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Abstract

Many of the most outstanding open problems in combinatorics relate the local and global
properties of large discrete structures. The research aimed at solving these questions led to
some of the most important developments in this area, as well as in related areas such as
theoretical computer science, additive number theory, and harmonic analysis. In this paper
we discuss some of these advances and mention several open problems.
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1. Introduction

Extremal combinatorics is one of the fastest growing areas of research within dis-
crete mathematics. Questions in this area deal with the asymptotic relations between various
parameters of large discrete structures such as graphs, hypegraphs, permutations, sets of
integers, etc. This area has grown tremendously in the past few decades, both in depth and in
breadth, and supplied many spectacular results that affected various other areas of mathemat-
ics, such as number theory, group theory, probability theory, information theory, harmonic
analysis, and theoretical computer science. Many key insights that were developed in order
to solve some of the core problems in extremal combinatorics were later exported to other
areas. Perhaps the prime example is Szemerédi’s theorem [94], stating that dense sets of inte-
gers contain arbitrarily long arithmetic progressions. This theorem motivated some of the
most important investigations in extremal combinatorics such as the regularity method in
graphs [95] and hypergraphs [54, 73, 81], the theory of quasirandom graphs [23, 98], and the
theory of graph limits [68]. Szemerédi’s theorem also motivated the development of tools in
other areas such as ergodic theory (the multiple recurrence theorem [39,40]), harmonic anal-
ysis (the Gowers norms [53]), number theory (the Green–Tao theorem [57]), and theoretical
computer science (the PCP theorem [13, 14] and property testing [48]). See [96] for a more
detailed discussion.

In this paper we describe a variety of results and open problems in extremal com-
binatorics relating local and global properties of graphs and hypergraphs. The first set of
problems is related to one of the most influential open problems in extremal combinatorics.
To state it, we need the following definitions. An r-graph H D .V; E/ consists of a ground
set V (the vertices) and a collection of subsets E (the edges) where each edge in E contains
r distinct vertices of V . When r D 2, we will use the term graph and denote graphs by G.
An r-graph H is linear if every pair of vertices u; v 2 V belongs to at most one edge of E.
A .v; e/-configuration in H is a set of e edges whose union contains at most v vertices. The
following conjecture was raised 50 years ago by Brown, Erdős, and Sós [21,22]. In the next
statement, and in the rest of the paper, we use standard O=�=‚=o notation.

Conjecture 1.1 (Brown–Erdős–Sós conjecture). Fix e � 3 and suppose H is an n-vertex
linear 3-graph without .e C 3; e/-configurations. Then H has o.n2/ edges.

Note that as in a .v; e/-configuration we fix the number of edges and only bound
the number of vertices, such a configuration is a locally dense subset of H . Since a linear H

clearly has at most n2 edges, what the above conjecture states is that if H is locally sparse
then it is also globally sparse. It is easy to see that if Conjecture 1.1 holds for linear 3-graphs
then it holds for arbitrary 3-graphs.

The second set of problems we cover revolves around the triangle removal lemma of
Ruzsa and Szemerédi [85], devised for the purpose of proving Conjecture 1.1 for the special
case e D 3, which is widely considered to be one of the cornerstone results of extremal
combinatorics. In what follows, a triangle in a graph G D .V;E/ is a triple of vertices u;v;w

so that .u; v/; .u; w/.v; w/ 2 E. A graph is triangle-free if it contains no triangle.
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Theorem 1.2 (Triangle removal lemma). For every " > 0, there is Rem."/ so that if G is an
n-vertex graph with the property that one should remove at least "n2 of its edges in order to
make it triangle-free, then G contains at least n3= Rem."/ triangles.

Note that if G has n3=Rem."/ triangles, then a random subset of (about) Rem."/

vertices contains a triangle with probability at least 2=3. In particular, this means that no
matter how large n is, most subsets of vertices of size Rem."/ are not triangle-free. We can
thus interpret Theorem 1.2 as stating that if G is globally far from being triangle-free, then
it is also locally far from being triangle-free.

The third set of problems we discuss is related to the celebrated regularity lemma
of Szemerédi [95]. One of the first applications of this lemma was the proof Theorem 1.2
in [85]. Since then it has become one of the most important tools for solving extremal prob-
lems in graph theory (see [80]). To state it we need a few definitions. Suppose G is a graph
and A; B are two disjoint subsets of V . We use e.A; B/ to denote the number of edges of
E that connect a vertex in A with a vertex in B . We also let d.A; B/ D e.A; B/=jAjjBj

denote the edge density between A; B . Finally, we say that the pair .A; B/ is "-regular
if jd.A; B/ � d.A0; B 0/j � " for every pair A0 � A, B 0 � B satisfying jA0j � "jAj and
jB 0j � "jBj. A partition V1; : : : ; Vk of the vertices of G into k sets is called "-regular if all
but "k2 of the pairs .Vi ; Vj / are "-regular and all the sets are of equal size n=k (or of sizes
bn=kc and dn=ke). The order of such a partition is the number of sets Vi in it (i.e., k above).

Theorem 1.3 (Szemerédi’s regularity lemma). For every " > 0, there is an M D M."/ so
that every graph has an "-regular partition of order k with 1=" � k � M .

The rest of the paper is organized as follows. In Section 2 we discuss Conjecture 1.1
and many related questions. In Section 3 we discuss Theorem 1.3 and many of its variants
along with their applications. Finally, variants of Theorem 1.2, and their relations to prob-
lems in theoretical computer science, are described in Sections 3 and 4. Since it is clearly
impossible to cover all themes related to the subject of this paper, or even those related to
the above three topics, many important results will be left out.

2. The Brown–Erd´́os–Sós conjecture

In this section we describe several results and open problems related to Conjec-
ture 1.1. We will henceforth use the acronym BESC. Let fr .n;v;e/ denote the largest number
of edges in a linear r-graph on n vertices that contains no .v; e/-configuration. Note that
Conjecture 1.1 is the statement that f3.n; e C 3; e/ D o.n2/. Despite much effort by many
researchers, Conjecture 1.1 is wide open, having only been settled for e D 3 by Ruzsa and
Szemerédi [85] in what has become known as the .6; 3/-theorem. To get some perspective
on the significance of this special case of Conjecture 1.1, let us just mention that besides its
relation to Theorems 1.2 and 1.3 mentioned above, the .6; 3/-theorem implies Roth’s theo-
rem [82] on 3-term arithmetic progressions in dense sets of integers (see the next subsection).
As another indication of the importance of this problem, we note that one of the main driving
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forces for proving the celebrated hypergraph removal lemma (see Section 3.3) was the hope
that it would lead to a proof of Conjecture 1.1.

2.1. Approximate versions of BESC
At present we seem to be quite far from proving Conjecture 1.1. As an indication

of the difficulty of Conjecture 1.1 for e > 3, let us mention that already the case e D 4 (i.e.,
the statement f3.n; 7; 4/ D o.n2/) implies the notoriously difficult Szemerédi’s theorem
[93] for 4-term arithmetic progressions, see [28]. It is thus natural to look for approximate
versions of this conjecture. Namely, given e � 3, find the smallest d D d.e/ such that
f3.n; e C d; e/ D o.n2/. Until very recently, the best result of this type was obtained about
15 years ago by Sárközy and Selkow [87], who proved that

f3

�
n; e C 2 C blog2 ec; e

�
D o.n2/: (2.1)

Since the result of [87], the only advance was obtained by Solymosi and Solymosi [91], who
improved the bound for e D 10 from f3.n; 15; 10/ D o.n2/ (which follows from (2.1)), to
f3.n; 14; 10/ D o.n2/. The first improvement over (2.1) for all large enough e was obtained
recently in [26]. Moreover, it shows that one can replace the blog2 ec “error term” in (2.1) by
a much smaller, sublogarithmic, term.

