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Abstract

The chromatic number has been a fundamental topic of study in graph theory for more
than 150 years. Graph coloring has a deep combinatorial theory and, as with many NP-
hard problems, is of interest in both mathematics and computer science. An important
challenge is to understand graphs with very large chromatic number. The chromatic
number tells us something global about the structure of a graph: if G has small chromatic
number then it can be partitioned into a few very simple pieces. But what if G has large
chromatic number? Is there anything that we can say about its local structure? In partic-
ular, are there particular substructures that it must contain? In this paper, we will discuss
recent progress and open problems in this area.

Mathematics Subject Classification 2020

Primary 05C15; Secondary 05C69, 05C75, 05D10

Keywords

Graph coloring, induced subgraphs, �-boundedness, Erdős-Hajnal Conjecture

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 6, pp. 4660–4680
DOI 10.4171/ICM2022/149

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

The chromatic number has been a fundamental topic of study in graph theory for
more than 150 years. For example, the famous Four Color Conjecture, which states that every
graph that can be embedded in the plane has chromatic number at most 4, was first raised in
the 1850s by Francis Guthrie (a student of Augustus de Morgan), and was finally proved in the
1970s by Appel and Haken [4], in one of the first computer-assisted proofs. Attempts to solve
the conjecture led to Birkhoff’s [9] development in 1912 of the chromatic polynomial, which
counts the number of k-colorings of a graph G. The chromatic polynomial was generalized
by Tutte [85] to what is now known as the Tutte polynomial, which is closely connected to
the Ising model and Potts model in statistical physics (see Fortuin and Kasteleyn [43], Sokal
[83]), the random cluster model in probability (see Grimmett [44]) and the Jones polynomial
in knot theory (see Jones [51]).

However, many fundamental questions about graph coloring remain. A particular
challenge is to understand graphs with very large chromatic number. The chromatic number
says something about the global structure of a graph: if G has small chromatic number then it
can be partitioned into a few very simple pieces. But what if G has large chromatic number?
Is there anything that we can say about its local structure? In particular, are there particular
substructures that it must contain?

We will need a few definitions. Let G be a graph with vertex set V D V.G/ and
edge set E D E.G/ (all graphs in this paper are finite). A complete graph is a graph in
which every pair of vertices is joined. A stable set (or independent set) in G is a set S � V

such that no two vertices of S are adjacent in G. The clique number !.G/ of G is the
maximum number of vertices in a complete subgraph of G; and the stability number ˛.G/

is the largest number of vertices in a stable set in G. A k-coloring of a graph is function
from its vertices to ¹1; : : : ; kº so that adjacent vertices have different colors. The chromatic
number �.G/ of G is the smallest integer k such that G has a k-coloring.

Graphs with chromatic number at most 2 are easily characterized: they are the graphs
that do not contain an odd cycle. But for k � 3, there does not appear to be any simple
structural characterization even of the minimal graphs with chromatic number more than
k (see [10]). The algorithmic problem of k-colorability is well known to be NP-complete
for k � 3, and was one of Karp’s celebrated list [54] of 21 NP-complete problems; indeed,
for " > 0, it is NP-hard even to approximate the chromatic number within a factor n1�",
where n is the number of vertices. As with many NP-hard problems, graph coloring has a
correspondingly deep combinatorial theory, and it has been the focus of extensive study in
both mathematics and computer science, and understanding the connections between graph
structure and chromatic number has been one of the fundamental goals of structural graph
theory in the last 30 years.

Let us clarify the notion of substructure. A graph H is a subgraph of a graph G if
V.H/ � V.G/ and E.H/ � E.G/. Thus H is obtained from G by deleting vertices and
edges. We say that H is an induced subgraph of G if V.H/ � V.G/, and E.H/ consists
of the edges of G that are contained in V.H/ (and then H is the subgraph of G induced
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by V.H/). For example, every graph is a subgraph of some complete graph; but if G is a
complete graph then all of its induced subgraphs are complete graphs. In this paper we will
be concerned primarily with induced subgraphs. We say that a graph G is H -free if G does
not contain an induced subgraph that is isomorphic to H (more informally, if G does not
contain an induced copy of H ).

So, what can we say about the induced subgraphs of a graph with large chromatic
number? One possibility is that G might itself be complete, in which case it only contains
complete graphs as induced subgraphs. But what if G does not contain a large complete
subgraph: are there particular structures that have to appear as induced subgraphs? In this
paper we will be interested in statements of the form:

Every graph with sufficiently large chromatic number contains either a complete
subgraph on k vertices or an induced ***.

Equivalently, we will often say:

If G contains neither a complete subgraph on k vertices nor an induced *** then
it has bounded chromatic number.

