: in fact, TASEP is a Markov process and we thus expect the KPZ fixed point to also be
Markovian, so in order to define its temporal evolution it should be enough to characterize
its transition probabilities from an arbitrary initial condition in a suitable space.

Biorthogonalization solution. The general solution of the biorthogonalization problem for
TASEP appeared in [28], and leads to a representation for the kernel Kt from which asymp-
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totics can be performed naturally. Two main ingredients were used in its derivation. The first
one is the time reversal invariance satisfied by TASEP.

Suppose we start with particles at locations x1 > � � � > xn. By the exclusion condition, the
probability that Xt .n/ > a is the same as the probability that Xt .i/ > a C n � i for each
i D 1; : : : ; n. But, by symmetry, this is the same as starting TASEP at .a C 1; : : : ; a C n/,
running it backwards, and computing the probability that Xt .i/ � xnC1�i for each i . Using
now simple reflection and shift invariance properties of the TASEP dynamics, we deduce
that

P.x1;:::;xn/

�
Xt .n/ > a

�
D P.�1;:::;�n/

�
Xt .i/ > a � xnC1�i � 1; i D 1; : : : ; n

�
: (3.1)

We have thus turned the one-point distribution of TASEP with arbitrary initial data into the
multipoint distribution of TASEP with step initial data, which as we explained in the last
section can be computed explicitly.

The second ingredient is a path integral version of the extended kernel formula
(2.12), which reads as follows (recall the definition of �a for scalar a after (2.11)):

P
�
Xt .nj / > aj ; j D 1; : : : ; m

�
D det

�
I �K

.nm/
t .I �Qn1�nm�a1Q

n2�n1�a2 � � �Qnm�nm�1�am/
�

`2.Z/
; (3.2)

where K.n/
t D Kt .n; �I n; �/. A formula of this type was first derived in [35] for the Airy2

process and later extended to the Airy1 process in [38], and to a very wide class of processes
in [8]. To see how this helps, observe that the factor �a1Q

n2�n1�a2 � � �Qnm�nm�1�am.x; y/

inside the determinant in (3.2) is nothing but the probability that a random walk with geo-
metric steps goes from x at time n1 to y at time nm, staying above a1 at time n1, above a2

at time n2, etc. On the other hand, through (3.1) this formula computes the distribution of
Xt .n/ with general initial data. From this we see that theˆn

k
’s should be related to the prob-

ability that the geometric random walk hits the curve prescribed by the ai ’s, which together
with the fact that the factor K.n/

t appearing in (3.2) is explicit (it is the one-point kernel for
step initial data) allows one to try to guess the form of the functions. Theorem 2.4 is then
set up perfectly, because one can simply check (in fact, in just a few lines) that the guess
gives the right answer, which is as follows: ˆn

k
.x/ D .e

t
2 r�

/�hn
k
.0; x/, where hn

k
.`; x/ is

the unique solution to the initial–boundary value problem for the discrete backwards heat
equation 8̂̂<̂

:̂
.Q�/�1hn

k
.`; x/ D hn

k
.`C 1; x/; ` < k; x 2 Z;

hn
k
.k; x/ D 2x�X0.n�k/; x 2 Z;

hn
k
.`; X0.n � `// D 0; ` < k:

For x < X0.n � k/, hn
k
.0; x/ is simply the probability, starting from x, that the (reversed)

random walk first goes above the curve .X0.n � `C 1//`D1;:::;n at time ` D k C 1.
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Explicit formula. In order to obtain a usable formula for the TASEP kernelKt , we need to
evaluate the sum in (2.14) using the solution for the ˆn

k
’s. With a bit of work, this leads to a

formula which is explicitly given in terms of random walk hitting times.
In order to state it, we introduce a kernel Qn

epi.X0/
which is defined as follows:

Qn
epi.X0/

.x; y/ is the probability, starting at x, that the random walk with transition matrix
Q hits the strict epigraph of (i.e the region strictly above) the curve .X0.`C 1//`D0;:::;n�1

and ends at y at time n. One can check that, for fixed x, the mapping y 7! 2�yQn
epi.X0/

.x;y/

defines a polynomial for y � X0.n/.

