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Abstract

We consider the probability theory, and in particular the moment problem and universality
theorems, for random groups of the sort that arise or are conjectured to arise in number
theory, and in related situations in topology and combinatorics. The distributions of
random groups that are discussed include those conjectured in the Cohen–Lenstra–Martinet
heuristics to be the distributions of class groups of random number fields, as well as dis-
tributions of nonabelian generalizations, and those conjectured to be the distributions
of Selmer groups of random elliptic curves. For these sorts of distributions on finite and
profinite groups, we survey what is known about the moment problem and universality,
give a few new results including new applications, and suggest open problems.
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1. Introduction

In this paper we will discuss the probability theory of random groups that arise
in number theory and related areas, and the applications of that probability theory to other
fields. We focus on the moment problem and on universality results for these random groups.
While our focus is on the probability theory, we use potential applications in number theory,
as well as topology and combinatorics, to motivate the kind of random groups on which we
focus our probabilistic study.

One of the first motivating examples is the Cohen–Lenstra distribution on finite
abelian p-groups. Let p be a prime and let XCL be a random finite abelian p-group such that

Prob.XCL ' A/ D

Q
i�1.1 � p�i /

jAut.A/j

for each finite abelian p-group A. For p an odd prime, let CB be the Sylow p-subgroup of
the class group of a uniform random imaginary quadratic field K with jDisc Kj � B . Then
Cohen and Lenstra [15] conjectured that for each finite abelian p-group A,

lim
B!1

Prob.CB ' A/ D Prob.XCL ' A/; (1.1)

i.e., that the CB converge (in distribution) to XCL. This XCL is our starting example of a
random group whose probability theory we wish to understand. Throughout the paper, we
will consider more examples, including those related to generalizations of CB such as when
quadratic extensions are replaced by higher degree extensions or when the base field Q is
replaced by another number field or Fq.t/. We will consider nonabelian analogs where we
consider Gal.Kun=K/, the Galois group of the maximal unramified extension of K, in place
of the class group. We will mention connections to analogous random groups arising in other
fields, such as �1.M/ or H1.M/ for a random 3-manifold M , or the Jacobian (also known
as sandpile group) of a random graph.

With these examples in mind, we first discuss the moment problem. Given a random
variable X of a certain type, based on the type of random variable, we choose certain real-
valued functions f0; f1; : : : and call the averages E.fk.X// the moments of X . When X

is real valued, we usually take fk.X/ D Xk , but when X is a random group we usually
take fk.X/ to be the number # Sur.X; Gk/ of surjective homomorphisms from X to a
group Gk . The moment problem asks when the distribution of the random variable is deter-
mined uniquely from these moments. This is very useful in applications because the moments
are usually easier to access than a distribution itself, and we will discuss many applications
to class groups and their generalizations.

Next, we discuss universality questions in the sense of the central limit theorem. We
ask when and how can we build a random group from many independent inputs such that in
a limit the random group is insensitive to the distribution of the random inputs. When this
happens, the output distribution is, of course, a natural one (as in the normal distribution in
the Central Limit Theorem), and it tells us that such distributions are likely to arise in nature.
This can help provide further motivation and context for conjectures in number theory. As
the theory develops, we expect there will be further applications of these universality results
to other fields.
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For both topics, we will review what is known for random abelian and nonabelian
groups, mention many applications, prove a few new results and applications, and suggest
open problems.

1.1. Notation and conventions
We use E to denote the expectation of a real-valued random variable.
For a finite set S , we use #S or jS j to denote the size of the set.
We write Fq for the finite field with q elements.
For a set of primes P , a P -group is a group whose order is a product of powers of

primes in P , and a pro-P group is a profinite group all of whose continuous finite quotients
are P -groups. The pro-P completion of a group is the inverse limit of all of its P -group
quotients (and is a pro-P group).

We use Hom, resp. Sur, to denote homomorphisms, resp. surjective homomor-
phisms, always in the category of whatever the objects are in, e.g., for profinite groups we
take continuous homomorphisms, and for R-modules we take R-module homomorphisms.
Sometimes we use a subscript, e.g., SurR.A; B/, as a reminder of the category. We use Aut
to denote automorphisms with the same caveats.

When we take a random finite group, it is always with the discrete � -algebra on the
set of finite groups.

For random variables Y; X0; : : : with respect to a Borel � -algebra, we say the Xn

weakly converge in distribution to Y if for every open set U we have lim infProb.Xn 2 U / �

Prob.Y 2 U /. By the Portmanteau theorem, this is equivalent to many other conditions. In
this paper, in the topologies we consider, every open set is a countable disjoint union of
basic open sets (used to define the topology), and each basic open set is also closed. In these
settings, weak convergence in distribution is equivalent to having, for each basic open set U ,
limn!1 Prob.Xn 2 U / D Prob.Y 2 U / (see [33, Proof of Theorem 1.1]).

For an abelian group A, we have ^2A is the quotient of A ˝ A by the subgroup gen-
erated by elements of the form a ˝ a (and for an R-module A, we define ^2

RA similarly with
the tensor product over R) and Sym2 A is the quotient of A ˝ A by the subgroup generated
by elements of the form a ˝ b � b ˝ a.

For a group (resp. profinite group) G and elements g1; : : : 2 G, we write hg1; : : : i

for the normal subgroup (resp. closed normal subgroup) generated by g1; : : : .
For a function f .x/, we write f .x/ D O.g.x// to mean that there exists a constant

C such that for all x such that f .x/ is defined, we have jf .x/j � Cg.x/.
For a group G with an action of a group � , we write G� for the invariants, i.e.,

elements of G that are fixed by every element of � .
In the distributions of interest from number theory, there will usually be a random

number field, or random elliptic curve, or some such object behind the scenes. In these situa-
tions, there are a countable number of objects of interest (such as imaginary quadratic number
fields), and we consider some enumeration of them such that there are a finite number up to
some bound B , and then we take a uniform random object up to bound B , and consider the
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limit of these distributions as B ! 1. We do not wish to suggest that the uniform distri-
bution is the only distribution on a finite set. Indeed, the entire point of Section 3 is based
on the fact that there are many nonuniform distributions. Even beyond the question of the
distribution on the objects up to bound B , there is still a question of which enumeration one
takes and this can have interesting and important effects (e.g., see [3, 45]). However, since
we are using the examples from number theory mainly as motivation, in this paper we will
usually be very brief or not mention at all how exactly we take the random number theoretic
objects.

2. The moment problem

In probability, one often detects the distribution of a random variable by its moments,
i.e., the averages of certain functions of the random variable. Most classically, the moments
of a random variable X 2 R are the averages E.Xk/, indexed by natural numbers k, and the
(mixed) moments of a random variable .X1; : : : ;Xn/ 2 Rn are the averages E.X

k1
1 � � �X

kn
n /,

indexed by n-tuples of natural numbers .k1; : : : ; kn/.
The moment problem asks whether moments determine a unique distribution, and

results on the moment problem, such as the following, are foundational in probability theory.

Theorem 2.1 (Carleman’s condition). Let X be a random real number such that Mk D

E.Xk/ is finite for all integers k � 0. Then ifX
k�1

M
� 1

2k

2k
D 1; (2.2)

then there is a unique distribution for a random real number Y such that E.Y k/ D Mk for
all k � 0. In particular, if Mk D O.ek/, then (2.2) holds.

This kind of uniqueness result is useful in a situation when we have a conjectural
distribution, know its moments, and then can prove some random variable is distributed
as conjectured by showing it has those moments. In other situations, we have an unknown
distribution, compute its moments, and then recognize those as moments of a well-known
distribution, and can use a uniqueness result to show our distribution matches the well-known
one.

In many applications we have not a single random variable, but rather a sequence of
random variables, and we seek their limiting distribution. For this, we require a uniqueness
theorem that is robust, in the sense that we can prove that a sequence of random variables
whose moments converge to certain values must converge in distribution to a certain limit.

Now we will clarify some, slightly informal, language to talk about different aspects
of the moment problem. Suppose we are considering random variables taking values in some
set, and a sequence of real-valued functions f0; f1; f2; : : : on that set whose averages give
the moments of the random variables. We say we have uniqueness in the moment problem
for moments Mk 2 R, if the following holds: for any two random variables X; Y under
consideration, if for all k we have E.fk.X// D E.fk.Y // D Mk , then X and Y have the
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same distribution. We say we have robust uniqueness in the moment problem for moments
Mk 2 R, if the following holds: for any sequence of random variables Y; X1; X2; X3; : : :

under consideration, if for all k we have limn!1 E.fk.Xn// D E.fk.Y // D Mk , then the
Xn weakly converge in distribution to Y . We have existence in the moment problem for
moments Mk 2 R, if we know there exists a random variable X with E.fk.X// D Mk

for all k, and we have construction in the moment problem for moments Mk 2 R if we
have existence and can moreover explicitly describe X by giving useful formulas for its
distribution on enough subsets to generate the underlying � -algebra.

2.1. Robust uniqueness for random abelian groups
For example, Fouvry and Klüners [21] determined the distribution of the 4-ranks

.2CB/Œ2�, where CB is the 2-Sylow subgroup of the class group of a random imaginary
quadratic field as in Section 1, as B ! 1. Fouvry and Klüners proved the following result
(which covers all aspects of the moment problem for certain average values).

Theorem 2.3 ([22, Theorem 1]). If p is a prime and X1;X2; : : : are random finite-dimensional
Fp-vector spaces such that for every integer k � 0, we have

lim
n!1

E
�
# Sur

�
Xn; Fk

p

��
D 1;

then for each integer r � 0, we have

lim
n!1

Prob
�
Xn ' F r

p

�
D p�r2

Q1

j DrC1.1 � p�j /Qr
j D1.1 � p�j /

:

The distribution and averages in Theorem 2.3 are known to occur as
Prob.XCL=pXCL ' F r

p / and E.# Sur.XCL=pXCL; Fk
p //, respectively, for the random group

XCL introduced in Section 1 (see [15, Theorem 6.3, Corollary 6.5]), so there does exist a
random variable with these averages and its distribution can be explicitly described. In the
paper [21], Fouvry and Klüners determined the averages E.# Sur..2CB/Œ2�; Fk

2 //, and then
applied Theorem 2.3 to determine the distribution of 4-ranks of class groups of imaginary
quadratic fields (and did the analogous work for class groups of real quadratic fields).

