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Abstract

We survey the theory of face numbers of simplicial complexes through the lens of upper
bound type results and neighborliness. We focus on the classes of polytopes, simplicial
spheres, and simplicial manifolds, along with the classes of centrally symmetric polytopes
and centrally symmetric simplicial spheres. Along the way, we sketch some of the ideas
and methods used in the proofs. We also highlight some of the many open problems in the
field.
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1. Introduction

The focus of this survey is simplicial polytopes and more general simplicial com-
plexes with nice topological properties such as triangulations of spheres and manifolds.
Simplicial complexes have played an important role in topology since its early days, as topo-
logical spaces were often studied through their triangulations. Due to their discrete nature,
simplicial complexes have also been studied by combinatorialists and discrete geometers.
The theory of simplicial complexes has always been inseparable from the theory of poly-
topes. Although polytopes were studied since antiquity, the field has become extremely active
since the last half of the 20th century, partly due to rapid developments in optimization and
statistics.

There are many excellent surveys on combinatorics of polytopes and simplicial com-
plexes; see, for instance, [12,44]. Here we concentrate on polytopes and simplicial complexes
with and without symmetry, with a particular emphasis on the upper bound type results on
their face numbers and the related notion of neighborliness. Among the questions we dis-
cuss are: What is the largest number of i -faces that a simplicial sphere of dimension d � 1

with n vertices can have? How many combinatorially distinct neighborly spheres of dimen-
sion d � 1 with n vertices are there? How neighborly can a centrally symmetric d -polytope
be? How different is the answer for centrally symmetric .d � 1/-spheres? Along the way,
we mention some of the algebraic, combinatorial, analytical, and topological tools that have
been developed and used over the last 50 years and have brought the field to its current state.
The interplay between these various methods is a really fascinating part of the story. We also
discuss some of the many open problems in the field. We are only able to touch on a limited
number of topics and the choice of these topics is rather subjective. Yet we hope this paper
provides the reader with a view into the beautiful theory of face numbers.

2. Some basics

A convex d -dimensional polytope (a d -polytope, for short) is the convex hull of
a finite set of points in Rd that affinely span Rd . A supporting hyperplane of a polytope
P is a hyperplane H in Rd that intersects P nontrivially and such that all points of P

lie on the same (closed) side of H . A proper face of P is the intersection of P with a
supporting hyperplane. The empty set and P itself are the improper faces of P . A polytope
P is simplicial if all of its proper faces are simplices. Faces of dimension 0, 1, and d � 1 are
called vertices, edges, and facets, respectively; faces of dimension i are called i -faces.

A simplicial complex � on a (finite) vertex set V D V.�/ is a collection of subsets
of V that is closed under inclusion. The elements F 2 � are called faces. The dimension of a
face F 2 � is dim.F / D jF j � 1 and the dimension of � is dim.�/ D max¹dim.F / j F 2 �º.
As in the case of polytopes, an i -dimensional face is abbreviated as an i -face. A .d � 1/-
dimensional simplicial complex is pure if all of its maximal faces (with respect to inclusion)
are .d � 1/-faces; in this case the .d � 1/-faces are called facets and the .d � 2/-faces are
called ridges. Unless � is the void complex ;, the empty set is a face of �.
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Although simplicial complexes are defined as purely combinatorial objects, each
simplicial complex � admits a geometric realization k�k that contains a geometric i -
simplex for each i -face of �. We typically do not distinguish between the combinatorial
object � and the geometric object k�k and often say that � has certain geometric or topo-
logical properties in addition to certain combinatorial properties. For instance, we say that
� is a simplicial sphere (respectively a simplicial manifold) if k�k is homeomorphic to a
sphere (a compact topological manifold without boundary, respectively). Each simplicial
d -polytope P gives rise to a simplicial .d � 1/-sphere, namely the boundary complex of P ,
denoted @P .

For a .d � 1/-dimensional simplicial complex �, we denote by fi .�/ the number of
i -faces of �, and by f .�/ D .f�1.�/;f0.�/; : : : ; fd�1.�// the f -vector of �. For reasons
that will become apparent below, it is often more natural to study a certain invertible integer
transformation of the f -vector called the h-vector of �, h.�/ D .h0.�/;h1.�/; : : : ;hd .�//;
it is defined by the following polynomial relation:

dX
j D0

hj .�/ � td�j
D

dX
j D0

fj �1.�/ � .t � 1/d�j :

For instance, hd D fd�1 � fd�2 C � � � C .�1/d�1f0 C .�1/d D .�1/d�1 Q�.�/ is, up to a
sign, the reduced Euler characteristic of �. Abusing notation, for a simplicial polytope P ,
we write f .P / and h.P / instead of f .@P / and h.@P /, respectively.

3. The cyclic polytope and McMullen’s Upper Bound

Theorem

Our story begins with an amazing object—the cyclic polytope. This polytope,
Cd .n/, is the convex hull of n � d C 1 distinct points on the d th moment curve M.t/ D

Md .t/ D .t; t2; t3; : : : ; td /, that is, Cd .n/ D conv.Md .t1/; : : : ; Md .tn//, where t1 < t2 <

� � � < tn are real numbers. It is a d -dimensional simplicial polytope with n vertices whose
combinatorial type is independent of the choice of t1; t2; : : : ; tn. The most remarkable prop-
erty of Cd .n/ is that it is bd=2c-neighborly, meaning that every k � d=2 vertices of Cd .n/

form the vertex set of a face. (No d -polytope except a d -simplex can be .bd=2c C 1/-
neighborly.)

To see that Cd .n/ is bd=2c-neighborly, consider any integer 0 < k � bd=2c and a
k-subset I D ¹i1; : : : ; ikº of Œn� D ¹1; 2; : : : ; nº. Let P.t/ D .t � t1 C 1/d�2k.t � ti1/2.t �

ti2/2 � � � .t � tik /2. Observe that P.t/ is a polynomial of degree d , and so it can be written
as P.t/ D 
d td C 
d�1td�1 C � � � C 
1t C 
0. Observe also that P.ti / D 0 for all i 2 I

while P.ti / > 0 for all i 2 Œn� n I . It follows that the hyperplane

H D
®

Ex D .x1; : : : ; xd / j .
1; : : : ; 
d / � Ex D �
0

¯
is a supporting hyperplane of Cd .n/ (here Ea � Ex denotes the dot product) and that H \

Cd .n/ D conv.Md .ti / j i 2 I /. Thus ¹M.ti / j i 2 I º is the vertex set of a face.
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That the combinatorial type of Cd .n/ is independent of the choice of t1 < � � � < tn

is a consequence of Gale’s evenness condition [26]. This result asserts that for a subset I D

¹i1; : : : ; id º � Œn�, ¹M.ti1/; M.ti2/; : : : ; M.tid /º is the vertex set of a facet of Cd .n/ if and
only if for all i; j 2 Œn� n I , the number of elements ` 2 I that lie between i and j is even.

