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ABSTRACT

In 1943 Hadwiger conjectured that every graph with no K; minor is (¢ — 1)-colorable for
every ¢t > 1. Hadwiger’s conjecture generalizes the Four Color Theorem and is among most

studied problems in graph theory.

In this paper we survey the ideas behind recent progress towards this conjecture, which,

in particular, allowed for the first asymptotic improvement since 1980s on the number of

colors sufficient to color every graph with no K; minor.
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1. INTRODUCTION

In 1852 Francis Guthrie (see, e.g., [33]) conjectured that every planar graph is four
colorable. This Four Color Conjecture was the central driving force behind many of the
developments in graph theory for over a hundred years. Eventually, it was proved in 1976
by Appel and Haken [2,3] and became the Four Color Theorem. Appel and Haken’s proof is
one of the first and most well-known examples of computer assisted proofs. To date there are
no known proofs of the Four Color theorem that can be reasonably considered to be human
readable, and a deeper reason behind it remains elusive.

If true, the following famous conjecture made by Hadwiger [17] in 1943 points to
such a reason. Its statement eliminates the topological component present in the Four Color
Theorem’s statement and instead involves graph minors.

Given graphs H and G, we say that G has an H minor or H is a minor of G if
a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. We
denote the complete graph on ¢ vertices by K;.

Conjecture 1.1 (Hadwiger’s conjecture [17]). For every integert > 1, every graph with no
K; minor is (t — 1)-colorable.

We refer the reader to a comprehensive survey by Seymour [51] for the detailed his-
tory of the conjecture, and only present the background necessary to motivate the discussion
of recent progress on two particular weakenings of the conjecture that we focus on here.

Hadwiger [17] and Dirac [1e] independently showed that Conjecture 1.1 holds for
t < 4. As the class of planar graphs is closed under taking minors and the complete graph
K5 is not planar, the case t = 5 of Hadwiger’s conjecture implies the Four Color Theorem. In
fact, Wagner already shown in 1937 that this case is equivalent to the Four Color Theorem.
Robertson, Seymour, and Thomas [49] went one step further and proved Hadwiger’s conjec-
ture for ¢ = 6, also by reducing it to the Four Color Theorem. Settling the conjecture exactly
for ¢+ > 7 appears to be extremely challenging, in part due to the aforementioned absence of
a transparent proof of the Four Color Theorem.

Another notable challenging case of Hadwiger’s conjecture is the case of graphs
with no independent set of size three. If G is such a graph on n vertices then properly coloring
G requires at least /2 colors, and so Hadwiger’s conjecture implies that G has a K[, /2
minor. This is still open. In fact, as mentioned in [51], it is not known whether there exists
any ¢ > 1/3 such that every graph G as above has a K; minor for some ¢t > cn.

The following natural weakening of Hadwiger’s conjecture, which has been consid-
ered by several researchers, sidesteps the above challenges.

Conjecture 1.2 (Linear Hadwiger’s conjecture [22,23,47]). There exists C > 0 such that for
every integert > 1, every graph with no K; minor is Ct-colorable.

Until recently the best bound on the number of colors needed to color the graphs
with no K; minor was O(t /logt), obtained independently by Kostochka [26,27] and Thoma-
son [54] in the 1980s. The only improvement since then [24,55,59] and until the last two years
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since then has been in the constant factor. In the last two years, however, using in part the
methods we survey here this bound has been improved, first, by Postle, Song, and I [4e] to
O(t(log t)P) for every B > 1/4, then by Postle [46] to O(t(loglog 1)®) and, very recently
by Delcourt and Postle [9] to O(¢ loglogt). We sketch the proof of the first of these bounds
here.

Investigation of another series of weakening of Hadwiger’s conjecture has been pro-
posed more recently by Seymour.

Conjecture 1.3 (H -Hadwiger’s conjecture [50,51]). For every graph H on t vertices, every
graph with no H minor is (t — 1)-colorable.