The question is: what can we put in place of the asterisks?
The rest of this paper is organized as follows. In Section 2 we look at whether graphs

with large chromatic number need to contain large complete subgraphs (they do not). In
the next few sections, we investigate the relationship between chromatic number and clique
number: after discussing perfect graphs in Section 3, we introduce �-bounded classes in Sec-
tion 4 and look at the effects of forbidding a single induced subgraph. In Section 5 we look
at induced cycles in graphs of large chromatic number, and then Section 6 considers more
complex induced subgraphs. Section 7 discusses the Erdős-Hajnal Conjecture, and Section 8
looks at its connection with polynomially �-bounded classes. Finally, in Section 9, we com-
pare the effects of excluding induced subgraphs with the effects of excluding graph minors.

2. Girth and chromatic number

Suppose that a graph G has huge chromatic number. Are there induced subgraphs
that it must contain? Perhaps the first question of this type to ask is: does every graph of
large chromatic number contain a large complete subgraph? This question was answered in
the negative in the 1940s by Tutte (writing as Blanche Descartes [33,34]), who showed that
there are triangle-free graphs with arbitrarily large chromatic number. Many constructions
are now known. For example, there is a simple construction of Mycielski from the 1950s
[66]: given a graph G with vertices ¹v1; : : : ; vkº we define a new graph M.G/ with vertices
¹x1; : : : ; xk ; y1; : : : ; yk ; zº; for each edge vi vj of G, the graph M.G/ has edges xi xj ; yi xj

and xi yj (but not yi yj ), and z is adjacent to all the yi . It is straightforward to check that
�.M.G// D �.G/ C 1, and if G is triangle-free then so is M.G/. Thus starting with G1 D K1
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and inductively defining GiC1 D M.Gi /, we obtain a sequence of triangle-free graphs Gi

with �.Gi / D i for each i .
So graphs of large chromatic number need not have large complete subgraphs. But

perhaps they must have short cycles? Or can they instead be “locally tree-like”? It turns out
that the latter is the case. A cycle of length k � 3 is a graph with vertices x1; : : : ; xk and edges
xi xiC1 for each i (where indices are taken modulo k). The girth of a graph is the smallest
k such that G contains a cycle of length k as a subgraph. In one of the earliest applications
of probability in graph theory, Erdős [35] showed that there are graphs with arbitrarily large
girth and chromatic number. Indeed, consider a random graph on n vertices in which every
edge is present with probability .log n/=n. A simple first moment argument shows that, with
positive probability, only o.n/ vertices are contained in short cycles, while any stable set has
size at most o.n/ (so the chromatic number is large, as a coloring is a partition into stable
sets). Deleting all vertices in short cycles gives the desired graph.

Constructing explicit examples of graphs with large girth and chromatic number is
rather harder. There is a pretty example of a graph with large chromatic number and no short
odd cycles: the Kneser graph K.n; k/ has as its vertex set all k-sets contained in ¹1; : : : ; nº,
with A and B adjacent if and only if they are disjoint [57]. It is easy to check that if n D 2k C t

then there are no odd cycles of length less than about n=t . It is rather harder to show that
Kneser graphs can have large chromatic number: in fact, it turns out that for k > n=2, the
Kneser graph K.n; k/ has chromatic number exactly n � 2k C 2. This was proved in a cele-
brated paper of Lovász [63], which developed the connection between chromatic number and
the topology of the neighborhood complex of a graph; shortly afterwards, Bárány [6] found
a second beautiful (and surprisingly simple) topological proof.

There are now a number of explicit constructions of graphs with large chromatic
number and no short cycles. These include a construction of Lovász [62]; the Ramanujan
graphs of Lubotzky, Phillips, and Sarnak [64]; a construction of Nešestřil and Rödl [67]

using the “amalgamation method”; and an ingenious recent construction of Alon, Kostochka,
Reiniger, West, and Zhu [2] based on careful augmentation of trees.

Even here, though, there are basic questions that remain. For example, the following
question of Erdős and Hajnal [36] concerning (not necessarily induced) subgraphs has been
open for 50 years.

Conjecture 2.1. For every pair of positive integers k; t , every graph of sufficiently large
chromatic number contains a subgraph with chromatic number more than t and girth more
than k.

The best current result is due to Rödl [72], who proved the conjecture for k D 3.

3. Perfect graphs

Recall that the clique number!.G/ of a graph G is the maximum number of vertices
in a complete subgraph in G. Every graph has chromatic number at least as large as its clique
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number, as the vertices in any clique must all have different colors in a proper coloring. But
when is the chromatic number larger than the clique number?

Here are two examples where this happens:

• Let C be an cycle of odd length. Then �.C / D 3 and (unless C is a triangle)
!.C / D 2.

• Let C be the complement of a cycle of odd length. Then it can be checked that
(unless C is a triangle) �.C / > !.C /.

Let us say that an induced subgraph of a graph G is a hole (in G) if it is a cycle
of length at least four, and an antihole if it is the complement of a cycle of length at least
four (or, equivalently, if it corresponds to a hole in the complement of G). A hole or antihole
is odd if it has an odd number of vertices. In the 1960s, Claude Berge [7] conjectured that
the minimal graphs with chromatic number larger than clique number are precisely the odd
holes and odd antiholes. This became known as the Strong Perfect Graph Conjecture, and
was a central problem in structural graph theory for many years.

