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Abstract

Extremal combinatorics is a central research area in discrete mathematics. The field can be
traced back to the work of Turán and it was established by Erdős through his fundamental
contributions and his uncounted guiding questions. Since then it has grown into an impor-
tant discipline with strong ties to other mathematical areas such as theoretical computer
science, number theory, and ergodic theory.
We focus on extremal problems for hypergraphs, which were introduced by Turán. After
solving the analogous question for graphs, Turán asked to determine the maximum car-
dinality of a set E of 3-element subsets of a given n-element set V such that for any 4

elements of V at least one triple is missing in E. This innocent looking problem is still
open and, despite a great deal of effort over the last 80 years, our knowledge is still some-
what limited. We consider a variant of the problem by imposing additional restrictions on
the distribution of the 3-element subsets in E. These additional assumptions yield a finer
control over the corresponding extremal problem. In fact, this leads to many interesting
and more manageable problems, some of which were already considered by Erdős and Sós
in the 1980s. The additional assumptions on the distribution of the 3-element subsets are
closely related to the theory of quasirandom discrete structures, which was pioneered by
Szemerédi and became a central theme in the field. In fact, the hypergraph extensions by
Gowers and by Rödl et al. of the regularity lemma provide essential tools for this line of
research.
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1. Introduction

Extremal and probabilistic combinatorics is an important area of discrete mathe-
matics with strong ties to Ramsey theory, random graph theory, number theory, theoretical
computer science, and ergodic theory. This branch and those connections are central in dis-
crete mathematics and have seen strong developments in the last few decades.

A prime example in that direction is Szemerédi’s celebrated density theorem on
arithmetic progressions [47]. Its connection to extremal problems for graphs and hyper-
graphs, provided by the removal lemma, was the source for some of the most important
developments in the field and led to powerful techniques in extremal combinatorics, which
include Szemerédi’s regularity lemma for graphs [48], its extensions to hypergraphs due to
Gowers [26] and Rödl et al. [33, 44], the systematic study of quasirandom discrete struc-
tures by Thomason [49,50] and Chung, Graham, and Wilson [8], and the notion of limits of
sequences of graphs and hypergraphs pioneered by Lovász and Szegedy [9,30,31]. Moreover,
Szemerédi’s theorem has interesting connections to ergodic theory (established by Fursten-
berg and his collaborators [20–22]), to harmonic analysis (see, e.g., the work of Roth [45,46],
Gowers [25], Bourgain [6], and others), and to number theory (see, e.g., the Green–Tao the-
orem [27]).

Pivotal in those works was the understanding of suitable notions of quasirandom-
ness of discrete structures. A quasirandom structure resembles a truly random object by
sharing significant properties with it. The systematic study of quasirandom graphs was ini-
tiated by Thomason [49,50] and Chung, Graham, and Wilson [8]. Those authors considered
sequences of deterministic (finite) graphs Gn D .Vn; En/ with the number of vertices jVnj

tending to infinity with n and with density jEnj=
�

jVnj

2

�
close to some constant p 2 Œ0; 1�.

Such a sequence of graphs is quasirandom if it shares some important properties with the
binomial random graph G.n;p/ of the same density, i.e., Gn has some of the significant prop-
erties which hold for G.n;p/ with high probability. One of the key properties of G.n;p/ is its
uniform edge distribution, and Thomason chose a quantitative version of it to define quasiran-
dom graphs. The Chung–Graham–Wilson theorem established a deterministic equivalence
between the uniform edge distribution and several other significant properties, including
large spectral gap for the eigenvalues of the adjacency matrix, the number of cycles of length
four appearing as a subgraph, and the expected number of copies of subgraphs of any fixed
isomorphism type.

We consider extremal problems for uniform hypergraphs. The classical extremal
problem for hypergraphs, already posed by Turán [51] about 80 years ago, turned out to be
notoriously hard and, despite a great deal of effort, our current knowledge is still somewhat
limited. We investigate a variant of the classical problem by imposing additional restrictions
on the distribution of the hyperedges. Roughly speaking, we shall consider uniformly dense
hypergraphs, i.e., hypergraphs which induce on large sets of vertices at least a given edge den-
sity. This additional assumption yields a better control over the corresponding extremal prob-
lem. This leads to many interesting and sometimes more manageable subproblems, some
of which were already considered by Erdős and Sós [12, 15]. In particular, those additional

4647 Restricted problems in extremal combinatorics



assumptions on the hyperedge distribution are closely related to the theory of quasirandom
hypergraphs and make these problems amenable to the regularity method for hypergraphs.
Extremal problems of this type were investigated in [4,7,23,24,32,37–43].