Theorem 3.1 ([28]). The kernel K.n/
t in (2.14) can be written as follows:

K
.n/
t D e

t
2 r�

Q�nQ
n

epi.X0/e
� t

2 r�

; (3.3)

whereQn

epi.X0/.x; y/ equals 2y times the polynomial extension from y � X0.n/ to all y 2 Z

of the kernel 2�yQn
epi.X0/

.x; y/.

The polynomial extension in the formula comes from using the above representation
of the functions hn

k
.0; x/ as hitting probabilities for x below the curve; since 2�xˆn

k
.x/ has

to be a polynomial, one can recover it everywhere through this extension. The operators are
relatively simple, however, and the polynomial extension can be computed explicitly.

Other processes. The scheme which we have described works for a more general class
of particle systems with determinantal transition functions of the form (2.7). It has been
applied, in particular, for PushASEP [32], one-sided reflected Brownian motions [31], and
several discrete time versions of TASEP [29].

4. The KPZ fixed point

Recapitulating, what we would like to do now is to extract the limit in (1.3), with
h the TASEP height function, using the explicit formula supplied by Theorems 2.4 and 3.1
(this involves a simple translation from the particle system to the height function). In view of
the scaling in Theorems 2.2 and 2.3, we take c1 D c2 D 2 and c3 D �1. Let us briefly sketch
how the limit arises. Consider the factor e t

2 r�

Q�n in (3.3). Using the scaling from (1.3), it
becomes approximately e"�3=2tŒ�r�C 1

2 log.IC2rC/� (ignoring lower-order terms). After suit-
ably scaling the variables inside the kernel, the limit is computed on the scaled lattice "1=2Z,
so r˙ � "1=2 and therefore �r� C

1
2

log.I C 2rC/D �r� C rC � .rC/2 C
4
3
.rC/3 C

O."2/ �
1
3
"3=2@3 after a simple Taylor expansion, where @ is the derivative operator. Simi-

larly (or by the central limit theorem), we have Q"�1x � ex@2 . This tells us that, as " ! 0,
e

t
2 r�

Q�n becomes
St;x WD e

1
3 t@3Cx@2

: (4.1)

At first sight, this operator may appear to be problematic because the heat kernel ex@2 is
ill-defined for x < 0, but, in fact, St;x makes sense for all t ¤ 0 as an integral operator on a
suitable domain with integral kernel (here Ai is the Airy function)

St;x.u; v/ D t�1=3e
� 2x3

3t2 �.u�v/ x
t Ai

�
t�1=3.v � u/C t�4=3x2

�
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and it satisfies the group property St;xSs;y D StCs;xCy as long as t , s and t C s are all
nonzero. The convergence to St;x which we have sketched can be proved by using a con-
tour integral formula (similar to (2.8)) for e t

2 r�

Q�n. A similar argument works for the other
factor, Qn

epi.X0/e
� t

2 r� (using a similar contour integral formula). The scaling under which
we are working, on the other hand, has the effect of rescaling the random walk inside this
last kernel diffusively, so in the limit the random walk hitting times become Brownian hitting
times.

Brownian scattering operator. The above sketch explains how the ingredients which will
make up the formula for the KPZ fixed point arise. The actual proof of the limit, in a suitably
strong sense and with appropriate estimates, involves some heavy asymptotic analysis. The
final result, in its most appealing form after some postprocessing, involves a kernel which
we introduce next.

The natural class of initial data for our (continuum) random growth models is UC,
the space of upper-semicontinuous functions h W R ! Œ�1;1/ satisfying h.x/ � aC bjxj

for some a; b > 0 and h 6� �1, which we endow with the topology of local Hausdorff
convergence (with Œ�1;1/ compactified at �1). The linear bound which we are assuming
on the initial data is not quite optimal, but it ensures that h.t; x/ is defined for all t > 0. Note
that the narrow wedge d0 is in UC. Given h 2 UC and `1 < `2, let

PNo hit h
`1;`2

.u1; u2/du2 D PB.`1/Du1

�
B.y/ > h.y/ on Œ`1; `2�; B.`2/ 2 du2

�
with B a Brownian motion with diffusion coefficient 2, and define PHit h

`1;`2
D I � PNo hit h

`1;`2
. The

(t -dependent) Brownian scattering operator associated to h is

Khypo.h/
t D lim

`1!�1

`2!1

e� 1
3 t@3C`1@2PHit h

`1;`2
e

1
3 t@3�`2@2

: (4.2)

In words, the Brownian scattering operator computes a sort of asymptotic “transition den-
sity” for a Brownian motion in the whole line, killed if it does not hit hypo.h/, the hypograph
of (i.e., the region below) h. The fact that the right-hand side of (4.2) makes sense is far from
obvious; it was first proved (for a more restricted class of h) in [39]. A more explicit formula
can be given in terms of the operators St;x and the law of the hitting time by a Brownian
motion of hypo.h/.