Note that the bound on the number of colors in Conjecture 1.3 is tight for every graph
H on ¢ vertices, as K;—1 has no H minor and requires ¢ — 1 colors to properly color. Until
recently, Conjecture 1.3 was only verified for a few very structured families of graphs H.
As noted by Seymour [5e], Conjecture 1.3 holds if H is a tree, and Kostochka [27] proved
that Conjecture 1.3 holds for H = K ; which is a sufficiently unbalanced complete bipartite
graph, i.e., t > C(slogs)> for some constant C. Using the methods surveyed in this paper,
Turcotte and I [43] recently proved Conjecture 1.3 for a fairly large class of structurally sparse
bipartite graphs H, and we present the sketch of our arguments in this survey.

We overview the main tools behind the above mentioned recent progress towards
Conjectures 1.2 and 1.3, which mainly relies on the interplay between the very basic param-
eters of the graph G with no H minor, namely

¢ v(G)—the number of vertices of G,
* e(G)—the number of edges of G,
¢ d(G) = e(G)/v(G)—the density of G,

¢ x(G)—the chromatic number of G, that is the minimum positive integer r such
that G is r-colorable,

¢ k(G)—the connectivity of G, the maximum positive integer k < v(G) such that
G remains connected after deleting any set of fewer than k vertices.

The rest of the paper is structured as follows. In Section 2 we present the basic tools
relating connectivity, density, and chromatic number of graphs with no K; minor (and more
generally, for graphs in classes closed under taking minors). In Section 3 we survey known
bounds on density of graphs with no H minors. In Section 4, we present the crucial tool
behind the recent progress—the density increment theorem, which is used to locate small
dense subgraphs in large graphs without a dense minor. Using this theorem, one can build
the minors of the graph under consideration by combining smaller pieces found in the dense
subgraphs. This procedure is described in Section 5. Finally, in Section 6 we sketch how the
presented tools are combined to obtain the results of [46] and [43] mentioned above.
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2. BASIC DEPENDENCIES

For both Conjectures 1.2 and 1.3, it is enough to investigate contraction critical
graphs G, that is, graphs G such that y(H) < y(G) for every minor H of G unless H is
isomorphic to G.

The basic relationship between density and the chromatic number of contraction
critical graphs is given by the following standard degeneracy argument. Let G be a contrac-
tion critical graph, and let ¢t = x(G). If deg(v) <t — 2 for some v € V(G), then we have
x(G\v) <t—1andany (¢t — 1)-coloring of G \ v can be extended to v, a contradiction.
Thus every vertex of G has degree at least f — 1 and so

16 -1
2

d(G) < , 2.1

by averaging.
The following harder theorem of Kawarabayshi [22] guarantees that the connectivity
of every contraction critical graph is also linear in the chromatic number.

Theorem 2.1 ([22]). If G is a contraction critical graph, then

€(G) 2 2 1(6).

In the more technical arguments, one works with subgraphs of contraction critical
graphs, which are not by themselves contraction critical. To be useful for building the minors,
we need these subgraphs to be highly-connected. The following classical result of Mader
allows us to gain connectivity without losing to much density.

Theorem 2.2 ([36]). Every graph G contains a subgraph G’ such that k(G’) > d(G)/2.

We frequently want to additionally guarantee that by passing to the highly-connected
subgraph or minor, we do not reduce the chromatic number excessively. This is possible due
to a recent theorem of Girao and Narayanan [16].

Theorem 2.3 ([16]). For every positive integer k, every graph G with y(G) > 7k contains
a subgraph G’ such that kK (G') > k and x(G') > x(G) — 3k.

Finally, for small graphs G, we have another tool, the following classical bound due
to Duchet and Meyniel [12], on the independence number of graphs with no K; minor.

The set X C V(G) is independent in G if no pair of vertices of X are adjacent. The
independence number a(G) of a graph G is the maximum size of an independent set in G.

Theorem 2.4 ([12]). For everyt > 2, every graph G with no K; minor has an independent

set of size at least 2‘62)1)

Theorem 2.4 implies that every graph with no K; minor contains a #-colorable sub-
graph on a constant proportion of vertices. Woodall [6e] proved the following stronger result,
which as observed by Seymour [51] also follows from the proof of Theorem 2.4 in [12].