Theorem 2.1. For every e � 3,

f3.n; e C 18 log e= log log e; e/ D o.n2/:

The main idea of [87] in their proof of (2.1) was the following: The triangle removal
lemma actually shows that a linear 3-graph with �.n2/ edges has many .6;3/-configurations.
One then defines an auxiliary graph based on these .6; 3/-configurations, and uses the tri-
angle removal lemma again in order to double a .6; 3/-configuration into a configuration
with 7 edges, and so on. The caveat is that each time the number of edges is doubled, the
difference between v and e increases by 1, resulting in the log2 e error term. The main idea
of [91] was to use the 3-graph removal lemma (see Theorem 3.8), which is the extension of
Theorem 1.2 to 3-graphs, in order to perform a single iteration in the style of [87], which
instead of doubling the number of edges, (roughly) triples it. The main novelty in [26] is in
managing to perform these multiplications an unbounded number of times. To do so, the
r-graph removal lemma is used (for all uniformities r) in order to sequentially multiply the
number of edges by 3; 4; 5; : : : : The main difficulty is in ensuring that each time one multi-
plies a configuration, the difference between v and e increases only by 1. Another challenge
is in making sure the configuration has exactly e edges.

Conjecture 1.1 has a more general form (see [87]), stating that for every 2 � k < r

and e � 3 we have fr .n; .r � k/e C k C 1; e/ D o.nk/. However, as noted in [26], this more
general version is, in fact, equivalent to the special case stated as Conjecture 1.1 (corre-
sponding to k D 2 and r D 3). Moreover, any approximate version of Conjecture 1.1, like
that stated in Theorem 2.1, gives analogous approximate versions of the general conjecture.
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2.2. Lower bounds for BESC
As we mentioned at the end of the previous subsection, the general form of the BESC

states that for every 2 � k < r and e � 3 we have fr .n; .r � k/e C k C 1; e/ D o.nk/. It is
also widely believed (see [28,29]) that the following lower bound holds.

Conjecture 2.2. For every 2 � k < r and e � 3, we have fr .n; .r � k/e C k C 1; e/ >

nk�o.1/.

Given the difficulty of proving an upper bound for the BESC, one might expect that
Conjecture 2.2 would be relatively easy to resolve. As it turns out, this is not the case. Ruzsa
and Szemerédi [85] gave an ingenious construction showing that

f3.n; 6; 3/ � �
�
n � r3.n/

�
� n2�o.1/; (2.2)

where r3.n/ is the size of the largest subset of the first n integers without a 3-term arith-
metic progression, and the second inequality follows from the well-known construction
of Behrend [16] showing that r3.n/ > n1�o.1/. Observe that combined with the fact that
f3.n; 6; 3/ D o.n2/ mentioned above, this implies Roth’s theorem [82] stating that
r3.n/ D o.n/. This establishes Conjecture 2.2 for e D 3, k D 2, r D 3. Erdős, Frankl,
and Rödl [29] later extended this to arbitrary r � 3 (and e D 3, k D 2 as in [85]). A result of
[8] then verified Conjecture 2.2 for e D 3 and arbitrary 2 � k < r .

The key idea in the above results, which handle the case e D 3, is to start with a set of
integers X � Œn�, and construct a Cayley-type r-graph H in such a way that one can “extract”
from any ..r � k/3 C k C 1; 3/-configuration in H a nontrivial solution to an equation of
the form ax C by D .a C b/z with bounded a; b and x; y; z 2 X . A simple generaliza-
tion of [16] shows that there are sets X � Œn� of size n1�o.1/ without nontrivial solutions
to equations of this type, which can be used to give a bound as in (2.2). The reason why
Conjecture 2.2 becomes much harder when e > 3 is that when handling more than 3 edges,
the linear equation E we can extract from a ..r � k/e C k C 1; e/-configuration might be
one for which there is no X � Œn� of size n1�o.1/ without a solution of E. For example, if
the equation is x C y D z C w then a set without nontrivial solutions has size O.

p
n/.

Let us focus then on the case e > 3 and k D 2 and r D 3. It is easy to check
that every .7; 4/ or .8; 5/-configuration contains a .6; 3/-configuration, hence the bounds
f3.n;7;4/;f3.n;8;5/ � n2�o.1/ follow from (2.2). The situation becomes much harder when
e D 6, since there is a .9; 6/-configuration which does not contain a .6; 3/-configuration.
Indeed, this is the 3 � 3 grid, denoted G3�3, namely the 3-graph whose vertices are the
nine points in a 3 � 3 point array, and whose edges correspond to the 6 horizontal and ver-
tical lines of this array. Let T denote the 3-graph with vertices 1; 2; 3; 4; 5; 6 and edges
¹1; 2; 3º; ¹3; 4; 5º; ¹5; 6; 1º (this is the unique linear .6; 3/-configuration). It is not hard to
verify that every linear .9; 6/-configuration (in a 3-graph) either contains a copy of T or is
isomorphic to G3�3. Hence, to prove that f .n; 9; 6/ � n2�o.1/, it would suffice to construct
a linear 3-graph with n2�o.1/ edges and no copy of either G3�3 or T .

The above facts led Füredi and Ruszinkó [38] to study various extremal problems
related to G3�3. In particular, they conjectured that there is a G3�3-free linear 3-graph
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with .1=6 � o.1//n2 edges. Using a standard probabilistic alterations argument, Füredi and
Ruszinkó [38] constructed such a 3-graph with �.n1:8/ edges. This was slightly improved (as
a special case of a more general result) to �.n1:8 log1=5 n/ in [88]. The following result of [44]
makes a significant progress on the conjecture of Füredi and Ruszinkó [38], by improving
these results to �.n2/. We, in fact, have the following more general statement.

Theorem 2.3. For a prime p, and two sets X;A � Fp , define the following 3-partite 3-graph
H D H .X;A/ on vertex sets V1; V2; V3 where we think of each Vi as a copy of Fp: for every
x 2 X and a 2 A, place a 3-edge containing the vertices x 2 V1, x C a 2 V2 and x C a2 2 V3

(all operations over Fp). Then, every pair of vertices of H belongs to at most 2 edges. Also,
if there are no x1; x2 2 X and a 2 A satisfying

4x1 C 4a � 4x2 C 1 .mod p/ (2.3)

then H is G3�3-free, and if A has no solution to the equation

a C b2
� b � c2 .mod p/ (2.4)

in distinct a; b; c 2 A then H is T -free.

It is easy to see that the sets X D A D ¹1; : : : ; bp=8cº do not contain a solution
to (2.3), hence H D H .X; A/ has �.n2/ edges and no copy of G3�3. Also, since each pair
of vertices belongs to at most 2 edges we get that there is also a linear H with the same
properties, thus establishing the improved bound for the Füredi–Ruszinkó conjecture stated
before Theorem 2.3. The second assertion Theorem 2.3 thus leads to the following problem:

Problem 2.4. Is there A � Fp of size p1�o.1/ without a solution of (2.4) in distinct a; b; c?

If a set A as above exists, then, to prove that f .n; 9; 6/ � n2�o.1/, one would just
need to find X � Fp of size p1�o.1/ so that A and X have no solution to (2.3). Also, in the
spirit of [84], it seems interesting to further study the size of the largest subsets of Fp without
nontrivial solutions to other polynomial equations.