2. Extremal problems for graphs and hypergraphs

Given a fixed graph F , a classical problem in extremal graph theory asks for the
maximum number of edges that a (large) graph G on n vertices containing no copy of F can
have. More formally, for a fixed graph F let the extremal number ex.n;F / be the number jEj

of edges of an F -free graph G D .V; E/ on jV j D n vertices with the maximum number of
edges. It is well known and not hard to observe that the sequence ex.n;F /=

�
n
2

�
is decreasing.

Consequently, one may define the Turán density

�.F / D lim
n!1

ex.n; F /�
n
2

� ;

which describes the maximum density of large F -free graphs. The systematic study of these
extremal parameters was initiated by Turán [51], who determined ex.n; Kt / for complete
graphs Kt . Recalling that the chromatic number �.F / of a graph F is the minimum number
of colors one can assign to the vertices of F in such a way that any two vertices connected
by an edge receive distinct colors, it follows from a result of Erdős and Stone [16] that

�.F / D
�.F / � 2

�.F / � 1
; (2.1)

while the connection with the chromatic number first appeared in the work of Erdős and
Simonovits [14]. In particular, the value of �.F / can be calculated in finite time. It also
follows that the set ….2/ D ¹�.F /W F is a graphº of all Turán densities of graphs is given by

….2/
D

²
0;

1

2
;

2

3
; : : : ;

t � 2

t � 1
; : : :

³
:

Already in his original work [51], Turán asked for hypergraph extensions of these
extremal problems. We mainly restrict ourselves here to 3-uniform hypergraphsH D .V;E/,
where V D V.H/ is a finite set of vertices and the set of hyperedges E D E.H/ � V .3/,
where V .3/ D ¹e � V W jej D 3º is a collection of 3-element sets of vertices. Despite con-
siderable effort, even for 3-uniform hypergraphs F , no similar characterization (as in the
graph case) is known. In fact, it is known that the corresponding set ….3/ of Turán densi-
ties for 3-uniform hypergraphs is much more complicated and, in particular as a subset of
the reals, it is not well-ordered (see, e.g., [19] and [34]). Determining the value of �.F / is
a well known and hard problem even for “simple” hypergraphs like the complete 3-uniform
hypergraph K

.3/
4 on four vertices and K

.3/�
4 , the hypergraph with four vertices and three

hyperedges. Currently the best known bounds for these Turán densities are
5

9
� �.K

.3/
4 / � 0:5615 and

2

7
� �.K

.3/�
4 / � 0:2871;
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where the lower bounds are given by what is believed to be optimal constructions due to Turán
(see, e.g., [11]) and Frankl and Füredi [18]. The stated upper bounds are due to Razborov [36],
Baber [1], and Baber and Talbot [2], and their proofs are based on the flag algebra method
introduced by Razborov [35]. For a thorough discussion of Turán-type results and problems
for hypergraphs we refer to the survey of Keevash [28].

3. Hypergraphs uniformly dense on sets of vertices

Erdős and Sós (see, e.g., [12,15]) suggested a variant, where one restricts to F -free
hypergraphs H that are uniformly dense on large subsets of the vertices.

Definition 3.1. For reals d 2 Œ0; 1� and � > 0, we say a 3-uniform hypergraph H D .V; E/

is .d; �; /-dense if all subsets X , Y , Z � V induce at least

d jX jjY jjZj � �jV j
3

triples .x; y; z/ 2 X � Y � Z such that ¹x; y; zº is a hyperedge of H .

Restricting to -dense hypergraphs, the appropriate Turán density � .F / for a given
hypergraph F can be defined as

� .F / D sup
®
d 2 Œ0; 1�W for every � > 0 and n 2 N there exists

a 3-uniform, F -free, .d; �; /-dense hypergraph H with jV.H/j � n
¯
;

and we obtain from the definitions that

�.F / � � .F /

for every 3-uniform hypergraph F .
We first note that these Turán densities are nontrivial, i.e., there exist hypergraphs F

such that � .F / > 0, as the following examples show, which can be traced back to the work
of Erdős and Hajnal [13].

