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Abstract

The key to the success of differential privacy, now the gold standard for privacy-preserving
data analysis, is the ability to quantify and reason about cumulative privacy loss over
many differentially private interactions. When upper bounds on privacy loss are loose,
the deployment of the algorithms is by definition conservative. Under high levels of com-
position, much potential utility is lost. We survey two general approaches to getting more
utility: privacy amplification methods, which are algorithmic, and definitional methods,
which admit a wider class of algorithms and lead to tighter analyses of existing algorithms.
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1. Introduction

The Fundamental Law of Information Recovery states, informally, that “overly accu-
rate” estimates of “too many” statistics completely destroy privacy ([11] et sequelae; see [21]

for a survey). Differential privacy is a mathematically rigorous definition of privacy tailored
to analysis of large datasets and equipped with a formal measure of privacy loss [12,15–18].
Differentially private algorithms take as input a parameter, typically called ", that caps the
permitted privacy loss in any execution of the algorithm and offers a concrete privacy/utility
tradeoff. The key to differential privacy’s success is the ability to reason about cumulative
privacy loss as the data are analyzed and reanalyzed, that is, we can understand its behav-
ior under composition. This permits modular construction of differentially private algorithms
from simple differentially private building blocks; in other words, differential privacy is pro-
grammable. The art of differentially private algorithm design is to obtain as much utility as
possible, while minimizing cumulative privacy loss.

A statistic is a quantity computed from a sample. Statistics “feel” private for the
same reasoning that statistics works as a discipline, meaning that we expect we will obtain
approximately the same outcome independent of the actual sample chosen, provided that
proper sampling procedures are followed and the sample is sufficiently large. In this sense, the
statistic is not “about” the members of the sample, but instead it is a quantity that describes
the population as a whole. Relatedly, statistics feel private because of the privacy of the
sample: “I could have opted out,” “no one knows that I am in the sample.” Differential privacy
adheres to this intuition, maintaining the “I could have opted out” semantics even when the
computations are carried out on the entire population, as in a census.

Roughly speaking, differential privacy ensures that the outcome of any analysis on a
dataset x is distributed very similarly to the outcome on any neighboring dataset y that differs
from x in just one row. That is, differentially private algorithms are randomized, giving rise
to a probability distribution A.x/when run on dataset x; the definition requires that the max
divergence between these two distributions A.x/;A.y/ (the maximum log odds ratio for
any event S 2 Range.A/, also known as the maximum privacy loss; Definition 2.2 below)
is bounded by a privacy parameter ". This absolute guarantee on the maximum privacy loss
is now known as pure differential privacy.

This absolute bound on privacy loss is a conservative estimate of the privacy offered
by any given execution of the algorithm: for " � 1, the expected privacy loss of an arbitrary
"-differentially private algorithm is bounded by "2 [19,27]. Under very high levels of compo-
sition, which is the norm in machine learning and in continual, industrial-scale tracking, as
is common with cell phone location and usage data, any looseness in the bounds is severely
compounded. Thus, analytical techniques that more tightly capture the behavior of the pri-
vacy loss random variable quickly lead to improved utility through a more informed selection
of the parameters.

Beginning with [13], a large body of work examines what can be achieved by provid-
ing high probability, rather than absolute, bounds on the privacy loss. Relaxing the protection
goal – that is, relaxing the definition of privacy-preserving analysis – provides opportunities
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for more refined analyses, and the choice of relaxation may rightfully be influenced by the
analytical tools enabled by the definition. In many “workhorse” cases we are interested in
better understanding of very large numbers of invocations of the same algorithm, applied to
the same data. Statistical queries (“What fraction of the people in the dataset satisfy prop-
erty P ?”), and gradient descent, central to data analytics and modern machine learning,
respectively, are exemplars of this phenomenon [1–3,6,10,15,24–26,34,37].

This informal note reviews definitions and sketches some exciting recent direc-
tions in privacy amplification. In Section 2 we establish the notation used throughout, and
motivate the definition of pure differential privacy. Section 3 describes some basic differen-
tially private primitives. Section 4 discusses four relaxations and provides some comparisons
between them. In Section 5 we provide intuition for three amplification techniques. Section 6
describes some applications.

2. Pure differential privacy

Let U denote a unverse of data records, where each u 2U corresponds to a possible
value of the data of an individual. Datasets are multisets of draws from U, and adjacent
datasets differ in the data of just one individual. There are two notions of adjacency. In
replace-one adjacency the two sets have the same cardinality and agree on all but (possibly)
one element; in add/remove adjacency one set is contained in the other, and the larger has
the data of just one additional individual. The distinction rarely matters, beyond a factor of
two in the privacy loss bounds.

(Useful) differentially private algorithms are necessarily randomized [15]. For an
algorithm A and dataset x, we let A.x/ denote the probability distribution on outcomes of
the randomized A operating on x. All probabilities and expectations are taken over the coin
flips of the algorithms.

Definition 2.1 (Differential privacy [15]). For " � 0, Algorithm A is "-differentially private
if, for all adjacent datasets x; y 2 U� and for any event C in the range of A.

Pr
�
A.x/ 2 C

�
� e"Pr

�
A.y/ 2 C

�
(2.1)

where the probabilities are taken over the randomness of A.

Note that the definition is symmetric in x and y and is therefore equivalent to the
condition j log PrŒA.x/2C �

PrŒA.y/2C �
j � ". Note also that differential privacy is a worst-case notion: the

probabilities are over the randomness of the algorithms, not the choice of the datasets.
Composition refers to running multiple differentially private algorithms on the same

dataset, and publishing the outputs at each step.1 It is easily verified that for any algorithms
A and A0 that are " and "0 differentially private, respectively, the composition that on input
x first runs A.x/ and then runs A0.x/, publishing both outputs, is ." C "0/-differentially

1 Composition can be defined more broadly, for example, to cover analyses carried out inde-
pendently on overlapping datasets; see [20].
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private [15]. Moreover, this is true even if A0 is chosen adaptively, after having seen the
output of A.x/. Thus, differential privacy is closed under composition: composition does
not destroy privacy, but it does, eventually, erode it.