The conjecture was finally resolved by Chudnovsky, Robertson, Seymour, and
Thomas in 2006 [19]:

Theorem 3.1. If the chromatic number ofG is larger than its clique number, thenG contains
an odd hole or an odd antihole.

The proof of the Strong Perfect Graph Theorem is a tour de force of structural tech-
niques. The details are rather complicated, but the strategy of the proof is to show that if
G has no odd holes and no odd antiholes, then either it belongs to one of a small number
of well-understood “basic classes” of graphs, or it has a “nice” decomposition into smaller
graphs.

This type of approach is frequently used in structural graph theory and has been
remarkably successful in understanding a wide variety of graph classes, but it is only effec-
tive when the classes being examined have some sort of nice structure. In the rest of this
paper, we will mostly be interested in larger classes, where it is unlikely that there are nice
decomposition results, and so very different techniques need to be used.

4. �-bounded classes and the Gyárfás–Sumner conjecture

The Strong Perfect Graph Theorem characterizes when the chromatic number �.G/

is larger than the clique number !.G/, but what induced subgraphs can we get when the chro-
matic number is much larger than the clique number? In the 1980s, András Gyárfás wrote an
influential paper, Problems from the world surrounding perfect graphs, in which he initiated
the systematic investigation of this question, using the language of �-bounded classes. Gyár-
fás laid out a research programme for the study of �-bounded classes and made a sequence
of important conjectures, many of which have been resolved only in the last few years.

We will always be concerned with hereditary classes, namely those that are closed
under taking induced subgraphs.
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Definition 4.1. A hereditary class G of graphs is �-bounded if there is a function f W N ! N

such that �.G/ � f .!.G// for every G 2 G (see [46,79]).

The class of all graphs is not �-bounded, as there are triangle-free graphs with arbi-
trarily large chromatic number (so we cannot even define f .3/). So any �-bounded class
must exclude at least one induced subgraph. In this section, we look at the question: when is
it enough to forbid a single induced subgraph H?

Let us fix a graph H . If H contains a cycle C then the class of H -free graphs is
not �-bounded: we know from Section 2 that there are graphs with arbitrarily large girth and
chromatic number (if their girth is more than the length of C , they do not contain a copy
of H ). So the interesting case is when H is acyclic, i.e., a forest. This is the subject of the
well-known Gyárfás–Sumner Conjecture [45,84]:

Conjecture 4.2. For every forest H the class of H -free graphs is �-bounded.

The Gyárfás–Sumner Conjecture can equivalently be stated as follows:

Conjecture 4.3. For every forest H and every k � 1, every graph with sufficiently large
chromatic number contains either a complete graph on k vertices or an induced copy of H .

The conjecture has proved extremely resistant. It is not hard to show that it suffices
to consider the case when H is a tree (for a forest F , the class of F -free graphs is �-bounded
if and only if the class of H -free graph is �-bounded for every component H of F ). But the
conjecture is only known for a few quite special trees, for example:

• If H is a star, then it follows easily from Ramsey’s theorem.

• If H is a path then there is a simple and elegant argument due to Gyárfás [45]. It
is also known for the broom [45] and the double broom [22].

• It is true if H is a tree of radius 2: the triangle-free case was proved by Gyárfás,
Szemerédi, and Tuza [48], and the general case by Kierstead and Penrice [55].

• It is known for some special trees of radius three [56,78].

In most cases, the proofs are quite intricate. However, the argument when H is a
path is simple and elegant, so let us sketch it. Suppose we are looking for a path P with
t vertices, and G is a graph with huge chromatic number that does not contain an induced
copy of P or a complete subgraph on k vertices. By induction, we may assume that for every
vertex v in G, its neighborhood N.v/ has small chromatic number (as it does not contain
a complete subgraph on k � 1 vertices). We may also assume that G is connected, by just
considering the component with largest chromatic number. Now choose any vertex x1. If
we delete x1 and its neighbors from G, then the remaining graph falls into components
C1; : : : ; Cr for some r , and as the neighborhood of x1 has small chromatic number and
G has large chromatic number, one of the these components (say C1) must also have large
chromatic number. Since G is connected, there must be some vertex x2 that is both adjacent
to x1 and has a neighbor in C1. We focus on x2 and C1 and repeat the argument, deleting
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neighbors of x2 from C1, choosing a component C of the remainder with large chromatic
number, and choosing a vertex x3 that is adjacent to x2 and has neighbors in C . Continuing
in this way, we walk into the graph, always heading towards a region with large chromatic
number, and build an induced path along the way. This type of argument crops up repeatedly,
and has become known as the Gyárfás path argument.