Conjectures 1.1 and 2.2 state nearly matching lower and upper bounds. We conclude
this subsection by recalling a problem of Erdős [28], who asked if the exact asymptotic for-
mula f .n; e C 3; e/ D ‚.n � re.n// holds, where re.n/ denotes the size of the largest subset
of the first n integers without an e-term arithmetic progression. As of now, the upper bound
is not known for any e � 3, while the lower bound is known only for e D 3; 4; 5.

2.3. The Gowers–Long conjecture
The BESC states that a 3-graph without .e C 3; e/-configurations has o.n2/ edges.

By (2.2), already when e D 3, one cannot reduce this to n2�ı for some absolute ı > 0. Gowers
and Long [55] conjectured that for sparser configurations, such a bound is attainable.

Conjecture 2.5. For every e � 3, there is a ı D ı.e/ > 0 so that f3.n; e C 4; e/ D O.n2�ı/.

In the previous subsection we discussed the approximate versions of BESC obtained
in [26] and [87]. The following result of [41] gives an analogous approximate version of the
Gowers–Long conjecture.

4687 Local-vs-global combinatorics



Theorem 2.6. For every e � 3, there is a ı D ı.e/ > 0 so that

f3

�
n; e C O.log e/; e

�
D O.n2�ı/:

Recall that prior to Theorem 2.1 of [26], the state-of-the-art result for the BESC was
inequality (2.1) of Sárközy–Selkow [87]. The above theorem then shows that with an error
term close to that of Sárközy–Selkow, one can in fact improve the o.n2/ bound on the number
of edges to O.n2�ı/.

As we noted after (2.2), one of the surprising implications of the .6; 3/-theorem is
Roth’s theorem. A result of this nature due to Gowers and Long [55] then states that a positive
answer to Conjecture 2.5 for e D 5 would imply that for some c > 0, every S � Œn� of size
n1�c contains a nontrivial solution (i.e., one where not all integers are equal) of the equation
2x1 C 2x3 D x3 C 3x4. This is related to a famous problem of Ruzsa [84], asking if for every
linear equation E of the form

P
i ai xi D 0 with

P
i ai D 0, and such that no (nonempty)

proper subset of the coefficients ai sums to 0, there is X � Œn� of size n1�o.1/ without a
nontrivial solution of E. As of now, a positive answer is only known when all but one of the
ai ’s are positive, via a straightforward generalization of Behrend’s construction [16]. It would
be very interesting to show that the relation between Ruzsa’s problem and Conjecture 2.5 can
be extended to other equations.

2.4. A Ramsey variant of BESC
Given the difficulty of the BESC, it is natural to look at various relaxations of it.

For example, instead of looking at arbitrary r-graphs, one can look at those arising from a
group (see [74] and its references). We now state another natural simplification of BESC that
was recently suggested by Conlon and Nenadov. We say that a linear r-graph is complete if
every pair of vertices of V belongs to exactly one edge of E. Such an object is sometimes
called an r-Steiner system (when r D 3 this is a Steiner triple system). Conlon and Nenadov
then suggested the following weaker Ramsey-type version of the BESC, namely proving that
the following holds for every r � 3, e � 3, c � 2, and large enough n � n0.r; e; c/: If H

is an n-vertex complete linear r-graph then in every c-coloring of its edges one can find
e edges of the same color, which are spanned by at most .r � 2/e C 3 vertices. Note that
BESC implies the above statement, as it gives the required monochromatic configuration in
the most popular color. It is easy to see that this problem has a positive answer when c D 1

or when e D 3. The problem is wide open already when e D 4. The following result of [90]

gives a positive answer to the Conlon–Nenadov problem assuming r is large enough.

Theorem 2.7. For every integer c, there exists an r0 D r0.c/ such that for every r � r0 and
integer e � 3 there exists n0 D n0.c; r; e/ such that every c-coloring of a complete linear
r-graph on n > n0 vertices contains a monochromatic ..r � 2/e C 3; e/-configuration.

In the natural case c D 2, it was further shown in [90] that r0.2/ � 4. The above
results were recently generalized in [64], building on some of the tools and ideas introduced
in [90]. One of these tools was an auxiliary graph which helps one “grow” ..r � 2/e C 3; e/-
configurations, for e D 3;4; : : :, and thus prove Theorem 2.7. Perhaps one take-home message
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of [90] is that even when considering the Ramsey relaxation of the BESC, and even after
adding the assumption that r � r0.c/, one still has to work quite hard in order to find the
..r � 2/e C 3; e/-configurations of the BESC.

3. Variants of the regularity lemma and their

applications

In this section we discuss several variants of the regularity lemma and their relation
to three of the most well-studied variants of the removal lemma. We will need the following
definitions. For a fixed graph property P , the distance of an n-vertex graph G from satisfying
P is the smallest number of edges modifications (i.e., addition and removal) needed to turn
G into an n-vertex graph satisfying P . We say that an n-vertex graph is "-far from satisfying
P if G’s distance from P is at least "n2.

3.1. Triangle removal using weak regularity lemmas
In this subsection we focus on the triangle removal lemma, and more concretely,

on the quantitative bounds for the function Rem."/ introduced in Lemma 1.2. Actually, all
the results will hold for the more general graph removal lemma, which states that for every
graph H there is a function RemH ."/ so that if G is "-far from being H -free then G contains
nh=RemH ."/ copies of H , where h D jV.H/j. In what follows, we will use twr.x/ to denote
the tower function, namely a tower of exponents of height x. For example, twr.3/ D 222 .

The original proof of the triangle removal lemma in [85], and of its generaliza-
tion to every fixed H [3], relied on Szemerédi’s regularity lemma [95] and gave the bound
RemH ."/ � M.poly."//. Let us sketch this proof when H is the triangle (the proof for gen-
eral H is almost identical). Given G that is "-far from being H -free, one first invokes the
regularity lemma (with "=10) in order to obtain an "-regular partition of V.G/. One then
removes from G edges that are either .i/ inside one of the sets Vi , or .ii/ connect Vi to Vj

so that .Vi ; Vj / is not "=10-regular, or .iii/ connect Vi to Vj so that d.Vi ; Vj / � "=5. Since
this “cleaning process” removes less than "n2 edges, at least one triangle remains in the new
graph. By the nature of the cleaning process, there must be Vi ; Vj ; Vk so that this triangle has
one vertex in each of these sets, and so that all three pairs of sets have density at least "=5 and
are "=10-regular. One then invokes the so called counting lemma (see, e.g., Lemma 3.2 in
[4]) in order to show that such a triple of sets Vi ; Vj ; Vk in fact contains poly."/jVi jjVj jjVkj

many triangles. Since each of these three sets has size at least n=M."=10/, we conclude that
G has at least n3=M 3.poly."// triangles. Unfortunately, Szemerédi’s proof of his lemma
gave the bound M."/ � twr.poly.1="//, which combined with the preceding proof gives

RemH ."/ � twr
�
poly.1="/

�
: (3.1)

As to lower bounds, extending a construction of [85] for triangle-freeness, Alon [1] proved
that for every nonbipartite H , there is C D C.H/ satisfying

RemH ."/ � .1="/C log.1="/: (3.2)
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There are two natural approaches for improving (3.1). The first would be to obtain
better bounds for the regularity lemma, namely for M."/, which would immediately lead to
improved bounds for RemH ."/. This, as well as numerous other applications of the regularity
lemma, gave the hope that one can find a new proof of this lemma with significantly better
quantitative bounds. These hopes were unfortunately shattered when Gowers [52] famously
proved that M."/ � twr.poly.1="//. The current record lower bound was obtained in [34]

who showed that M."/ � twr.1="2/, while a much shorter and simpler proof of Gowers’s
lower bound appears in [70].