Fouvry and Klüners actually write
Q

0�i<k.prkp.Xn/�pi
/, and we have interpreted

that as the number of surjective homomorphisms #Sur.Xn;Fk
p /. In [22], Fouvry and Klüners

translate the knowledge of the averages of
Q

0�i<k.prkp.X/�pi
/ for all k to the knowledge

of the averages of prkp.X/k D # Hom.X; Fk
p / for all k (which can be done by a finite sum

over the subgroups of Fk
p ). These latter averages are the classical moments of the random

number prkp.X/ D jX j. When our random groups get more complicated (and in particular
nonabelian), we will not be able to capture the entire data of our groups so simply in a number,
or even a sequence of numbers, but the functions # Sur.�; G/ or # Hom.�; G/ will continue
to be important and convenient functions whose averages we will call the moments (or Sur-
moments, Hom-moments) of a random group. (See [13, Section 3.3] for a discussion about
the fact that the Hom-moments for finite abelian p-groups are classical mixed moments of
certain numerical invariants of the groups.) The relationship between the Hom-moments and
the Sur-moments is analogous to the relationship of the moments E.Xk/ and the factorial
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moments E.X.X � 1/ � � � .X � k C 1// of a random real number—knowledge of either kind
of moments for k � m easily gives knowledge of the other kind for k � m, and the choice
of which to use mainly depends which is more convenient for the problem at hand.

Fouvry and Klüners’s proof of the robust uniqueness part of Theorem 2.3 actually
works whenever

E
�
# Hom.X; Fk

p /
�

D E
�
jX j

k
�

D O.pk2=2/

(see [22, Proposition 3]), echoing the refrain that moments that do not grow too quickly
determine a distribution. (Note that in this generality we are not claiming existence of a
distribution, but only uniqueness.) Such moments are too large to use Carleman’s condition
to conclude the distribution of jX j as a real number, and indeed there are different distribu-
tions of real numbers that give the same moments with this order of growth (e.g., various
distributions that have the same moments as the log-normal distribution). However, in our
setting, of course, jX j is restrained to be a power of p.

For a random cyclic cubic field K, with class group ClK with 3-torsion ClK Œ3�, Klys
[28] found the asymptotic moments of ClK Œ3�= ClK Œ3�Gal.K=Q/, and then applied the more
general form of Theorem 2.3 to determine the limiting distribution of ClK Œ3�=ClK Œ3�Gal.K=Q/.

Ellenberg, Venkatesh, and Westerland prove the following.

Theorem 2.4 ([19, Proposition 8.3]). If for each n � 0, we have a random abelian p-groups
Xn such that for every abelian p-group A we have

lim
n!1

E
�
# Sur.Xn; A/

�
D 1;

then the Xn weakly converge in distribution to XCL, i.e., for every abelian p-group B , we
have

lim
n!1

Prob.Xn ' B/ D Prob.XCL ' B/ D

Q
i�1.1 � p�i /

jAut.B/j
:

Ellenberg, Venkatesh, and Westerland use Theorem 2.4, along with a determination
of certain limiting moments of class groups of imaginary quadratic extensions of Fq.t/, to
prove that in a limit where the discriminant goes to infinity and then q goes to infinity, that the
`-Sylow subgroups of these class groups are as predicted by the Cohen–Lenstra heuristics
for any odd prime `, as long as ` − q � 1 [19, Theorem 1.2]. The work of Ellenberg, Venkatesh,
and Westerland also particularly pioneered the idea that it is useful to consider these averages
of surjection counts to be moments.

If we would like to consider more general finite abelian groups, and also distri-
butions that have other moments, we have the following theorem by the author. (The cited
results are stated with stronger bounds on the MA, but one can see that all that is used in the
proof is the hypotheses below.)

Theorem 2.5 (see [44, Theorem 8.3, proof of Corollary 9.2]). Let P be a finite set of primes,
and let A be the set of finite abelian P -groups. Let MA 2 R for each A 2 A such that
MA D O.j ^2 Aj/. Let Y; X1; X2; : : : be random groups in A. If for every A 2 A, we have

lim
n!1

E
�
# Sur.Xn; A/

�
D E

�
# Sur.Y; A/

�
D MA;
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then the Xn weakly converge in distribution to Y , i.e., for every B 2 A,

lim
n!1

Prob.Xn ' B/ D Prob.Y ' B/:

When A D Fk
p , we have j ^2 Aj D pk.k�1/=2, so we see a similar upper bound to

that of Fouvry and Klüners. Theorem 2.5 was applied in [44] to determine the limiting dis-
tribution of the Jacobians (also known as sandpile groups) of Erdős–Rényi random graphs,
and by Mészáros [37] to determine the limiting distribution of the Jacobians of random reg-
ular graphs. Mészáros’s result then had the striking corollary that the adjacency matrix of
a random regular graph is invertible with high probability, answering a long-standing open
question that is not a priori about random groups at all.

If we consider a random finite abelian group X , without any condition on primes
dividing its order, we have a uniqueness result by W. Wang and the author as a corollary of
Theorem 2.5.

Corollary 2.6 ([43, Theorem 6.13]). Let MA 2 R for each finite abelian group A such that
MA D O.j ^2 Aj/. Let X; Y be random finite abelian groups. If for every finite abelian
group A, we have

E
�
# Sur.X; A/

�
D E

�
# Sur.Y; A/

�
D MA;

then X and Y have the same distribution, i.e., for every finite abelian group B ,

Prob.X ' B/ D Prob.Y ' B/:

Proof. For a finite abelian group C , let Cp denote its Sylow p-subgroup. We have

Prob.X ' A/ D lim
z!1

Prob
�Y

p�z

Xp '

Y
p�z

Ap

�
:

Then we can apply Theorem 2.5 with P the set of primes at most z to conclude the corol-
lary.

However, for general finite abelian groups, robustness no longer holds (as it is pos-
sible the limit in n cannot be exchanged with the limit in z). As in [43, Example 6.14], we can
consider a random finite abelian group X , e.g., such that

Prob.X ' A/ D
�.2/�1�.3/�1�.4/�1 � � �

jAjjAut Aj
;

where � is the Riemann zeta function and we can also write �.2/�1�.3/�1�.4/�1 � � � as a
product over primes

Q
p

Q
i�2.1 � p�i /. (There is a random group with this distribution–see

e.g., [46, Proposition 2.1], and it is the limiting distribution predicted by Gerth’s extension
[25] of the Cohen–Lenstra heuristics for 2 ClK , where K is a random real quadratic field.)
Then consider the random groups X � Z=pZ for each prime p. For any finite abelian group
A, we have limp!1 E.# Sur.X � Z=pZ; A// D E.# Sur.X; A// since for p large enough
p − jAj. Yet the limiting distribution of the X � Z=pZ is the zero distribution, i.e., for each
A we have limp!1 Prob.X � Z=pZ ' A/ D 0. This is in stark contrast to the situation for
random real numbers [7, Theorem 30.2], where whenever the moments determine a unique
distribution, they do so robustly.
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2.2. When uniqueness fails
Another important example of distributions arising in number theory are those pre-

dicted by Poonen and Rains [39] as the asymptotic distributions of p-Selmer groups of
random elliptic curves. We consider two different random Fp vector spaces, with distribu-
tions given as follows:

Prob
�
Xodd ' Fk

p

�
D

8<:p�.k2�k/=2
Q1

j D0.1�p�2j �1/Qk
j D1.1�p�j /

k odd,

0 k even,

Prob
�
Xeven ' Fk

p

�
D

8<:p�.k2�k/=2
Q1

j D0.1�p�2j �1/Qk
j D1.1�p�j /

k even,

0 k odd.

(2.7)

Poonen and Rains [39] conjecture that these are the limiting distributions of p-Selmer group
of elliptic curves over Q of odd and even parity, respectively, and note [39, Proposition 2.22(c)]

that these distributions have the same moments, even though they are quite different distri-
butions, supported on entirely disjoint sets of groups. Indeed, there moments are as follows,
and we see that these cases are just beyond the bounds of the uniqueness results mentioned
above.

Theorem 2.8. For each k � 0, we have

E
�
# Sur

�
Xodd; Fk

p

��
D E

�
# Sur

�
Xeven; Fk

p

��
D p.k2Ck/=2; and

E
�
# Hom

�
Xodd; Fk

p

��
D E

�
# Hom

�
Xeven; Fk

p

��
D p.k2Ck/=2

kY
j D1

�
1 C p�j

�
:

Proof sketch. The Hom-moments are shown in [39, Proposition 2.22(c)]. The Sur-moments
can be found, in principle, by applying Möbius inversion to the Hom-moments. However, the
following argument is perhaps more practical. The distributions of Xodd and Xeven occur as
the limiting distribution of cokernels of uniform random n � n alternating matrices over Fp

(where n is odd or even, respectively). It is a general feature that for various computations it
can be helpful, even for a known distribution, to recognize it as the limit of natural distribu-
tions. We can see the claimed limit by counting exactly how many alternating matrices over
Fp have corank k for each k as in [31, Proposition 3.8] (see also [5, Theorem 1.10]). Then, one
can make a simple argument to compute the limiting moments of these random cokernels
as in [13, Theorem 11] (which does the analogous thing for symmetric matrices), and use the
explicit formulas for the distribution of the random cokernels for each k and n along with the
dominated convergence theorem, as in [13, Theorem 10], to deduce that the limiting moments
of the random cokernels agree with the moments of Xodd and Xeven.