Example 3.2. Consider a random tournament Tn on the vertex set Œn� D ¹1; : : : ; nº, i.e., an
orientation of all edges of the complete graph on the first n positive integers such that each of
the two directions .i; j / or .j; i/ of every pair of vertices ¹i; j º is chosen independently with
probability 1=2. Given such a tournament Tn, we define the 3-uniform hypergraph H.Tn/

on the same vertex set, by including the triple ¹i; j; kº in E.H.Tn// if these three vertices
span a cyclically oriented cycle of length three, i.e., ¹i; j; kº 2 E.H.Tn// if either .i; j /,
.j; k/, and .k; i/ are all in E.Tn/ or .i; k/, .k; j /, and .j; i/ are all in E.Tn/. It is easy to
check that for every � > 0 with probability tending to 1 as n ! 1 the hypergraph H.Tn/ is
.1=4; �; /-dense. Moreover, no hypergraph H obtained from a tournament in this way con-
tains three hyperedges on four vertices, i.e., every such H is K

.3/�
4 -free and this establishes

� .K
.3/�
4 / � 1=4.

It was shown by Glebov, Král’, and Volec [24] that indeed this construction is essen-
tially optimal by providing a matching upper bound.
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Theorem 3.3 (Glebov, Král’, and Volec). We have � .K
.3/�
4 / D 1=4.

The proof in [24] is computer-assisted and based on flag-algebras. With Reiher and
Rödl [41], we obtained an alternative proof, which relies on the regularity method for hyper-
graphs.

Note that K
.3/�
4 can be described as the hypergraph given by one vertex a having

a triangle as its link graph, i.e., the graph consisting of the pairs of vertices that together
with a form a hyperedge. From that point of view the following problem asks for a natural
extension of Theorem 3.3.

Problem 3.4. For t � 3, let St be the 3-uniform hypergraph on t C 1 vertices a; u1; : : : ; ut

such that ¹a; ui ; uj º is a hyperedge for all 1 � i < j � t . Determine � .St / for t � 4.

In [41] it is shown that
t2 � 5t C 7

.t � 1/2
� � .St / �

�
t � 2

t � 1

�2

;

which for t D 3 recovers Theorem 3.3 since S3 D K
.3/�
4 . For the first open case t D 4, we

have 1
3

� � .S4/ �
4
9
, and it would be interesting to close this gap and to find the extremal

structures for this problem.
Another intriguing problem concerns K

.3/
4 , the so-called tetrahedron. The following

random construction of Rödl [43] shows that � .K
.3/
4 / � 1=2, and Erdős [12] suggested that

this might be best possible.

Example 3.5. Given any map 'W Œn�.2/ ! ¹red; greenº, we define the 3-uniform hyper-
graph H' with vertex set Œn� by putting a triple ¹i; j; kº with i < j < k into E.H'/ if
and only if the colors of the two pairs ¹i; j º and ¹i; kº differ. Irrespective of the choice of
the coloring ', the hypergraph H' contains no tetrahedra: for if a, b, c, and d are any four
distinct vertices, say with a D min.a; b; c; d/, then it is impossible for all three of the pairs
¹a; bº, ¹a; cº, and ¹a; dº to have distinct colors, whence not all three of the triples ¹a; b; cº,
¹a; b; dº, and ¹a; c; dº can be hyperedges of H' . Moreover, it was noticed in [43] that if the
coloring ' is chosen uniformly at random, then for any � > 0 the hypergraph H' is with high
probability .1=2; �; /-dense as n tends to infinity. This is easily checked using standard tail
estimates for binomial distributions. In other words, this examples show that � .K

.3/
4 / �

1
2

holds.

It is believed that this construction is optimal, which leads to the following beautiful
problem suggested by Erdős [12].

Problem 3.6. Show that � .K
.3/
4 / D

1
2
.

There is some evidence in support of that conjecture. Recently, Balogh, Clemen,
and Lidický [3] showed that

� .K
.3/
4 / � 0:529

and, hence, � .K
.3/
4 / is strictly smaller than the Turán density �.K

.3/
4 /. In joint work with

Reiher and Rödl, we were able to resolve Problem 3.6 affirmatively for a slightly stronger
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notion of uniform edge distribution [38], which is also satisfied by the hypergraphs from
Examples 3.2 and 3.5 (see Theorem 4.2 below). The construction in Example 3.5 can be
extended for arbitrary cliques and this leads to the following general problem.