The Brownian scattering operator Khypo.h/
t plays a key role in the construction of the

KPZ fixed point, with the function h as the initial data for h.t; x/. One may wonder about
whether the limit on the right-hand side of (4.2) contains all the necessary information about
h. It does: for any t > 0, h 7! Khypo.h/

t is invertible, and moreover continuous, as a mapping
from UC to a suitable space of trace class operators (the invertibility is obtained essentially
directly from (4.3) below).

Definition of the KPZ fixed point. We are finally ready to define our main object of interest:
the KPZ fixed point is the (unique) Markov process taking values in UC whose transition
probabilities satisfy (here h0 in the subscript denotes the initial condition)

Ph0

�
h.t; x1/ � r1; : : : ; h.t; xm/ � rm

�
D det.I � �rKhypo.h0/

t;ext �r /L2.¹x1;:::;xmº�R/ (4.3)
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for any r D .r1; : : : ; rm/ 2 Rm, with Khypo.h0/
t;ext the extended Brownian scattering operator

Khypo.h0/
t;ext .xi ;ui Ixj ;uj /D �e.xj �xi /@2

.ui ;uj /1xi <xj
C e�xi @2Khypo.h0/

t exj @2

.ui ;uj / (4.4)

and where, we recall, �r was defined in (2.11). Two (related) statements are implicit in this
definition: that the right-hand side of (4.3) defines uniquely a probability measure on UC, and
that it in fact defines the transition kernel of a Markov process. The first one holds because
the events in the probability on the left-hand side generate the Borel � -algebra on UC. The
second one is proved based on the fact, stated next, that h.t; x/ arises as the scaling limit of
TASEP, which is Markovian, plus a compactness argument which allows one to show that
the property is preserved in the limit.

Theorem 4.1 ([28]). Let the 1:2:3 rescaled TASEP height function be defined as

h".t; x/ D "1=2
�
h.2"�3=2t; 2"�1x/C 2"�1x

�
:

Fix h0 2 UC and assume that h".0; �/ ! h0 in distribution in UC. Then h".t; x/ ! h.t; x/

as " ! 0, in distribution in UC as a process in t , x, where h.t; x/ is the KPZ fixed point
started at h0, i.e., the UC-valued Markov process defined through (4.3).

Properties of the KPZ fixed point. The formula for the KPZ fixed point transition prob-
abilities (4.3) looks perhaps too complicated to be of any use, but in fact it can be used to
derive many of the conjectured properties of the KPZ fixed point (as well as some surprising
ones, as we will see in the next section), including the following (some of which we state
vaguely, see [28] for the details):

• h.t; x/ is 1:2:3 scaling invariant, i.e., it satisfies (1.4).

• h.t; x/ is invariant under spatial shifts, reflections and affine translations.

• (Skew time reversibility) Pg.h.t; x/ � �f.x// D Pf.h.t; x/ � �g.x// for any
f;g 2 UC.

• h.t; x/ is Hölder- 1
2

in x, and Hölder- 1
3

in time.

• (Brownian invariance and ergodicity) If B is a two-sided Brownian motion with
diffusion coefficient 2 then for any t > 0, the process x 7�! h.t; xI B/� h.t; 0I B/
has the same distribution as B. Moreover, for any initial condition and any fixed
t > 0, the finite-dimensional distributions of h.t;x/� h.t;0/ are locally Brownian
and, under some conditions, they converge as t ! 1 to those of B.