Definition 2.2 (Privacy loss random variable). Let A be an algorithm and let x;y be adjacent
datasets. For all � 2 Range.A/, the privacy loss of an outcome � with respect to y when
running on x, denoted Lx;y;� is the ratio

Lx;y;� D log
PrŒA.x/ D ��
PrŒA.y/ D ��

: (2.2)

For continuous output spaces, the probabilities above are replaced by the probability density
functions.

This definition is not symmetric in x and y, and any event that can occur with
nonzero probability when running A.x/ but cannot appear when running A.y/ has infi-
nite privacy loss: if an adversary observes such an event, then it knows, for certain, that the
input dataset is not y.

Fix any adjacent x and y, and consider an execution of A.x/ resulting in an output
�. The loss Lx;y;� might be positive – which is the case when � is more likely under A.x/

than under A.y/ – or it may be negative. The fact that privacy loss can be negative leads to
cancellation when we run multiple algorithms: the cumulative privacy loss random variable
exhibits a martingale-like behavior, and is tightly concentrated around its expectation. This
phenomenon is captured by the Advanced Composition Theorem [20], stated in Section 4.

Differential privacy enjoys several other properties, in particular (1) it is “future-
proof,” meaning it is closed under postprocessing; no amount of computation after the fact,
and no auxiliary information obtained from other sources, can increase the realized privacy
loss; (2) bounds on privacy loss for groups degrades gracefully with the size of the group,
and an "-differentially private algorithm is automatically k"-differentially private for groups
of size k.

3. Two primitives

We briefly describe two primitives, or building blocks, that yield pure differentially
private algorithms, which we will need for this note.

Definition 3.1 (Counting queries, statistical queries). A counting query is constructed from
a predicate, that is, a mapping q WU! ¹0; 1º. When applied to a dataset, the counting query
is asking how many individuals in the dataset are mapped to 1 (“satisfy q”). The associated
statistical query is the fraction of members of the dataset that are mapped to 1.

Randomized Response is a generalization of a technique introduced by Warner to
conduct surveys about embarrassing or illegal behavior; it provides plausible deniability,
allowing individuals to self-report in a randomized way that is biased towards the truth [36].
In this mechanism, the curator/researcher/analyst does not see the private data: individuals
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privatize their information before releasing it to a not-necessarily trusted analyst. Random-
ized response forms the lion’s share of differential privacy in industrial use, where it is viewed
as “shifting the trust boundary to the client,” absolving the server of risk (and, it is perhaps
hoped, liability) of privacy violation even if the server is compromised.

In its simplest form, for u 2 U D ¹0; 1º, Randomized Response is the following
algorithm [36]:

RR.u 2 ¹0; 1º; p 2 Œ0; 1�/
b  Ber.p/
If b D 1 then output a random draw from Ber.1=2/;
Else output u.

Here, the notation Ber.p/ denotes the Bernoulli distribution with parameter p. This
algorithm, which ensures "-differential privacy whenever p � 2=.1C e"/ [15], operates on a
dataset of size n D 1. Given a collection v D ¹v1; : : : ; vnº, where vi is obtained by running
RR.ui ; p/ (either because individual i ran this algorithm on its own data before sending
the result to the server, or because the server has all the data ¹u1; : : : ; unº and has calculated
the vi ’s as intermediate results), the fraction of the number of ui that satisfy property q
can be estimated by “reverse-engineering” the reported statistics as follows. Let T D

P
i vi .

Approximately pn=2 of the observed ones in v come from random draws from Ber.1=2/,
and so (most of) the remaining 1’s come from the truthful responses. Thus, the fraction of
positive xi ’s is approximately T �.pn=2/

.1�p/n
. The expected error is‚. 1

"
p

n
/; when rescaled for a

counting query, we get ‚.
p

n

"
/.

Definition 3.2 (L1- and L2-sensitivity). Let f W U� ! Rd be an arbitrary function. The
L1-sensitivity of f is the maximum, over all adjacent datasets x;y, of kf .x/� f .y/k1. The
L2-sensitivity of f is the maximum, over all adjacent datasets x; y, of kf .x/ � f .y/k2.

Sensitivity is a property of the function, and does not depend on the specific dataset
to which the function is to be applied.

We will also make use of the 0-centered Laplace distribution, Lap.b/, which has
density function �.x/ D 1

2b
e�jxj=b .

Theorem 3.1 (Laplace mechanism [15]). Let f WU�!Rd be an arbitrary function, and let
�1 denote itsL1-sensitivity. Then the mechanism that, on input dataset x and privacy param-
eter ", computes f .x/ and adds an independent draw from Lap.�1="/ to each coordinate,
satisfies "-differential privacy. That is,

A."; x/ D f .x/C

�
Lap

�
�1

"

��d

(3.1)

is "-differentially private.

The L1-sensitivity of a counting query is 1; the expected error for this mechanism
isO.1

"
/, a substantial improvement over randomized response. Indeed, for counting queries,
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the error introduced for privacy by the Laplace mechanism is less than the sampling error.
In this sense, privacy is “for free.”

A natural question is whether addition of Gaussian noise N .0; �2Id / also yields
differential privacy. It does not, even in one dimension. Let the probability densities of the
distributions N .0; �2/ and N .1; �2/ at any t 2 R be denoted �0.t/ and �1.t/, respectively.
Then there is no fixed bound on the ratio �1.t/

�0.t/
as jt j grows. On the other hand, by choosing

� to be sufficiently large as a function of the sensitivity and ", we can control the likelihood
of failing to satisfy privacy loss bounded by ". This motivates the first of the relaxations of
pure differential privacy discussed in the next section.

4. Relaxations of pure differential privacy

In this section we will discuss several relaxations of differential privacy. The differ-
ences between the various notions come down to how they treat very low probability events.
A detailed discussion appears in [7].

4.1. Approximate differential privacy
Definition 4.1 (Approximate (or ."; ı/) differential privacy [13]). For "; ı � 0, Algorithm A

is ."; ı/-differentially private if, for all adjacent datasets x; y 2 U� and for any event C in
the range of A,

Pr
�
A.x/ 2 C

�
� e"Pr

�
A.y/ 2 C

�
C ı; (4.1)

where the probabilities are taken over the randomness of A.