However, in a setting as we have described, we could also use the additional infor-
mation that we are looking for a distribution supported only on groups of even rank (or odd
rank), along with the moments, to determine a distribution.

One important motivation for the conjectures of Poonen and Rains was the result
of Heath-Brown [26] determining the limiting distribution of 2-Selmer groups of a random
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quadratic twist of the congruent number curve. Heath-Brown showed that the limiting dis-
tribution for the quotient of the 2-Selmer group by the F2

2 coming from the 2-torsion points
on the curve is the Xodd distribution for twists D � 5; 7 .mod 8/ (when the Selmer rank
is odd), and the Xeven distribution for twists D � 1; 3 .mod 8/ (when the Selmer rank is
even). Heath-Brown determined these distributions by first determining the moments and
then proving a robust uniqueness result for the moment problem. Heath-Brown pointed out
that it was surprising that these different distributions had the same moment, and proved the
following robust uniqueness result, taking into account the parity.

Theorem 2.9 ([26, Lemma 18, proof of Theorem 2]). Let M0; M2; : : : be nonnegative real
numbers such that Mk D O.2k.kC1/=2/. Let Y; X1; X2; : : : be random even dimensional
F2-vector spaces. Then if for every even k � 0, we have

lim
n!1

E
�
# Hom

�
Xn; Fk

2

��
D E

�
# Hom

�
Y; Fk

2

��
D Mk ;

then the Xn weakly converge in distribution to Y , i.e., for every even r , we have

lim
n!1

Prob
�
Xn ' F r

2

�
D Prob

�
Y ' F r

2

�
:

The statement also holds if we replace “even” with “odd.”

Feng, Landesman, and Rains [20] face a similar issue (in a slightly different context,
where the random groups have fixed finite support of a given parity, but they only know
half the moments) and use knowledge of the parity along with moments to determine the
distribution of n-Selmer groups of elliptic curves of fixed height over Fq.t/ as q ! 1.

Given the two distributions of Xodd and Xeven on Fp-vector spaces given in (2.7),
one natural question is what are all the distributions on Fp-vector spaces with those same
moments. We will now show that these (plus their linear combinations) are the only such
distributions.

Theorem 2.10. Given nonnegative reals M�1; M0; M1; : : : , and p > 1, and b < 3, such
that Mk D O.p

k2Cbk
2 /, there is at most one simultaneous solution .xs/s to

1X
sD0

.�1/sxs D M�1 and

1X
sD0

xspsk
D Mk ; k D 0; 1; : : : ;

such that xs � 0 for all s.

We note that this proof strategy is in the style of the earliest work on this problem,
and not the more recent work, but it will also let us see some of the main features of the
moment problem.

Proof. We modify the method from [26, Lemma 18]. First, assuming we have a nonnegative
solution, we can bound xs using the k D s equation to obtain

xs D O
�
p

�s2Cbs
2

�
:
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From this it follows that for any N � 0 and k � N � 2,X
s�N

xspsk
D O

�X
s�N

p
�s2CbsC2ks

2

�
D O

�
p

�N 2CbN C2kN
2

�
;

where we allow the constant in the O to depend on p.
We take some positive integer N , and we truncate the system to write

N �1X
sD0

xspsk
D M 0

k

for k D �1; 0; 1; : : : ; N � 2 (except for k D �1 we replace psk with .�1/s). Let V be the
N � N matrix whose i; j coefficient is p.i�2/.j �1/ for i � 2 and .�1/j �1 for i D 1. Let x

be the vector with entries x0; : : : ; xN �1 and M 0 the vector with entries M 0
�1; : : : ; M 0

N �2.
Then Vx D M 0. (All of these implicitly depend on N .) We will just give the first row of V �1

explicitly. Since V is Vandermonde, we have detV D
Q

0�i<j �N �2.p
j �pi /

QN �2
iD0 .pi C1/.

Note that the .i; 1/ minor of V is also Vandermonde (after dividing out a factor from each
row) on the same elements, except for pi�2, (or �1 when i D 1). So we have�

V �1
�

1;j
D

˙p
.N �2/.N �1/

2 �.j �2/

.pj �2 C 1/
Q

0�i�N �2
i¤j �2

.pj �2 � pi /
(2.11)

for j > 1, and �
V �1

�
1;1

D
˙p

.N �2/.N �1/
2QN �2

iD0 .pi C 1/
;

and in all cases �
V �1

�
1;j

D O
�
p

�j 2Cj
2
�
:

So

x0 D

NX
j D1

�
V �1

�
1;j

M 0
j �2

D

NX
j D1

�
V �1

�
1;j

Mj �2 C O

 
NX

j D1

p
�j 2Cj

2

ˇ̌
Mj �2 � M 0

j �2

ˇ̌!

D

NX
j D1

�
V �1

�
1;j

Mj �2 C O
�
p

.b�3/N
2

�
;

meaning that x0 must be limN !1

PN
j D1.V �1/1;j Mj �2 (where the matrix V implicitly

depends on N ).
Once x0 is determined, we notice that our equations imply

1X
sD1

.�1/s�1xs D �.M�1 � x0/ and

1X
sD1

xsp.s�1/k
D .Mk � x0/p�k ;
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and we have a new system whose constants are still O.p
k2Cbk

2 /, and thus we can apply to
same reasoning to deduce x1; : : : , each have at most 1 possible value.

Corollary 2.12. If �odd; �even are the distributions of Xodd; Xeven, then any random
Fp-vector space X such that for all k,

E
�
# Hom

�
X; Fk

p

��
D p.k2Ck/=2

kY
j D1

�
1 C p�j

�
has distribution ��odd C .1 � �/�even for some 0 � � � 1.

Proof. Clearly, ��odd C .1 � �/�even give distributions with these same moments, and they
each assign a different probability to the group being odd rank. Let � be the probability that
X has odd rank. We apply Theorem 2.10 with xs D Prob.X ' F s

p/, and M�1 D 1 � 2�,
and Mk D p.k2Ck/=2

Qk
j D1.1 C p�j /, and find that there are unique values xs satisfying

the equations, which proves the corollary.

Open Problem 2.13. Besides the parity of the rank, are there other natural moments that
we can consider for random finite Fp-vector spaces, or finite abelian groups more generally,
so that with the additional moments we can strengthen uniqueness results to allow for larger
growing moments?

In forthcoming work of Nguyen and the author, we prove a generalization of the
robust uniqueness result of Theorem 2.9 for random finite abelian groups whose orders are
supported on a finite set of primes, with a parity condition on the group.

Theorem 2.14 (Nguyen–Wood, forthcoming). Let P be a finite set of primes, and let A be
the set of finite abelian P -groups. Let MA 2 R for each A 2 A such that MA D O.jSym2 Aj/.
Let a be an integer and Y; X1; X2; : : : be random groups in A, either

(1) all supported on groups of the form G � G, or

(2) all supported on groups of the form Z=aZ � G � G, for G with aG D 0.

If for every A 2 A, we have

lim
n!1

E
�
# Sur.Xn; A/

�
D E

�
# Sur.Y; G/

�
D MA;

then the Xn weakly converge in distribution to Y , i.e., for every B 2 A,

lim
n!1

Prob.Xn ' B/ D Prob.Y ' B/:

2.3. Random finite abelian groups with additional structure
The class groups of Galois fields are not just abelian groups, but are also

ZŒG�-modules, where G is the Galois group. Let ZŒG�0 D ZŒG; jGj�1�. Given a number
field k and a finite group G, the Cohen–Lenstra–Martinet heuristics [15, 16] give a distri-
bution on ZŒG�0-modules, and conjecture that a random G-extension of k has class group
who prime-to-jGj part is according to their distribution. Thus for potential number theoretic
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applications, one would like robust uniqueness for the moment problem for random finite
ZŒG�0-modules. W. Wang and the author have given such a robust uniqueness result (the
stated results are only for particular moments that occur in the Cohen–Lenstra–Martinet
heuristics, but the proof works without change for the result given here).

Theorem 2.15 (See [43, Theorem 6.11]). Let G be a finite group. Let P be a finite set of primes,
none dividing jGj, and let A be the set of finite P -group ZŒG�0-modules. Let MA 2 R for
each A 2 A such that MA D O.j ^2

ZŒG�0
Aj/. Let Y; X1; X2; : : : be random ZŒG�0-modules

in A. If for every A 2 A, we have

lim
n!1

E
�
# SurG.Xn; A/

�
D E

�
# SurG.Y; A/

�
D MA;

then the Xn weakly converge in distribution to Y , i.e., for every B 2 A,

lim
n!1

Prob.Xn ' B/ D Prob.Y ' B/:

Theorem 2.15 can be applied to work of Liu, Zureick-Brown, and the author [34],
to prove, for every finite group G, a function field analog of the Cohen–Lenstra–Martinet
heuristics for G-extensions over Fq.t/, as q ! 1, as we will see below. Wang and the author
[43, Theorem 6.2] have found the moments of the Cohen–Lenstra–Martinet distributions on
ZŒG�0-modules. In [34], we count and compare components of various Hurwitz schemes
to estimate the moments of the class groups of random G-extensions of Fq.t/, and notice
those moments, in the limit where q ! 1 and then the degree n of the (reduced) branch
locus of the cover (i.e., the size of the radical of the discriminant) goes to infinity, match
those predicted by Cohen–Lenstra–Martinet. Theorem 2.15 then tells us that the limiting
distribution of these class groups, when q and n both go to 1, and q is sufficiently large in
terms of n, is as predicted by the Cohen–Lenstra–Martinet heuristics. (Some caveats: these
results are only in the case of extensions split completely over infinity, are only about the part
of the class group that is prime to jGj, and q must be taken so that q � 1 is relatively prime
to all the primes in P , and q is prime to jGj and the primes in P . So these results do not see
the part of the class group that is affected by roots of unity in Fq.t/ [24,36].) Precisely, we
have the following.