Formula (4.3) can also be used to recover the Airy1 and Airy2 processes which had
already been derived for special initial data (see (2.3) and (2.6)) because the Brownian hitting
probabilities in (4.2) are explicit in those cases. For example, for narrow wedge initial data
d0, the only way to hit hypo.d0/ is for the Brownian path to pass below the origin at time
0, so one trivially has, for `1 < 0 < `2, PHit d0

`1;`2
D e�`1@2

N�0e
`2@2 and therefore Khypo.d0/

t D

e� t
3 @3

N�0e
t
3 @3 which, using (4.1) and setting t D 1, leads directly to the known formula for
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the Airy2 process:

P
�
A2.x1/ � r1; : : : ;A2.xm/ � rm

�
D det.I � �rKAi

ext�r /L2.¹x1;:::;xmº�R/ (4.5)

with KAi
ext defined by the right-hand side of (4.4) with Khypo.h0/

t .u; v/ replaced by the Airy
kernel

R 1

0
d� Ai.x C �/Ai.y C �/. For flat initial data, the calculation involves the hit-

ting probability by a Brownian motion of a straight line, which can be computed using the
reflection principle.

Variational formula. An alternative description of the KPZ fixed point is through a vari-
ational (Hopf–Lax type) formula involving a nontrivial input noise called the Airy sheet
A.x; y/ (which is natural, for instance, from the point of view of LPP with boundary con-
ditions, see (2.4)): for the KPZ fixed point starting from h.0; x/ D h0.x/,

h.t; x/
.d/
D sup

y2R

²
t1=3A.t�2=3x; t�2=3y/ �

1

t
.x � y/2 C h0.y/

³
: (4.6)

The Airy sheet A.x; y/ can be thought of as h.1; x/ starting from a narrow wedge at y at
time 0, and it therefore involves coupling different initial conditions. The construction of the
KPZ fixed point from TASEP described above leads to the Airy sheet through subsequential
limits: TASEP can be constructed with coupled initial conditions but, as far as is known, one
loses access to explicit formulas, and hence the distribution of the Airy sheet is unknown.
This led to a problem in that it was unclear that (4.6) even involved a unique object on
the right-hand side. This problem was overcome in [15], where the Airy sheet (and, more
generally, its space-time version known as the directed landscape) was constructed directly
in terms of an LPP problem on the Airy line ensemble, and where the authors showed that it
is the scaling limit of Brownian LPP, putting the variational formula (4.6) on a solid footing
([31] confirmed that, as expected, both constructions define the same object).

The methods used in [15] are very different from those presented here (they use heav-
ily, in particular, a version of the RSK correspondence), and provide an alternative approach
to the study of the KPZ fixed point. As an example, they have been used to prove a strong
version of the local Brownian property mentioned above: the KPZ fixed point h.t; x/ is
absolutely continuous (in x) with respect to a Brownian motion on compact intervals [44].

Convergence for other models. We have constructed the KPZ fixed point as a scaling limit
of TASEP. With the description of this universal limit at hand, an important and natural
problem that follows is to show that it is too the limit of other models conjectured to be
in the class. Since the methods we described in Section 3 are applicable to a wider class
of determinantal interacting particle systems, it is natural to expect that convergence can
be proved for those, too. This has been done for the model of one-sided reflected Brownian
motions [31], and can also be done for the variants of TASEP covered in [29] (although in this
last case the details have not yet been worked out). The methods from [15], on the other hand,
have been extended in [16] to show convergence of several (exactly solvable) LPP models.

Recently in [43,53] the convergence was extended to the KPZ equation, asymmetric
exclusion processes and Brownian last passage percolation. These major results required
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new ideas, since those processes are not determinantal; however, the methods still rely on
integrability to a certain extent, and the convergence to the KPZ fixed point for more general
models (e.g., ballistic deposition or LPP with general weights) remains wide open.

5. Integrability of the KPZ fixed point transition

probabilities

The description of the KPZ fixed point given in the last section leaves open the ques-
tion as to whether it satisfies some sort of a stochastic equation. The variational formula (4.6)
gives a partial answer; however, the distribution of the Airy sheet and the functional of the
Airy line ensemble from which it arises are not explicit. In this sense, (4.6) is not satisfying
as a universal scaling invariant equation. But we can do something else.