When ı D 0, this recovers the definition of pure differential privacy. When ı > 0,
even if it is negligibly small, this relaxation provides what amounts to a switch of quantifica-
tion order: pure differential privacy ensures that on every execution of A.x/ the observed out-
come will be essentially equally likely on all adjacent datasets y simultaneously. In approxi-
mate differential privacy, for any specific y adjacent to x, it is extremely unlikely ex ante that
the observed value A.x/ will be one that is much more or much less likely when the dataset
is x rather than when the dataset is y, but given an output �  A.x/ it might be possible
to find some y such that � is, say, much more likely to be produced on x than it is on y. For
this y, Lx;y;� would be very large.

Although ."; ı/-differential privacy satisfies a simple composition theorem analo-
gous to simple composition for pure differential privacy – the epsilons and the deltas add up
– it, like pure differential privacy, enjoys the benefits of the Advanced Composition Theorem
of Dwork, Rothblum, and Vadhan [20], stated next.

Theorem 4.1 (Advanced composition [20]). For all "; ı; ı0 � 0, the class of ."; ı/ differen-
tially private mechanisms satisfies ."0; kı C ı0/-differential privacy under adaptive k-fold
composition for

"0
D

p
2k ln.1=ı0/ � "C k".e"

� 1/: (4.2)
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In Advanced Composition, the dependence on the degree k of composition is of
order

p
k, rather than linear in k. Observe that the theorem yields a host of bounds; for each

value of ı0 > 0, one obtains a corresponding value of "0, and vice versa.

Remark 4.2. The coefficient ".e" � 1/ can be improved by a factor of 2 [19,27]; tight bounds
are obtained in [27] for the homogeneous case (same epsilons and deltas). The optimal com-
position bound in the nonhomogeneous case is very hard (#-P hard) to compute [32].

While the Gaussian mechanism, described next, cannot offer pure differential pri-
vacy, it yields approximate differential privacy.

Theorem 4.3 (Gaussian mechanism [13]). Let f WU� ! Rd be an arbitrary function, and
let �2 denote its L2-sensitivity. Then the mechanism that, on input dataset x and privacy
parameter ", computes f .x/ and adds an independent draw from N .0; c2.�2="/

2Id / to
each coordinate, satisfies ."; ı/-differential privacy whenever c2 � 2 ln.2=ı/. That is, for
any such c,

A."; x/ D f .x/C
�
N

�
0; c2.�2="/

2Id

��d (4.3)

is ."; ı/-differentially private.2

Approximate differential privacy can also provide an appealing bridge to robust
statistics through the so-called Propose-Test-Release paradigm [14]. Focusing here on the
one-dimensional case, in this framework, one runs a differentially private algorithm to test
whether the dataset x is far, in Hamming distance, from all datasets y for which jf .x/ �
f .y/j is larger than some fixed �. If so, the algorithm releases f .x/C Lap.�

"
/, and other-

wise it releases a special output ?.3 Such an algorithm has a risk of a false positive, which
would lead to an inadequate parameter for the Laplace draw, giving rise to the additive ı term.
The Propose-Test-Release paradigm is useful when we expect the statistic of interest to be
insensitive to small changes on datasets seen in practice, despite the worst-case sensitivity
being high.

4.2. (t)Concentrated and Rényi differential privacy
Consider a very undesirable randomized algorithm that draws b � Ber.10�6/ and

proceeds to either release the entire dataset, if b D 1; or else outputs the empty string, if
b D 0. This algorithm is .0; 10�6/-differentially private, but this does not sound like a good
idea. For these and other reasons, we think in terms of choosing ı to be cryptographically
small. The variants considered in this section are strengthenings of approximate differential
privacy that preclude such “death and destruction” behavior.

An investigation of the Gaussian mechanism reveals that it never results in catas-
trophic – that is, infinite – privacy loss. In fact, the distribution of the privacy loss random

2 This bound on c is not tight.
3 The Hamming distance between two datasets is the number of elements on which they

differ, so Hamming distance to a set is a sensitivity-1 query.
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variable for the Gaussian mechanism is itself a Gaussian! Roughly speaking, the probabil-
ity of privacy loss exceeding its expectation by k" falls exponentially in k2=2. Dwork and
Rothblum proposed this as a new relaxation of pure differential privacy, which they called
Concentrated Differential Privacy (CDP). Concentrated differential privacy requires that the
privacy loss random variable be sub-Gaussian [19]. The compelling motivation is that the
Gaussian mechanism with a scale �2 that is independent of ı “cuts corners” in a way that
has no privacy cost under high levels of composition.

To gain a little insight, suppose we will have T applications of the Gaussian mech-
anism, and we want an overall guarantee of ."; ı/-differential privacy. Then, using the
advanced composition theorem, one can choose "0 � "=

p
T ln.1=ı/ and ı0 D ı=T for

the base mechanism. Speaking intuitively, this ensures that each invocation of the Gaussian
mechanism is likely to have privacy loss whose absolute value is bounded by "0. So long as
these bounds hold simultaneously, we can apply the Azuma–Hoeffding bound as in the proof
of the Advanced Composition Theorem to bound the cumulative privacy loss. However, even
if we allow some small violations of these individual "0 bounds, the cumulative loss will
still (likely) exhibit sufficient cancellation, when T is large, and this is what is exploited in
concentrated differential privacy. In practical terms, it gets the

p
log.1=ı/ term out of � in

the Gaussian mechanism, greatly improving accuracy when ı is small.
Bun and Steinke [8] continued this line of investigation, proposing a relaxation of

Concentrated Differential Privacy with similar intuition and closure under postprocessing
(unlike [19]). Their definition, based on Rényi divergence, defined next, is the variant of dif-
ferential privacy deployed by US Census Bureau for the 2020 Decennial Census.

Definition 4.2 (Rényi divergence between distributions). The Rényi divergence of order ˛ 2
.1;1/ between distributions P andQ over a sample space� (with P � Q)4 is defined to
be

D˛.P kQ/ D
1

˛ � 1
ln

Z �
P.z/

Q.z/

�˛

Q.z/ dz: (4.4)

We follow the convention that 0=0 D 1. Also, if P 6� Q, we define the divergence
to be infinite. Rényi divergence of order ˛ D 1 and ˛ D1 is defined by continuity.