Another (rather more complicated) technique is the method of templates. Building
on the work of Gyárfás, Szemerédi, and Tuza [48], this was developed by Kierstead and
Penrice [55]. The idea is to look for complete multipartite subgraphs with (large) constant
size. Thus we look for a large complete bipartite graph, or a (slightly less) large complete
tripartite graph, and so on. The process terminates as we are assuming that there is no com-
plete graph on k vertices. A template T consists of one of these subgraphs, say K, together
with all the vertices that are moderately dense to K (in some appropriate sense). We define
a sequence T1; T2; : : : of templates by repeatedly choosing one that is maximal (by some
measure), deleting it from the graph, and then looking at templates in the graph that remains.
When we are finished, we are left with a graph containing no templates, and show that
it has small chromatic number. The key now is to show that edges between the templates
we removed are rather restricted: there is usually quite a complex argument to partition and
“clean up” the templates into progressively more simply structured pieces, until all the pieces
have small chromatic number (and so we are done, as we have partitioned the whole graph
into a bounded number of pieces with small chromatic number).

The method of templates has been a powerful approach for handling small-radius
trees, but at present there seem to be significant technical obstacles to extending it to trees of
radius more than 3. It is worth noting that the base case (finding complete bipartite graphs)
is not straightforward, but can usually be handled with the following result (proved by Rödl
but not published):

Theorem 4.4. For every k and t , and every tree T , every graph with sufficiently large chro-
matic number contains either Kk , Kt;t or T as an induced subgraph.

Here Kk denotes the complete graph on k vertices, and Kt;t denotes the complete
bipartite graph with t vertices in each class. Kierstead and Penrice [55] strengthened Theo-
rem 4.4, showing that such graphs have bounded degeneracy.1 See Theorem 8.5 below for a
further strengthening.

Perhaps the most general result related to the Gyárfás–Sumner conjecture concerns
induced subdivisions of forests. We say that a graph F is a subdivision of a graph H (or is
homeomorphic to H ) if F can be obtained from H by adding vertices along the edges, or
equivalently by replacing some subset of the edges by paths. For example, every cycle is a
subdivision of a triangle. The following weakening of the Gyárfás–Sumner conjecture was
obtained in [73].

1 The degeneracy of a graph G is the maximum integer r such that every subgraph of G has a
vertex with degree at most r . The chromatic number of a graph is at most one more than its
degeneracy.
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Theorem 4.5. Let H be a forest. The class of graphs that do not contain an induced copy
of any subdivision of H is �-bounded.

A special case of this implies the Gyárfás–Sumner conjecture when H is a subdi-
vision of a star (as any subdivision of H contains an induced copy of H ).

In fact, something slightly stronger than Theorem 4.5 was shown in [73]:

Theorem 4.6. For every forest H there is a finite list H1; : : : ; Ht of subdivisions of H such
that the class of graphs that do not contain an induced copy of any Hi is �-bounded.

5. Holes in graphs of large chromatic number

What other structures must appear in graphs of large chromatic number? If we do not
forbid a forest, then the existence of graphs with large girth and chromatic number implies
that it is not enough to forbid a single induced subgraph, or indeed any finite list of induced
subgraphs. Perhaps the simplest example of this is where we forbid a collection of induced
holes (i.e., induced cycles of length at least four). Gyárfás made several important conjectures
concerning holes, and we will focus on these in this section.

The Strong Perfect Graph Theorem tells us that the class of graphs with no odd holes
and no odd antiholes is �-bounded, and furthermore with the best possible function f .!/ D

!. Long before this theorem was proved, Gyárfás conjectured that for �-boundedness it
would suffice to exclude only odd holes.

Conjecture 5.1. The class of graphs with no odd holes is �-bounded.

He also conjectured that it would be enough to exclude only long holes; and more
adventurously that it would be enough to exclude long odd holes:

Conjecture 5.2. For every integer t , the class of graphs with no holes of length more than t

is �-bounded.

Conjecture 5.3. For every integer t , the class of graphs with no odd holes of length more
than t is �-bounded.

For some time, there was no progress on these conjectures. As noted earlier, the
structural techniques used to prove the Strong Perfect Graph theorem rely on the fact that
perfect graphs have nice structural features, and a minimum counterexample to the theo-
rem can be decomposed in some nice way. The larger classes considered by Gyárfás have
much wilder structure, and do not appear to be amenable to decomposition techniques. So a
different approach is required.

For a long time, all three conjectures appeared intractable. However, the three con-
jectures have now been proved: the first was proved in a paper with Seymour [74], giving the
following bound.

Theorem 5.4. For k � 1, every graph with chromatic number at least 22kC2 contains either
a complete subgraph on k vertices or an odd hole.
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The doubly exponential bound is probably far from best possible. Indeed, there is
only one obstacle in the proof that causes the bound to jump from single to double exponen-
tial, and it seems likely that this could be circumvented with new ideas. One approach would
be to prove the Hoàng–McDiarmid conjecture [50], which says:

Conjecture 5.5. Let G be a graph with no odd hole and at least one edge. Then the vertices
of G can be partitioned into two sets such that every maximum clique in G intersects both
sets.

Conjecture 5.5 would imply immediately that graphs without odd holes satisfy
�.G/ � 2!.G/.