Stochastic integrability. Recall the definition (4.2) of the Brownian scattering operator,
the main building block in the KPZ fixed point formulas. Notice that, at least formally, we
can write Khypo.h0/

t D e� t
3 @3Khypo.h0/

0 e
t
3 @3 . Remarkably, the dependence of Khypo.h0/

t on t is
completely decoupled from the dependence on the initial data. Moreover, the time evolution
is linear: at the level of the extended Brownian scattering operator (4.4), it satisfies the Lax
equation

@t Khypo.h0/
t;ext D

�
�
1

3
@3;Khypo.h0/

t;ext

�
; (5.1)

where ŒA; B� D AB � BA; in other words, the equation reads

@t Khypo.h0/
t;ext .xi ; ui I xj ; uj / D �

1

3
.@3

ui
C @3

uj
/Khypo.h0/

t;ext .xi ; ui I xj ; uj /:

The dynamics is thus trivial at the level of the kernels, and the KPZ fixed point finite-
dimensional distributions are recovered by projecting down via the Fredholm determi-
nant (4.3). This provides a representation for the temporal evolution of the KPZ fixed point
under which the flow is linearized; from this perspective, one might say that this presents
the KPZ fixed point as a stochastic integrable system (cf. [17]). Note that, in view of Theo-
rems 2.4 and 3.1, TASEP is integrable in the same sense; this is separate from (though, of
course, not unrelated to) other aspects of TASEP’s exact solvability such as the coordinate
Bethe ansatz leading to (2.8), the algebraic Bethe ansatz leading to its diagonalization [36],
or its relation with the Schur process (see, e.g., [11]).

Note that an equation of the same nature can be written for the dependence of the
Brownian scattering operator on the spatial variables: one has

.@x1 C � � � C @xm/K
hypo.h0/
t;ext .xi ; ui I xj ; uj / D .@2

uj
� @2

uj
/Khypo.h0/

t;ext .xi ; ui I xj ; uj /: (5.2)

We have stated this identity in terms of the differential operator @x1 C � � � C @xm in order to
write a simple formula, but this will actually be consequential below.

Kadomtsev–Petviashvili equation. For fixed h0 2 UC and m 2 N, let

F.t; x1; : : : ; xm; r1; : : : ; rm/ D Ph0

�
h.t; x1/ � r1; : : : ; h.t; xm/ � rm

�
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denote the m-point distribution of the KPZ fixed point. We will see now that the stochastic
integrability of Khypo.h0/

t leads to a description of F in terms of a classical dispersive PDE.
Shifting the variables inside the Fredholm determinant in (4.3), F can be written as

F.t; x1; : : : ; xm; r1; : : : ; rm/ D det.I � K/ (5.3)

where the determinant is on the m-fold direct sum of L2.Œ0;1// (which we have identified
with L2.¹x1; : : : ; xmº � Œ0;1//) and

Kij .ui ; uj / D Khypo.h0/
t;ext .ui C ri ; uj C rj /:

Next we introduce an m �m matrix-valued function Q defined in terms of K as follows:

Q.t; x1; : : : ; xm; r1; : : : ; rm/ D .I � K/�1K.0; 0/

(see [40] for the fact that the right hand side is well-defined). Note that each entry of Q
depends on t and each of the xi ’s and ri ’s, but we omit this from the notation. Finally, let

Dr D @r1 C � � � C @rn ; Dx D @x1 C � � � C @xn : (5.4)

Theorem 5.1 ([40]). Fix an initial condition h0 2 UC for the KPZ fixed point and define F
and Q as above. Then

Dr logF D trQ;

whileQ and its derivative q D DrQ solve the matrix Kadomtsev–Petviashvili (KP) equation

@tq C
1

2
Drq

2
C

1

12
D3

r q C
1

4
D2

xQC
1

2
Œq;DxQ� D 0: (5.5)

In particular, for the one point marginals of the KPZ fixed pointF.t;x;r/D Ph0
.h.t;x/� r/,

� D @2
r logF satisfies the scalar KP-II equation

@t� C
1

2
@r�

2
C

1

12
@3

r� C
1

4
@�1

r @2
x� D 0: (5.6)

The KP equation (5.6) was originally derived from studies of long waves in shallow
water [1], and plays the role of a natural two-dimensional extension of the Korteweg–de Vries
(KdV) equation. In fact, when � is independent of x, as is the case for flat initial data h0 � 0

in our setting (though other, nondeterministic choices are possible [27]), it reduces to KdV,

@t� C
1

2
@r�

2
C

1

12
@3

r� D 0: (5.7)

KP (as well as its matrix version) is completely integrable and plays an important role in
the Sato theory as the first equation in the KP hierarchy [30]. However, none of the previous
physical derivations of KP seem to be related to our problem. The proof of Theorem 5.1,
sketched below, is essentially by algebra, and we have no physical intuition yet as to why it is
true. (As a separate note, we mention that [37] derived essentially concurrently a connection
with superpositions of KP solitons for KPZ fluctuations with special initial data in a finite
volume setting).