Definition 4.3 (Zero-concentrated differential privacy (zCDP) [8]). A randomized algorithm
A WUn! Y satisfies .�; �/-zero-concentrated differential privacy if for all adjacent x; x0 2

Un and all ˛ 2 .1;1/,
D˛

�
A.x/kA.x0

�
/ � � C �˛: (4.5)

It is common to take �D 0, which results in a single-parameter formulation, �-zCDP,
that is easy to work with.

The next notion is a further relaxation that constrains only some fixed lower-order
set of divergences instead of all ˛ 2 .1;1/.

4 P.S/ D 0 whenever Q.S/ D 0 for all measurable sets S ; that is, P is absolutely continuous
with respect to Q.
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Definition 4.4 (Rényi differential privacy [30]). A mechanism A satisfies .˛; "/-Rényi dif-
ferential privacy (RDP) if for all adjacent datasets x; x0, D˛.A.x/kA.x

0// � ".

For ˛0 2 Œ1;˛/, one hasD˛0.P kQ/ <D˛.P kQ/ [30], thus if A satisfies .˛; "/-RDP
then it satisfies .˛0; "/ for all ˛0 2 .1; ˛�.

We introduce one final variation, truncated concentrated differential privacy (tCDP),
which lies between zCDP and RDP [7].

Definition 4.5 (Truncated concentrated differential privacy [7]). Let � > 0 and! > 1. A ran-
domized algorithm A WUn! Y satisfies!-truncated �-concentrated differential privacy (or
.�; !/-tCDP) if, for all adjacent datasets x; x0 2 Un, 8˛ 2 .1; !/,

D˛

�
A.x/kA.x0/

�
� �˛: (4.6)

Setting ! D1 exactly recovers the definition of �-zCDP.

4.3. Some relationships among the relaxations
Following the discussion in [7], for adjacent datasets x; x0, we examine the random

variable Z D f .A.x//, where f .�/ D ln.PrŒA.x/ D ��=PrŒA.x0/ D ��/; this is simply the
privacy loss random variable Lx;x0;� .

• Pure "-differential privacy requires Z � ".

• �-zCDP requires thatZ is sub-Gaussian: the tail behavior ofZ should be like that
of N .�; 2�/, with PrŒZ > t C �� � e�t2=.4�/ for all t � 0.

• .�; !/-tCDP also requires Z to be sub-Gaussian near the origin, but only subex-
ponential in its tails. That is, PrŒZ > t C �� � e�t2=.4�/ for all t 2 Œ0; 2�.! � 1/�,
and for t > 2�.! � 1/, we have PrŒZ > t C �� � e.!�1/2� � e�.!�1/t .

• .!; "/-Rényi differential privacy requires PrŒZ > t C "� � e�.!�1/t .

• Up to constant factors (on ı), ."; ı/-differential privacy requires PrŒZ > "� � ı.

See [30] for further discussion.
All the variants introduced in this subsection enjoy pleasant composition bounds

(recall that ."; ı/-differential privacy is governed by the Advanced Composition Theorem
(Theorem 4.1)):

Theorem 4.4 (Composition bounds [7,8,30]).

(1) Let A W Un ! Y and A0 W Un ! Y satisfy .�; �/-zCDP and .� 0; �0/-zCDP,
respectively. Then their composition satisfies .� C � 0; �C �0/-zCDP [8].

(2) Let A W Un ! Y and A0 W Un ! Y satisfy .�; !/-tCDP and .�0; !0/-tCDP,
respectively. Then their composition satisfies .�C �0;min¹!;!0º/-tCDP [7].

(3) Let A WUn! Y and A0 WUn! Y satisfy .˛; "/-RDP and .˛; "0/-RDP, respec-
tively. Then their composition satisfies .˛; "C "0/-RDP [30].
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Moreover, by analogues of the data processing inequalities [35], zCDP, tCDP, and
RDP are closed under postprocessing.

Remark 4.5 (Group privacy for the relaxations). As noted above, pure differential privacy
yields privacy for groups of size k with a factor k increase in the privacy loss bound. For
."; ı/-differential privacy, the second term deteriorates markedly, and we obtain
.k"; ke.k�1/ı/-differential privacy. Also �-zCDP yields �k2-zCDP for groups of size k [8];
.�; !/-tCDP yields .k2�; !=k/-tCDP for groups of size k � !, and this is tight. tCDP also
provides group privacy that degrades gracefully for larger groups, but the degradation is
worse than for smaller groups [7]. The situation for RDP is more complex; see [30] and more
recent results in [31].

Remark 4.6 (Canonical noise distributions). Different variants of differential privacy have
different “canonical” noise distribution for low-sensitivity, real-valued queries. In the case
of pure differential privacy, this is the Laplace distribution; for zCDP, it is the Gaussian. Bun
et al. suggest that for ."; ı/-differential privacy this could be the Laplace distribution with
standard deviation�=", but with its support truncated to the interval Œ˙O.� log.1=ı/="/� [7]
(although, a truncated Gaussian also works so perhaps “canonical” is wide of the mark for
this case). For tCDP, Bun et al. suggest the sinh-normal distribution for parameters �;A > 0,

Z  A � arcsinh
�
�

A
�N .0; 1/

�
: (4.7)

This is just the Gaussian N .0; �2/ with exponentially faster tail decay. The tails of this
distribution decay doubly exponentially, rather than just in a sub-Gaussian manner, and the
value of A determines where the transition from linear to logarithmic occurs.

With this sinh-normal noise distribution it is sometimes possible to obtain signifi-
cantly more accurate results. We give one example here.