The class of graphs without odd holes has also been of significant algorithmic inter-
est. Following the proof of the Strong Perfect Graph Theorem, Chudnovsky, Cornuéjols, Liu,
Seymour, and Vušković [18] showed that there is a polynomial-time algorithm to recognize
perfect graphs (i.e., graphs with no odd hole and no odd antihole). However, it was only
recently shown that it was shown that there is a polynomial-time algorithm to test for the
presence of an odd hole [26]; indeed, the problem had been open since the 1980s (and there
was reason to expect that the problem might be hard, as Bienstock showed that testing for
the presence of an odd hole containing a specific vertex is NP-complete [8]). In subsequent
work, it has been shown that finding a shortest odd hole [23] and an odd hole of at least a
fixed length [25] can also be solved in polynomial time.

Conjectures 5.2 and 5.3 have also now been proved. The second conjecture was
proved in a paper with Chudnovsky and Seymour [21], and the third in a paper with Chud-
novsky, Seymour, and Spirkl [27] (both with significantly larger bounds). But this raises a
natural further question: why ask only for odd holes? In the light of the (then) Strong Perfect
Graph Conjecture, it was very natural for Gyárfás and others to think about holes of odd or
even parity. However, motivated by topological considerations, Kalai and Meshulam [52,53]

also conjectured that the class of graphs with no triangle and no hole of length divisible
by 3 does not contain graphs of arbitrarily large chromatic number. This was proved in a
breakthrough paper of Bonamy, Charbit, and Thomassé [12].

It turns out that much stronger results hold. The current state-of-the-art is the fol-
lowing, which was proved in a paper with Seymour [76].

Theorem 5.6. For all integers k � 0 and ` � 1, the class of graphs with no hole of length
k modulo ` is �-bounded.

As an application, this resolves two further conjectures of Kalai and Meshulam,
connecting the chromatic number of a graph with the homology of its independence complex.

It seems likely that even stronger results are true. Indeed, perhaps we can break away
from parity conditions altogether and just use some sort of density condition:

Conjecture 5.7. Let A � N be an infinite set with bounded gaps. Then the class of graphs
that do not contain a hole of any length in A is �-bounded.
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This has been proved in the special case of triangle-free graphs (in another paper
with Seymour [75]). The proof is long and complicated, and extending it to the general case
will require significant new ideas.

It would also be very interesting to answer the following question:

Conjecture 5.8. Is there a set A � N with upper density 0 such that the class of graphs that
do not contain any hole with length in A is �-bounded?

What can be said about the techniques? Proving these results has required a substan-
tially different toolbox from the decomposition techniques used to study perfect graphs. The
methods use a mixture of structural and extremal techniques, and can perhaps be thought of
as a “rougher structural” approach.

A useful framework is provided by using the local chromatic number. For an integer
r � 0 and a graph G, we define the r-local chromatic number �.r/.G/ of G to be the maxi-
mum of �.B/ over all subgraphs B induced by r-balls in G (using the shortest path metric).
The relationship between �.r/.G/ and �.G/ is interesting: roughly speaking, it is interesting
to distinguish between graphs in which some small ball has large chromatic number, and
graphs where the chromatic number is not visible locally (for instance, if the graph is locally
treelike) so that it is somehow “spread out” in the graph. More precisely, given any graph G

with very large chromatic number, it is possible to drop to an induced subgraph G0 with one
of the two following properties:

• G0 has large chromatic number and small r-local chromatic number;

• G0 has large chromatic number, and every induced subgraph of G0 with large
chromatic number contains an r-ball with large chromatic number.

This framework was introduced in [73], and has been the starting point for many subsequent
proofs. The “local” and “spread-out” cases have very different structural behaviors, and usu-
ally require very different methods.

6. Induced subdivisions and geometric constructions

So far, we have discussed forests and cycles. But it is natural to ask whether we can
ask for more complicated local structures. In 1997, it was conjectured in [73] that if we allow
subdivisions, then any structure can be found:

Conjecture 6.1. For every graph H , the class of graphs with no induced subdivision of H

is �-bounded.

Equivalently, the conjecture claims that any graph with large chromatic number con-
tains either a large clique or an induced subdivision of H . When H is a forest, this is true
by Theorem 4.5 [73]; and when H is a cycle, this follows from the truth of Conjecture 5.2
[21,46]. Motivated by Conjecture 6.1, Kühn and Osthus [58] also proved the following beau-
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tiful result, showing that if we forbid a complete bipartite graph then large minimum degree
is already enough.

Theorem 6.2. For every graph H and positive integer k, every graph with sufficiently large
minimum degree contains either a complete graph Kk , a complete bipartite graph Kk;k or
a subdivision of H as an induced subgraph.

As we will see below, Conjecture 6.1 ultimately turned out to be incorrect, but it
remained open for more than 15 years. Part of the difficulty in finding a counterexample lies
in the fact that we do not have many ways to generate structured examples of graphs with
large chromatic number. For, example, random graphs provide a simple way to create graphs
with large chromatic number; but typically they also have good expansion and connectivity
properties, and contain subdivisions of any fixed graph H . And while there are many ways
to construct examples of graphs with large chromatic number and (for example) no triangles,
it is similarly hard to constrain their larger-scale structure.