Theorem 2.16 (Corollary of [34, Corollary 1.5] and [43, Theorems 6.2 and 6.11]). Let G be a
finite group and P be a finite set of primes that are relatively prime to jGj. Let B be a finite
abelian P -group ZŒG�-module, and BG D 0.

Let Kq;n be a uniform random Galois G-extension K of Fq.t/, split completely
over 1, with the norm of the radical of its discriminant K=Fq.t/ at most qn. Let Xq;n be
the product of the Sylow p-subgroups of the class group of Kq;n (more precisely, of its ring
of integers over FqŒt �) for p 2 P .

Then if qn is a sequence of prime powers growing sufficiently fast in n, such that
for all n we have that qn is relatively prime to jGj and all the primes in P and qn � 1 is
relatively prime to all the primes in P , then

lim
n!1

Prob.Xqn;n ' B/ D
c

jBjjAutG.B/j
;
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where c is a constant depending on G and P such that the limiting probabilities above sum,
over B , to 1.

Proof. By [34, Corollary 1.5], for every finite abelian P -group ZŒG�-module H with
H G D 0, and every � > 0, there is an N� , such that for n � N� , we haveˇ̌̌

lim
q!1

.q;jGj/D1
.q.q�1/;p/D1 for p 2 P

E
�
# SurG.Xq;n; H/

�
� jH j

�1
ˇ̌̌

� �=2:

For n � N� , we choose a Qn;� such that for q � Qn;� (satisfying the conditions above) we
have ˇ̌

E
�
# SurG.Xq;n; H/

�
� jH j

�1
ˇ̌

� �:

So, if for each n, we consider the smallest � such that n � N� , and then take qn � Qn;� , we
have

lim
n!1

E
�
# SurG.Xqn;n; H/

�
D jH j

�1:

Since ClOK is trivial and .jXq;nj; jGj/ D 1, we have XG
q;n D 0 [16, Corollary 7.7], so

if H is such that H G ¤ 0, we have # SurG.Xq;n; H/ D 0. By [43, Theorem 6.2], we have that
these are also the moments of the random ZŒG�-module Y such that for any finite abelian
P -group ZŒG�-module B with BG D 0 (on which Y is supported)

Prob.Y ' B/ D
c

jBjjAutG.B/j
;

where c is a constant depending only on P and G. Thus by Theorem 2.15 we conclude the
theorem.

As described by Wang and the author [43, Sections 7–8], the class groups of non-
Galois fields, away from certain bad primes, are also modules for a certain maximal order
o in a semisimple algebra depending on the Galois group G of the Galois closure over Q

and over the field itself, and moreover are determined (as modules) from the class group of
the Galois closure. The algebra o can be nontrivial even when the non-Galois field has no
automorphism. We can thus show that the Cohen–Lenstra–Martinet heuristics imply con-
jectures for the distribution of class groups of non-Galois fields. For the part of the class
group prime to jGj, analogous results to Theorem 2.16 for the non-Galois case then follow
formally from Theorem 2.16 and the results in [43]. However, for non-Galois extensions,
the “bad” primes avoided by the conjectures are not always all primes dividing jGj. So at
certain “good” primes p dividing jGj, we have shown in [43, Theorem 8.14] that the Cohen–
Lenstra–Martinet heuristics imply a conjectural distribution on the Sylow p-subgroups of
class groups of non-Galois extensions (with Galois closure of group G) as well. See [43,

Theorem 8.14] for the relevant notion of good primes. Here we mention a few examples of
good primes: 2 for S3 cubic extensions, 3 for A4 and S4 quartic extensions, 2 for quintic
D5 or A5 extensions. The moment calculations and the unique robustness of the moment
problem results in [43] include the situations for all good primes for non-Galois extensions,
as they are more generally for distributions of modules over maximal orders in semisimple
algebras.
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In particular, the robust uniqueness result in [43, Theorem 6.11] is a version of The-
orem 2.5 in which ZŒG�0 is replaced by a maximal order in a semisimple algebra. Sawin
[41, Theorem 1.3] has proven a version of Theorem 2.5, in which ZŒG�0 is replaced by any
associative algebra R such that there are only finitely many isomorphism classes of finite
simple R-modules, and Ext1R between any two finite R-modules is finite, but one requires
the stronger assumption that MA D O.jAjO.1//.

As another example of additional structure, for the Sylow p-subgroups of class
groups of quadratic extensions of Fq.t/, Lipnowski, Sawin, and Tsimerman find that these
groups have additional structure when pn j q � 1 [32] (where q � 1 crucially is the number
of roots of unity in Fq.t/). This structure involves two pairings and a compatibility relation,
and they call a group with such structure a pn-Bilinearly Enhanced Group. In [32, Section

8], they define moments for these enhanced groups and address the uniqueness and robust-
ness aspects of the moments problem in this context. They then apply their moment problem
result, along with the homological stability results of Ellenberg, Venkatesh, and Westerland
[19], to give a limiting distribution of Sylow p-subgroups of class groups of quadratic exten-
sions of Fq.t/, along with this extra structure.

2.4. Random nonabelian groups
One can also consider random nonabelian groups. A natural such group arising in

number theory is Gal.Kun=K/, the Galois group of the maximal unramified extension of
some random number field K. We have that Gal.Kun=K/ D � Ket

1 .Spec OK/ and this group
has abelianization ClK . The maximal pro-p quotient Gp.K/ of Gal.Kun=K/ is the p-class
tower group of K, the Galois group of Kp , the p-class tower of K.

Boston, Bush, and Hajir [9,10], inspired by the Cohen–Lenstra heuristics, developed
heuristics predicting the distribution of Gp.K/ for K a random imaginary (respectively,
real) quadratic field and p an odd prime. Boston and the author [11] found the moments of
the conjectural distribution of Boston–Bush–Hajir for imaginary quadratic fields, and prove
robust uniqueness for the moment problem for these moments.

Now, as we are considering random profinite groups, the set of isomorphism classes
of groups under consideration is uncountable, and we need to be more precise about the mea-
sure theory. For a quadratic field K, note that Gp.K/ has an action of Z=2Z D Gal.K=Q/,
by lifting elements to Gal.Kp=Q/ and conjugating. In general, this would only be an outer
action, but since p is odd, by the Schur–Zassenhaus theorem we can find a splitting of
Gal.Kp=Q/ ! Gal.K=Q/, and the resulting action of Gal.K=Q/ on Gp.K/ does not
depend, up to isomorphism, on the choice of splitting. Let Gp be the set of isomorphism
classes of finitely generated pro-p groups with a continuous action of Z=2Z (i.e., where
morphisms must be equivariant for the Z=2Z action). A pro-p group has a canonical lower
p-central series defined by P0.G/ WD G, and for n � 0, we define PnC1.G/ to be the closed
subgroup generated by the commutators ŒG;Pn.G/� and Pn.G/p . A finitely generated pro-p
group G then has canonical finite quotients Qn.G/ WD G=Pn.G/. We let � be the � -algebra
on Gp generated by the sets ®

G j Qc.G/ ' P
¯
;
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as P ranges over p-groups. We consider all random variables valued in Gp to be for the
� -algebra �. (See [11, Section 3] for more details.) With these preliminaries, we can state the
uniqueness result of Boston and the author.

Theorem 2.17 ([11, Theorems 1.3 and 1.4]). Let p be an odd prime. There is a random
XBBH 2 Gp whose distribution is the predicted distribution of Boston–Bush–Hajir for Gp.K/

for imaginary quadratic K. For all finite P 2 Gp , we have

E
�
# SurZ=2Z.XBBH; P /

�
D 1:

If we have a random X 2 Gp such that, for all finite P 2 Gp , we have

E
�
# SurZ=2Z.X; P /

�
D 1;

then X has the same distribution as XBBH.

The argument in [11] actually shows the following more general uniqueness result.

Theorem 2.18 (see [11, Lemma 4.7, proof of Theorem 4.9]). Let p be a prime and MP 2 R for
each finite P 2 Gp . Let G c

p the image of Gp under Qc . Suppose that for each c � 0 and each
P 2 G c

p , we have X
Q2G c

p

MQjSurZ=2Z.Q; P /j

MP jAutZ=2Z.Q/j
< 2: (2.19)

If we have random X; Y 2 Gp such that, for all finite P 2 Gp , we have

E
�
# SurZ=2Z.X; P /

�
D E

�
# SurZ=2Z.Y; P /

�
D MP ;

then X and Y have the same distribution.

The challenge in applying Theorem 2.18 is that it is not at all clear how one can
evaluate the sum in (2.19). Note that (2.19) is a sum of quite a different flavor than if we
were considering abelian groups. In particular, we do not have any convenient enumeration
of all finite p-groups, and so evaluating this sum seems to involve a rather difficult group
theory problem. In [11], we prove that (2.19) holds when p is odd and all MP are 1, but by
a round-about argument that uses the construction of XBBH.

In [11], we analyze components of certain Hurwitz schemes to prove that in a certain
function field analog some of the moments of Gp.K/ for quadratic K=Fq.t/ (ramified at
infinity) agree with the conjectures of Boston, Bush, and Hajir. In our result [11, Theorem 1.5],
we let the degree of the discriminant go to infinity, and then let q go to infinity, and as
in Theorem 2.16 we require that .q; 2p/ D 1 and .q � 1; p/ D 1. This result involves the
generally more difficult limit of letting q go to infinity after the bound on the discriminant, as
in the theorem of [19], and we also use the theorem of Ellenberg, Venkatesh, and Westerland
[19] on the homological stability of Hurwitz spaces in the proof.

While Theorem 2.17 certainly helps contextualize the result of [11] on function field
moments, it does not immediately apply because Theorem 2.17 proves only uniqueness and
not robust uniqueness, which would be required in our desired applications, as they involve
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limits of distributions. In the nonabelian setting, Sawin recently proved a robust uniqueness
result however that can be applied.