In a histogram query, the universe U is partitioned into some number k of disjoint
cells, and the query is asking, for a dataset x, how many elements of x lie in each of the
cells. Although the number of cells is very large, the sensitivity of the query is only 1, as
adding or removing a single individual can change the count of at most one cell, and that
change is bounded by 1. Histogram queries are the workhorse of official statistics, and the
question of how accurately one can privately answer histogram queries is well studied. For
pure differential privacy, we can, with high probability, achieve error ‚. log k

"
/ by adding

independent Laplace draws to the count for each cell. For ."; ı/-differential privacy, this
can be improved to ‚. log.1=ı/

"
/ (truncated Laplace noise). For z-CDP, we get ‚.

q
log k

�
/

(Gaussian noise). For tCDP, using noise from the sinh-normal distribution, we obtain error
O.! log log k/.
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5. Privacy amplificaton techniques

5.1. Amplification by subsampling
Consider a statistical query specified by a predicate q. In subsampling, one first

chooses a random subset S � x of the dataset, for example, by selecting each element for
inclusion with a fixed probability p, and then outputs an "-differentially private estimate of
the statistical query performed on S . What can we say about the privacy of this algorithm?
Consider a pair of adjacent datasets x; y, and let u be an element in x but not in y. The
probability that u is selected to S is only p. If it is not included then, speaking intuitively,
it will incur no privacy loss; if it is included, then its privacy loss is bounded by ". This
informal argument suggests a privacy loss of p" < ", which is almost the right answer (it
is off by roughly a factor of at most 2). Moreover, there is nothing special about statistical
queries. There is one caveat, however, and this harkens back to our earlier discussion of why
statistics feel private: privacy amplification requires secrecy of the subsample.

Privacy via subsampling was formalized by Beimel, Brenner, Kasiviswanathan, and
Nissim [4], who describe it as implicit in [28].

Theorem 5.1 (Privacy via subsampling [4,28]). Let A be an "�-differentially private algo-
rithm. Construct an algorithm B that, on input a dataset x D ¹x1; : : : ; xnº, creates a new
dataset y by including each xi independently with probability

e" � 1

e"�
� e"�"�

� 1
(5.1)

and then runs A.y/. Then B is "-differentially private.

Remark 5.2. Similar results to those obtained in Theorem 5.1 hold for ."; ı/-DP, in part
because of the ı “escape hatch.” However, amplification by subsampling is not so easy for
concentrated or Rényi differential privacy. This was the motivation for tCDP; see [7] for
precise bounds. The special case of the subsampled Gaussian mechanism is treated in [1,31].

5.2. Amplification by shuffling
Randomized Response (Section 3) is used in the distributed setting (your cell

phone), where clients apply privacy-preserving randomization before sending the (random-
ized) information to the server. No attempt is made to disassociate a response from the client
(you) that sent it. In the shuffling model, the assorted responses are assumed to be randomly
permuted (somehow, by someone), severing individuals from their randomized information.
These responses can then be analyzed without further application of differential privacy, as
the analysis is simply a form of post-processing. The shuffle model emerged from a series
of works, inspired by the very thoughtful PROCHLO paper of Bittau et al. [5] exploring the
practical considerations of privacy-preserving computations in internet-scale systems, and
formalized by Erlingsson, Feldman, Mironov, Talwar, and Thakurta [22] and, slightly differ-
ently, by Cheu, Smith, Ullman, Zeber, and Zhiyaev [9]. In the next section we will describe
a simple algorithm for statistical queries due to Cheu et al. [9] in the shuffle model, and we
focus here on the definition used in that work.
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There are n users, each with a datum xi 2 U. The term dataset now refers to the
union of the xi , i 2 Œn�, although in this model the dataset is held in distributed form, with
user i holding data ui . Protocols in this model consist of three parts:

(1) A randomizer R W U! Ym maps individual data points to anm-tuple of values
in an arbitrary range Y;

(2) A shuffler � W Y�! Y� applies a random permutation to the set of all messages
in its first argument. In our context, if each of n individuals applies a randomizer
that yieldsm elements of Y, the shuffler will apply a random permutation to the
set of nm messages. This breaks up, into m unlinked messages, the m-tuple
produced by any given individual, in addition to severing the individual-to-
message(s) connection;

(3) An analyzer A W Y� ! Z attempts to estimate some function f .x1; : : : ; xn/

from these messages.

The algorithmic task is to define R and A so that the former ensures differential
privacy, while in conjunction with the latter it permits accurate estimation.

Definition 5.1 (Differential privacy in the shuffled model [9]). A protocol P D .R; � ;A/
is ."; ı/-differentially private if the algorithm �.R.x1/; : : : ;R.xn// is ."; ı/-differentially
private.

In a slightly different formulation, Erlingsson et al. showed that shuffling improves
ordinary randomized response by a factor of�.

q
log.1=ı/

n
/ [22]; simplifications and the opti-

mal dependence on " appear in [23]. In Section 6 we will see a special case of this improve-
ment, due to [9]. This is an enormous gain for internet-scale n. Deploying shufflers would
go a long way toward remedying the cumulative privacy erosion of continual facially dif-
ferentially private (but with very large �) monitoring, e.g., of phones, browser activity, and
activities within app usage.

5.3. Amplification by secrecy of the journey
The intuition behind this approach, which in the literature is referred to as privacy

amplification by iteration [24], is that privacy is enhanced when the intermediate steps of
the algorithm are kept secret. The motivating scenario is private gradient descent. Standard
privacy analyses call for each round to satisfy some privacy guarantee, and then to apply
composition to the sequence of all rounds. This will work even though it permits the inter-
mediate results to be public, but this is also potentially wasteful: the analyst only needs the
result of the final iteration.

The power of keeping intermediate state private was exploited in privacy via sub-
sampling, which relies on the privacy of the subsample, and in the subsample-and-aggregate
framework of Nissim, Raskhodnikova, and Smith [33], which provides a method of achiev-
ing differential privacy even if the statistic to be computed has large, or difficult to analyze,
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sensitivity. In subsample-and-aggregate, the algorithm partitions the dataset into disjoint
subsamples, computes the statistic on each subsample without privacy, and then applies a
privacy-preserving aggregation mechanism to combine the results. The intuition is that each
data point is contained in only one cell of the partitioning, and therefore can affect only one
input to the aggregator.