One fruitful line of construction has come from considering geometric graphs. It is
not enough to consider graphs embeddable on a fixed surface, as these have bounded chro-
matic number (this can be deduced easily from Euler’s formula, which implies that graphs
embeddable on a fixed surface have bounded degeneracy). But it is rather more interesting
to consider intersection graphs: these have vertex set consisting of a family C of sets, with
A; B 2 C adjacent if A \ B is nonempty.

An important example is given by the intersection graph of a collection of axis-
aligned boxes in Rd . When d D 1, we obtain the family of interval graphs. These are
well-known to be perfect [49]. When d D 2, we are considering intersections of rectangles in
the plane: Asplund and Grünbaum [5] showed that these satisfy �.G/ D O.!.G/2/ (recently
improved to O.! log !/ by Chalermsook and Walczak [15]). However, in three dimensions
more happens: Burling constructed triangle-free intersection graphs of boxes in three dimen-
sions with arbitrarily large chromatic number ([14]; see also [69]). It follows that intersection
graphs of families of boxes in d -dimensions are �-bounded for d D 1; 2, but not for d � 3.

A larger class of two-dimensional intersection graphs is provided by the family of
string graphs, namely intersection graphs of curves in the plane (see, for example, [65]).
Many special families of string graphs have been of interest. For example, the intersection
graphs of straight line segments in the plane: Erdős asked in the 1970s whether this family is
�-bounded. It was a surprise when, in 2014, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter,
and Walczak [68] came up with a way to represent Burling’s graphs in two dimensions. Their
beautiful construction shows the following.

Theorem 6.3. There are triangle-free intersection graphs of line segments in the plane that
have arbitrarily large chromatic number.

As a corollary, Conjecture 6.1 does not hold (for example, for any graph H that is
obtained by subdividing every edge of a nonplanar graph). However, it remains an interesting
problem to determine when the conjecture does hold. Chalopin, Esperet, Li, and Ossona de
Mendez [16] analyzed the construction from [68] in detail, further limiting the graphs that
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could satisfy Conjecture 6.1. In the case of string graphs, the problem was completely solved
in [24], which also proved the following result:

Theorem 6.4. Every string graph with large chromatic number contains a 2-ball with large
chromatic number.

Perhaps this is a necessary feature in any family of counterexamples to Conjec-
ture 6.1? The following resuscitation of that conjecture is proposed in [77]. Informally:

Conjecture 6.5. For every graph H , every graph with large chromatic number contains
either a 2-ball with large chromatic number or an induced subdivision of H .

7. The Erd´́os–Hajnal Conjecture

In this section, we look at the largest complete subgraph or independent set in a
graph. Frank Ramsey [70] showed in 1930 that every infinite graph contains an infinite com-
plete subgraph or stable set. The finite version of this result is the following:

Theorem 7.1. For every k � 1 there is an integer R.k/ such that every graph with at least
R.k/ vertices contains a complete subgraph or stable set of size k.

So “large” graphs contain “large” homogeneous structures. But how large is large?
Ramsey gave an explicit bound on R.k/, but a nice quantitative version of Ramsey’s Theorem
was proved by Erdős and Szekeres [40] in the 1930s:

Theorem 7.2. Every graph with at least
�

sCt�2
s�1

�
vertices contains either a complete sub-

graph of size s or a stable set of size t .

By taking s D t , it follows that every graph on n vertices contains a complete sub-
graph or stable set of size at least c1 logn. On the other hand, by considering random graphs,
it is not hard to show that most graphs on n vertices do not contain a complete subgraph or
stable set of size more than c2 log n.

How does the picture change if we know something about the local structure of a
graph? Erdős and Hajnal speculated in the 1980s [37, 38] that H -free graphs exhibit a very
different behavior:

Conjecture 7.3. For every graph H , there is a constant c D c.H/ > 0 such that the follow-
ing holds: every H -free graph with n vertices has a complete subgraph or stable set with at
least nc vertices.

In other words, if we exclude any induced subgraph then the largest stable set or com-
plete subgraph that must occur jumps in size from logarithmic to polynomial. The Erdős–
Hajnal Conjecture has become one of the central conjectures in graph theory.

Despite considerable work, Conjecture 7.3 is only known for a small family of
graphs. There are a few small examples: complete graphs (this follows from the quantita-
tive form of Ramsey’s Theorem 7.2), the four-vertex path P4 (P4-free graphs are perfect),
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and the bull (Chudnovsky and Safra [20]). The class of graphs H for which the Erdős–Hajnal
Conjecture holds also satisfies two closure properties:

• It follows immediately from the statement of the conjecture that if it holds for H

then it also holds for H .

• Alon, Pach, and Solymosi [3] proved that the class of graphs H for which Erdős–
Hajnal holds is closed under substitution (the operation of substituting a graph F

for a vertex x of H deletes x and replaces it with a copy of F ; every new vertex
is joined to every vertex that was adjacent to x).

Recently, a new graph was added to the list [29]:

Theorem 7.4. The Erdős–Hajnal Conjecture holds when H is a cycle of length 5.