We will now explain what is required for this robust uniqueness result for nonabelian
profinite groups. Fix a finite group � , and consider the set G of isomorphism classes of
profinite groups with a continuous action of � , finitely many surjections to any finite group,
and all continuous finite quotients of order relatively prime to j�j. We will define a topology
on G , introduced by Liu, Zureick-Brown, and the author [34] (based on [33]), and our � -
algebra � will be the Borel � -algebra for that topology. As we used Qc.G/ above, we would
like our topology to filter our profinite groups by certain canonical finite quotients. We will
make such a canonical finite quotient for any finite set C of finite groups with an action of �

(we call these �-groups). Let NC be the closure of C under taking �-equivariant subgroups,
products, and quotients. Let GC be the inverse limit of all quotients of G that are in NC . Then
these GC (indexed by finite sets C of finite groups) are the canonical quotients we will use.
We then use the topology on G whose open sets are generated by®

G j GC
' H

¯
;

where H ranges over all finite �-groups. Then Sawin’s robust uniqueness result can be stated
as follows.

Theorem 2.20 ([41, Theorem 1.2]). Let � be a finite group and C be a finite set of finite
�-groups whose orders are relatively prime to j�j. For every finite �-group H , let MH 2 R

such that MH D O.jH jO.1//. Let Y; X1; X2; : : : be random groups in G . Assume that for
every finite �-group H with H C D H , we have

lim
n!1

E
�
# Sur�.Xn; H/

�
D E

�
# Sur�.Y; H/

�
:

Then for every finite group H with an action of � ,

lim
n!1

Prob.XC
n ' H/ D Prob.Y C

' H/: (2.21)

Corollary 2.22. Let � be a finite group. For every finite �-group H , let MH 2 R such that
MH D O.jH jO.1//. Let Y; X1; X2; : : : be random groups in G . Assume that for every finite
�-group H , we have

lim
n!1

E
�
# Sur�.Xn; H/

�
D E

�
# Sur�.Y; H/

�
:

Then the distributions of the Xi weakly converge to the distribution of Y .

Sawin proved Theorem 2.20 in order to apply it to results of Liu, Zureick-Brown,
and the author [34]. We discussed above that the moments of the class groups of random
�-extensions K=Fq.t/ were found in the paper [34] (as q ! 1), but this paper found, more
generally, the moments of Gal.K#=K/, where K# is the maximal unramified extension of K

that is prime to j�j, prime to q.q � 1/, and split completely at infinity [34, Theorem 1.4].
Moreover, the paper constructed a distribution on random groups with these moments [34,

Theorems 1.2 and 6.2]. Sawin applied his result [41, Theorem 1.1] to conclude that (in a limit
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where q ! 1 fast enough compared to n, similar to Theorem 2.16) the random profinite
groups Gal.K#=K/ converge in distribution to the group constructed in [34].

For quadratic extensions K=Fq.t/, we can apply the work of Liu, Zureick-Brown,
and the author [34], the homological stability result of Ellenberg, Venkatesh, and Westerland
[19], and Sawin’s result Theorem 2.20, and find the limiting distribution of the maximal
unramified odd extension of K when q; n ! 1 in any way. Let X be a random profinite
group with an action of Z=2Z with distribution �1 from [34, Section 4] (with � D Z=2Z).
The measure of this distribution on basic opens is given explicitly in [34, Equation (4.14)]. Let
Fm be the free odd profinite group on m generators, with a Z=2Z D h�i action inverting each
of the generators, and let yi be independent random elements of Fm from Haar measure.
Then in [34, Section 3], it is shown that Fm=hy�1

1 �.y1/; : : : ; y�1
mC1�.ymC1/i converge in

distribution to X , as m ! 1. Let XP be the pro-P completion (i.e., the inverse limit of all
the finite P -group quotients) of X .

Theorem 2.23. Let P be a finite set of odd primes. Let Kq;n be a uniform random quadratic
extension K of Fq.t/, split completely over 1, with Nm Disc K=Fq.t/ � qn. Let KP be the
maximal unramified extension of K, split completely at infinity, all of whose finite subexten-
sions have degree a product of primes in P . Let Xq;n D Gal.KP

q;n=Kq;n/.
Then as q; n ! 1 in any way such that q is odd, relatively prime to the primes in

P , and q � 1 is relatively prime to the primes in P , then

Xq;n converge in distribution to XP :

Proof. Let � D Z=2Z. We follow [34, Proof of Theorem 1.4], but will use the homological
stability result of Ellenberg, Venkatesh, and Westerland [19]. Let H be a finite P -group
with an action of � , such that the coinvariants H� are trivial (note this is equivalent to the
admissibility condition in [34], given the condition on P ).

Let q be a prime power relatively prime to 2 and all the primes in P , and let q � 1

be relatively prime to all the primes in P . Let E�.n; q/ be the set of quadratic extensions
K=Fq.t/, split completely at infinity, with Nm Disc K=Fq.t/ D qn. Note n must be even for
there to exist such a K (e.g., by the Riemann–Hurwitz formula). Let G D H Ì � . Let c be
the set of elements of G of order 2, and note by the Schur–Zassenhaus Theorem this is a
single conjugacy class of G. Then there are Hurwtiz schemes HurnG;c , Hurn

�;�n¹1º
constructed

in [34], such that by [34, Lemma 10.2]�
H W H �

� X
K2E� .n;q/

# Sur�

�
Gal.KP =K/; H

�
D #HurnG;c.Fq/

and
#E�.n; q/ D #Hurn�;�n¹1º

.Fq/:

For n sufficiently large given G, by [34, Theorem 10.4], we have that #HurnG;c and #Hurn
�;�n¹1º

have the same number, zn, of Frobenius fixed components over NFq . Moreover, zn is positive
for even n because we know Fq.t/ has quadratic extensions split completely at infinity and
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so #Hurn
�;�n¹1º

has Fq-points. By the Grothendieck–Lefschetz trace formula, we have

ˇ̌
#HurnG;c.Fq/ � znqn

ˇ̌
�

2n�1X
j D0

qj=2 dim H
j

c; Ket

�
.HurnG;c/ NFq

; Q`

�
;

for some ` ([34, Lemma 10.3] tells us .HurnG;c/ NFq
is smooth and n-dimensional). By [34,

Lemma 10.3], we then haveˇ̌
#HurnG;c.Fq/ � znqn

ˇ̌
�

2n�1X
j D0

qj=2 dim H 2n�j
�
.HurnG;c/C; Q

�
:

By [19, Theorem 6.1, Proposition 2.5] (their CHurc
G;n is the topological space of the analytic

topology of our .HurnG;c/C by [34, Section 11.3], and we can easily check their nonsplit-
ting condition is satisfied here), there exist constants C and D, depending on G, such that
dim H k..HurnG;c/C; Q/ � CDk . Thus we have

ˇ̌
#HurnG;c.Fq/ � znqn

ˇ̌
�

2n�1X
j D0

qj=2CD2n�j :

For q � D4, we haveˇ̌
#HurnG;c.Fq/ � znqn

ˇ̌
�

2n�1X
j D0

C qn=2Cj=4
�

2C qn�1=4

1 � q�1=4
:

By the same argument, we have the same inequalities for Hurn
�;�n¹1º

Summing over even
n � N , we conclude that if q; n ! 1 in any way, we have

1

#E�.n; q/

X
K2E� .n;q/

# Sur�

�
Gal.KP =K/; H

�
!
�
H W H �

��1
:

By [34, Theorem 6.2], we see these are exactly the moments of the random �-group XP

described above. Thus applying Theorem 2.20, we conclude the result.

The methods of the paper [34] can find the moments of the maximal unramified
extension of a random � extension K=Fq.t/ even when we allow parts not prime to q � 1,
but the obstruction to proceeding is that there is no candidate conjectural random group with
those moments. This brings us to the first case in this story when there was not an already
known conjectural distribution that one was trying to show some distributions from number
theory converged to. So we naturally turn to the existence and construction aspects of the
moment problem.

All of the questions on moment problems for random groups discussed above have
been reducible to questions of a countable list of linear equations in a countable number
of variables, and whether they have a unique solution. The equations and variables are
parametrized by groups, and the coefficients are given by group theoretic quantities (numbers
of surjective homomorphisms). In Theorem 2.10, we made these equations quite explicit,
and inverted the implicit infinite matrices by truncating them to finite matrices that we could
explicitly invert. This is an approach that works well when the groups involved are Fp-vector
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spaces, but it becomes less and less tractable as the groups get more complicated. For finite
abelian groups, one relies on the classification of the groups and the ability to write a for-
mula for the number of surjections from one to another. For nonabelian groups, there is no
reasonable formulaic parametrization of the groups and their numbers of surjections. Theo-
rem 2.20 is proved by a localization process that reduces the question to one only involving
a smaller list of groups that can be classified and for which the number of surjections can be
simply expressed.

All of these proofs of uniqueness, at least in principle, give some expression for the
(only possible) solutions to these systems of equations. What then remains of the existence
question? (1) The solutions must be nonnegative in order to describe a measure. (2) The
determined values must further be shown to satisfy the equations. (3) In some cases, the
solutions must be compatible in order to describe a measure.

We elaborate a bit on what these remaining problems are like. First we consider (1).
In Theorem 2.10, we find an expression for x0, the probability of the trivial group, as

lim
N !1

NX
j D1

.V �1/1;j Mj �2;

where the Mj are the given moments, and the coefficients of the inverse matrix are given
explicitly in (2.11). The other xi are given similarly, with modified values of Mj . It is not
clear whether one should expect a simple criterion for whether these values are nonnegative,
but it seems conceivable that for a particular nice family of Mj of interest that one could, with
work, prove the values of the xi that are determined are indeed positive. Addressing (2), one
could hope to prove for sufficiently bounded moments that these determined values satisfied
the equations. We cannot see problem (3) above when the random groups are just Fp-vector
spaces, but even in the case of finite abelian p-groups, some approaches prove that the dis-
tribution on groups mod p is determined, and then that the distribution on groups mod p2

is determined, etc. One can see this feature explicitly in the statement of Theorem 2.20. So,
in such cases, to prove existence, one would have to check that the determined values were
compatible and could be pieced together into a probability distribution.