In the one-point case (5.6), the initial data in our setting is �.0; x; r/ D 0 for r �

h0.x/, �.0; x; r/D �1 for r < h0.x/. The formal �1 can be replaced by a suitable decay
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condition as t & 0 but, in any case, this type of initial data is very far from what known
well-posedness schemes for KP can handle, and uniqueness for the solutions of (5.6) arising
from KPZ growth remains open. The initial data for the matrix version (5.5) is more delicate,
see [40].

What should be most striking about the statement of Theorem 5.1 is that the finite-
dimensional distributions satisfy a closed equation at all. In retrospect, one realizes that a
PDE for the evolution of the one-point distributions follows, in the special case of narrow
wedge and flat initial data, from scaling considerations and (2.2), (2.5) (see below). But
for general initial data h0 2 UC, this is way outside the scope of what had been expected.
And in any case, even knowing that the one-point distributions satisfy a closed equation,
in general one does not necessarily expect there to be multipoint equations (moreover, one
would tipically hope at best that the multipoint distributions satisfy a hierarchy of equations,
linking the m-point distribution to the k-point distributions for k < m); an exception is the
multipoint distributions of the Airy2 process, for which PDEs were expected to be satisfied,
some answers had been derived in [2, 52]. It is also not clear why the multipoint equation
should be written in terms of derivatives with respect to the variables r1 C � � � C rm and
x1 C � � � C xm in (5.4).

Let us very briefly sketch how Theorem 5.1 is proved. For simplicity, we restrict
to the one-point distribution F.t; x; r/ (in which case the proof amounts essentially to a
rediscovery of an argument which had been employed before in an abstract setting; see, e.g.,
[34]). Letting ˆ.t; x; r/ D @r log.F.t; x; r//, we have, using (5.3),

ˆ.t; x; r/ D @r log
�
det.I � K/

�
D � tr

�
.I � K/�1@rK

�
D .I � K/�1K.0; 0/I

the second equality is standard, while the third follows from a simple computation of the
trace of .I � K/�1@rK as

R 1

0
dx.I � K/�1@rK.x; x/ and the crucial fact that, by definition,

@rK.u; v/ D .@u C @v/K.u; v/: (5.8)

We can now compute derivatives ofˆ directly in terms of the derivatives of K with respect to
each parameter, using the last identity together with the evolution equations (5.1) and (5.2);
putting them together leads, after a couple of pages of computations, to (5.6) (the main dif-
ficulty is the nonlinear term in the KP equation, but this can be handled through a suitable
integration by parts formula).

Tracy–Widom distributions. One of the most striking aspects of the study of the KPZ
universality class is its connection with random matrix theory. The most prominent instance
of this connection is provided by (2.2) and (2.5), which state that the one point distribution
of the KPZ fixed point with narrow wedge and flat initial data are distributed, respectively,
as Tracy–Widom GUE and GOE random variables. A partial explanation for this in the
GUE/narrow wedge case is the fact, which we mentioned in Section 2, that some special
KPZ models (with very particular initial conditions, e.g., step for TASEP) can be coupled to
models which are naturally of random matrix type; in the GOE/flat case, such a connection
appears not to have been fully uncovered. In any case, the correct picture one should have
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in mind seems to be of KPZ and random matrix theory as two separate (though related)
domains which intersect, most prominently via the central role played by the Tracy–Widom
distributions on both sides.

This bears the natural question as to what makes the Tracy–Widom distributions so
special. One difficulty is that the Tracy–Widom distributions themselves seem to lack any
meaningful invariance. In the KPZ setting, however, Theorem 5.1 makes such an invariance
apparent. The crucial point is that the KP equation (5.6) is invariant (as it has to be, in view
of (1.4)) under the 1:2:3 rescaling

�.t; x; r/ 7! ˛�2�.˛�3t; ˛�2x; ˛�1r/; h0.x/ 7! ˛�1h0.˛
2x/: (5.9)

As we explain next, the Tracy–Widom distributions then appear in the context of the KPZ
universality class as special self-similar solutions of KP (the key being that both narrow
wedge and flat initial are invariant under the rescaling in (5.9)).