Theorem 2.5 ([60]). Let G be a graph with no K; minor. Then there exists X C V(G) with
1X| > Y9 such that y(G[X]) <1 — 1.
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Theorem 2.5 straightforwardly implies the following bound on the chromatic number
of graphs with no K; minor.

Corollary 2.6. Let G be a graph with no K; minor. Then

x(G) < (logz(v([G)) + Z)I.

3. DENSITY

Until recently the best bounds on the chromatic number of graph with no K; minor
for large ¢ relied exclusively on the degeneracy bound (2.1). To determine the optimum
bounds that can be obtained in this manner towards Conjecture 1.3, we investigate the max-
imum density of graphs G with no H minor for a fixed H.

More formally, following [38], for a graph H with v(H ) > 2, we define the extremal
Sunction c(H) of H as the supremum of d(G) taken over all nonnull graphs G not containing
H as a minor.

Mader [34] proved that ¢(H ) is finite for every graph H. The exact value has been
determined for various small graphs H . For example, if K, is the complete graphont < 9
vertices, then ¢ (K;) =t — 2 (see [11,21,35,52]); and if P is the Petersen graph, thenc(P) =5
(see [20]). We primarily focus on asymptotic results for classes of graphs H .

The asymptotic behavior of ¢(K;) was studied in [26,27,54], and was determined
precisely by Thomason [55], who showed that

c(Ky) = (A +0(1))ty/logt, (3.1)
where o
—e
A= =0.319...
w0 2Ja

Improving on results of [38,48], Thomason and Wales [56] recently extended the upper bound
from (3.1) to general graphs, by showing that for every graph H,

c(H) < (A + o4y (1)) v(H) y/logd(H). (3.2)
The inequality (3.2) is tight in many regimes. Myers and Thomason [38] showed that

it is tight (up to the choice of the error term) for almost all graphs with n vertices and n!' ¢

edges for every fixed ¢ > 0, and for all regular graphs with these parameters. They also gave
an explicit asymptotic formula for ¢ (H') for all such polynomially dense graphs.

Reed, Thomason, Wood, and I [41] recently showed that (3.2) is also tight for almost
all regular graphs of constant density, that is, for almost all d-regular graphs H,

c(H) = (A —o04(1))v(H)/logd. (3.3)

However, for several concrete sparse families, the extremal function behaves quali-
tatively differently:
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* Chudnovsky, Reed, and Seymour [7] proved that ¢ (K5 ;) = £ forall # > 2;
 Kostochka and Prince [28] proved that ¢(K3 ) = % for all ¢+ > 6300;

* More generally, Myers [37] considered the asymptotic behavior of ¢ (Kj ;) for fixed
s and ¢ and conjectured that ¢(Kj,) < cst for some constant independent on .
Kiihn and Osthus [32] and Kostochka and Prince [25] independently proved this
conjecture by showing that c(Kj;) = (% + os(1))t.

* Csoka et al. [8] proved that if H is a disjoint union of cycles, then
v(H) + comp(H)

5 —
which is tight whenever every component of H is an odd cycle.

c(H) < 1,

All of the above families are structurally sparse and the extremal function is linear
in the number of vertices. (In fact, c(H) < (1 + o(1)) v(H) for all these graphs.)

This property generalizes to the large and well-studied class of sparse graph families
defined as follows. A graph family is monotone if it is closed under taking subgraphs. A sep-
aration of a graph G is a pair (A1, Az) of subsets of V(G) such that G = G[A4;] U G[A;]
and A \ A2 # @ and A, \ A1 # 0. A separation (A1, Az) has order |A; N A3|. A separa-
tion (A1, Ay) is balanced if |A1|, |A2| > @ A graph family ¥ admits strongly sublinear
separators (written ¥ is s.s.s., for brevity) if ¥ is monotone, and there exist 8 < 1 and
¢ > 0 such that every graph G € % has a balanced separation of order at most ¢ v(G)?. For
example, every proper minor-closed family (a family that is closed under isomorphisms and
taking minors, and does not include all graphs) is s.s.s., as proved by [1] with 8 = % More
generally, every family with polynomial expansion is s.s.s. [13].