The construction problem, which we have described above as giving useful formulas
for the distribution, now turns on what useful means. The formulas for the distributions that
arise from the uniqueness proofs above are generally infinite sums. One might not expect to
solve this for general moments, but perhaps only for specific moments that arise in particular
problems. We propose as one test of usefulness—can one detect if the distribution assigns
value 0 to any particular basic open set? Note that the distributions on finite abelian groups we
have seen above in Theorems 2.3 and 2.4 and in (2.7) all have this property. The distributions
on non-abelian groups we have discussed, including those of Boston, Bush, and Hajir, and
Liu, Zureick-Brown, and the author also have this property (see [11, Lemma 4.8], [34, Theorem
4.12]). Other tests for usefulness may come from the features of the desired application, but
we emphasize that there can be a significant gap between having a formula for a distribution
as an infinite sum, and being able to use that formula in practice to answer questions about
the distribution.
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We mention briefly forthcoming work of Sawin and the author on the moment prob-
lem for profinite groups. This work will strengthen Theorem 2.20 so that larger growing
moments MH are allowed, up to the point where the statement is no longer true (e.g., because
of the example (2.7)). We also prove a general existence result addressing the problems (2)
and (3) mentioned above. Our first applications are to problems where moments are known
but the distribution is not known. The first of these applications is mentioned above, and is
for the distribution of class groups or their nonabelian analogs, or order not prime to roots
of unity in the base field Fq.t/. The second is to the distribution of the profinite comple-
tion of random 3-manifolds (from random Heegaard splittings), as introduced by Dunfield
and Thurston [18]. In these applications, we also solve the construction problem, e.g., we
can describe explicitly the support of the limiting distribution, and we can use our formulas
for the limiting distribution to answer open questions about the distributions from number
theory and topology. Moreover, the 3-manifold application requires addressing situations
where uniqueness does not actually hold, and we recover uniqueness with additional parity
hypotheses, such as in Theorems 2.9, 2.10, and 2.14 above.

3. Universality

A central concept in probability theory is that of universality, which describes the
ubiquitous phenomena that many input independent distributions can be combined to make
an output distribution, and as the number of input distributions goes to infinity, the output
distribution becomes quite insensitive to the input distributions. The first and most well-
known example is the Central Limit Theorem.

Theorem 3.1 (Central Limit Theorem). Let X1; X2; : : : be independent, identically dis-
tributed random real numbers with finite mean � D E.Xi / and finite variance �2. Then as
n ! 1,

p
n

�
X1 C � � � C Xn

n
� �

�
converge in distribution to the normal distribution with mean 0 and variance �2.

Here the Xi are the input distributions, and their normalized sum is the output distri-
bution, and we see that the output, asymptotically, only depends on the variance of the input
distributions. The Central Limit Theorem is the tip of the iceberg, and probability theory is
filled with further examples of this kind of phenomenon.

Here we discuss a somewhat newer line of inquiry, namely universality for random
groups. In this case, the output distribution should be a random group, and the random group
is somehow built out of the input distributions. One natural way to obtain such a random
group is to start with a fixed random group F and take the quotient by random elements of
F that we call relators. If F is a free abelian group, F D Zn, and we collect m random relators
as the columns of a matrix M , then the quotient of F by our relators is the cokernel cok M

(by definition of the cokernel). This shows that questions about random abelian groups built
in this way can be rephrased as questions about cokernels of random integral matrices.
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3.1. Random finite abelian groups
The simplest sort of groups to consider, as in our discussion above on the moment

problem, are Fp-vector spaces. Let F D Fn
p . If M is an n � m matrix with coefficients in Fp ,

then the quotient of F by the columns of M , i.e., cok M , has rank equal to n � rank M D

corankM . Hence we translate questions about random Fp-vector spaces into questions about
ranks of random matrices over Fp . We note here that determining the rank distribution of
random matrices over Fp is a simple exercise if the matrices are uniformly distributed. The
entire interest here is when the matrix coefficients (still independent) are drawn from a wide
range of distributions, and in particular if there is a resulting universality in the distribution
of the ranks. There is a long history of work on this question. Kozlov [30] showed a uni-
versality result for the ranks over F2, and Kovalenko and Levitskaja [29] showed a version
over Fp . Both works require that the matrix entries take all possible values with positive
probability. Charlap, Rees, and Robbins [12] only determined the probability that a square
matrix is invertible, but allowed more general matrix entries. Balakin [2], Blömer, Karp, and
Welzl [8], and Cooper [17] determined the ranks for sparser matrices, with entries uniformly
distributed over nonzero values. The most general result we know is the following result of
Nguyen and the author.

Theorem 3.2 (Corollary of [38, Theorem 4.1]). Let p be a prime. Let u be a nonnegative
integer and ˛n a function of integers n such that for any constant � > 0, for n sufficiently
large we have ˛n � �.logn/=n. For every positive integer n, let Mn be a random n � .n C u/

matrix with independent entries �i;j;n 2 Fp that satisfy

max
a2Fp

Prob.�i;j;n D a/ � 1 � ˛n

for every i; j; n. Then for every r � 0,

lim
n!1

Prob.cokMn ' F r
p / D lim

n!1
Prob.rankMn D n � r/ D p�r.rCu/

Q1

j DrCuC1.1 � p�j /Qr
j D1.1 � p�j /

:

We see that there are separate universality classes for different u, i.e., different num-
bers of relations compared to the number of generators, but for fixed u a wide range of entry
distributions all give random groups in the same universality class. Note that Theorem 3.2
does not require the matrix entries to be identically distributed. It also allows the matrices
to be quite sparse. If Prob.�i;j;n D 0/ D 1 � .log n/=n, the matrix would have a row of all
zeroes with (asymptotically) positive probability, and this crosses a threshold for the behav-
ior of the random matrix, similar to the well-known threshold for the behavior of random
graphs and sparse random matrices in other contexts.

Open Problem 3.3. Lower the bound on ˛n in Theorem 3.2, as close to the .logn/=n thresh-
old as possible (and similarly for Theorems 3.4 and 3.6 below).

We next consider finite abelian p-groups, and now F D Zn
p (and Zp are the p-adic

integers). If we form a random group by taking n C u random relators, then the group is
cok M , where M is the matrix whose columns are the relations. Indeed, Theorem 3.2 is
actually a corollary of the following.
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Theorem 3.4 ([38, Theorem 4.1]). Let p be a prime. Let u be a nonnegative integer and
˛n a function of integers n such that for any constant � > 0, for n sufficiently large we
have ˛n � �.log n/=n. For every positive integer n, let Mn be a n � .n C u/ matrix with
independent entries �i;j;n 2 Zp that satisfy

max
a2Fp

Prob
�
�i;j;n � a .mod p/

�
� 1 � ˛n

for every i; j; n. Then for every abelian p-group A, we have

lim
n!1

P
�
cok.Mn/ ' A

�
D

1

jAjujAut.A/j

1Y
kD1

.1 � p�k�u/:

The proof of Theorem 3.4 builds heavily on the method in [47], but extends the
statement to include the sparse regime.

Proof of Theorem 3.2. The probabilities in Theorem 3.4 sum over A to 1 to give a probability
distribution for each u [47, Lemma 3.2]. Thus it follows from Fatou’s Lemma that we can
simply add up the probabilities from Theorem 3.4 for groups of rank r to obtain the limiting
probabilities in Theorem 3.2. This is done in [15, Corollary 6.5].

When u D 0, the distribution in Theorem 3.4 is the Cohen–Lenstra distribution
of XCL we have mentioned above, and when u D 1 it is the distribution conjectured by
Cohen and Lenstra [15] for the Sylow p-subgroups of class groups of real random quadratic
fields (for p odd). Let us now put these class groups in the context of random matrices,
following Venkatesh and Ellenberg [42, Section 4.1]. Let K D Q.

p
D/ for some negative

(resp. positive) square-free integer D, and S be any finite set of primes of K that generate
Cl.K/. We write O�

S for the S -units in the integers OK , and I S
K for the abelian group of

fractional ideals generated by the elements of S . Then

Cl.K/ D cok.O�
S ! I S

K /; (3.5)

where the map takes ˛ to the ideal .˛/. So the Sylow p-subgroup of Cl.K/ is
cok.O�

S ˝Z Zp ! I S
K ˝Z Zp/. Since I S

K and O�
S are both abelian groups of rank jS j

(resp. of ranks jS j and jS j C 1), we have written the Sylow p-subgroup of Cl.K/ as a
cokernel of a p-adic n � n matrix RD (resp. n � .n C 1/ matrix). One can now view the
Cohen–Lenstra conjecture for class groups of quadratic fields as asking whether universality
of Theorem 3.4 extends to the random matrix RD for random D. This point of view was a
motivation for the paper [47].

Now we consider random finite abelian groups more generally. For a finite set P

of primes, considering finite abelian P -groups turns out to be only notationally more chal-
lenging than considering abelian p-groups, and indeed [38, Theorem 4.1] is proven in this
slightly more general context. However, considering all primes at once is quite a bit more of
a challenge, because there will always be primes large compared to n. Nguyen and the author
develop a method to handle large primes (compared to n) and we prove the following.
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Theorem 3.6 ([38, Theorem 1.1]). For integers n; u � 0, let Mn�.nCu/ be an integral n �

.n C u/ matrix with entries i.i.d. copies of a random integer �n, with

lim sup
p prime

max
a2Fp

Prob
�
�n � a .mod p/

�
� 1 � n�1C�

and j�nj � nT for any fixed parameters 0 < � < 1 and T > 0 not depending on n. For any
fixed finite abelian group A and u � 0,

lim
n!1

P
�
cok.Mn�.nCu// ' A

�
D

1

jAjujAut.A/j

1Y
kDuC1

�.k/�1; (3.7)

where �.s/ is the Riemann zeta function.