The cyclic polytope was discovered and rediscovered by many people, including
Carathéodory [19, 20], Gale [26], Motzkin [65], and others; see [34, Chapter 7] for historic
remarks and additional references. The importance of the cyclic polytope is that by virtue
of its neighborliness, the face numbers fi�1.Cd .n// for i � bd=2c are equal to

�
n
i

�
, which

is the maximum possible number of .i � 1/-faces that any .d � 1/-dimensional simplicial
complex with n vertices can have. This led Motzkin [65] to propose the following Upper
Bound Conjecture (UBC, for short): in the class of all d -polytopes with n vertices, the cyclic
polytope simultaneously maximizes all the face numbers.

The motivation for the UBC partly comes from optimization: stated in a dual form,
it posits that among all d -polytopes defined by n linear constraints, the polar of the cyclic
polytope has the largest number of vertices.

By a standard trick of “pulling vertices,” to prove the UBC for all polytopes, it
suffices to prove it for simplicial polytopes. One advantage of working with a simplicial
polytope P is that the first half of the f -vector of P determines the entire f -vector. This
important fact is known as the Dehn–Sommerville relations [47]. More specifically, when
i � bd=2c, fi .P / can be written as a linear combination of fj .P / for j < i . This result and
the fact that the cyclic polytope is bd=2c-neighborly make the UBC even more plausible.
Unfortunately, the main difficulty in trying to derive the UBC for the upper half of the face
numbers from the lower half is that the linear combinations fi D

Pi�1
j D�1 aij fj contain

positive and negative coefficients, which makes it very hard to control the magnitude of the
sums.

After many partial results and premature announcements, Motzkin’s conjecture was
finally proved by McMullen [58]. McMullen’s insight was to work with the h-numbers instead
of the f -numbers. At this point we should note that stated in terms of the h-numbers, the
Dehn–Sommerville relations for simplicial polytopes take on the following elegant form:
hi D hd�i for all 0 � i � d . (The h0 D hd instance of this result is the Euler relation.)

McMullen used shellability of polytopes (established by Brugesser and Mani [17])
and the Dehn–Sommerville relations to prove that, in the class of simplicial polytopes, the
cyclic polytope simultaneously maximizes not only the f -numbers, but also the h-numbers.
In other words, McMullen’s Upper Bound Theorem (UBT for short) asserts that for every
simplicial d -polytope P with n vertices,

hi .P / � hi

�
Cd .n/

�
for all 0 � i � d:

The f -version of the UBC follows right away since the f -numbers are nonnegative linear
combinations of the h-numbers. Furthermore, the f - and h-versions of the UBT can be
stated as explicit bounds on the f -numbers (h-numbers, resp.) by using that

hi

�
Cd .n/

�
D hd�i

�
Cd .n/

�
D

 
n � d C i � 1

i

!
for all 0 � i � d=2:
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Some additional remarks are in order. A simplicial .d � 1/-sphere (or a simplicial
.d � 1/-ball) � is called shellable if its facets can be ordered F1; F2; : : : ; Fm in such a way
that for every i < m, the simplicial complex generated by the facets F1; : : : ;Fi is a simplicial
.d � 1/-ball; such an ordering of facets is called a shelling. While many simplicial spheres
are not shellable [35,52], all spheres that arise as the boundary complexes of polytopes are.
The h-numbers of a shellable complex � have a simple and well-known interpretation in
terms of any shelling of �, see [101, Section 8.3]. The Dehn–Sommerville relations for all
shellable spheres are a consequence of this interpretation and the following easy fact: if
F1; F2; : : : ; Fm is a shelling order of facets of a simplicial sphere, then so is the reverse
order Fm; Fm�1; : : : ; F1.

A far-reaching generalization of the UBT for full-dimensional subcomplexes of the
boundary complex of a simplicial d -polytope was proved by Kalai [42]; another generaliza-
tion is due to Björner [14].

4. Spheres, manifolds, and Eulerian complexes

For a simplicial complex � and its face F , the link of F in � is the following
subcomplex of � that captures the local behavior of � near F :

lk.F; �/ WD ¹G 2 � j G \ F D ;; G [ F 2 �º:

In particular, lk.;; �/ D �. Understanding how various algebraic, topological, and combi-
natorial properties of links of nonempty faces affect the properties of the entire complex is
a common theme in this part of combinatorics.

Klee [47] introduced Eulerian complexes as a combinatorial analog and a vast gener-
alization of simplicial spheres: a pure .d � 1/-dimensional simplicial complex � is Eulerian
if for every face F of �, including the empty face, lk.F;�/ has the same Euler characteristic
as a .d � jF j � 1/-dimensional sphere, Sd�jF j�1. (In particular, every ridge is in exactly
two facets.) In addition to simplicial spheres, the class of Eulerian complexes includes among
others all Eulerian manifolds, that is, all odd-dimensional simplicial manifolds, and all even-
dimensional simplicial manifolds whose Euler characteristic is two.

Klee [47] proved that the Dehn–Sommerville relations hi D hd�i for 0 � i � d , hold
for all Eulerian complexes of dimension d � 1.1 His proof relied on the Euler relation for the
links of faces as well as on the observation that for a simplicial complex � and j > i , every
.j � 1/-face F of � contains exactly

�
j
i

�
faces of dimension i � 1 while every .i � 1/-face

G of � is contained in fj �i�1.lk.G; �// faces of dimension j � 1. Klee then applied the
Dehn–Sommerville relations along with some results from extremal combinatorics to prove
the following astonishing fact: the assertion of the Upper Bound Theorem continues to hold

1 Klee also established a version of the Dehn–Sommerville relations for semi-Eulerian com-
plexes, i.e., pure complexes all of whose vertex links are Eulerian. Very recently Sawaske
and Xue [86] extended this result to arbitrary pure simplicial complexes by expressing
hd�i .�/ � hi .�/ in terms of the Euler characteristics of links of faces of �.

4626 I. Novik



for all Eulerian simplicial complexes provided they have sufficiently many vertices (d 2=2

is enough), see [48]. In view of this result, Klee [48] proposed the following far reaching
extension of Motzkin’s UBC:

Conjecture 4.1. Let � be an Eulerian simplicial complex of dimension d � 1 with n ver-
tices. Then fi .�/ � fi .Cd .n// for all 1 � i � d � 1.

While in this generality the conjecture remains wide open, at present it is known
to hold for all simplicial spheres2 (Stanley [94]), all Eulerian manifolds (Novik [68,69]), and
even some pseudomanifolds with very mild singularities (Hersh and Novik [37], and Novik
and Swartz [73]).