Before formally stating the general asymptotic bound on the extremal function of
graphs in s.s.s. graph families, we describe two natural lower bounds on ¢ (H). First, since
H is not a minor of K,(g)—1,

v(H)
i

A vertex cover of H isaset S C V(H) such that H — S has no edges. Let t(H) be

the minimum size of a vertex cover of H. For the second bound, observe that 7(H) < 7(G)

c(H) > d(Kymy)-1) =

1. (3.4)

whenever H is a minor of G. It follows that H is not a minor of the complete bipartite graph
K (H)-1,, for any n and

C(H) = Tim (K1) = t(H) = 1. (33)

Hendrey, Wood, and I [19] have recently shown that the lower bounds (3.4) and (3.5)
are asymptotically tight for 4-colorable graphs in s.s.s. families, strengthening the result of
Haslegrave, Kim, and Liu [18] for bipartite graphs. The resulting density theorem below
is one of the main tools used in the recent progress towards Conjecture 1.3 discussed
below.
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Theorem 3.1. For every s.s.s. family ¥ and for every H € ¥ with y(H) < 4,
H
c(H) = (1 + oz (1)) -max(v( ),‘L'(H)), (3.6)

where the error term 0g- (1) depends on ¥ and satisfies 04 (1) — 0 as v(H) — oc.

Finally, we mention the following tight bound on density of unbalanced bipartite
graph without a K; minor, due to Postle and I. It is used to supplement the density increment
arguments presented in the next section

Theorem 3.2 ([39]). There exists C > 0 such that, for everyt > 3 and every bipartite graph
G with bipartition (A, B) and no K, minor, we have

e(G) < Ct+/logt+/|A||B| + (t —2)v(G). (3.7)

4. DENSITY INCREMENT

Perhaps the most important new ingredient in the recent progress towards Conjec-
tures 1.2 and 1.3 is a density increment argument, which informally says that every graph
either contains a substantially denser minor, or a small subgraph with density not much
smaller than that of the whole graph.

Let us proceed by giving a more detailed motivation. By (3.1) there exists D =
o(t \/@) such that every graph G with density d(G) > D has a K; minor. For a graph G
with smaller density, one might still hope to guarantee a K; minor by finding a minor H of
G with d(H) > D. Thus we are interested, for given d and D, in properties of graphs G of
density d(G) = d and no minor of density D.

One family of obstructions are graphs G which simply do not have enough edges. As
every graph of density D has at least D? edges, if G has a minor of density D, we must have
D? < e(G) = d -v(G). It follows that all the graphs G with v(G) < D?/d are among the
obstructions to our approach. One can obtain further obstructions by taking disjoint union
of such graphs, and, more generally, by gluing smaller obstructions along small sets in a
“tree-like fashion.” However, the graphs obtained in this way contain a subgraph with at
most D2 /d vertices and density close to d.

A series of density increment results culminating in the following result by Wang [57]
shows that a similar subgraph can be found in every obstruction.

Theorem 4.1 ([57]). There exists C > 0 satisfying the following. Let D > 0 be real, G be a
graph with d(G) > C, and let s = D/d(G). Then G contains at least one of the following:

(1) aminor J withd(J) > D, or
(ii) a subgraph H withv(H) < g(s)D?/d(G) and d(H) > d(G)/g(s),
where g(s) = C(1 + logs)>.
The first variant of Theorem 4.1 was proved by Song and I [42] with g(s) = Cs* for

a particular constant «. The magnitude of g(s) was subsequently improved by Postle, first
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in [44]to g(s) = o(s?) for every § > 0, then in [45] in g(s) = C(I + logs)®, and, finally, by
Wang [57] to the bound stated in Theorem 4.1.

A similar theorem with narrower scope of application, but stronger bounds, was
very recently obtained, using Theorem 3.2, by Delcourt and Postle [9].