6. Applications

In the standard setup for gradient descent in machine learning, we have a dataset
xD¹x1; : : : ;xnº, where each xi 2Rp , a convex body K 2Rd , a starting point! 2K , a loss
function L W Rd � .Rp/n ! R. Typically, L.!; x/ D

P
i `.!; xi / for a convex, Lipschitz,

loss ` W Rd �Rp ! R.
When the xi � D , for a distribution D on the underlying population, the goal is

often convex risk minimization: to find an approximate minimizer ofL.�;D/. The empirical
risk is the difference between the population minimizer �� and the empirical minimizer O� ,
and differential privacy adds to the nonprivate empirical risk, since release of O� would be
disclosive.

Fix a number of iterations T , and step sizes �t indexed by the iteration number
t 2 ŒT �. For any z 2 Rd , let …K.z/ denote the projection of z onto the convex body K .
After setting !0 to the starting point !, each iteration of projected gradient descent has the
form

!tC1  …K

�
!t � �t � r!L.!t ; x/

�
D …K

�
!t � �t �

X
i2Œn�

r!`.!t ; xi /

�
(6.1)

This is easily made differentially private by introducing appropriately scaled Gaussian noise
before multiplication by the stepsize and projection,

!tC1  …K

�
!t � �t �

� X
i2Œn�

r!`.!t ; xi /CN
�
0; �2Id

���
: (6.2)

Ensuring that � is sufficiently large to provide privacy for the gradient computationX
i2Œn�

r!`.!t ; xi / (6.3)

suffices, as multiplication by �t and projection onto K are postprocessing steps (provided the
value of �t is independent of x, which is typical). Note that this algorithm does not require
that the loss function ` be differentiable, and may be run with any subgradient of `.

There are many variations of the basic approach (for example, full-batch, mini-
batch, stochastic), as well as of the problem statement, e.g., assumptions on the functions
f .�; xi /, and we will not compare the bounds obtained by the algorithms we discuss, instead
focusing on the privacy arguments.

6.1. Privacy via subsampling in gradient descent
For a large dataset, the computational cost of each iteration of full-batch gradient

descent (Equation (6.2)) would be prohibitive. Bassily, Smith, and Thakurta [3], in an ele-
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gant feat of differential privacy sleight of hand, proposed instead a variant in which at each
iteration an element z is chosen uniformly from the dataset x D ¹x1; : : : ; xnº, and only z
will be used in the gradient computation at that iteration:

z � ¹x1; : : : ; xnº; (6.4)

!tC1  …K

�
!t � �t �

�
nr!`.!t ; z/CN

�
0; �2Id

���
: (6.5)

Observe that the scale and expectation of the simple computation nr!`.!t ; z/ and the expen-
sive computation

P
i2Œn� r!`.!t ; xi / are respectively identical.

The computational advantage is enormous: savings of a factor of n! On the other
hand, the sensitivity of the computation has increased by a factor of n. This is because
the contribution, for the selected xi , to the gradient is n times what it was in the origi-
nal computation. This is counteracted by privacy amplification via subsampling results for
.";ı/-differential privacy. On a dataset of size n, the subsampled dataset of size 1 corresponds
to a selection probability of q D 1=n.

Using this and advanced composition, Bassily et al. show that ."; ı/-differential
privacy can be achieved when

�2
D O

�
n2 log.n=ı/ log.1=ı/

"2

�
(6.6)

even when running for n2 rounds,5 where the constants include the diameter of K and the
Lipshitz bounds on f .

6.2. Privacy amplification via shuffling
Recall the randomized response primitive for Boolean inputs: each individual

chooses b � Ber.p/ and, if b D 1, answers with a random draw from Ber.1=2/ and other-
wise answers truthfully. As noted earlier, p � 2=.1 C e"/ suffices to ensure "-differential
privacy. Recall further that in the shuffling model individuals randomize their responses and
then these responses are randomly shuffled into a pool of messages.

Consider the randomizer defined by running the randomized response with (tiny)
randomization parameter p D � ln.1=ı/

n"2 , for some constant �. With such a small value of p,
most participants will report truthfully, but a handful will respond randomly. The analyzer
simply sums the randomized values to obtain an approximate total count of ones.

Cheu et al. proposed and analyzed this algorithm with the following intuition [9].
We can think of the initial Bernoulli draw as partitioning the participants into a small setH
of noise makers, and its complement, whose members respond truthfully. The noise makers
create their noise in the second Bernoulli draw; the sum of their Ber.1=2/ draws follows a
binomial distribution B.jH j; 1=2/. Concentration bounds for the first Bernoulli control the

5 Bassily et al. note, “Even nonprivate first-order algorithms – i.e., those based on gradient
measurements – must learn information about the gradient at �.n2/ points to get risk
bounds that are independent of n (this follows from “oracle complexity” bounds showing
that 1=

p
T convergence rate is optimal...)”.
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size ofH . The noise is then added to the sum of the truthful responses from those not inH .
For sufficiently large jH j, this yields ."; ı/-differential privacy.

The algorithm has expected error of order O.1
"

q
ln 1

ı
/ for counting queries (cf.

‚.1="/ for the Laplace mechanism and‚.
p
n="/ for randomized response). Moreover, it is

succinct: each participant sends only a single bit to the shuffler.

6.3. Privacy of the journey
While composition theorems permit modular “analysis by parts” of complex dif-

ferentially private algorithms, there is one sense in which they may be overly conservative:
they provide guarantees for cumulative privacy loss at every step of the computation, even
when the intermediate results are not released. Gradient descent is a case in point: why use
privacy parameters that permit every intermediate !t to be released, when the data analyst
only cares about the final value !T ? In other words, the destination, and not the journey, is
the sole object of interest in gradient descent. Can we exploit this? For the case of gradient
descent, the answer is positive, and two lovely lines of work reach the same conclusions via
very different proof techniques.

Consider a variant of noisy stochastic gradient descent in which dataset elements
are processed sequentially: x1, then x2, and so on, for T D n rounds:

!tC1  …K

�
!t � �t �

�
nr!`.!t ; xtC1/CN

�
0; �2Id

���
: (6.7)

Consider the element x1, and observe that its impact on the evolving computation does not
end with the first iteration, even though that is the only step in which it appears as an argument
to `. This is because x1 has an impact on the choice of !1, which in turn affects !2, and
so on. Nonetheless, from the perspective of x1, everything after the first iteration is just
postprocessing, so adding noise scaled to the sensitivity of the gradient descent step during
the first iteration suffices to protect privacy.