Given the above, the second approach for improving (3.1) was to find a proof of
the removal lemma that avoids the regularity lemma. This problem was open for many years
until the breakthrough result of Fox [31], who found a new proof showing that

RemH ."/ � twr
�
O

�
log.1="/

��
: (3.3)

Fox’s proof used an ad-hoc argument which was simplified in [25]. Given the sim-
plicity of the proof of the removal lemma using the regularity lemma (sketched above), it is
natural to ask if there is a weaker version of the regularity lemma, which is strong enough
for proving the removal lemma (in a way similar to the original proof), yet weak enough
so as to yield better bounds. Before describing two such proofs we should point out that
the idea of devising weak regularity lemmas for specific applications was used before. Two
notable such examples are the Frieze–Kannan weak regularity lemma [37] and the Duke–
Lefman–Rödl [27] cylinder lemma. Below we describe two weaker versions of the regularity
lemma which do produce bounds better than (3.1) by giving alternative proofs of (3.3).

Finding a regular partition of only part of the graph. Recall that when deriving the
removal lemma from the regularity lemma, we only needed the 3 pairs among Vi ; Vj ; Vk

to be "-regular. The reason why the bound was so weak is that these sets are of size
n=twr.poly.1="//. A special case of the cylinder lemma [27], shows that given an n-vertex
graph, one can find three sets Vi ; Vj ; Vk so that each of the three pairs among them is "-
regular and the three sets have size n=2poly.1="/. Unfortunately, it does not appear that this
lemma can be used to prove the triangle removal lemma since there is no structural connec-
tion between the 3 sets and G. In their work on the induced removal lemma (see Section 3.2),
Alon, Fischer, Krivelevich, and Szegedy [4] proved the following related theorem.

Theorem 3.1. For every " > 0 and h, there is an S D S."; h/ so that every graph G has an
equipartition ¹V1; : : : ; Vkº and a collection of subsets W1 � V1; : : : ; Wk � Vk satisfying:

(i)
P

1�i<j �k jd.Vi ; Vj / � d.Wi ; Wj /j � "k2;

(ii) All pairs .Wi ; Wj / are "h-regular;

(iii) jWi j � jV.G/j=S .

Furthermore, we have RemH ."/ � S.poly."/; h/, where h D jV.H/j.

We note that the proof of the “furthermore” part of this theorem is almost identical
to the way one derives the removal lemma from the regularity lemma, as we sketched above.
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Note that item .i/ gives us the required relation between G and the sets W1; : : : ; Wk , which
is missing when applying the cylinder lemma [27].

Alon et al. [4] obtained a wowzer-type upper bound for S.";h/, where wowzer is the
iterated version of the tower function. This wowzer-type bound resulted from using the strong
regularity lemma which was introduced in [4]. It was later proved [24, 62] that the wowzer-
type bounds for the strong regularity lemma are unavoidable, thus ruling out the possibility
of improving the bounds for Theorem 3.1 by improving the bounds for the strong regularity
lemma. A new proof of Theorem 3.1 was obtained by Conlon and Fox [24] who used the
cylinder lemma [27] in a sophisticated way in order to prove that S."; h/ � twr.poly.1="//.
Note that even this improved bound does not give an improvement over (3.1), and as we
mention below in Theorem 3.6, for general graphs this improved bound is the best possible.
Hence, it appears as if Theorem 3.1 cannot be used to improve (3.1). However, by combining
the ideas of [24] with those of [71], the following result was obtained in [86].

Theorem 3.2. If G in Theorem 3.1 has O."n2/ edges then S."; h/ � twr.O.log.1="///.

Using the theorem above, and a minor variant of the proof of the removal lemma
from the regularity lemma sketched above, one obtains (3.3) but only for graphs with O."n2/

edges. So to reprove (3.3) in full generality it remains to prove that if G is "-far from being
H -free, then G has a subgraph G0 with O."n2/ edges which is �."/-far from being H -free.
Indeed, we could then apply the statement that holds only for graphs with O."n2/ edges, and
then use the fact that every copy of H in G0 is also a copy of H in G. To find such a G0,
we first note that if G has ın2 edge-disjoint copies of H , then G is clearly ı-far from being
H -free, and that conversely, if G is "-far from being H -free, then it contains at least "n2=h2

edge-disjoint copies of H (where h D jV.H/j). Hence, taking G0 to be the union of these
edge-disjoint copies of H we obtain the required subgraph of G.

Modifying the graph. Recall that when proving the removal lemma, we first obtained an
"-regular partition of the graph, then removed edges from G, and then found many triangles
in the new graph G0. Since we are already finding triangles in a modified version of G, one
can ask if instead of finding a regular partition of G (which might be hard by Gowers’s lower
bound), it is enough to find a regular partition of a modified version of G. A version of the
regularity lemma called the regular approximation lemma achieves this task.

Theorem 3.3. For every "; ı > 0, there is a T D T ."; ı/ so that one can add/remove from
an n-vertex graph at most ın2 edges so that the new graph G0 has a partition of order at
most T in which all pairs are "-regular.

The first proofs of this lemma [69, 78] supplied (at best) only wowzer-type bounds.
A better tower-type bound was obtained by Conlon and Fox [24]. Interestingly, the tower
dependence is only on ı and not on ". Unfortunately, for proving the removal lemma, one
has to take ı � ", and so we again obtain (3.1). However, the following result of [71], which is a
variant tailored for sparse graphs and appropriately dubbed the sparse regular approximation
lemma, supplies a better bound.
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Suppose G is a graph with O."n2/ edges. Then one can add/delete from G at most
"n2=100 edges so that the resulting graph G0 has an "3-regular partition of order at most
twr.O.log 1="//.

Let us briefly describe how the above theorem can be used to prove (3.3). First,
as described after Theorem 3.2, it is enough to consider only graphs with O."n2/ edges.
Given such a G, we apply Theorem 3.4 to obtain G0. Since G0 was obtained using few
edge modifications, it is "=2-far from being triangle free. We can now repeat the same argu-
ment used to derive the removal lemma from the regularity lemma, to infer that G0 contains
nh= twr.O.log 1="// copies of H (the improved bound comes from Theorem 3.4). Since we
are allowed to add edges to G when producing G0, one needs to be careful here since G0

might contain “ghost” triangles that do not belong to G. However, it is not hard to show that
at least half of the triangles in G0 also belong to G thus completing the proof.

3.2. Improved bounds for the induced removal lemma?
We now consider the so called induced removal lemma, which is the induced

variant of the removal lemma we discussed above. It states that for every fixed graph H ,
there is Rem�

H ."/ so that if G is "-far from being induced H -free then G has at least
nh= Rem�

H ."/ induced copies of H . The fact that for every H such a function Rem�
H ."/

exists was first obtained in [4] using Theorem 3.1. More precisely, what they proved was
that Rem�

H ."/ � S.poly."/; h/. As we noted in the previous subsection, a tower-type bound
for Theorem 3.1 was obtained in [24] giving the improved twr.poly.1="// upper bound for
the induced removal lemma. Conlon and Fox later raised [25] the following natural problem,
asking if one can extend (3.3) to the more difficult setting of the induced removal lemma.

Problem 3.5. Show that for every H we have Rem�
H ."/ � twr.O.log.1="///.