Theorem 4.2 ([9]). There exists C > 0 satisfying the following. Let t > 1 be an integer and
let G be a graph with d(G) > Ct. Then G contains at least one of the following:

(i) a K; minor, or
(ii) a subgraph H withv(H) < Ctlog>t and d(H) > Ct,

We finish this section with an example of application of Theorem 4.1 due to Postle,
Song, and I [4e].

For a pair of graphs G and H, we say that G is H -free if no subgraph of G is
isomorphic to H. The next theorem due to Kiihn and Osthus [31] shows that H -free graphs
have exceptionally dense minors for every complete bipartite graph H.

Theorem 4.3 ([31]). For every integer s > 2, every K, s-free graph G has a minor J with

1

d(J) = (d(G)) ' TaEm @M 4.1

Krivelevich and Sudakov [29] tightened (4.1) to d(J) > ¢5(d(G))! T+ for some
¢s > 0 independent of d(G). They also proved the following, strengthening a result of Kiihn
and Osthus [3e].

Theorem 4.4 ([29]). For every integer k > 2, there exists ¢, > 0 such that every Coy-free
G has a minor J with e
d(J) > ¢k (d(G)) * .

The exponents appearing in Theorems 4.3 and 4.4 cannot be improved, subject to
well known conjectures on the Turdn numbers of K and Cyx, which we mention below.

In this section we use Theorem 4.1 to extend Theorems 4.3 and 4.4 to general bipar-
tite graphs. Stating our result requires a couple of definitions. The Turdn number ex(n, H)
of a graph H with e(H) # 0 is the maximum number of edges in an H -free graph G with
v(G) = n. The Turdn exponent y(H) of a graph H with e(H) > 2 is defined as

y(H) := limsup w.
n—00 logn

Many fundamental questions about Turdn exponents of bipartite graphs remain open. In par-
ticular, a famous conjecture of Erdds and Simonovits (see [15, CONJECTURE 1.6]) states that
y(H) is rational for every graph H, and that lim, ., ex(n, H)/n?*) exists and is posi-
tive. We refer the reader to a comprehensive survey by Fiiredi and Simonovits [15] for further
background.

Theorem 4.1 implies an essentially tight analogue of Theorems 4.3 and 4.4 for
H -free graphs G for general bipartite H .
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Theorem 4.5 ([40]). For every bipartite graph H with y(H) > 1, every H-free graph G

has a minor J with
y(H)

d(J) = (d(G)) 2(V(H)—l)_od(G)(1)'

5. BUILDING THE MINORS

As mentioned earlier, we build the required minors from pieces. Describing how
the minors combine together is more convenient in the language of models. A model | of a
graph H in a graph G assigns to every vertex of v € V(H) a set u(v) of vertices of G such
that

e u(u) N u(v) = @ for every pair of distinct u, v € V(H),

* the subgraph G[u(v)] of G induced by p(v) is connected for every v € V(H),
and

e for every edge uv € E(H) there exist v’ € u(u) and v € pu(v) such that
u'v' € E(G).

It is well known and not hard to see that G has an H minor if and only if there exists a model
of HinG.

Given an injection ¢ : V(H) — V(G), we say that a model u of H in G is ¢-rooted
if ¢(v) € wu(v) forevery v € V(H). Finally, we say that G is H -linked if v(G) > v(H) and
for every injection ¢ : V(H) — V(G) there exists a ¢-rooted model of H in G. Thus every
H -linked graph has an H minor, but the converse does not hold.

The case when H is amatching of size k, i.e., H = kK> is of particular interest. Note
that a graph G is kK;-linked, if and only if v(G) > 2k and, for every collection of distinct
81,582,585k, t1,t2,. .., € V(G), there exist pairwise vertex disjoint paths Py, ..., Px such
that P; has ends s; and t; for every i € [k]. We will write k-linked instead of k K5-linked for
brevity. (Our definition coincides with the standard definition of k-linked graphs.)

The following theorem of Thomas and Wollan [53], improving an earlier result of
Bollobds and Thomason [4], ensures that connectivity linear in k is sufficient to guarantee
that the graph is k-linked.