Stanley’s proof of the UBT for simplicial spheres relied on the theory of Cohen–
Macaulay rings. In fact, it was one of the first applications of commutative algebra to combi-
natorics. Here are some highlights of Stanley’s proof. Let � be a simplicial complex on the
vertex set Œn�. Consider the polynomial ring kŒX� D kŒx1; : : : ; xn� over an infinite field k.
Let I� D .xi1 � � � xis j ¹i1 < i2 < � � � < isº … �/ � kŒX� be the squarefree ideal generated
by non-faces of �. The face ring of � (also known as the Stanley–Reisner ring of �) is the
quotient ring kŒ�� WD kŒX�=I�.

The face ring of � is a finitely-generated standard graded k-algebra. We denote
by kŒ��j its j th graded component. Stanley’s and Hochster’s insight (independently from
each other) in defining this ring [38, 94] was that algebraic properties of kŒ�� reflect many
combinatorial and topological properties of �. For instance, if � is .d � 1/-dimensional,
then the Hilbert series of kŒ��, Hilbk.kŒ��; t/ WD

P1

j D0 dimk kŒ��j � tj , is equal to

dX
iD0

fi�1.�/ � t i

.1 � t /i
D

Pd
iD0 hi .�/ � t i

.1 � t /d
:

Using techniques from homological algebra, Reisner [82] proved that if � is a simpli-
cial .d � 1/-sphere, then kŒ�� is Cohen–Macaulay. This means that a sequence �1; : : : ; �d

of generic linear forms in kŒ�� is a regular sequence, i.e., �sC1 is a nonzero divisor on
kŒ��=.�1; : : : ; �s/ for all 0 � s � d � 1. Put differently, for every 0 � s � d � 1 and j > 0,
the following sequence of k-vector spaces is exact:

0 ! kŒ��=.�1; : : : ; �s/j �1

��sC1
�! kŒ��=.�1; : : : ; �s/j ! kŒ��=.�1; : : : ; �s; �sC1/j ! 0: (4.1)

The Cohen–Macaulayness of kŒ�� is a key to Stanley’s proof of the UBT. Indeed,
standard manipulations with Hilbert series using (4.1) show that for a simplicial .d � 1/-
sphere �,

Hilbk

�
kŒ��=.�1; : : : ; �d /; t

�
D .1 � t /d Hilbk

�
kŒ��; t

�
D

dX
iD0

hi .�/ � t i : (4.2)

2 As we will see in Section 7, for d � 4, there are many more simplicial .d � 1/-spheres than
simplicial d -polytopes.
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The fact that kŒ��=.�1; : : : ; �d / is generated as a k-algebra by n � d elements of degree
one then implies that hi .�/ cannot exceed the number of monomials of degree i in n � d

variables. The number of such monomials is
�

n�dCi�1
i

�
, which coincides with hi .Cd .n//

when i � d=2. This observation and the Dehn–Sommerville relations yield the UBT for
simplicial spheres.

How does one extend Stanley’s result to Eulerian manifolds? One immediate obsta-
cle is that the face rings of simplicial manifolds are in general not Cohen–Macaulay. How-
ever, they satisfy a weaker property, known as Buchsbaumness, and Buchsbaum face rings are
reasonably well understood [87,97], see also [71,72] for more recent results.3 Specifically, for
a simplicial .d � 1/-manifold � and a sequence �1; : : : ; �d of generic linear forms in kŒ��,
Schenzel [87] computed the dimensions of kernels of maps ��sC1 W kŒ��=.�1; : : : ; �s/j �1 !

kŒ��=.�1; : : : ; �s/j . He then used this result to derive the following formula for the Hilbert
function of the quotient k.�/ WD kŒ��=.�1; : : : ; �d / (such quotient is called an Artinian
reduction of kŒ��):

dimk k.�/i D hi .�/ C

 
d

i

!�
ˇi�2.�/ � ˇi�3.�/ C � � � C .�1/i ˇ0.�/

�
for all 0 � i � d:

We denote the right-hand side of this equation by h0
i .�/. Here ǰ .�/ is the dimension of the

j th reduced simplicial homology of � computed with coefficients in k. In particular, if � is
a simplicial sphere, then h0

i .�/ D hi .�/ for all i (which recovers Stanley’s formula (4.2)).
Now consider the socle � of k.�/, i.e., the collection of elements � of k.�/ such

that x` � � D 0 for all variables x` 2 X . In the spirit of Schenzel’s results, Novik and Swartz
[72] proved that the dimension of �i is at least

�
d
i

�
ˇi�1.�/. (For a weaker bound that suffices

to prove the UBT, see [68]). As k.�/=.�i / is a standard graded k-algebra,4 the dimensions of
its homogeneous components satisfy Macaulay’s inequalities [56], [96, page 56]. In particular,
one obtains an upper bound on h0

iC1.�/ in terms of h0
i �

�
d
i

�
ˇi�1. These bounds (together

with the Dehn–Sommerville relations) in turn lead to the desired upper bounds on the h-
numbers of an Eulerian manifold �.

Related to the UBT is a conjecture by Kühnel [49, Conjecture B]. It asserts that the
reduced Euler characteristic of a simplicial 2k-manifold � on n vertices satisfies

.�1/k

 
2k C 1

k

!�
Q�.�/ � 1

�
�

 
n � k � 2

k C 1

!
:

Moreover, equality holds if and only if � is .k C 1/-neighborly. Kühnel’s conjecture was
proved by Novik and Swartz [72] using machinery similar to that outlined above. What is
important to note is that while an Eulerian 2k-manifold cannot be .k C 1/-neighborly unless
it is the boundary of a simplex, there do exist non-Eulerian simplicial 2k-manifolds that are

3 For an alternative very recent treatment of Cohen-Macaulay and Buchsbaum face rings,
where the use of local cohomology and other homological algebra techniques is replaced
with a more topological approach, see [5].

4 A much stronger result [5, 71] asserts that if � is a connected simplicial .d � 1/-manifold
orientable over k, then k.�/=

Ld�1
iD0 �i is a Poincaré duality algebra.
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.k C 1/-neighborly. For surfaces, there are the 2-neighborly triangulations in [40,84] (such
as the six-vertex triangulation of the real projective plane). For k > 1, examples include the
nine-vertex triangulation of the complex projective plane [50] and several 13-vertex triangu-
lations of S3 � S3 [55]; for additional examples see [15,21].