Since we know that Rem�
H ."/ � S.poly."/; h/, it is natural to try and resolve the

above problem by further reducing the upper bound for Theorem 3.1 to twr.O.log.1="///.
Recall that Theorem 3.2 shows that such a bound is attainable for graphs with O."n2/ edges,
implying a positive answer for Problem 3.5 for graphs with this many edges. Unfortunately,
a recent result of [67] shows that such a bound is not attainable in general.

Theorem 3.6. There is a twr.poly.1="// lower bound for S."; 10/ in Theorem 3.1.

Another approach for resolving Problem 3.5 is to reduce the general case of bound-
ing Rem�

H ."/ to the case where G has O."n2/ edges, since for this special case we can
resolve Problem 3.5. As we observed after Theorem 3.2, such a reduction is easy to obtain
for the (noninduced) removal lemma. There is a very natural way to try and extend that argu-
ment to the setting of induced H -freeness. We say that two induced copies of H in G are
pair-disjoint if they share at most one vertex. As in the case of H -freeness, it is clear that if G

contains "n2 pair-disjoint induced copies of H then G is "-far from being induced H -free.
Perhaps surprisingly, the converse is not true. For example, one can construct a graph that is
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"-far from being induced C4-free, yet it contains only O."2n2/ pair-disjoint induced copies
of C4. However, it is natural to ask if the following approximate result holds.

Problem 3.7. Show that if G is "-far from being induced H -free then G contains at least
poly."/ � n2 pair-disjoint induced copies of H .

It is a simple corollary of the induced removal lemma itself that if G is "-far from
being induced H -free then G contains �.n2/ pair-disjoint copies of H , but the hidden con-
stant has a tower-type dependence on ". The question is if this can be made polynomial in ".
Besides being a natural problem, solving Problem 3.7 would also lead to a solution of Prob-
lem 3.5. This can be proved using the ideas of [71]. A much simpler argument was noted
independently by Jacob Fox (private communication).

3.3. The hypergraph regularity lemma
The following lemma is the natural generalization of Lemma 1.2 (the triangle

removal lemma) to r-graphs. Here, K
.r/
rC1 denotes the complete r-graph on r C 1 vertices,

namely, a set of r C 1 vertices containing all possible r C 1 r-edges (so K
.2/
3 is a triangle).

Theorem 3.8 (Hypergraph removal lemma). For every r � 2 and " > 0, there is an Remr ."/

so that the following holds. Suppose H is an n-vertex r-graph with the property that one
should remove at least "nr of its edges to make it K

.r/
rC1-free. Then H contains at least

nrC1= Remr ."/ copies of K
.r/
rC1.

The first to conjecture the above extension of the triangle removal lemma were
Erdős, Frankl, and Rödl [29] in the 1980s. One of the main motivations for obtaining The-
orem 3.8 was the observation of Frankl and Rödl [36] (see also [92]) that it would give an
alternative proof of Szemerédi’s theorem for progressions of arbitrary length. Another moti-
vation was the hope that it would lead to a solution of Conjecture 1.1.

As we discussed earlier, the proof of the triangle removal lemma relied on Sze-
merédi’s regularity lemma. The quest for an r-graph regularity lemma that would allow one
to prove Theorem 3.8 took about 20 years. The first milestone was the result of Frankl and
Rödl [36], who obtained a regularity lemma for 3-graphs and using it proved Theorem 3.8
for r D 3. About 10 years later, the approach of [36] was extended to r-graphs (for arbi-
trary r � 2) by Rödl, Skokan, Nagle, and Schacht [73, 81]. At the same time, Gowers [54]

obtained an alternative version of the regularity lemma for r-graphs. Shortly after, Tao [97]

and Rödl and Schacht [77,78] obtained two additional versions of the lemma. A more detailed
discussion appears in [75].

For the next discussion, we need to introduce the functions comprising the Acker-
mann hierarchy. Set A1.x/ D 2x and, for every r � 2, define the function Ar .x/ to be the
result of iterating Ar�1 on itself x times. So A2.x/ is the tower function and A3.x/ is the
wowzer function. We refer to Ar as the r th Ackermann function.

Although the above mentioned regularity lemmas for r-graphs are quite different
from each other, they all involve constants that grow as fast as the r th Ackermann function.
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As a result, all proofs of the removal lemma for r-graphs give (at best) a bound of the form
Remr ."/ � Ar .1="/. This leads to the following open problem:

Problem 3.9. Obtain primitive recursive bounds for the r-graph removal lemma. That is,
show that there is a universal constant r0 so that Remr ."/ � Ar0.1="/ for every r � 2.

It is natural to first ask if one can resolve the above problem simply by improving
the constants involved in one of the r-graph regularity lemmas mentioned above, which are
known to imply the removal lemma. As mentioned above, Gowers [52] proved that for r D 2,
one cannot obtain better than A2.poly.1="// bounds for the graph regularity lemma. This
result was extended to all r � 2 in [72].

Theorem 3.10. For every r � 2, there is an Ar .log.1="// lower bound for the r-graph
regularity lemma.

Hence, if one wishes to improve the Ar -type bounds for the r-graph removal lemma,
one has to develop new variants of the r-graph regularity lemma that, on the one hand, are
strong enough to prove Theorem 3.8, and, on the other hand, are weak enough to yield better
bounds.

The main challenge in proving Theorem 3.10 is facilitating an inductive approach
(on r): one has to prove a stronger lower bound, showing that even very weak versions of
the r-graph regularity lemma cannot give bounds better than Ar .log.1="//. Among other
things, one has to show that the lower bound holds even if one is allowed to change, say,
a 0:01-fraction of the edges. As the reader might recall, this is exactly the type of regularity
lemma mentioned in Theorem 3.4, where we stated an upper bound for such a weak version
of the lemma. As part of the proof in [72], the following matching lower bound was obtained.

Theorem 3.11. The twr.O.log 1="// upper bound in Theorem 3.4 is tight.

Returning to the discussion in Section 3.1, Theorem 3.11 implies that the approach
described prior to Theorem 3.4 cannot improve (3.3).

4. Variants of the removal lemma

We next describe several problems related to the triangle removal lemma mentioned
in Section 1. Since its inception [85], the triangle removal lemma was extended in various
ways. Two such generalizations, the general removal lemma and the induced removal lemma,
were discussed in the previous section. These extensions culminated in the following result
of [9], where a graph property is hereditary if it is closed under removal of vertices.

Theorem 4.1. For every hereditary property P , there is a function RemP ."/, so that if a
graph G is "-far from satisfying P , then a random and uniform sample of RemP ."/ vertices
from G spans a graph not satisfying P with probability at least 2=3.

Given a (possibly infinite) family of graphs F , let P �
F

denote the property of being
induced F -free, namely, not containing an induced copy of any F 2 F . It is clear that the
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family of hereditary properties coincides with the family of properties P �
F

, so Theorem 4.1
is the most general version of the removal lemma one can hope to prove. The fact that The-
orem 4.1 is indeed a generalization of the removal lemma and the induced removal lemma
follows from the reasoning in the paragraph following the statement of Theorem 1.2. The
reason we change gears here is that, when F is infinite, stating the removal lemma for P �

F

in the style of Theorem 1.2 becomes cumbersome. The same applies to Problem 4.2 below.