Theorem 5.1 ([53]). For every integer k > 1, every graph G with k(G) > 10k is k-linked.

Connectivity linear in ¢ is certainly insufficient to guarantee that a graph is
K;-linked, but interestingly, as observed by Delcourt and Postle [9], connectivity linear
in ¢ together with a slightly larger complete minor is sufficient.

Lemma 5.2 ([91). For every integert > 1, every graph G with k(G) > t that has a K[s;2]
minor is K;-linked.

We are further interested in a more general setting, where we need to find a rooted
model of a disjoint union H' of a given graph H and a matching of size k. If a graph G is
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H’-linked for such an H’ then we write that G is (H + k)-linked for brevity. The following
theorem can be easily derived from the results of Wollan [58].

Theorem 5.3 ([58]). There exists C > 0 satisfying the following. Let H and G be graphs
and let k > 0 be an integer. If

k(G) > C(C(H) + k)
then G is (H + k)-linked.

Our final tool describes the conditions under which we can glue a larger minor
from small pieces in a highly connected graph. Let Hi, H», ..., Hy be graphs and let
H = Hy U H,U---U Hy. Then we say that { H, };¢[5] is a decomposition of H with excess

(Xieps V(H:)) —v(H).

Theorem 5.4 ([43]). There exists C > 1 satisfying the following. Let { H;};c[s] is a decom-
position of a graph H with excess k, let G be a graph and let G4, . . ., Gy be pairwise vertex
disjoint subgraphs of G. If

e G; is (H; + k)-linked for every i € [s], and
e G is k-linked,

then G has an H minor.

6. BRINGING IT ALL TOGETHER

Having introduced the necessary toolkit in the preceding section, let us describe
how combining them we can progress forward.

We start by sketching a proof of the following theorem by Postle and I [39].

Theorem 6.1 ([39]). For every B > %, if G is a graph with k(G) = Q(t(log 1)) no K,
minor then v(G) = O(t(logt)"/*).

Note that using Theorem 2.1 and Corollary 2.6, we immediately obtain from Theo-
rem 6.1 the following bound on the chromatic number of graphs with no K; minors, origi-
nally proved in [4e].

Theorem 6.2 ([40]). For every B >
x(G) = O(t(log1)P).

Proof sketch of Theorem 6.1. Note that there exists a decomposition of K into O((log)'/#)
complete subgraphs Hy, H,, . .., Hs of excess k = O(t (logt)'/*) such that s = O((log?)1/?)
and v(H;) = O(t/(logt)'/*) for every i € [s].

Assume that v(G) = Q(¢t(log t)7/*). By Theorem 5.4, it suffices to find vertex
disjoint subgraphs Gy, ..., G of G such that G; is (H; + k)-linked for every i € [s], as
G is k-linked by Theorem 5.1 and the lower bound on «(G). By (3.1), we have
c(H;) = O(t(log t)/*) and so, by Theorem 5.3, it suffices to guarantee that

%, if G is a graph with no K; minor then
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k(G;) = Ct(log1)'/*) for some C’ independent on 7. By Theorem 2.3, we can further
relax this condition to d(G;) > Ct(log?)'/*) (possibly changing C).

Finally, to find the required G;’s, select the maximum collection Gy, ..., Gy of
vertex disjoint subgraphs of G such that d(G;) > Cr(log¢)"/* and v(G;) < r(logt)3/*.
Assume for a contradiction that s < 5. Let A = Uie[s/](V(Gi)), then |[A| = Ct(logt)>/4.
Let B = V(G) — A. Then |B| = (1 — o(1))v(G). By Theorem 3.2, there are
O(t*(log 1)°/8 \/V(_G)) edges joining A and B, and so as the minimum degree of G is
Q(t(log?)?), and

t2(log1)/® JV(G) = o(t(log 1)Pv(G)),

the average degree of the subgraph G[B] of G induced by B is still Q(t(log?)?). As G[B]
has no K; minor, applying Theorem 4.1 with D = ¢(K;) to G[B], we conclude that G
contains a subgraph Gy with v(Gy11) = O(t(logt)' 2 (loglog 1)°) and d(Gy 1) =
Q(t(log1)? /(loglog t)%), contradicting the choice of 5. |

Secondly, let us outline the proof of the following recent theorem due to Turcotte
and I [43].