This was of particular interest, as it had been highlighted as an important case both
by Erdős and Hajnal [38] and Gyárfás [47], and was part of the original motivation for the
conjecture. However, the conjecture remains open even for the five vertex path and the best
bound known for general graphs is due to Erdős and Hajnal [38], who showed that the con-
jecture holds with ec

p
log n in place of nc .

There has been substantial recent progress in looking at analogues of the Erdős–
Hajnal Conjecture with more than one excluded graph. A hereditary class G of graphs has
the Erdős–Hajnal property if there is c > 0 such that every G 2 G has a stable set or complete
subgraph with at least jGjc vertices. Thus the Erdős–Hajnal Conjecture says that the class
of H -free graphs has the Erdős–Hajnal property.

One approach to proving that graph classes satisfy the Erdős–Hajnal property has
been through looking at large bipartite structures. Disjoint sets A, B of vertices in a graph
G are complete if G contains all edges between A and B and anticomplete if G contains
no edges between A and B . There is a substantial body of work on finding this type of
structure in various graph classes (see [32,39] and the sequence of papers starting with [28]).
It is particularly helpful when it is possible to find linear complete or anticomplete pairs.
A hereditary class G of graphs has the strong Erdős–Hajnal property if there is ı > 0 such
that every G 2 G has disjoint sets A; B of at least ın vertices such that the pair .A; B/ is
either complete or anticomplete.

The strong Erdős–Hajnal property is useful for the following reason:

Lemma 7.5. The strong Erdős–Hajnal property implies the Erdős–Hajnal property.

So when does the strong Erdős–Hajnal property hold for the class of H -free graphs?
By considering sparse random graphs (for instance, with p � logn=n), it can be seen that H

must be a forest; on the other hand, by considering complements of sparse random graphs, it
follows that the complement of H must also be a forest. But if both H and its complement are
forests, then H has at most four vertices, and the conjecture is already known for these cases.
So it seems that the strategy gives us nothing. But here is an interesting result of Bousquet,
Lagoutte, and Thomassé [13]:
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Theorem 7.6. For every positive integer t , the class of graphs G such that neither G nor
its complement contains a t -vertex path as an induced subgraph satisfies the strong Erdős–
Hajnal property.

Thus the strong Erdős–Hajnal property holds if we exclude two graphs: one sparse
(a path on t vertices) and one dense (the complement of a path on t vertices). Theorem 7.6
was extended by Choromanski, Falik, Liebenau, Patel, and Pilipczuk [17], and then further
by Liebenau, Pilipczuk, Seymour, and Spirkl [60]. An optimal result was given in [28]:

Theorem 7.7. Let T be a forest. Then the class of graphs G such that neither G nor its
complement contains an induced copy of T satisfies the strong Erdős–Hajnal property.

Since we must exclude both a forest and the complement of a forest to obtain the
strong Erdős–Hajnal property, the result characterizes all hereditary classes that are defined
by a finite set of excluded subgraphs and satisfy the strong Erdős–Hajnal property. (See [30]

for an analogous result where we forbid all induced subdivisions of a single graph H in both
G and its complement.)

We end the section by noting that there is a natural connection between the Erdős–
Hajnal Conjecture and problems about �-boundedness such as the Gyárfás–Sumner Conjec-
ture: a graph with small chromatic number must contain large stable sets (as a coloring is a
partition into stable sets); and the Erdős–Hajnal Conjecture tells us that H -free graphs have
“large” cliques or stable sets. However, there is no immediate implication. For example, the
class of triangle-free graphs has the Erdős–Hajnal Property, but contains graphs of arbitrarily
large chromatic number. And Theorem 5.4 shows that the class of graphs with no odd holes
is �-bounded, but the bounds do not imply anything like polynomial behavior of cliques
or stable sets. However, under some conditions it is possible to deduce the Erdős–Hajnal
Property from �-boundedness: we will discuss this in the next section.

8. Polynomial bounds and Esperet’s conjecture

So far, we have discussed classes in which the chromatic number is bounded as
a function of the clique number, without considering what type of function provides the
bound. In most of the results we have mentioned, the proofs give multiply exponential func-
tions, either because there are repeated applications of Ramsey-type results, or because there
is some blowup at the inductive step. In this section, we will be concerned with polynomi-
ally �-bounded classes, namely classes G for which there is a polynomial function f such
that �.G/ � f .cl.G// for every G 2 G . Polynomially �-bounded classes are of particularly
interest because of their connection to the Erdős–Hajnal Conjecture: it follows immediately
that any polynomially �-bounded class has the Erdős–Hajnal property.

Esperet [41] made the remarkable (and provocative) conjecture that all �-bounded
classes are polynomially �-bounded:

Conjecture 8.1. If a hereditary class G is �-bounded then it is polynomially �-bounded.
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If Esperet’s conjecture is true, then the Gyárfás–Sumner could be strengthened to
the following:

Conjecture 8.2. For every forest H , the class of H -free graphs is polynomially �-bounded.