4.1. A theoretical computer science interlude
Although the removal lemmas we discuss below have purely combinatorial state-

ments, part of the motivation leading to these results came from questions in theoretical
computer science, more specifically from the area of graph property testing [48]. The inter-
play between this area and extremal combinatorics has been extremely fruitful, with many
questions raised in one area motivating the development of new tools in the other. Examples
of tools are the weak regularity lemma of Frieze and Kannan [37], the conditional regularity
lemma of Alon, Fischer, and Newman [5], and the notion of partition oracles [59]. A com-
prehensive discussion on the combinatorial aspects can be found in Lovász’s book [68] and
on the more algorithmic aspects in Goldreich’s book [48]. In this subsection we give a brief
background on this area.

Classical models of computation ask for an algorithm that can decide if an input
satisfies some property P , for example, whether an input graph G is planar, or whether an
input matrix A is invertible. It is easy to see that in this case we have to read the entire input
at least once, for example, because deleting a single edge of the graph might make it planar,
or because changing a single entry of A might make it invertible. Due to the need to analyze
huge inputs, which might be too costly to scan even once, researchers introduced a new
type of algorithms, called property testers, that solve only relaxed versions of the classical
decision problem, but do so extremely fast. These are randomized algorithms whose goal is to
distinguish (with high probability, say, 2=3) between objects satisfying some fixed property
P and those that are "-far from satisfying it. The study of such problems originated in the
seminal papers of Rubinfeld and Sudan [83], Blum, Luby, and Rubinfeld [18], and Goldreich,
Goldwasser, and Ron [50]. Below are the precise definitions related to property testing of
graphs.

We say that a graph property is testable if there is a function qP ."/ so that by sam-
pling a set of vertices S of size qP ."/ from a graph G, one can distinguish with probability
at least 2=3 between the following two cases .i/ G satisfies P and .ii/ G is "-far from P . So
the fact that P is testable means that we can distinguish a graph G 2 P from G that is "-far
from P while looking at a subgraph of G of constant size! It is not hard to see that the trian-
gle removal lemma is equivalent to the statement that triangle-freeness is a testable property,
and that bounding Rem."/ is equivalent to bounding the corresponding function q."/.

Some of the most important questions in property testing are those asking if general
families of properties are testable. Observe that Theorem 4.1 implies that every hereditary
graph property P is testable. Indeed, the algorithm for testing P simply samples a set S of
RemP ."/ vertices. If the graph spanned by S satisfies P then the algorithm declares that
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the input satisfies P , otherwise it declares the input is "-far from P . Since P is hereditary,
if G satisfies P , the algorithm will declare this with probability 1. On the other hand, the
definition of RemP ."/ guarantees that if G is "-far from P , the algorithm will declare this
with probability at least 2=3.

As we noted above, the algorithm for testing a hereditary property always answers
correctly when the input belongs to P . Such an algorithm is said to have one-sided error. It
was shown in [9] that hereditary properties are (essentially) the only properties that can be
tested by a one-sided error algorithm. A characterization of the properties that can be tested
in the more general setting of two-sided error algorithms was obtained in [6] and [20]. These
results were extended to r-graphs in [15,61,79].

It should be noted that while the algorithms defined above have running time that
depends only on " (and are independent of jV.G/j), the dependence on " might be enormous.
Indeed, as we discussed in Section 3.1, even in the special case of P being triangle-freeness,
the running time of the testing algorithm is given by the tower-type function in (3.3). Fur-
thermore, a result of [10] shows that there are properties P for which RemP ."/ grows faster
than any recursive function.

While the results discussed above give rather satisfactory qualitative answers, by
the previous paragraph they give very poor quantitative answers. Hence, once we know that
a property is testable, the next natural question is whether we can obtain a “reasonable”
bound for qP ."/. As in many questions, the natural definition of reasonable is polynomial.
We thus say that P is easily testable if it is testable with a polynomial sample, that is, if
qP ."/ D poly.1="/. One of the most important open problems in this area was popularized
by Goldreich [48] and by Alon and Fox [7], who asked for a characterization of the easily
testable graph properties. Currently, this problem is open even when restricted to hereditary
properties. Note that, by the above discussion, proving that a hereditary property P is easily
testable is equivalent to proving that in Theorem 4.1 we have RemP ."/ D poly.1="/. This
leads to the following open problem.

Problem 4.2. Characterize hereditary graph properties P for which RemP ."/ D poly.1="/.

This line of research was initiated by Alon [1], who proved that if PH is the property
of being H -free, then PH is easily testable if and only if H is bipartite. Another notable early
result was obtained by Goldreich, Goldwasser, and Ron [50] who proved that for any fixed k,
the property of being k-colorable is easily testable. This was a major improvement over an
earlier result of Rödl and Duke [76] who used the regularity lemma and (implicitly) gave a
tower-type upper bound for testing k-colorability. In the next subsection we discuss recent
progress related to Problem 4.2.

We finally mention another variant of Theorem 4.1. It is natural to ask if using a
sample of vertices of constant size, one can not only detect if an input G is "-far from P , but
further estimate G’s distance from P . In the literature on property testing, this is called tol-
erant testing. Such a result was obtained for monotone properties in [11], and for all testable
properties, and in particular all hereditary properties, in [30]. A recent result of [60] fur-
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ther shows how to efficiently transform any bound for RemP ."/ into a bound for tolerantly
testing P .

4.2. Removal lemmas with polynomial bounds
In this subsection we describe the progress towards Problem 4.2. It will be more

convenient to think of a hereditary property in terms of its forbidden induced subgraphs,
that is, represent it as P �

F
, as defined after Theorem 4.1. When F consists of a single graph

F we will use the notation P �
F .

We first consider hereditary properties P �
F

with finite F . Recall that a graph F is
bipartite if V.F / can be partitioned into two sets A; B that are both independent, that is,
contain no edges. A graph F is cobipartite if V.F / can be partitioned into two complete
graphs A; B . Finally, F is split if V.F / can be partitioned into A; B , one independent and
the other complete. The following result is proved in [45].

Theorem 4.3. If F is a finite family of graphs that contains a bipartite graph, a cobipartite
graph and a split graph then P �

F
is easily testable.

As discussed in [45], many known and new results can be derived from Theorem 4.3.
For example, Alon and Fox [7], using a somewhat involved ad hoc argument, proved that the
property of being induced P4-free (P4 is the path on 4 vertices) is easily testable. This follows
immediately from Theorem 4.3 since P4 is bipartite, cobipartite, and split.

The next theorem from [45] shows that the sufficient condition in Theorem 4.3 is
almost necessary.

Theorem 4.4. Let F be a finite family for which P �
F

is easily testable. Then F contains a
bipartite graph and a cobipartite graph.

As in the case of Theorem 4.3, the above theorem can also be used in order to obtain
many previous results showing that certain properties are not easily testable. Having given
both a necessary and a sufficient condition, it is natural to ask if one of them in fact charac-
terizes the finite families F for which P �

F
is easily testable. Unfortunately, it was proved in

[45] that none of them is a characterization. Hence, even the special case of Problem 4.2, that
of characterizing the finite families of graph F for which P �

F
is easily testable, is still open.

In addition to the above results concerning finite F , [45] also obtained a suffi-
cient condition guaranteeing that P �

F
is easily testable for general families F . Instead of

describing this condition, we discuss a corollary of it, which concerns the family of semial-
gebraic graph properties. A semialgebraic graph property P is given by an integer k � 1,
a set of real 2k-variate polynomials f1; : : : ; ft 2 RŒx1; : : : ; x2k � and a Boolean function
ˆ W ¹true; falseºt ! ¹true; falseº. A graph G satisfies a property P if one can assign a point
pv 2 Rk to each vertex v 2 V.G/ in such a way that a pair of distinct vertices u;v are adjacent
if and only if

ˆ
�
f1.pu; pv/ � 0; : : : ; ft .pu; pv/ � 0

�
D true:
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In the expression fi .pu; pv/, we substitute pu into the first k variables of fi and pv into the
last k variables of fi .