Problem 3.7. For every fixed integer t � 4, show that � .K
.3/
t / D

t�3
t�2

.

This problem seems to be one of the main problems in the area. However, for t D 6

a second different lower bound constructions is known (see [41, Concluding Remarks]), which
may indicate that the general problem might be more challenging.

Example 3.8. Similarly as in Example 3.5, we consider a random 2-coloring ' of Œn�.2/.
However, this time we include all triples as hyperedges in H' if the three underlying pairs
are not all of the same color. Again it is easy to check that for every � > 0 the hypergraph H'

is with high probability .3=4;�; /-dense and, due to the first nontrivial instance of Ramsey’s
theorem, it is also K

.3/
6 -free.

Very recently, Bucić, Cooper, Král’, Mohr, and Munhá Correia [7] could determine
the � .C`/ for hypergraph cycles. Here a hypergraph cycle C` for ` � 4 is defined by

V.C`/ D Z=`Z and E.C`/ D
®
¹i; i C 1; i C 2ºW i 2 Z=`Z

¯
:

Note that for ` D 4 we have C4 D K
.3/
4 and the best known lower bound � .C4/ � 1=2 is

given by Example 3.5. For ` D 5, Reiher [37] gave an example which shows � .C5/ � 4=27.
On the other hand, for ` divisible by 3, the hypergraph cycle C` is tripartite, and it follows
from the definition and the work of Erdős [10] that

� .C3k/ � �.C3k/ D 0

for every k � 2. Bucić et al. [7] showed that the construction of Reiher is optimal and estab-
lished the same bound for all ` � 5 that are not divisible by 3.

Theorem 3.9 (Bucić et al.). For every ` � 5 with ` ¥ 0 .mod 3/, we have � .C`/ D 4=27.

Besides determining � .�/ for particular hypergraphs, as in the problems and results
above, it would be interesting to study the set …

.3/
D ¹� .F /WF is a 3-uniform hypergraphº

of all such Turán densities. In that direction as a first problem one may consider the smallest
nonzero value. In [10] Erdős showed that �.F / D 0 if and only if F is tripartite and from this
characterization it follows that the smallest nonzero classical Turán density is at least 2=9.
It was proved in [5,17] that it is in fact 2=9. For � .�/, we showed in [39], similarly as Erdős
for �.�/, a characterization of the hypergraphs F with � .F / D 0.

Theorem 3.10. For a 3-uniform hypergraph F , the following are equivalent:

(a) � .F / D 0.

(b) There is an enumeration of the vertex set V.F / D ¹v1; : : : ; vf º and there is a
three-coloring 'W@F ! ¹red;blue;greenº of the pairs of vertices @F covered by
hyperedges of F such that every hyperedge ¹vi ; vj ; vkº 2 E.F / with i < j < k
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satisfies

'.vi ; vj / D red; '.vi ; vk/ D blue; and '.vj ; vk/ D green:

This characterization implies that the smallest nonzero Turán density in this context
is at least 1=27.

Corollary 3.11. If a hypergraph F satisfies � .F / > 0, then � .F / �
1

27
.

Proof. Given a positive integer n, consider a three-coloring 'W Œn�.2/ ! ¹red; blue; greenº

of the pairs of the first n positive integers. We define a hypergraph H' with vertex set Œn�

by regarding a triple ¹i; j; kº with 1 � i < j < k � n as being a hyperedge if and only if
'.i; j / D red, '.i; k/ D blue, and '.j; k/ D green. Standard probabilistic arguments show
that when ' is chosen uniformly at random, then for any fixed � > 0 the probability that H' is
.1=27; �; /-dense tends to 1 as n tends to infinity. On the other hand, as F does not satisfy
condition (b ) from Theorem 3.10, it is in a deterministic sense the case that F is never a
subgraph of H' no matter how large n becomes. Thus we have indeed � .F / �

1
27

.

Recently, Garbe, Král’, and Lamaison [23] complemented Corollary 3.11 and estab-
lished a matching upper bound for the smallest nonzero value of � .�/.

Theorem 3.12 (Garbe, Král’, and Lamaison). There is a hypergraph F with � .F / D 1=27.

It seems plausible that …
.3/ is structurally similar to ….2/. For example, the con-

struction in Example 3.5 in some sense transfers the extremal example for triangle-free
graphs into our context here. In contrast to ….3/ we put forward the following problem.