However, keeping the journey secret leads to the following speculation. Suppose
we add only half the requisite noise, N .0; .�=2/2Id / in the first iteration, and another half
after the second iteration, when the algorithm operates on x2. After the second step, we will
have added two Gaussian samples: the first sample during the first iteration, and the second
during the second iteration. This is equivalent to a draw from N .0; �2Id /. So perhaps x1 is
completely protected.

This intuition was made rigorous by Feldman, Mironov, Talwar, and Thakurta, who
introduced a powerful notion that interpolates between a metric distance on the output space
K � Rd and the information-theoretic Rényi divergence D˛ on distributions of outputs on
neighboring datasets, together with two key lemmata that manipulate this quantity [24].

Definition 6.1 (Contractive mapping). A function  W Rd ! Rd is contractive if it is 1-
Lipschitz.

In this note, the contractive functions of interest are those computed at each iteration
of the noisy gradient descent algorithm. Later, we will make use of the following facts:
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Proposition 6.1 ([24]). For suitable learning rates, the steps at the heart of projected gra-
dient descent are contractions:

(1) For convex K 2 Rd , the projection…K.x/ D arg miny2K kx � yk2 is a con-
traction.

(2) Let f W Rd ! R be convex and ˇ-smooth. For � � 2=ˇ, the function  .w/ D
w � �rwf .w/ is a contraction.

Given a starting point X0, a sequence of contractive maps‰1; : : : ;‰T , and sequence
of noise distributions ¹�tº, we define a Contractive Noisy Iteration (CNI) as

XtC1 D ‰tC1.Xt /CZtC1; (6.8)

where ZtC1 is drawn independently from �t , and denote the output of this process as

CNIT

�
X0; ¹‰tº; ¹�tº

�
(6.9)

Let us consider what happens when each ‰t is the identity map and each �t D

N .0; �2Id /. In this case, XtC1 D ‰tC1.Xt /CN .0; �2Id / DXt CN .0; �2Id /, whence
by induction and the fact that the sum of T mean-centered Gaussians of noise scale � has
distribution N .0; T�2Id /, we obtain XT D X0 CN .0; T�2Id /.

With this in mind we note that if kX0 �X0
0k2 � 1, then, letting

XT D CNIT

�
X0; ¹I º;N

�
0; �2Id

��
; (6.10)

X 0
T D CNIT

�
X0

0; ¹I º;N
�
0; �2Id

��
; (6.11)

we have
D˛.PXT

kPX0
T
/ �

˛

2T�2
:

Feldman et al. show that the identity case is the worst case. Although they consider arbitrary
noise distributions �, we will confine our attention to Gaussian noise. They make heavy use
of the following fact.

Fact 6.1. For all x 2 Rd ,

D˛

�
N

�
0; �2Id

�
kN

�
x; �2Id

��
D
˛kxk2

2�2
: (6.12)

It is helpful to keep the application in mind: we have two adjacent datasets x; x0 2

.Rp/n. We imagine running noisy gradient descent on them in parallel, starting from a
common point !0 D !

0
0 2 Rd . We are interested in the probability distributions on !t and

!0
t for t 2 ŒT �. Due to the addition of noise, the values of !t and !0

t are random variables,
denoted Xt and X0

t , respectively. We now wish to bound the ˛-Rényi divergence of the
distributions of these two random variables.

Definition 6.2. For distributions P;Q over Rd , the1-Wasserstein distance W1.P;Q/ is
the smallest real number given by

W1.P;Q/ D inf
2�.P;Q/

ess sup
.x;y/�

kx � yk2; (6.13)
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where .x; y/ �  means that the essential supremum is taken relative to measure  ; here �
is the collection of couplings of P and Q.

The next quantity, shifted Rényi divergence, defined in [24], is a hybrid distance
notion that interpolates between metric distances between points in Rd and distributional
divergences.

Definition 6.3 (Shifted Rényi divergence [24]). Let P; Q be distributions defined on a
Banach space .Z; k � k/. For parameters z � 0 and ˛ � 1, the z-shifted Rényi divergence
between P and Q is defined as

D.z/
˛ .P kQ/ D inf

P 0WW1.P;P 0/�z
D˛.P

0
kQ/: (6.14)

To understand this, consider the Wasserstein ball of radius z around P . Then P 0

minimizes, among all distributions in this ball, the ˛-Rényi divergence to Q. Note that the
larger the ball, the smaller the shifted divergence, since increasing the radius only adds to the
collection of candidates from which to choose P 0. Moreover, when the radius is so large that
the ball includes Q, the shifted divergence is zero, since the divergence will be minimized
at P 0 D Q.

Lemma 6.1 ([24]). For all s > 0 simultaneously,

D.z�s/
˛

�
P CN

�
0; �2Id

�
kQCN

�
0; �2Id

��
� D.z/

˛ .P kQ/C
˛s2

2�2
: (6.15)

In other words, letting QP DP CN .0;�2Id / and QQDQCN .0;�2Id /, we reduce
the shift amount (the superscript .z/ is decreased to .z � s/), which corresponds to a stronger
requirement (smaller Wasserstein ball), paying a divergence price of ˛s2

2�2 . Figuratively, we
are drawing a ball of smaller radius (z � s < z) around a distribution QP that is close toP , and
finding the distribution QP 0 within that ball that is closest to QQDQCN .0;�2Id /. The noise
distribution is fixed; the flexibility over the choice of s should be thought of as providing an
opportunity for creative divergence accounting.

Notation. In the sequel, we sometimes abuse notation by writing X instead of PX , identi-
fying the random variable with its distribution.

We next observe that contraction reduces shifted divergence.