5. Witt spaces

Computations similar to those sketched near the end of the previous section can be
used to show that the bounds of the UBC continue to hold for some non-Eulerian manifolds,
most notably, they hold for all even-dimensional manifolds with vanishing middle homology
(Novik [68]).5 In light of this result, Kalai [43] proposed to extend the UBC to complexes tri-
angulating Witt spaces. The notion of Witt spaces was introduced by Siegel [90]; it relies on
Goresky and MacPherson’s intersection homology theory [30,31], namely the theory that was
developed as a generalization of the Poincaré–Lefschetz theory to stratified singular spaces
such as piecewise-linear pseudomanifolds. Here we only consider simplicial strata. A simpli-
cial pseudomanifold is a pure simplicial complex � such that every ridge of � is contained
in exactly two facets. An oriented simplicial pseudomanifold � is a Witt space if its intersec-
tion homology groups with respect to lower-middle perversity Nm D .0; 0; 1; 1; 2; 2; : : :/ have
the following property: IH Nm

j .�0IQ/ D 0 for every j and every 2j -dimensional subcomplex
�0 � � that is the link of a nonempty face of �. Kalai’s conjecture posits the following:

Conjecture 5.1. Let � be a simplicial complex that is a Witt space. Assume that � is .d �

1/-dimensional and has n vertices. If d � 1 is even, assume further that IH Nm
.d�1/=2

.�/ D 0.
Then fi .�/ � fi .Cd .n// for all 1 � i � d � 1.

An even stronger conjecture (in the spirit of [14,42]) asserts that if � is a .d � 1/-
dimensional Witt space and fi .�/ � fi .Cd .n0// for some i and n0, then fj .�/ � fj .Cd .n0//

for all j > i .
At present, Conjecture 5.1 is known to hold for even-dimensional simplicial man-

ifolds with vanishing middle homology (even on the level of the h-numbers) [68] and also
for odd-dimensional pure complexes all of whose vertex links are manifolds with vanish-
ing middle homology (but only on the level of the f -numbers) [37]. It is open in all other
cases. The main difficulty seems to be our lack of understanding how various topological
characteristics other than simplicial homology can be traced in the face rings.

6. The g-conjecture

This part of the story would be incomplete if we do not mention some very recent
spectacular developments on the g-conjecture. The g-conjecture posits a characterization of
the set of f -vectors of simplicial spheres; as such, it contains the UBC for spheres as a special

5 On the other hand, the existence of .k C 1/-neighborly 2k-manifolds that are not boundaries
of simplices demonstrates that not all simplicial manifolds satisfy the bounds of the UBC.
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case. (For the class of simplicial polytopes the g-conjecture was proposed by McMullen [59].)
The conjecture states that an integer vector .h0; h1; h2; : : : ; hd / is the h-vector of a simplicial
.d � 1/-sphere if and only if (i) hj D hd�j for all 0 � j � d , (ii) 1 D h0 � h1 � � � � �

hbd=2c, and (iii) the numbers .gj WD hj � hj �1/
bd=2c

j D0 form an M -sequence, i.e., they satisfy
Macaulay’s inequalities. (Here g0 WD 1.) The sufficiency of these conditions was established
by Billera and Lee [13]. The necessity of conditions for the case of simplicial polytopes was
proved by Stanley [95]; a more elementary proof was found by McMullen [60, 61], see also
[25]. The necessity of conditions for simplicial spheres remained open until very recently and
was considered one of the most outstanding problems in the field.

The recent striking news is that Adiprasito [3], Papadakis and Petrotou [79], and
Adiprasito, Papadakis, and Petrotou [4] proved the g-conjecture for simplicial spheres. Along
the way, they established surprising algebraic properties of Artinian reductions of face rings
of simplicial spheres. For instance, [79] asserts that if � is a simplicial .d � 1/-sphere and
k is a field of characteristic two, then there exists a purely transcendental field extension K

of k and linear forms �1; : : : ; �d 2 KŒ�� such that for every nonzero homogeneous element
u 2 KŒ��=.�1; : : : ; �d / of degree at most d=2, its square u2 is also nonzero. The paper [4]

provides far reaching generalizations of these algebraic results to face rings of much more
general simplicial complexes such as normal pseudomanifolds. It is now more pressing than
ever to compute the Hilbert functions of generic Artinian reductions of face rings and certain
further quotients of these rings for the purpose of understanding complexes with singularities
more complicated than those studied in [73,74].

7. Numbers of neighborly polytopes and neighborly

spheres

As we saw in Section 3, the cyclic d -polytopes have the remarkable property of
being bd=2c-neighborly. At the same time, it follows easily from the Dehn–Sommerville
relations that no simplicial .d � 1/-sphere except for the boundary of a simplex can be
.bd=2c C 1/-neighborly. This naturally leads to the question of how rare, or how common,
the property of being bd=2c-neighborly is in the class of simplicial d -polytopes (or .d �

1/-spheres). To make this discussion more precise, we first need to understand how many
combinatorial types of simplicial d -polytopes (or .d � 1/-spheres) with n labeled vertices
there are. We denote these numbers by c.d; n/ and s.d; n/, respectively. (That is, we fix the
vertex set to be Œn� and count the number of relevant simplicial complexes up to equality. In
the case of unlabeled vertices, we count the number of complexes up to isomorphism.)

We say that a simplicial .d � 1/-sphere is polytopal if it is isomorphic to the bound-
ary complex of a d -polytope. It follows from Steinitz’s theorem, see [34, Chapter 13], that
all simplicial (and even polyhedral) 2-spheres are polytopal. Hence c.3; n/ D s.3; n/. The
asymptotic behavior of s.3; n/ (as well as of the number of unlabeled 2-spheres with n ver-
tices) was worked out by Tutte [98,99], Brown [16], and Richmond and Wormland [83].

For d � 4, the results become more surprising. While by a result of Mani [57],
every simplicial .d � 1/-sphere with n � d C 3 vertices is polytopal, there are examples of
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nonpolytopal simplicial spheres already for .d; n/ D .4; 8/, see Grünbaum [34, Section 11.5]

and Barnette [8]. In fact, Goodman and Pollack [29], followed by the work of Alon [7], proved
that there are far fewer polytopes than what was expected at the time:�

.n=d/ � 1
�bd=2cn=2

� c.d; n/ � nd.dC1/n:

In other words, for a fixed d , c.d; n/ D 2‚.n log n/.
The proof of the inequality c.d;n/ � nd.dC1/n relies on a theorem of Milnor [64] that

gives bounds on the sum of the Betti numbers of real algebraic varieties. Assume n is even.
Alon’s construction [7] providing lower bounds on c.d; n/ starts with the cyclic polytope
Cd .n=2/ on the first n=2 vertices; he then adds the last n=2 labeled vertices in all possible
ways by placing each of them close to a facet of Cd .n=2/. That for n > 2d , fd�1.Cd .n=2//

is at least ..n=d/ � 1/bd=2c implies that c.d; n/ � ..n=d/ � 1/bd=2cn=2.
In striking contrast to these results, Kalai [41] proved that there is an enormous

number of simplicial spheres: for d � 5, s.d; n/ � 2�.nb.d�1/=2c/. Furthermore, Pfeifle and
Ziegler [81] showed that s.4; n/ � 2�.n5=4/. The current record on the number of odd-
dimensional simplicial spheres is due to Nevo, Santos, and Wilson [67] who verified that
s.2k; n/ � 2�.nk/ for all k � 2. On the other hand, Stanley’s UBT for spheres implies that
s.d; n/ � 2O.nbd=2c log n/ (see [41]). To summarize, the current best bounds on s.d; n/ are

2�.nbd=2c/
� s.d; n/ � 2O.nbd=2c log n/ for all d � 4:

What proportion of simplicial d -polytopes (.d � 1/-spheres) are bd=2c-neighborly?
While Motzkin [65] believed that Cd .n/ is the only bd=2c-neighborly d -polytope on n

vertices, Shemer [89] introduced a sewing construction and used it to prove that even the
number of distinct unlabeled bd=2c-neighborly d -polytopes on n vertices is at least nad n,
where limd!1 ad D 1=2. Generalizing Shemer’s sewing construction, Padrol [78] greatly
improved this bound: he constructed on the order of ndn=2 labeled bd=2c-neighborly d -
polytopes on n vertices (for even d ). This lower bound on the number of bd=2c-neighborly
d -polytopes is, of course, also a lower bound on c.d; n/. In fact, it is the current best lower
bound on c.d;n/. This state of affairs seems to indicate that the property of being neighborly
is very common among polytopes.

Along the same lines, Kalai [41] speculated that the number sn.d; n/ of bd=2c-
neighborly simplicial .d � 1/-spheres with n labeled vertices is very large and posited the
following conjecture:

Conjecture 7.1. For all d � 4, limn!1.log sn.d; n/= log s.d; n// D 1.

In his paper [78], Padrol also constructed a large number of bd=2c-neighborly
.d � 1/-spheres arising from nonrealizable oriented matroids. Yet, Padrol’s bound only
implied that sn.d; n/ � 2�.n log n/. While we are still very far from being able to shed light
on Conjecture 7.1, very recently Novik and Zheng [77] proved that for all d � 5,

sn.d; n/ � 2�.nb.d�1/=2c/: (7.1)
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Note that for d � 5, the number of combinatorial types of unlabeled bd=2c-neighborly
.d � 1/-spheres on n vertices is also at least 2�.nb.d�1/=2c/. Indeed, dividing the lower bound
by nŠ D 2O.n log n/ does not affect its asymptotic growth if d � 5.

We now sketch some of the ideas used by Kalai [41] to show that for odd d � 5,
s.d; n/ � 2�.n.d�1/=2/. We then discuss some additional ideas needed to modify Kalai’s con-
struction in order to prove (7.1) for odd d . For the rest of this section, we treat the boundary
complex of Cd .n/ as an abstract simplicial complex. In particular, a vertex M.ti / of Cd .n/

is identified with i 2 Œn�, and a face conv.M.ti / j i 2 I / with I � Œn�. For integers a < b, we
write Œa; b� to denote the set ¹a; a C 1; : : : ; bº. If B is a simplicial d -ball, then the boundary
of B , @B , is the .d � 1/-dimensional subcomplex of B generated by ridges of B that are
contained in exactly one facet of B .

Kalai’s construction is a generalization of a construction used by Billera and Lee
[13] to prove the sufficiency of conditions of the g-conjecture. It starts with the family F D

F2k.n/ of all 2k-subsets of Œn� (here k � 2 is a fixed integer) of the form

F D
®
¹i1; i1 C 1; i2; i2 C 1; : : : ; ik ; ik C 1º j 1 � i1 < i1 C 1 < i2 < � � � < ik < ik C 1 � n

¯
:

By Gale’s evenness condition [26], each F 2 F is a facet of C2k.n/. Partially order the
set F by ¹j1; : : : ; j2kº �p ¹`1; : : : ; `2kº if j1 � `1; : : : ; j2k � `2k . For an antichain A in
the poset .F ; �p/, let F .A/ be the order ideal of F generated by A and let B.A/ be the
simplicial complex whose facets are the elements of F .A/. For instance, if k D 2, n D 8,
and A D ¹¹1; 2; 7; 8º; ¹2; 3; 6; 7º; ¹3; 4; 5; 6ºº, then F .A/ consists of

¹1; 2; 7; 8º; ¹1; 2; 6; 7º; ¹1; 2; 5; 6º; ¹1; 2; 4; 5º; ¹1; 2; 3; 4º;

¹2; 3; 6; 7º; ¹2; 3; 5; 6º; ¹2; 3; 4; 5º; ¹3; 4; 5; 6º;

and B.A/ is generated by these nine facets.
Kalai [41] proved that for every (nonempty) antichain A, B.A/ is a shellable

.2k � 1/-ball, that all vertices of B.A/ are on the boundary of B.A/, and that the bound-
aries @.B.A// and @.B.A0// of two such balls coincide if and only if A D A0. Estimating
the number of antichains, he concluded that there are at least 2�.nk�1/ such balls with
exactly n vertices. Their boundaries provide us with the desired number of distinct .2k � 2/-
spheres with n (labeled) vertices. Kalai called these balls squeezed balls and their boundaries
squeezed spheres.

To prove (7.1), the trick is to consider differences of appropriately chosen squeezed
balls. To do so, for an antichain A in F , define

A � 1 WD
®
¹i1 � 1; i1; i2 � 1; i2; : : : ; i2k � 1; i2kº j ¹i1; i1 C 1; : : : ; i2k ; i2k C 1º

2 A and i1 > 1
¯
:

Let BA be the simplicial complex whose facets are the elements of F .A/ n F .A � 1/. In the
above example A D ¹¹1; 2; 7; 8º; ¹2; 3; 6; 7º; ¹3; 4; 5; 6ºº, A � 1 D ¹¹1; 2; 5; 6º; ¹2; 3; 4; 5ºº,
and the facets of BA are ¹1; 2; 7; 8º, ¹1; 2; 6; 7º, ¹2; 3; 6; 7º, ¹2; 3; 5; 6º, and ¹3; 4; 5; 6º.