Note this theorem has nice corollaries like the probability that a random map as
in Theorem 3.6 (for u D 1) from ZnC1 ! Zn is surjective is

Q1

kD2 �.k/�1 � 0:4358. As
in the proof of Theorem 3.2, one can obtain other probabilities as corollaries, such as (for
u � 1) the probability that cok.Mn�.nCu// is cyclic. However, when u D 0, the probabilities
in Theorem 3.6 are all 0 (from the �.1/�1 term), so this theorem tells us little about the
distribution of random abelian groups from n generators and n random relations. In [38,

Theorem 1.2] we do find the probability that cok.Mn�n/ is cyclic, and in [38, Theorem 2.4] more
generally give the probability that cok.Mn�n/ is any set of groups ¹A � C jC cyclic, p −
jC j for 1 < p < Y º. However, we are not able to distinguish a factor of Z=pZ for large p

from one of Z=p2Z, for example.

Open Problem 3.8. Find

lim
n!1

Prob
�
jcok Mn�nj is square-free

�
D lim

n!1
Prob

�
jdet Mn�nj is square-free

�
:

Note that finding the probability that a polynomial takes square-free values on even
the nicest distributions of integers is difficult and generally open, but there has been some
progress for certain discriminant polynomials by Bhargava [4] and Bhargava, Shankar, and
Wang [6]

Open Problem 3.9. Extend Theorem 3.6 to nonidentical entries.

The first connection of the Cohen–Lenstra heuristics to random matrices came from
work of Friedman and Washinton [23]. They considered the analog of the Cohen–Lenstra
conjectures for quadratic extensions of Fq.t/. In this case one can also describe the Sylow
p-subgroup of the class group of K (or more precisely of the Pic0) as the cokernel of a
certain random 2g � 2g random matrix I � F over Zp , where I is the identity matrix, and
F describes the action of Frobenius on the p-adic Tate module of the curve corresponding
to K [23, Proposition 2]. (Here p is not the characteristic of Fq .) Friedman and Washington
showed that the cokernels of random matrices from the (additive) Haar measure on n � n

matrices over Zp , as n ! 1, approach the Cohen–Lenstra distribution. However, the matrix
F above is not just any matrix; since it acts on the Weil pairing by scaling the pairing by q,
it lies in a generalized symplectic coset GSpq

2g.Zp/ (GSpq
2g.Zp/ is the coset of matrices

M such that M t JM D qJ , where J is an invertible alternating matrix, and in particular
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the M 2 GSpq
2g.Zp/ are invertible). Friedman and Washington prove that the cokernels of

random matrices I � M , where M is random from the (multiplicative) Haar measure on
GL2g.Zp/, as g ! 1, approach the Cohen–Lenstra distribution [23, Section 4]. Eventually,
it was understood that this also holds for I � M , where M is random from the Haar induced
measure on GSpq

2g.Zp/ and gcd.q � 1; p/ D 1. (This is not clearly stated in the literature,
but follows from work of Achter [1] and Ellenberg and Venkatesh [19] in a very round about
way, as outlined by Garton [24, p.153].)

We can view these results as additional examples of random matrices in the univer-
sality class of Theorem 3.4, even though the matrices do not have independent entries, and
also come from very special distributions. Another example that would fit into this category
is Mészáros’s theorem [37, Theorem 1] that says that the Laplacians of uniform random d -
regular directed graphs, for any d � 3, also have these limiting cokernel distributions. It is a
very interesting problem to extend this universality to matrices with dependent entries but for
broader classes of random matrices, where the degrees of freedom in choosing the distribu-
tion of random matrices is large. As an example, in [38, Theorem 1.6], we extend universality
to Laplacians of random matrices with independent entries (so matrices whose off-diagonal
entries are independent and whose columns sum to 0), which includes Laplacians of directed
Erdős–Rényi random graphs. However, this is a very special kind of dependency among
entries for which the methods are well-suited.

Open Problem 3.10. Extend Theorem 3.4 to more classes of matrices with dependent
entries.

Open Problem 3.11. Give a unified proof that multiple special classes of random matrices
are in the universality class of Theorem 3.4.

3.2. Random finite abelian groups with additional structure
Of course, if the entries of the random matrices have too much dependence in some

particular way, their cokernels may land in another universality class. For example, for sym-
metric matrices the author has proved the following.

Theorem 3.12 ([44]). Let p be a prime and 0 < ˛ < 1. For every positive integer n, let Mn

be a symmetric random n � n matrix with independent entries �i;j;n 2 Zp for i � j that
satisfy

max
a2Fp

Prob
�
�i;j;n � a .mod p/

�
� 1 � ˛

for every i; j; n. Then for every abelian P -group A, we have

lim
n!1

P
�
cok.Mn/P ' A

�
D

#¹symmetric, bilinear, perfect � W A � A ! C�º

jAjjAut.A/j

1Y
kD0

�
1 � p�2k�1

�
:

(Note the number of pairings can be described explicitly in terms of the partition
corresponding to the group A [44, Equation (2)].)
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Proof. Theorem 6.1 in [44] gives the moments, and then Theorem 2.5 shows they determine
a unique distribution, and [13, Theorem 2] gives formulas for the distribution when Mn is
taken from Haar measure, as in [44, Corollary 9.2].

Nguyen and the author have forthcoming work in which we extend Theorem 3.12 to
integer matrices (and all primes), analogous our results on n � n matrices over Z described
above (including obtaining the probability that the cokernel is cyclic).

One way of understanding why some random groups are in a different univer-
sality class is that the groups may be naturally coming with further structure than just
group structure. For example, the cokernel of a symmetric matrix over the integers (or Zp)
[13, Section 1.1] comes with a natural symmetric bilinear pairing. Clancy, Leake, and Payne
[14] suggested that for random graphs, the cokernels of the graph Laplacian, along with
their symmetric pairing, should be distributed proportionally to jAj�1jAut.A; h�; �i/j�1. If
we sum these expressions over isomorphism classes of pairings for a fixed group, we exactly
obtain the probabilities for groups in Theorem 3.12 (see [44, Corollary 9.2]). This reflects
an important part of the philosophy of the Cohen–Lenstra–Martinet heuristics—that the
natural distributions on algebraic objects must take into account all of the structure of the
objects. For example, when considering class groups of Galois number fields with Galois
group G, we consider the class group not just as a group but rather as a G-module, and the
predicted probabilities for a particular G-module involve the number of automorphisms of
the G-module (as a G-module). Since the distributions that arise from universality theorems
are certainly natural, we would expect them to share this sensitivity to extra structure, and
thus it makes sense that cokernels of symmetric matrices, since as such they have natural
symmetric pairings, should be distributed in a distribution that sees those pairings.

Open Problem 3.13. Prove that the cokernels of random symmetric matrices as in The-
orem 3.12, along with their pairings, are distributed as suggested by Clancy, Leake, and
Payne [14, Section 4]. One might naturally use moments of groups with pairings, and the
corresponding moment problem, as in [32, Section 8].

There are a few other classes of random groups that we know in this universality
class. The result [44, Theorem 1.1] extends Theorem 3.12 to cokernels of Erdős–Rényi random
graph Laplacians, also known as sandpile groups or Jacobians of the graphs. Mészáros
[37, Theorem 1.2] extends Theorem 3.12 to sandpile groups of d -regular graphs for d � 3

(unless d is even and p D 2, in which case a different distribution arises, likely reflecting
further structure of the pairing). Dunfield and Thurston [18, Section 8.7] show that the homol-
ogy H1.M; Fp/ for a 3-manifold from a random Heegaard splitting of genus g as g ! 1

approaches the universal distribution of Theorem 3.12, or more precisely the pushforward
of that distribution to elementary abelian p-groups under the map A 7! A=pA. (See [44,

Corollary 9.4] to see that this is indeed the pushforward.) Forthcoming work of Sawin and
the author finds the distribution more generally of H1.M;Zp/, along with the torsion linking
pairing, of these random 3-manifolds, and finds that it is in the natural distribution suggested
by Clancy, Leake, and Payne [14, Section 4]. So the presence of the symmetric pairing from
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the torsion linking pairing explains why the homology of random 3-manifolds appears in
this universality class.

Open Problem 3.14. Prove that the sandpile groups of Erdős–Rényi random graphs (or
uniform random d -regular graphs) along with their pairings, are distributed as suggested by
Clancy, Leake, and Payne [14, Section 4].

There are, however, many more algebraic structures that are important in arith-
metic statistics and other fields whose universality classes should be studied, such as random
abelian groups with an action of a group, or random modules.

Open Problem 3.15. Prove an analog of Theorem 3.4 for ZpŒG�-modules for a finite
group G (with p − jGj). More generally (as would be related to the Cohen–Lenstra–Martinet
heuristics for non-Galois fields, see [43, Sections 7–8]), prove an analog of Theorem 3.4 for
random o-modules, where o is a maximal order (over Zp) in a semisimple Qp-algebra.

Note that the reduction of Problem 3.15 mod p is a question about matrices over
finite fields. So part of solving the above will include generalizing Theorem 3.2 from Fp

to general finite fields Fq . In this more general case, the requirement that the �i;j;n are not
concentrated at a single point is not sufficient, and must be replaced with something like �i;j;n

not concentrated on a translate of a subfield. Kahn and Komlós [27] have shown universality
of the singularity probability of a random n � n matrix over Fq under such a condition.

Open Problem 3.16. For o a maximal order (over Zp) in a semisimple Qp-algebra, with an
order two automorphism � , such as o being the ring of integers of the unramified quadratic
extension of Qp , or o D Zp � Zp , prove an analog of Theorem 3.12 for random � -Hermitian
matrices (i.e. M such that �.M/ D M t ).