Some examples of semialgebraic graph properties are those that correspond to being
an intersection graph of certain semialgebraic sets in Rk . For example, a graph is an interval
graph if one can assign an interval in R to each vertex so that u; v are adjacent iff their
intervals intersect. Similarly, a graph is a unit disc graph if it is the intersection graph of unit
discs in R2.

The family of semialgebraic graph properties has been extensively studied by many
researchers, see, e.g., [35] and its references. Alon conjectured that every semialgebraic graph
property is easily testable. This conjecture was verified in [45].

Theorem 4.5. Every semialgebraic graph property is easily testable.

The proofs of Theorems 4.3 and 4.5 use the conditional regularity lemma of Alon,
Fischer, and Newman [5]. This variant of the regularity lemma states that if there is a fixed
bipartite graph H so that the graph G has no induced copy of H (when considering only
the edges connecting the two sided of H ), then G has an "-regular partition of size only
poly.1="/. In fact, the same statement holds if G has only a few copies of H . One of the
key steps in the proofs of Theorems 4.3 and 4.5 is then to show that for every relevant prop-
erty P , an appropriate H as above exists. A related strategy was taken in [32] in the setting
of tournaments.

We conclude this subsection with a problem of Alon [1], who asked to characterize
the graphs H for which the property of being induced H -free is easily testable. It can be
easily checked that Theorems 4.3 and 4.4 can be used to answer this question for all graphs
except C4. There is an interesting reason why this case remains elusive. As we mentioned in
the previous paragraph, in the proof of Theorem 4.3 we use the fact that graphs satisfying
the properties in its statement are guaranteed to have "-regular partitions of order poly.1="/.
The reason why induced C4-freeness is harder is that a graph might satisfy this property and
still only have regular partitions as in Gowers’s example [52] (i.e., having tower-type size). To
see this, one just has to note that every split graph (defined before Theorem 4.3) is induced
C4-free, and that one can assume that Gowers’s example is a bipartite graph. Hence, taking
this graph, and turning one of its independent sets into a complete graph, gives the required
example.

Alon and Fox [7] asked if one can improve the tower-type bounds for induced
C4-freeness, which follow from the bound on Rem�

H ."/ discussed in Section 3.2. The fol-
lowing result of [42] improved this to a mere exponential bound.

Theorem 4.6. RemC4."/ � 2poly.1="/.

The problem of improving this bound to poly.1="/ remains open.

4.3. Removal lemmas of prescribed growth and generalized Turán problems
In the previous parts of this paper, we have mentioned that there are various types

of lower and upper bounds for the function RemP ."/. However, in all cases we could either
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prove that this function is polynomial (as in the previous subsection) or we had a huge tower-
type difference between the best lower and upper bounds (e.g., when P is triangle-freeness,
see (3.1) and (3.2)). This raises the natural question of finding, for a given growth function f ,
a property P for which RemP ."/ � f ."/. A further motivation for this problem comes from
theoretical computer science (see Section 4.1). One of the most basic results in this area is
the time hierarchy theorem, stating (roughly) that for every (natural) function f , there are
computational tasks requiring time f .n/ on inputs of size n. There are other theorems of
this type with respect to memory usage, random bits, etc. Goldreich [48] asked for such a
hierarchy theorem for the query complexity of testing graph properties. As we discussed in
Section 4.1, the query complexity of testing a hereditary P with one-sided error is given
by RemP ."/. Hence, the following theorem from [43] gives a hierarchy theorem for testing
graph properties with one-sided error.

Theorem 4.7. For every decreasing f W .0; 1/ ! N satisfying f .x/ � 1=x, there is a hered-
itary graph property P satisfying f ."/ � RemP ."/ � "�14f ."=c/, where c is an absolute
constant.

As an immediate application of the above theorem, we see that there is a property
P for which RemP ."/ D 2‚.1="/ or one for which RemP ."/ D twr.‚.1="//. The properties
used in the proof of Theorem 4.7 are quite simple. Given f , the property P is that of not
containing a cycle whose length belongs to the set of integers ¹a1; a2; : : :º where a1 D 3 and
for every i � 1 we define aiC1 D 2f .1=2.ai C 2/2/ C 1.

While the properties used in the proof of Theorem 4.7 are simple, the proof that they
satisfy its assertion is more complicated, and relies on a theorem we describe below. Turán’s
Theorem [100], one of the cornerstone results in graph theory, determines the maximum
number of edges in an n-vertex graph that does not contain a Kt (the complete graph on
t vertices). Turán’s problem is the following more general question: for a fixed graph H

and an integer n, what is the maximum number of edges in an n-vertex H -free graph? This
quantity is denoted by ex.n;H/. Estimating ex.n;H/ for various graphs H is one of the most
well-studied problems in graph theory. Alon and Shikhelman [12] have recently initiated the
systematic study of the following natural generalization of ex.n; H/; for fixed graphs H

and T , estimate ex.n; T; H/, which is the maximum number of copies of T in an n-vertex
graph that contains no copy of H . Note that ex.n; H/ D ex.n; K2; H/. For the sake of
brevity, we refer the reader to [12] for more background and motivation. Let us just mention
that this family of problems is also related to those discussed in Section 2 since it is not hard
to see that if we set D to be the graph comprising of two triangles sharing an edge, then
ex.n; K3; D/ D ‚.f3.n; 6; 3//.

Some of the most well-studied graphs analyzed in the setting of Turán problems are
cycles. In the setting of generalized Turán problems, Bollobás and Györi [19] and Györi and
Li [58] obtained tight bounds for ex.n;C3;C5/ and ex.n;C3;C2kC1/. The main result of [43]
was a tight bound for ex.n; Ck ; C`/ for all pairs k; `. For odd cycles, it states the following.

Theorem 4.8. For every 2 � k < `, we have ex.n; C2kC1; C2`C1/ D ‚k.`kC1nk/.
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4.4. Three generalizations of induced F -freeness
Removal for linear combinations of subgraph statistics. For a fixed integer h, let us assign
a weight wH 2 Œ0; 1� to every graph H on h vertices, and then collect all these weights into
a sequence denoted w. Let dH .G/ denote the fraction of subsets of V.G/ of size h that
induce a copy of H . Given h, a sequence of weights w as above, and c � 0, we say that a
graph G satisfies Ph;w;c if

P
H wH � dH .G/ � c. Note that if c D 0 and the only nonzero

entry of w is wH , then Ph;w;c is the property of being induced H -free. In a similar manner,
for every finite family of graphs F , we can encode the property of being induced F -free.
In particular, for every H , we can encode the property of being (not necessarily induced)
H -free. Goldreich and Shinkar [51] conjectured that one can extend the induced removal
lemma [4] by proving that every property Ph;w;c is testable. They in fact conjectured that
these properties can be tested using a very restricted type of testing algorithm. A result of
[47] shows that some of these properties are not testable at all.

Theorem 4.9. There is a property P4;w; 5
16

which is not testable with n1=100 queries.

To prove the above theorem, it is shown in [47] how to define a vector w so that the
resulting property P4;w; 5

16
encodes the property of being a quasirandom graph in the sense

of Chung, Graham, and Wilson [23]. It remains an open problem to decide if the properties
Ph;w;c can at least be tested using o.n2/ edges queries.