One now checks, see [77], that the following results, paralleling Kalai’s theorem,
hold: if A is an antichain in F that contains Œ1; 2� [ Œn � 2k C 3; n� as an element, then
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BA is a simplicial .2k � 1/-ball that has n vertices; this ball is .k � 1/-neighborly and all
faces of BA of dimension � k � 1 are on the boundary of BA; furthermore, the boundaries
of two such balls BA and BA0 coincide if and only if A D A0. We refer to BA as a relative
squeezed ball and to its boundary @BA as a relative squeezed sphere. The bound (7.1) for
odd d follows, since relative squeezed spheres are .k � 1/-neighborly .2k � 2/-spheres with
n vertices and there are at least 2�.nk�1/ of them.

A simplicial d -ball B all of whose faces of dimension � d � i � 1 lie on the bound-
ary of B is called i -stacked. In particular, all .2k � 1/-balls BA are .k � 1/-stacked. The
notion of stackedness takes its origins in the Generalized Lower Bound Theorem [63,66,95].

While at present Conjecture 7.1 is likely out of reach, establishing the bound
sn.d; n/ � 2�.nbd=2c/ might be a more feasible goal. We would also like to mention that
while Kalai’s squeezed balls are shellable, and so are all squeezed spheres [51], the question
of whether relative squeezed balls and relative squeezed spheres are shellable is open.

8. The upper bound theorem for centrally symmetric

spheres

We now shift our focus to a fascinating subclass of simplicial complexes, that of
centrally symmetric complexes. Some definitions are in order. A polytope P � Rd is cen-
trally symmetric (cs, for short) if P D �P . In the same spirit, a simplicial complex � is
centrally symmetric (cs, for short) if the vertex set of � is endowed with a free involution ˛

that induces a free involution on the set of all nonempty faces of �. In more detail, for every
nonempty face F 2 �, the following holds:

˛.F / 2 �; ˛.F / ¤ F; and ˛
�
˛.F /

�
D F:

A complex � is a cs simplicial sphere if � is both a simplicial sphere and a cs complex. For
instance, if P is a cs simplicial polytope, then the boundary complex @P of P with the map
˛.v/ D �v is a cs simplicial sphere.

To simplify notation, for a cs simplicial complex � and a face F 2 �, we write
˛.F / D �F and refer to F and �F as antipodal faces of �. In particular, if � is a cs complex
with 2n vertices, we usually assume that the vertex set of � is Vn D ¹˙1;˙2; : : : ;˙nº. Any
cs complex � with 2n vertices can be naturally associated with a subcomplex of @C�

n , where
C�

n D conv.˙e1; ˙e2; : : : ; ˙en/ is the n-dimensional cross-polytope. (Here e1; : : : ; en are
the endpoints of the standard basis of Rn.)

Our discussion in this and the next sections is aimed at and motivated by the fol-
lowing questions: What restrictions does being cs impose on the f -vectors of cs simplicial
spheres and cs polytopes? What are the cs analogs of the UBT? Is there a cs version of the
cyclic polytope?

To start, note that if � is a cs complex and v is a vertex of �, then v and �v never
form an edge. Thus the notion of neighborliness requires minor adjustments: a cs simplical
complex � is cs-k-neighborly if every set of k of its vertices, no two of which are antipodes,
is a face of �. Some examples: @C�

d
is cs-d -neighborly, while (the boundary complex of)
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conv.˙e1; ˙e2; : : : ; ˙ed ; ˙
Pd

iD1 ei /, which is a cs d -polytope with 2.d C 1/ vertices, is
cs-bd=2c-neighborly. This latter example is due to McMullen and Shephard [62].

What can be said about neighborliness of cs d -polytopes and cs .d � 1/-spheres
with more than 2.d C 1/ vertices? At this point some striking discrepancies between the cs
and non-cs worlds start to emerge. On one hand, Grünbaum [34, Section 6.4] (for d D 4) and
McMullen and Shephard [62] (for general d ) proved that in contrast to the non-cs case, a
cs polytope with at least 2.d C 2/ vertices cannot be cs-.b.d C 1/=3c C 1/-neighborly. On
the other hand, Grünbaum [32,33] constructed cs simplicial 3-spheres with 12 vertices that
are cs-2-neighborly, thus leaving open the possibility that cs-bd=2c-neighborly simplicial
.d � 1/-spheres with an arbitrary large number of vertices may exist.

An additional incentive for investigating if highly neighborly cs spheres exist comes
from the following theorem due to Adin [2] and Stanley (unpublished): in the class of all cs
simplicial .d � 1/-spheres with 2n vertices, a cs-bd=2c-neighborly sphere simultaneously
maximizes all the face numbers assuming such a sphere exists. (The proof uses face rings
and is similar to Stanley’s proof of the UBT for spheres discussed in Section 4.)

Does such a sphere exist? In 1995, Jockusch [39] gave a positive answer for d D 4:
he showed that for every value of n � 4, there is a cs simplicial 3-sphere with 2n vertices that
is cs-2-neighborly. A few years later, for each d � 7, Lutz [54] found (by a computer search)
several cs simplicial .d � 1/-spheres with 2.d C 2/ vertices that are cs-bd=2c-neighborly.
Recently, building on the work of Jockusch [39], Novik and Zheng [75] provided a complete
answer: for all values of d � 4 and n � d , there exists a cs simplicial .d � 1/-sphere with 2n

vertices, �d�1
n , that is cs-bd=2c-neighborly. Combined with the work of Adin and Stanley,

this result completely resolved the upper bound problem for cs simplicial spheres.
The construction of �d�1

n is quite involved and uses induction on both d � 2 and
n � d . One key idea of the construction is for all d , n � d , and i � bd=2c � 1, to define
(by triple induction) an auxiliary simplicial .d � 1/-ball, B

d�1;i
n � @C�

n , on the vertex set
¹˙1; : : : ; ˙nº, that is both i -stacked and cs-i -neighborly. (Recall that i -stacked balls were
defined at the end of Section 7. While B

d�1;i
n � @C�

n is not a cs complex, it is a subcomplex
of one; hence the definition of cs-i -neighborliness still makes sense.) In the case of d D

4, the construction reduces to Jockusch’s construction. A curious property of �d�1
n worth

mentioning is that the link of ¹n � 1; nº in �2kC1
n is the complex �2k�1

n�2 , while the link of
¹n � 2; n � 1; nº in �2kC2

n is �2k�1
n�3 . Another property worth mentioning is that in addition

to being cs-k-neighborly, the sphere �2k�1
n is also k-stacked, i.e., it is the boundary of a

k-stacked ball.
By results of McMullen and Shephard [62], for d � 4 and n � d C 2, the complex

�d�1
n is not isomorphic to the boundary complex of a cs polytope. This still leaves open

the question of whether �d�1
n can be realized as the boundary complex of some non-cs

polytope. The answer was recently provided by Pfeifle [80] who proved that for all d � 4

and n � d C 1 (including n D d C 1), the complex �d�1
n is not polytopal! This is quite

a remarkable achievement because, while most of simplicial spheres are not polytopal (see
Section 7), determining whether a particular simplicial sphere is polytopal or not is very
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hard. For his proof, Pfeifle introduced a new method for finding a nonrealizability certificate
of a simplicial sphere; these certificates involve combinations of Plücker relations.