Theorem 6.3 ([43]). For every s.s.s. graph family ¥ and every positive integer A, there
exists N such that for every bipartite graph H € ¥ with A(H) < A andv(H) > N, every
graph G with y(G) > v(H) has an H minor. (That is, Conjecture 1.3 holds for H.)

To prepare for the proof of Theorem 6.3, we need to introduce a couple of final tools
from the literature. The first is the well-known “bandwidth theorem” of Bottcher, Schachts,
and Taraz [6], which using the results of [5] can be adapted to our setting, to imply the fol-
lowing.

Theorem 6.4 ([5,6]). For every s.s.s. graph family ¥, every positive integer A, every y > 0,
and for every bipartite graph H € ¥ with A(H) < A andv(H) > N, if G is a graph such
that v(G) > v(H) and deg(v) > (1 + y) V(f) Joreveryv € V(G) then G contains a subgraph
isomorphic to H.

The second is a fairly straightforward lemma, present, in particular, in [14].

Lemma 6.5 ([14]). Let ¥ be s.s.s. graph family. Then for every ¢ > O there exists C such
that every graph G € ¥ admit a decomposition into subgraphs on at most C vertices with

excess at most ev(G).
We are now ready to sketch the proof of Theorem 6.3 using our toolkit.

Proof sketch of Theorem 6.3. By Theorem 2.1, we may assume thatk (G) >2/27-v(H). By
the argument in Section 2, we may further assume deg(v) > v(H) — 1 for every v € V(G).
In particular, d(G) > (v(H) — 1)/2.

If v(G) < 3/2-v(H) then, assuming N is chosen to be appropriately large, G con-
tains a subgraph isomorphic to H by Theorem 6.4.
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Assume next that v(G) < Kv(H) for some sufficiently large K dependent only on
the constant in the preceding theorems. By Theorem 3.1, c(H) = (1 4+ o(1))v(H)/2. Thus
by Theorem 4.1 applied with D = ¢(H), G contains a subgraph G with v(G1) < Cv(H)
and d(G1) > v(H)/C for some constant C. In fact, if K is sufficiently large compared to k
and C, we can find vertex disjoint subgraphs Gy, . . ., G of G with the same properties, using
a variant of the argument used for a similar purpose in the proof sketch of Theorem 6.1 above.
By Lemma 6.5, for any ¢ > O there exists a decomposition of H with excess k' < ev(H)
into subgraphs Hy, ..., Hy such that (1 —e)v(H)/k > v(H;) < (1 + ¢)v(H)/k, as long
as v(H) is large enough as a function of k and e. Applying Theorem 3.1 to H; this time,
we have ¢ (H;) <v(H)/k, and so G; is (H; + k’)-linked for every i € [k] by Theorem 5.3,
as long as ¢ is sufficiently small and k sufficiently large compared to C. By Theorem 5.4, it
now follows that H is a minor of G as desired.

It remains to consider the case 3/2 - v(H) < v(G) < K - v(H). This regime is
somewhat complicated and we do not present all the details. We consider a decomposi-
tion Hy, ..., Hy of H with excess at most ev(H ) such that v(H;) < C forevery i € [k] and
excess at most ev( H ), where k is no longer constant, but C is. We reserve a randomly chosen
Z CV(G) withev(H) < |Z| < v(G) for future use. Next, we choose / maximum such that
the disjoint union of graphs Hy, H,, ..., H; is isomorphic to a subgraph G’ of G \ Z. If
[ < k, by further choosing G’ such that G[V(G’)] is as sparse as possible, we guarantee that
G \ V(G')\ Z is dense enough to contain a subgraph isomorphic to H;,; by Theorem 4.5,
which is a contradiction, implying / = k. The subgraphs Hy, H», ..., Hy can now be linked
together to obtain the H minor by using Z. ]
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