Removal against an arbitrary distribution. Suppose G1; G2 are two graphs on the same
vertex-set V and D is a distribution on V . The distance between G1 and G2 with respect to
D is then defined to be

P
¹x;yº2E.G1/�E.G2/ D.x/ � D.y/. We say that the pair .G; D/ is

"-far from satisfying a graph property P if for every G0 2 P , the distance between G and G0

with respect to D is at least ". Observe that the above definition generalizes the definitions
we presented at the beginning of Section 3 which correspond to the uniform distribution over
V.G/, that is, the one that assigns every vertex a weight of 1=n. Now, for a given hereditary
property P and " > 0 we let Rem0

P ."/ be the smallest integer so that for every distribution D ,
if G is "-far from P with respect to D , then a sample of Rem0

P ."/ vertices from V.G/,
sampled according to D , induces a graph not satisfying P with probability at least 2=3. The
order of quantifiers here is crucial; the definition of Rem0

P ."/ requires that it would suffice for
every D . It is again clear that the above definition is much stronger than the one introduced
at the beginning of Section 4, since RemP ."/ only applies to the uniform distribution.

A priori it is not clear why a function Rem0
P ."/ as above should exist for any (inter-

esting) hereditary property. Goldreich [49] proved that such a function indeed exists for sev-
eral types of hereditary properties. The main motivation for his study was that similar algo-
rithmic tasks have been studied in many other settings, where they are called distribution-free
algorithms, see [49] for more background. Goldreich asked if a function Rem0

P ."/ as above
exists for every hereditary P . To answer this question, we need an important definition. We
say that a graph property P is extendable if for every graph G satisfying P , we can add to
G a new vertex v and connect it to V.G/ in such a way that the resulting graph will also
satisfy P . The following answer to Goldreich’s problem was given in [46].
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If P is hereditary, then Rem0
P ."/ exists if and only if P is extendable.

It was also proved in [46] that several natural restrictions on D guarantee that
Rem0

P ."/ exists for every hereditary P . For example, this is the case if we assume that
maxv2V.G/ D.v/ D o.1/ or if we assume that minv2V.G/ D.v/ D �.1=jV.G/j/. At a high
level, the proof of Theorem 4.10 in [46] follows the framework of [9], but the fine details differ
substantially. The proof in [9] uses Szemerédi’s regularity lemma and its variants in order to
handle every hereditary property, but only with respect to the uniform distribution. In [46]

a new version of the regularity lemma is introduced, which takes into account the weight
function D , yet produces bounds that are independent of D (for extendable properties).

Removal for ordered graphs and matrices. For a fixed k � k matrix H with 0=1 entries,
we say that an n � n matrix A is H -free if there are no r1 < � � � < rk and c1 < � � � < ck so
that Ari ;cj

D Hi;j for every i; j 2 Œk�. We define A to be "-far from being H -free if one
should change at least "n2 of its entries to make it H -free. Observe that the matrix property
of being H -free depends on the ordering of rows and columns. This is in sharp contrast to
the graph property of being H -free which is independent of the “names” (or the ordering)
of the vertices.

Alon, Fischer, and Newman [5] asked if the graph removal lemma can be extended
to the setting of matrices, that is, if every A that is "-far from being H -free contains at
least n2k= RemH ."/ copies of H . Alon, Ben-Eliezer, and Fischer [2] recently gave a positive
answer to this question, showing that RemH ."/ can be bounded by a wowzer function of ".
Using the methods discussed in Section 3 this can probably be reduced to a tower-type bound.
But the following problem is still open.

Problem 4.11. Obtain poly.1="/ bounds for the matrix removal lemma.

We should point out that Alon, Fischer, and Newman [5] obtained a polynomial
bound for the unlabeled variant of the matrix removal lemma, that is, one where the order of
rows/columns of H does not matter. Equivalently, the result of [5] gives a polynomial bound
for the induced removal lemma (see Section 3.2) in bipartite graphs. In this case the input
G is an n � n bipartite graph, and G has an induced copy of a bipartite H on vertex sets
U1; U2 if it has an induced copy in which U1 � V1 and U2 � V2, or vice versa. This efficient
removal lemma was instrumental in the results described in Section 4.2.

4.5. Arithmetic removal lemmas for linear equations and functions
Considering the importance of the removal lemma, it is natural to ask if analogous

results can be obtained in other settings. A notable example is the removal lemma for linear
equations over groups obtained by Green [56]. A significantly simpler proof of Green’s result
was obtained by Král’, Serra, and Vena [65] who derived it from the graph removal lemma.
To state Green’s result, we need a few natural generalizations of the notions we used in the
setting of graphs. Let S � Œn� be a set of integers, let M be an ` � t integer matrix, and b 2 N`

an integer vector. We say that S is .M; b/-free if there is no x 2 S t satisfying Mx D b, and
say that S is "-far from being .M; b/-free if we need to remove at least "n of its elements to
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make it .M; b/-free. Finally, we say that the pair .M; b/ has the removal property if there is
a function RemM;b."/ so that if S is "-far from being .M; b/-free, then S t contains at least
nt�`=RemM;b."/ vectors x satisfying Mx D b. Green’s result then states that for ` D 1 (i.e.,
for a single equation), every pair .M; 0/ has the removal property. He conjectured [56] that,
for every M , the pair .M; 0/ has the removal property. Green’s conjecture was verified in the
following stronger form independently by [66] and [89]. Both proofs rely on Theorem 3.8.

Theorem 4.12. Every pair .M; b/ has the removal property.

We conclude by describing an extension of Theorem 4.1 from the setting of graphs
to the setting of boolean functions f W Fn

2 ! ¹0; 1º. Let P be a property of such functions,
and say that f is "-far from satisfying P if one should change the truth table of f in at
least "2n places to make it satisfy P . Let T be the property of such functions indicating
that there is no pair x; y 2 Fn

2 so that f .x/ D f .y/ D f .x C y/ D 1. Then Green’s result
[56] (mentioned above) implies that if f is "-far from T , then there are 22n= Rem."/ many
pairs x; y witnessing this fact. Green’s proof gave a tower-type bound for Rem."/, which
was improved to poly.1="/ by [33], using tools related to the solution of the famous cap-set
conjecture (see the discussion in [33]).

It is natural to ask for a unifying explanation for why property T above obeys a
removal lemma. Such a systematic study was initiated by Kaufman and Sudan [63] who
emphasized the role of invariance. Observe that a key feature in graph properties is that
vertex names do not play a role, or more formally, they are closed under isomorphism.
This motivated [17] to conjecture that a result analogous to Theorem 4.1 should hold in the
setting of boolean functions. To state it we need two definitions. A property of boolean func-
tions is linear-invariant if for every f 2 P and any linear transformation L W Fn

2 ! Fn
2 we

have f ı L 2 P where .f ı L/.x/ D f .L.x//. We also say that a linear invariant P is
subspace-hereditary if for every f 2 P and every linear subspace U of Fn

2 the restriction
fjU 2 P . We can thus think of linear-invariant subspace-hereditary properties as the ana-
logue of hereditary graph properties. To further emphasize this analogy, it was observed in
[17] that just as hereditary properties are those characterized by a (possibly infinite) family
of forbidden induced subgraphs (as discussed after Theorem 4.1), then every linear-invariant
subspace-hereditary property can be characterized by a (possibly infinite) family of forbidden
“patterns” like the one forbidden in the above T . The conjecture raised in [17] was that every
linear-invariant subspace-hereditary property of boolean functions has a removal lemma.
This conjecture was recently verified by Tidor and Zhao [99].
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