3.3. Random nonabelian groups
We now turn to universality questions for nonabelian random groups, which are

largely unstudied, but we expect contain much potential. One naturally starts with a free
group (or free profinite group) Fn and takes the quotient by independent random relations
in some way that involves many independent choices for each relations. As n ! 1, one
hopes that the limiting distribution is somewhat insensitive to the distribution from which
the relations are chosen. The first stumbling block when considering such questions is that it
is less clear how to take a random relation built up from many independent choices. When the
relation was in Fn

p or Zn
p , we could just take each coordinate independently. However, if Fn is

the free group (or free profinite group) on n generators, there are not analogous coordinates
in Fn. In the case of random nilpotent groups, one might consider using Mal’cev coordinates.
Another way to characterize the probability measures on Zn

p from which we drew relations
above, e.g., in Theorem 3.4, is that they are not concentrated at a point in any finite simple
quotient, so it may be interesting to consider the nonabelian version of that condition. While
it is not so clear what the parameters for the universality class should be, one has a natural
target for the universal distribution from a result of Liu and the author on the quotient of the
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free group by random relations. Let G be the set of isomorphism classes of profinite groups
with finitely many surjections to any finite group. (This is G from Section 2.4 with � D 1,
and we consider the same topology on it as defined there.)

Theorem 3.17 ([33, Theorem 1.1]). For every integer u, there is a random group Xu in G

whose measure is described explicitly on each basic open [33, Equation (3.2)]. If Fn is the
free profinite group on n generators, and ri are independent random elements of Fn drawn
from Haar measure, then as n ! 1 the quotients

Fn=hr1; : : : ; rnCui weakly converge in distribution to Xu:

As in [33, Section 14], one can consider usual (not profinite) free group Fn and take
random relations obtained from a random walk on Fn. However, as the length of the random
walk goes to infinity, these relation become equidistributed with respect to Haar measure,
and so this is not really a new example for the universality class.

Open Problem 3.18. Find some more general hypotheses for a distribution on Fn from
which one can draw independent relations so that Theorem 3.17 still holds.

While it would be nice to have hypotheses that allow a wide range of distributions,
i.e., a universality theorem, it would even be interesting to find other specific random groups
converging to the distributions Xu. We give one example here, which is a nonabelian analog
of the result of Friedman and Washington on cokernels of I � M , where M is random from
the Haar measure on GLn.Zp/.

Theorem 3.19. Let Fn be the free profinite group on n generators, and let Aut.Fn/ be the
group of (continuous) automorphisms of Fn, which is a profinite group [40, Corollary 4.4.4].
Let I 2 Aut.Fn/ be the identity and let ˛n be a random element of Aut.Fn/ with respect to
Haar measure. Then, as n ! 1,

Fn=
˝
˛n.x/x�1

j x 2 Fn

˛
weakly converge in distribution to X0;

(where X0 is defined as in Theorem 3.17).

We will compute the moments of these random groups, and then apply Corol-
lary 2.22 from Sawin’s result on the moment problem. To do that, we first need the moments
of X0. While it is an easy to see that for independent Haar relations ri , we have

lim
n!1

E
�
# Sur

�
Fn=hr1; : : : ; rnCui; A

��
D 1;

it does require some argument to interchange the limit in n and the expectation and obtain
these same moments for X0.

Lemma 3.20. Let X0 be defined as in Theorem 3.17. Then for any finite group H , we have

E
�
Sur.X0; H/

�
D 1:

Proof. We follow the strategy of [34, Theorem 6.2] adapted to our situation. Let Fn be the free
profinite group on n generators and let Zn be the random profinite group Fn=hr1; : : : ; rni,
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where the ri are random elements of Fn from Haar measure. For any positive integer `, let
C` be the set of finite groups of order at most `. We consider the following function defined
for any positive integer ` and any finite group G of level with GC` ' G,

fn.G; `/ D E
�ˇ̌

Sur.Zn; H/
ˇ̌
� 1

Zn
C` 'G

�
;

where 1
Zn

C` 'G
is the indicator function of Zn

C` ' G. We let �Fn W Fn ! .Fn/C` and �H W

H ! H C` be the natural quotient maps. Each � 2 Sur.Fn; H/ induces a map
� 2 Sur..Fn/C` ; H C`/. By the definition of random group Zn, we have

E
�ˇ̌

Sur.Zn; H/
ˇ̌
� 1

Zn
C` 'G

�
D

X
�2Sur.Fn;H/

Prob
�
r1; : : : ; rn 2 ker � and .Fn/C`=

˝
�Fn.r1/; : : : ; �Fn.rn/

˛
' G

�
:

(3.21)

Given � 2 Sur�.Fn; H/ and y1; : : : ; yn 2 ker �, we have that

Prob
�
r1; : : : ; rn 2 ker � j �Fn.ri / D yi for all i

�
D

jH C` jn

jH jn
:

This follows from the straightforward calculation thatˇ̌
��1

Fn
.yi / \ ker �

ˇ̌
D jFnj

ˇ̌
H C`

ˇ̌
=
�ˇ̌

F C`
n

ˇ̌
jH j

�
:

Then, summing over choices of yi 2 ker � such that .Fn/C`=hy1; : : : ; yni ' G, we have

Prob

 
r1; : : : ; rn 2 ker � and

.Fn/C`=
˝
�Fn.r1/; : : : ; �Fn.rn/

˛
' G

ˇ̌̌̌
ˇ �Fn.ri / 2 ker � for all i , and

.Fn/C`=
˝
�Fn.r1/; : : : ; �Fn.rn/

˛
' G

!
D

jH C` jn

jH jn
:

Thus (3.21) is equal to

jH C` jn

jH jn

X
�2Sur.Fn;H/

Prob

 
�Fn.ri / 2 ker � for all i , and

.Fn/C`=
˝
�Fn.r1/; : : : ; �Fn.rn/

˛
' G

!

D
jH C` jn

jH jn

X
�2Sur.Fn;H/

#

8̂̂<̂
:̂.�; �/

ˇ̌̌̌
ˇ̌̌̌ � 2 Sur..Fn/C` ; G/

� 2 Sur.G; H C`/

and � ı � D �

9>>=>>;
jAut.G/jjGjn

P0;n.UC`;G/; (3.22)

where P0;n.UC`;G/ is defined in [33] just before Lemma 9.5, and is the probability that n

independent uniform random elements in the kernel of .Fn/C` ! G generate that kernel
as a normal subgroup (as worked out in the proof of [33, Theorem 8.1]). (To explain the
above equality a bit more: if .Fn/C`=h�Fn.r1/; : : : ; �Fn.rn/i ' G then there is a choice of
� 2 Sur..Fn/C` ; G/ inducing that isomorphism, whose Aut.G/ orbit is unique, and N� must
factor through � since �Fn.ri / 2 ker �. Given a � , the probability that the relations are in
ker � and generate it as a normal subgroup is jGj�nP0;n.UC`;G/.)
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On the other hand, let � 2 Sur..Fn/C` ; H C`/. Then the composition map � WD � ı

�Fn is a surjection Fn ! H C` . The number of � 2 Sur.Fn; A/ such that � induces � we
denote by Sur.�; �H /. It is easy to see that

jSur..Fn/C` ; G/j

jGjn
� 1 and lim

n!1

jSur..Fn/C` ; G/j

jGjn
D 1;

and similarly
jSur.�; �H /j

jH jnjH C` j�n
� 1; lim

n!1

jSur.�; �H /j

jH jnjH C` j�n
D 1:

Then by (3.22), we obtain that fn.G; `/ D gn.G; `/P0;n.UC`;G/ where

gn.G; `/ D
jH C` jnjSur.�; �H /jj Sur..Fn/C` ; G/jjSur.G; H C`/j

jH jnjGjnjAut.G/j
and

g.G; `/ WD lim
n!1

gn.G; `/ D
jSur.G; H C`/j

jAut.G/j
:

Now we apply [34, Lemma 5.10], where condition (1) holds by definition, (2) from the above,
and (3) follows from the definition of fn.G; `/. This allows us to conclude, for every `,X

G
GC` 'G

lim
n!1

fn.G; `/ D lim
n!1

fn.trivial group; 1/ D lim
n!1

E
�ˇ̌

Sur.Xn; H/
ˇ̌�

D 1: (3.23)

When ` is sufficiently large such that H C` ' H ,

lim
n!1

fn.G; `/ D lim
n!1

ˇ̌
Sur.G; H/

ˇ̌
Prob

�
.Zn/C` ' G

�
D
ˇ̌
Sur.G; H/

ˇ̌
Prob

�
.X0/C` ' G

�
;

where the last equality is by Theorem 3.17. Hence (3.23) gives the desired result in the
lemma.

Proof of Theorem 3.19. We compute the moments of Fn=h˛n.x/x�1 j x 2 Fni. Consider a
fixed finite group H . If H can be generated by n elements, then there are some number of
surjections � W Fn ! H . Those surjections that factor through the quotient

Fn=
˝
˛n.x/x�1

j x 2 Fn

˛
are exactly those � such that �˛ D �. So

E
�
# Sur

�
Fn=

˝
˛n.x/x�1

j x 2 Fn

˛
; H

��
D

X
�2Sur.Fn;H/

Prob.�˛ D ˛/:

The action of Aut.Fn/ on Sur.Fn; H/ is transitive [35, Proposition 2.2], and factors through
a finite group. So Prob.�˛ D ˛/ D jSur.Fn; H/j�1. Thus, as long as H can be generated
by n elements, we have

E
�
# Sur

�
Fn=

˝
˛n.x/x�1

j x 2 Fn

˛
; H

��
D 1:

Thus we can use Theorem 2.20 and Lemma 3.20 to conclude the theorem.

Of course, if any kind of universality result can be proven for nonabelian random
groups, it would then be interesting to extend the methods to particular nonabelian groups
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with additional structure that are arising in number theory and topology. So far the applica-
tions of these sort of universality methods for random groups have largely been in combina-
torics. We expect that as the methods become developed, there will be further applications,
including in number theory and topology.
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