Problem 3.13. Show that …
.3/

D ¹� .F /W F is a 3-uniform hypergraphº is well-ordered as
a subset of the reals.

Another intriguing open problem from [39] concerns the comparison of � .F /

with �.F /.

Problem 3.14. Is � .F / < �.F / for every 3-uniform hypergraph F with �.F / > 0?

Roughly speaking, this questions has an affirmative answer, if no 3-uniform hyper-
graph F with positive Turán density has an extremal hypergraph H that is uniformly dense
with respect to large vertex sets U � V.H/ (see also [15, Problem 7] for a related assertion).
Problem 3.14 is motivated by the fact that currently all known extremal constructions for
such 3-uniform hypergraphs F are obtained from blow-ups or iterated blow-ups of smaller
hypergraphs, which fail to be .d;�; /-dense for all d > 0 and sufficiently small � > 0, which
may suggest that the answer to Problem 3.14 is affirmative.

The work in [7,39,41] may indicate that the regularity method for hypergraphs pro-
vides a suitable approach for the problems stated in this section. Moreover, those proofs
require Ramsey-type arguments and new results from extremal graph theory which are of
independent interest.
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4. Hypergraphs uniformly dense on vertices and pairs

In Definition 3.1 we defined uniform hyperedge distribution with respect to vertex
sets, and Examples 3.2, 3.5, and 3.8 showed that this notion alone with density bounded away
from 0 does not suffice to embed arbitrary 3-uniform hypergraphs. In contrast, it follows that
if we define uniform hyperedge density with respect to sets of pairs, then such a notion would
allow the embedding of arbitrary fixed 3-uniform hypergraphs (see, e.g., [29]) and, in fact,
these considerations led to the more involved concepts in the hypergraph regularity projects
of Gowers and Rödl et al.

Moreover, there seem to be at least two intermediate variants of uniformly dense
hypergraphs. In connection with extremal problems, those notions were already partly inves-
tigated in [4, 38,42] and they lead to several interesting problems. The first strengthening is
the following stronger concept of uniformly dense hypergraphs, where we “replace” the two
sets Y and Z from Definition 3.1 by an arbitrary set of pairs P .

Definition 4.1. For reals d 2 Œ0; 1� and � > 0, we say a 3-uniform hypergraph H D .V; E/

is .d; �; /-dense if for every subset X � V of vertices and every subset of pairs of vertices
P � V � V the number e .X; P / of pairs .x; .y; z// 2 X � P with ¹x; y; zº 2 E satisfies

e .X; P / � d jX jjP jj � �jV j
3:

Since for any hypergraph H D .V; E/ and sets X , Y , Z � V we may apply the
definition for X and P D Y � Z, it follows from these definitions that .d; �; /-dense hyper-
graphs are also .d;�; /-dense. Moreover, we can introduce the corresponding Turán density
� .F / for a given hypergraph F by

� .F / D sup
®
d 2 Œ0; 1�W for every � > 0 and n 2 N there exists

a 3-uniform, F -free, .d; �; /-dense hypergraph H with jV.H/j � n
¯

and obtain from the definitions that

�.F / � � .F / � � .F /

for every 3-uniform hypergraph F . One can check that the random constructions in Exam-
ples 3.2 and 3.5 also give lower bounds for � .K

.3/�
4 / and � .K

.3/
4 /, as the constructed

hypergraphs in these examples are also -dense. In particular, we have � .K
.3/
4 / � 1=2 and

a matching upper bound was proved in joint work with Reiher and Rödl [38], which can be
viewed as some evidence towards an affirmative answer for Problem 3.6.

Theorem 4.2. We have � .K
.3/
4 / D 1=2.

Moreover, these considerations naturally suggest that a possible first step towards
Problems 3.7, 3.4, and 3.13 is to consider these problems for � .�/.

Problem 4.3. (i) Show that � .K
.3/
t / D

t�3
t�2

for every t > 4.

(ii) Determine � .St / for t � 4.
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(iii) Show that …
.3/

D ¹� .F /W F is a 3-uniform hypergraphº is well-ordered as a
subset of the reals.

Finding the smallest nonzero value of � .�/ would also be of high interest. However,
the situation here is less clear and maybe as a first step it would be useful to establish a
meaningful characterization of the hypergraphs F with � .F / D 0. By definition, the set
of those hypergraphs must contain all hypergraphs F with � .F / D 0, but finding a useful
characterization appears to be an interesting problem on its own.