Now that the existence of cs .d � 1/-spheres with arbitrarily many vertices that
are cs-bd=2c-neighborly is established, a new tantalizing question is: For a fixed d � 4,
how many pairwise nonisomorphic such cs spheres with 2n vertices are there? In light of
Section 7, it is very tempting to conjecture that there are at least 2�.nb.d�1/=2c/ of them. This is
wide open at present. Indeed, our current knowledge on this subject is as follows [76]: while
for d D 4 and 5, there are at least �.2n/ such nonisomorphic cs spheres, for d D 2k > 4 and
n � 0, only two nonisomorphic constructions are available at present; they are the edge links
of ¹n C 1; n C 2º and ¹1; 2º in �2kC1

nC2 . For d D 2k C 1, there are three such constructions:
the suspensions of the two complexes just mentioned (but with 2.n � 1/ vertices) and �2k

n .
Another natural question is whether a cs analog of Klee’s UBC holds. Specifically,

is it true that in the class of all cs Eulerian simplicial complexes of dimension d � 1 with 2n

vertices, the complex �d�1
n simultaneously maximizes all the face numbers?

It is also worth mentioning that parallel to Kühnel’s conjecture (see Section 4) is
Sparla’s conjecture on the Euler characteristic of cs simplicial 2k-manifolds [92, 93]. This
conjecture is still open for manifolds with fewer than 6k C 4 vertices (see [46, 69] for the
state-of-the-art). On a related note, there do exist non-Eulerian cs simplicial 2k-manifolds
that are cs-.k C 1/-neighborly. A construction of such a cs .4k C 4/-vertex triangulation of
Sk � Sk for each k � 1 is given in [46].

9. How neighborly can a cs polytope be?

We now arrive at the most mysterious part of the story: trying to understand possible
neighborliness of cs polytopes, as well as trying to come up with tight upper bounds on face
numbers of cs polytopes.

As was mentioned in Section 8, a cs d -polytope with at least 2.d C 2/ vertices
cannot be cs-.b.d C 1/=3c C 1/-neighborly [62]. To prove this result, McMullen and Shep-
hard developed a notion of cs transforms of cs polytopes, which is a cs analog of the cele-
brated Gale diagrams. A cs transform associates with a cs set V D ¹˙v1; : : : ; ˙vmº � Rd

a certain cs set V D ¹˙Nv1; : : : ; ˙Nvmº � Rm�d in such a way that, given V , one can check
whether it is a cs transform of the vertex set of a cs polytope, and, if this is the case, one can
read the vertex sets of the faces of this polytope from V .

How neighborly can a cs polytope be? We let k.d; n/ denote the largest integer k

such that there exists a cs d -polytope with 2.d C n/ vertices that is cs-k-neighborly. In view
of their results that k.d; 1/ D bd=2c and k.d; 2/ D b.d C 1/=3c, McMullen and Shephard
[62] conjectured that k.d; n/ � b.d C n � 1/=.n C 1/c for all n � 3. In particular, according
to this conjecture, k.d; d/ D 1, so if the conjecture holds, a cs d -polytope with 4d vertices
cannot even be cs-2-neighborly. The conjecture was quickly refuted by Halsey [36] and then
by Schneider [88], but only for d � n. In a positive direction, Burton [18] proved that a cs
d -polytope with a sufficiently large number of vertices (� .d=2/d=2) indeed cannot even be
cs-2-neighborly.
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The field lay dormant for a few decades, until Donoho et al. [23, 24], see also [85],
discovered some amazing connections between cs polytopes with many faces and seem-
ingly unrelated areas of error-correcting codes and sparse signal reconstruction. In particular,
Donoho [23] proved that there exists a positive constant � such that for large d , k.d;d/ � �d .
More specifically, he showed that the orthogonal projection of the cross-polytope C�

2d
onto

a d -dimensional subspace of R2d , chosen uniformly at random, is with high probability at
least cs-b�dc-neighborly.

Linial and Novik [53], following the work of Donoho, established the asymptotics
of k.d; n/. They proved that there exist constants C1; C2 > 0 independent of d and n such
that

C1d

1 C log..d C n/=d/
� k.d; n/ �

C2d

1 C log..d C n/=d/
: (9.1)

The lower bound k.d; n/ �
C1d

1Clog..dCn/=d/
was also proved independently and at about the

same time by Rudelson and Vershynin [85]. Both proofs of the lower bound relied on prob-
abilistic arguments or, more precisely, on “high-dimensional” paradoxes such as Kašin’s
theorem [45] and Garnaev–Gluskin’s theorem [27]. Consider the Grassmannian manifold
Gn;dCn endowed with the normed unitary invariant measure. Garnaev–Gluskin’s theorem
asserts that an n-dimensional subspace L of RdCn, chosen uniformly at random, is with pos-
itive probability “almost Euclidean”, meaning that for all x 2 L n ¹0º, the ratio kxk2=kxk1

is bounded from above by QC

q
1Clog..dCn/=d/

d
for some absolute constant QC > 0. Via cs

transforms, the existence of such a subspace L implies the existence of a cs-k-neighborly
d -polytope with 2.d C n/ vertices where k is given by the left-hand side of (9.1); see [53].

While proofs using probabilistic arguments are very beautiful, some disadvantages
of such proofs are that they only show existence rather than provide explicit constructions
and they only produce asymptotic bounds rather than exact values. Recently some progress
has been made on understanding the maximum possible number of vertices that a cs-2-
neighborly d -polytope can have. Although we still do not know the exact value, we now
know it up to a factor of two: for d � 2, there exists a cs d -polytope with 2d�1 C 2 vertices
that is cs-2-neighborly [70]; on the other hand, for d � 3, no cs polytope with 2d or more
vertices can be cs-2-neighborly [53]. Written in terms of k.d; n/, this result says that, for
d � 3, k.d; n/ � 2 for all n � 2d�2 C 1 � d while k.d; n/ D 1 for all n � 2d�1 � d .