Since the Gyárfás–Sumner Conjecture is only known for some small families of
trees, the polynomial Gyárfás–Sumner Conjecture looks very challenging (and may well
turn out to be incorrect). However, there has been some progress, and it is known for a few
very small trees [81]:

Theorem 8.3. The polynomial Gyárfás–Sumner Conjecture holds for every tree of diameter
at most 3.

Paths form a particularly interesting case. Let Pk be the path on k vertices. Graphs
that are P3- or P4-free are well known to be perfect, so the polynomial Gyárfás–Sumner
Conjecture follows immediately. However, in general, the best bounds are exponential, even
when excluding paths. The current borderline case is the five vertex path, where until recently
the best bound was exponential [42]. This was improved in [82]:

Theorem 8.4. Every graph with chromatic number at least klog2 k contains either a clique
on k vertices or an induced path on five vertices.

This is just slightly superpolynomial, but it is not yet small enough to prove the
Erdős–Hajnal Conjecture for P5.

Polynomial bounds are also known when a tree and a complete bipartite graph
are excluded. The following result [80] strengthens Theorem 4.4 and answers a question of
Bonamy, Bousquet, Pilipczuk, Rzazewski, Thomassé, and Walczak [11]:

Theorem 8.5. For every tree T , there is a polynomial p.t/ such that, for every t � 1, every
graph with minimum degree at least p.t/ contains either an induced copy of T or a (not
necessarily induced) copy of Kt;t .

It seems likely that even more could hold. Indeed, Paul Seymour and I conjecture
the following strengthening of Theorem 6.2:

Conjecture 8.6. For every graph H there is a polynomial p.t/ such that, for every t � 1,
every graph with minimum degree at least p.t/ contains either an induced subdivision of H

or a (not necessarily induced) copy of Kt;t .

9. Graph minors and induced subgraphs

Throughout this paper, we have been looking at the large-scale structural conse-
quences of forbidding one or more induced subgraphs. In this final section, we compare this
with the effects of excluding graph minors. A graph H is a minor of a graph G if H can
be obtained from G by contracting edges and deleting edges and vertices (a contraction of
an edge xy replaces the vertices x and y by a single vertex z adjacent to all other vertices
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that were previously adjacent to x or to y; for simplicity, we will ignore loops and parallel
edges). A class G of graphs is minor-closed if, whenever G 2 G then all its minors are in G .

Minor-closed classes arise in many contexts: for example, the class of all graphs
embeddable on a fixed surface is minor-closed. For the plane, Wagner [86] proved the fol-
lowing result (which also follows from work of Kuratowski [59]):

Theorem 9.1. A graph is planar if and only if it does not contain a minor of K5 or K3;3.

The theory of graph minors was developed in a major series of papers by Robertson
and Seymour. A celebrated result in this theory is the following [71]:

Theorem 9.2. Let G1; G2; : : : be an infinite sequence of graphs. Then there are i < j such
that Gi is a minor of Gj .

In other words, finite graphs are well-quasiordered under the excluded minor rela-
tion. A corollary of this is a vast extension of Theorem 9.1: for any class G of graphs that is
closed under minors, there is a finite set M of graphs such that a graph G is in G if and only
if it does not contain any graph in M as a minor. In other words, any minor-closed class has
a finite set of minimal excluded minors.

A central result in the theory of graph minors is the Graph Minor Structure Theo-
rem, which states (very roughly) that for every fixed graph H , any H -minor-free graph can
be obtained by gluing together (in a treelike way) a sequence of graphs that can (almost)
be embedded in surfaces of bounded genus. This is not a structural description, but can be
thought of as an approximate structure theorem: the class G of H -minor-free graphs is con-
tained in a class G 0 in which the graphs can all be built in a certain way, and which does not
contain graphs that are much more “complex” than H .

So can anything similar be said for induced subgraphs? The class of finite graphs
is not well-quasiordered by the induced subgraph relation: consider, for example, the class
of cycles. So no theorem directly analogous to Theorem 9.2 can hold (see, for example, [61]
for further discussion). On the positive side, there are good structural descriptions of H -
free graphs for some very small H , although precise structural descriptions look intractable
for larger H . For arbitrary H , it is known that every H -free graph can be partitioned into
a bounded number of pieces that are either dense or sparse [31]; and there is a great deal
known about the structure of typical H -free graphs (see, for instance, [1]). But what is really
missing is an analogue for induced subgraphs of the Graph Minor Structure Theorem.

At the moment, it is not yet clear what such a theorem would say: what would the
“basic” graph classes be? How would they be glued together? And would the theory describe
the whole graph, or just some suitably well-structured “core”? But such a theorem could draw
together a large body of work, and would have widespread applications. An essential part of
this theory will be understanding the relationship between chromatic number and induced
subgraphs; the size of cliques and independent sets will also be crucial. The Gyárfás–Sumner
and Erdős–Hajnal Conjectures are major challenges in our understanding of induced sub-
graphs, and resolving either of them would be a substantial milestone in the development of
a more general theory.
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