Problem 4.4. Find a useful characterization of the 3-uniform hypergraphs F with
� .F / D 0.

5. Hypergraphs uniformly dense on pairs of sets of pairs

The following further strengthening of the notion of -dense hypergraphs is in some
sense the strongest nontrivial uniform density condition for extremal problems in 3-uniform
hypergraphs.

Definition 5.1. For reals d 2 Œ0; 1� and � > 0, we say a 3-uniform hypergraph H D .V; E/

is .d; �; /-dense if for any two subsets of pairs P , Q � V � V the number e .P; Q/ of
pairs of pairs ..x; y/; .x; z// 2 P � Q with ¹x; y; zº 2 E satisfies

e .P; Q/ � d jK .P; Q/j � �jV j
3;

where K .P; Q/ denotes the set of pairs in P � Q of the form ..x; y/; .x; z//.

The corresponding Turán density � .F / can be defined similarly as above by

� .F / D sup
®
d 2 Œ0; 1�W for every � > 0 and n 2 N there exists

a 3-uniform, F -free, .d; �; /-dense hypergraph H with jV.H/j � n
¯

and again the definition ensures that

�.F / � � .F / � � .F / � � .F /:

With respect to cliques K
.3/
t , parameter � .�/ behaves differently and grows much more

slowly. In [42], together with Reiher and Rödl, we could show the following upper bound.

Theorem 5.2. For every t � 2,

� .K
.3/

2t / �
t � 2

t � 1
;

which is tight for t D 2, 3, and 4.

Maybe somewhat surprisingly, [42] establishes the precise value of � .K
.3/
s / for

s 2 ¹4; 6; 7; 8; 11; 12; : : : ; 16º, but the cases s D 5, 9, and 10, were left open. Very recently,
in joint work with Berger, Piga, Reiher, and Rödl [4], we could resolve the case s D 5 and
showed

� .K
.3/
5 / D

1

3
:
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Comparing Theorem 5.2 with the known (or believed to be optimal) lower bounds
for � .K

.3/
tC1/, we have

� .K
.3/

2t / �
t � 2

t � 1
� � .K

.3/
tC1/ � � .K

.3/
tC1/:

So in particular, the Turán densities for -dense hypergraphs for K
.3/
t grow much slower

compared to -dense or -dense hypergraphs.
Maybe the most urgent questions related to � .�/ are an appropriate version of Prob-

lem 4.4 and determining � .K
.3/
s / for the missing small values of s D 9 and 10 mentioned

above.

Problem 5.3. (i) Find a useful characterization of the 3-uniform hypergraphs F

with � .F / D 0.

(ii) Determine � .K
.3/
s / for s D 9 and 10.

It seems plausible that by combining the main ideas from [42] and [4] one can derive
the improved upper bound

� .K
.3/
10 / �

3

5
:

More generally, one may show that if � .K
.3/
s / � ˛, then � .K

.3/
2s / �

1
2�˛

, which was sug-
gested by Reiher in [37].

Determining the value � .K
.3/
s / for large values of s might be a challenging prob-

lem, and one may first focus on the asymptotic behavior. For every s � 3, Theorem 5.2 tells
us

� .K.3/
s / � 1 �

1

log2.s/
: (5.1)

For a lower bound, we consider the following well-known random construction.

Example 5.4. For r � 2, we consider random hypergraphs H' D .V; E'/ with the edge
set defined by the nonmonochromatic triangles of a random r-coloring 'W V .2/ ! Œr� for a
sufficiently large vertex set V . It is easy to check that for any fixed � > 0 with high probability
such hypergraphs H' are . r�1

r
; �; /-dense. On the other hand, if s is at least as large as

R.3I r/, the r-color Ramsey number for graph triangles, then every such H' is K
.3/
s -free.

Consequently, Example 5.4 yields

� .K.3/
s / � 1 �

1

r
; whenever s � R.3I r/

and, using the simple upper bound R.3I r/ � 3rŠ, we arrive at

� .K.3/
s / � 1 �

log2 log2.s/

log2.s/
(5.2)

for sufficiently large s. Comparing the bounds in (5.1) and (5.2) leads to the following prob-
lem.

Problem 5.5. Determine the asymptotic behavior of 1 � � .K
.3/
s /.
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