Consider first the narrow wedge case. From (2.3) and the 1:2:3 scaling invari-
ance (1.4), we have h.t; x/ C x2=t

.d/
D t1=3A2.t

�2=3x/ where A2 is the Airy2 process,
which is stationary. In view of (5.9), it is then natural to look for a self-similar solution of
the form �nw.t; x; r/ D t�2=3 nw.t�1=3r C t�4=3x2/. This turns (5.6) into the ODE

. nw/000 C 12 nw. nw/0 � 4r. nw/0 � 2 nw
D 0: (5.10)

The transformation  nw D �u2 takes (5.10) into the Painlevé II equation:

u00
D ruC 2u3: (5.11)

Known tail estimates for the Tracy–Widom GUE distribution (i.e. the one-point marginal of
the Airy2 process) imply that, as r ! �1, one has �nw.t; x; r/ � �. r

2t
C

x2

2t2 /. This picks
out the Hastings–McLeod solution of (5.11), u.r/ � � Ai.r/ as r ! 1, and thus we get

F.t; x; r/ D exp

´
�

Z 1

Or

ds .s � Or/u2.s/

µ
D FGUE.t

�1=3r C t�4=3x2/

with Or D
r

t1=3 C
x2

t4=3 , the last equality being the Painlevé II representation for FGUE famously
derived by Tracy and Widom [50].

In the flat case, h0 D 0, there is no dependence on x, so we need to look for self-
similar solutions of KdV (5.7), of the form �fl.t; r/ D .t=4/�2=3 fl..t=4/�1=3r/ (the factor
of 1=4 is for convenience), leading to . fl/000 C 12. fl/0 fl � r. fl/0 � 2 fl D 0. Miura’s
transform  fl D

1
2
.u0 � u2/ brings this to Painlevé II (5.11), with the same asymptotics as

r ! �1, and we recover, writing Or D 41=3t�1=3r (the second equality comes from [51])

F.t; x; r/ D exp

´
�
1

2

Z 1

Or

ds u.s/

µ
FGUE. Or/

1=2
D FGOE.4

1=3t�1=3r/:

6. KP in special solutions of the KPZ equation

The proof of Theorem 5.1 which we sketched above does not make any use of the
particular form of the Brownian scattering operator other than the fact that it satisfies the
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differential equations (5.1), (5.2), and (5.8) (together with some technical conditions). The
method thus applies in general to Fredholm determinants of kernels which satisfy the same
identities.

Surprisingly, it turns out that, in the one-point case, the method is applicable to
some special solutions of the KPZ equation (1.1), where for convenience we fix the scaling
� D � D

1
4

and � D 1. The simplest case is, again, the narrow wedge solution hnw of (1.1),
by which what is meant (see [7]) is that hnw D log.Z/ with Z the fundamental solution of
the stochastic heat equation with multiplicative noise (i.e., @tZ D

1
4
@2

xZ C �Z, Z.0; x/ D

ı0.x/): in the early 2010s a formula was obtained [3,13,18,46] for the KPZ generating function

Gnw.t; x; r/ D E
�
exp

®
�ehnw.t;x/C t

12 �r
¯�

which can be rewritten as det.I � K/ with

K.u; v/ D

Z 1

�1

d� t�2=3 e
.v�u/x=t

1C e�

� Ai
�
t�1=3.uC r � �/C t�4=3x2

�
Ai

�
t�1=3.v C r � �/C t�4=3x2

�
:

This kernel satisfies the necessary equations, and from this ones gets [40] that, remarkably,

�nw WD @2
r logGnw solves the KP equation (5.6): (6.1)

Similar derivations are available for the KPZ equation with half-Brownian/spiked, two-sided
Brownian and stationary initial data [40, 57]. What is common to these cases is that there
are special solvable models which converge to the KPZ equation and for which it has been
possible to derive explicit formulas under these choices of initial data. But this remains out
of reach for general initial conditions (and for multipoint distributions), and at this point it
is not known whether a statement such as (6.1) holds in any greater generality.
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