The result that for d � 3, no cs polytope with 2d or more vertices can be cs-2-
neighborly is due to Linial and Novik [53]. The proof has two ingredients. The first is a
simple observation that the vertex set V � Rd of a cs-2-neighborly polytope is antipodal,
i.e., for every two vertices x; y 2 V (x ¤ y), there exist two distinct parallel hyperplanes
Hx and Hy such that x 2 Hx , y 2 Hy , and all elements of V lie in the closed strip defined
by Hx and Hy . The second ingredient is a celebrated theorem of Danzer and Grünbaum [22]

(see also [6, Chapter 17]) asserting that an antipodal set in Rd has at most 2d points, and
it has exactly 2d points if and only if it is the vertex set of a parallelotope (which is not
cs-2-neighborly, unless d D 2).

The existence of a cs d -polytope with 2d�1 C 2 vertices that is cs-2-neighborly was
established by Novik [70]. The construction of such a polytope is a modification of a recent
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construction due to Gerencsér and Harangi [28] of an acute set in Rd of size 2d�1 C 1. Infor-
mally, the description is as follows: start with the vertex set V of the .d � 1/-cube Œ�1;1�d�1

embedded in the coordinate hyperplane Rd�1 � ¹0º. Then use the extra dimension to perturb
the vertices in such a way that the resulting set V 0 is “almost acute,” i.e., V 0 is cs and for
every v; u; w 2 V 0 with v ¤ �w, the angle †vuw is acute. Adding to V 0 a pair of antipodes
of the form ˙.0; 0; : : : ; 0; c/, where 0 < c 2 R is sufficiently large, creates the vertex set
of a cs d -polytope that is cs-2-neighborly and has a desired number of vertices; see [70] for
details.

To summarize our discussion, for d � 3, the maximum number of vertices, md ,
that a cs-2-neighborly d -polytope can have lies in the interval Œ2d�1 C 2; 2d � 2�. The value
of m3 is 6 D 22 C 2 as the only cs-2-neighborly 3-polytope is an octahedron. The value of
m4 is 10 D 23 C 2: this is a consequence of Grünbaum’s result that a cs 4-polytope with
12 vertices cannot be cs-2-neighborly. The exact values of md for d � 5 are unknown at
present.

10. Towards an Upper Bound Conjecture for cs polytopes

What is the largest number fmax.d; N I i/ of i -faces that a cs d -polytope with N D

2n vertices can have? The discussion in the previous section indicates that at present we
are very far from even being able to pose a plausible conjecture, even in the case of i D 1.
Instead, we can try to ask for asymptotic bounds on fmax.d; N I i/.

For the case of i D 1, the best to-date bounds are:
3

4
�

N 2

2
� O.N / � fmax.4; N I 1/ �

15

16
�

N 2

2
; (10.1)

and for any even d D 2k > 4,�
1 �

1

3
.
p

3/�d

�
�

 
N

2

!
� fmax.d; N I 1/ � .1 � 2�d / �

N 2

2
: (10.2)

The upper bounds are due to Barvinok and Novik [11]. Their proof involves a careful use of a
volume trick similar to that utilized in the proof of the Danzer–Grünbaum theorem [22]. The
lower bounds were established by Barvinok, Lee, and Novik [9]; they rely on a construction
that we sketch below.

An idea for such a construction arose from trying to come up with a cs analog of
the cyclic polytope. Recall that the cyclic polytope is the convex hull of n points on the d th
moment curve. It is a result of Gale [26] that for d D 2k, the convex hull of n points on the
trigonometric moment curve Tk D .cos t; sin t; cos2t; sin2t; : : : ; coskt; sinkt/ has the same
combinatorial type as the cyclic polytope. The curve Tk does not suit our purpose since it is
not symmetric, but this is easily rectified if one considers only odd multiples of t .

Specifically, consider the symmetric moment curve

Uk.t/ D
�
cos t; sin t; cos 3t; sin 3t; : : : ; cos.2k � 1/t; sin.2k � 1/t

�
for t 2 R;

or one of its variants such as

ˆk.t/ D .cos t; sin t; cos 3t; sin 3t; cos 32t; sin 32t; : : : ; cos 3k�1t; sin 3k�1t / for t 2 R:
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Since Uk.t C 2�/ D Uk.t/ and similarly for ˆk , from this point on, we consider both curves
as defined on the unit circle S1 D R=2�Z. Furthermore, since t and t C � form a pair of
opposite points on S1 (for all t 2 S1) and since Uk.t C �/ D �Uk.t/, it follows that for
each choice of 0 � t1 < � � � < tn < � , the convex hull of ¹Uk.ti /; U.ti C �/ j i 2 Œn�º is a cs
polytope; a similar statement holds for ˆk . Polytopes with vertices on U2 D ˆ2 (among cer-
tain more general 4-polytopes) were introduced and analyzed by Smilansky [91]. Polytopes
with vertices on Uk , for general k, were studied in [10, 11, 100]; they are known as bicyclic
polytopes. Polytopes with vertices on ˆk were defined in [9]. One property of bicyclic 2k-
polytopes worth mentioning is that they are locally k-neighborly: if the set ¹ti1 ; : : : ; tik º is
contained in an arc of S1 of length �=2, then ¹Uk.ti1/; : : : ; Uk.tik /º is the vertex set of a
face. For some applications of bicyclic polytopes to topology, see [1].

To obtain the lower bound on fmax.4;N I1/ promised in (10.1), take a cs subset X of
S1 consisting of four clusters of points, each of size N=4, with the j th cluster lying on a small
arc containing j�=2. The cs 4-polytope conv.U2.x/ j x 2 X/ has at least 1

2
� N. 3

4
N � 1/ �

3
4

�
N
2

�
edges. Similarly, for k > 2, consider A D 2.3k�1 � 1/ equally spaced points p1; : : : ;pA

on S1. Replace each pj with a cluster of N=A points lying on a small arc containing pj in
such a way that the resulting set V is cs. The convex hull of ˆk.V / is then a cs 2k-polytope
that verifies the lower bound of (10.2); see [9] for details.

For i > 2, the gap between the current best upper and lower bounds on
fmax.d; N I i � 1/ is so much worse than the gap for the number of edges that instead
of stating the bounds here, we merely refer the reader to [9] for the lower bound and to [11]

for the upper bound.
To conclude, we want to emphasize once again that in sharp contrast with the situ-

ation for cs spheres, at the moment we are nowhere near having a good handle on the upper
bound type results for cs polytopes, and not for the lack of effort. We do not even know what
is the largest number of edges that a cs 4-polytope with N D 2n vertices can have. In fact,
for d � 6 and N � 2.d C 2/, we do not even know if in the class of cs d -polytopes with
N vertices, there is a polytope that simultaneously maximizes all the f -numbers. What we
seem to be lacking is new constructions (either explicit or probabilistic) of cs polytopes, and,
in particular, constructions that may improve the lower bounds given in (10.1) and (10.2): in
light of the main result of [70], we believe that fmax.d; N I 1/ is closer to the right-hand side
of (10.2) than to the left one.
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