Lemma 6.2 ([24]). Let‰;‰0 be contractive maps on .Z;k � k/. If supx k‰.x/�‰
0.x/k � s

then for random variables X, and X0 over Z,

D.zCs/
˛

�
‰.X/k‰0.X0/

�
� D.z/

˛ .XkX0/: (6.16)

Theorem 6.3 ([24], as stated informally in [2, Proposition 2.17]). Let XT and X0
T denote the

outputs of CNI.X0; ¹�tº; ¹�tº/ and CNI.X0; ¹�
0
tº; ¹�tº/ where �t D N .0; �2

t Id /. Denote
st D supx k�t .x/��

0
t .x/k, and consider any sequence a1; : : : ;aT such that zt D

Pt
iD1.si �

ai / is nonnegative for all t and satisfies zT D 0. Then

D˛.PXT
kPX0

T
/ �

˛

2

TX
tD1

a2
t

�2
t

: (6.17)
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We can now sketch the analysis in [24] of projected stochastic gradient descent for a
fixed choice � of noise scale. Our starting assumption X0DX0

0 ensures that W1.X0;X
0
0/�

1 which in turn is equivalent to D.1/
˛ .X0kX

0
0/ D 0. Our desired conclusion is a bound

on D˛.XT kX
0
T / D D

.0/
˛ .XT kX

0
T /. Adding Gaussian noise allows us to reduce the shift

amount (Lemma 6.1), while recording a divergence cost: the greater the shift reduction, the
higher the privacy cost. Taking gradient descent steps moves us towards our computational
goal but increases the shift amount (Lemma 6.2).

Projected noisy stochastic gradient descent
Input: Dataset x D ¹x1; : : : ; xnºIf WK �U! R a convex function in the first parameter;
learning rate �; starting point !0 2K; noise parameter � .
For t 2 ¹0; : : : ; n � 1º:
vtC1  !t � �.r!f .!t ; xtC1/CZ/, where Z � N .0; �2Id /,
!tC1  …K.vtC1/

End For
Return the final iterate !n.

Assuming f is convex and ˇ-smooth in its first parameter, the gradient step is con-
tractive whenever � � 2=ˇ.

Let x; x0 2 Un be adjacent, and let t be the unique index in which they differ. For
dataset x, we can define the contractive noisy iteration by the initial point !0, the sequence
of functions gi .!/D…K.!/� �rf .…K.!/; xi / and sequence of noise distributions �i �

N .0; .��/2Id /. The CNI is defined analogously for dataset x0, but with g0
t .!/D…K.!/�

�rf .…K.!/; x
0
t /. By assumption, f .!; z/ is L-Lipschitz for every ! 2K and z 2U, and

therefore

sup
!

gt .!/ � g
0
t .!/


2
� 2�L: (6.18)

We choose a1; : : : ; at�1 D 0, that is, paying no divergence costs for the first t � 1
noise additions and obtaining no shift reductions, and at ; : : : ; an D

2�L
n�tC1

for the remaining
steps, and noting that the contractive map in the t th iteration increases the shift by s D
2�L, and there are no further increases because the datasets agree on the remaining steps. A
simple induction shows that at every step the shift parameter is nonnegative, while the shift
parameter at the end of step n is zn D 0, yielding a bound on divergence at the final step of

D˛

�
XnkX

0
n

�
�

˛

2�2�2

nX
iD1

a2
i �

2˛L2

�2 � .n � t C 1/
: (6.19)

This yields .˛; ˛2L2

�2.nC1�t/
/-Rényi differential privacy for the t th element. Observe that this

bound echoes our earlier discussion of the privacy protection for elements processed early,
that is, xi for small i , and elements processed later. The smaller t in this bound, the larger
the denominator, yielding smaller divergence, which captures the privacy loss.

Feldman et al. consider various methods of employing this basic mechanism, or
some simple variants, to remedy the reduced protections for xt when t is large. For example,
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suppose (for some reason) we have access to a modest sample ¹y1; : : : ; ymº of nonprivate
data drawn from the same distribution as the members of the dataset. Then one could run
the algorithm on the augmented dataset ¹x1; : : : ; xn; y1; : : : ; ymº, keeping the iterates secret
and only making public the final .nCm/th iterate.

6.3.1. Very large numbers of iterations
Suppose we wish to run a CNI process for more than T D n rounds. Theorem 6.3

above (see [24]) says thatD˛.PXT
kPX0

T
/ � ˛

2

PT
tD1

a2
t

�2
t
, which goes to infinity as T grows.

In very recent papers, two lines of work show this dependence on T can be avoided.
Breakthrough results of Chourasia, Ye, and Shokri (for the nonstochastic case) [10], followed
by Ye and Shokri [37] and Ryffel, Bach, and Pointcheval [34], use a diffusion argument to
prove that Projected Noisy Stochastic Gradient Descent has a privacy loss that converges
as T ! 1, provided the smooth loss functions are also strongly convex. The intuition is
that Projected Noisy-SGD is a discretization of a continuous-time algorithm with bounded
privacy loss; in particular, it can be viewed as the Stochastic Gradient Langevin Dynamics
algorithm, which is a discretization of a continuous-time Markov process whose stationary
distribution is equivalent to the differentially private exponential mechanism [29].

Using different techniques, Altschuler and Talwar [2] combine the privacy amplifi-
cation via iteration techniques discussed above with privacy amplification via subsampling
for the Gaussian mechanism to also obtain finite privacy loss as T goes to infinity; moreover,
they are able to remove the strong convexity assumption.

Theorem 6.4 (Informal statement from [2]). Let x D ¹x1; : : : ; xnº 2 Un, whether each xi

defines a convex L-Lipschitz, andM -smooth loss function f .�; xi / on a convex region K �

Rd of diameter D. For a large range of parameters, Projected Noisy-SGD, when run for T
iterations, satisfies .˛; "/-Rényi differential privacy for

" �
˛L2

n2�2
min

²
T;
Dn

L�

³
; (6.20)

and this bound is tight up to a constant factor.

The proof of privacy exploits the diameter on the constraint set, as follows. Noisy-
SGD updates on adjacent datasets will eventually diverge to maximally distant points. At
that time, which can be shown to be of order Dn

L�
, their shifted divergence will be zero! Thus,

the proof of privacy only needs to be concerned with the final T � NT iterations.
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