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Abstract

At least since the initial public proposal of public-key cryptography based on computa-
tional hardness conjectures (Diffie and Hellman, 1976), cryptographers have contemplated
the possibility of a “one-way compiler” that translates computer programs into “incom-
prehensible” but equivalent forms. And yet, the search for such a “one-way compiler”
remained elusive for decades. We examine a formalization of this concept with the notion
of indistinguishability obfuscation (iO). Roughly speaking, iO requires that the compiled
versions of any two equivalent programs (with the same size and running time) be indis-
tinguishable to any efficient adversary. Finally, we show how to construct iO in such a
way that we can prove the security of our iO scheme based on well-studied computational
hardness conjectures in cryptography.
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1. Introduction

Consider the polynomial f1.x; y/ 2 ZŒx; y� that is computed as follows:

f1.x; y/ D .x C y/16
� .x � y/16:

Alternatively, contemplate the polynomial f2.x; y/ 2 ZŒx; y� that is computed via:

f2.x; y/ D 32x15y C 1120x13y3
C 8736x11y5

C 22880x9y7

C 22880x7y9
C 8736x5y11

C 1120x3y13
C 32xy15:

A calculation shows that f1 and f2 are, in fact, the same polynomial, computed in
two different ways. Indeed, the expressions f1 and f2 above are special cases of arithmetic
circuits, which precisely represent “ways to compute a polynomial.”

What if we wanted to hide all implementation choices made when creating such
an arithmetic circuit for a particular polynomial? An easy way to do that would be to first
convert our polynomial into a canonical form, and then implement the canonical form as an
arithmetic circuit. Indeed, the description of f2 above can be seen as a canonical represen-
tation of the polynomial as a sum of monomials with regard to a natural monomial ordering.
However, as this example illustrates, canonical forms can be substantially more complex than
other implementations of the same polynomial. For polynomials in n variables, the loss in
efficiency can be exponential in n. This would often make computing the canonical form—or
indeed, even writing it down—infeasible.

A pseudocanonical form. Given that computing canonical forms can be infeasible, what
is there to do? Here, following [22], we draw an analogy to the notion of pseudorandom-
ness. When truly random values are not available, we can instead aim to produce values that
“look random” by means of a pseudorandom generator. That is, we require that no efficient
algorithm can distinguish between truly random values and the output of our pseudorandom
generator.

Now, for two arithmetic circuits g1 and g2 that compute the same underlying poly-
nomial, a true canonical form Canonical.g1/ would be identical to the canonical form of
Canonical.g2/. Instead, we would ask that a pseudocanonical form PseudoCanonical.g1/

would simply be indistinguishable from the pseudocanonical form PseudoCanonical.g2/, to
all efficient algorithms that were given g1 and g2 as well. Observe that unless there are actual
efficiently computable canonical forms for all arithmetic circuits—which we do not believe
to be true—it must be that such a PseudoCanonical operator is randomized, and outputs a
probability distribution over arithmetic circuits computing the same polynomial.

The computing lens. Let us now step back, and view the problem stated above through the
lens of computing. The classic theory of computation (see, e.g., [46]) tells us that general
computer programs can be converted into equivalent polynomials (albeit over finite fields,
which we will focus on implicitly in the sequel). So the pseudocanonicalization question
posed above is equivalent to the pseudocanonicalization question for general computer pro-
grams. Indeed, the question of hiding implementation details within a computer program
has a long history, dating at least as far back as the groundbreaking 1976 work of [50]
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introducing the concept of public-key cryptography. Historically, this problem has been
called “program obfuscation,” albeit it was typically discussed in an ill-defined form. Dis-
cussed in these vague terms, it was folklore that truly secure program obfuscation would
have revolutionary applications to computing, especially for securing intellectual property.
The work of [22] gave a formal treatment of this problem, and proved the impossibility of
strong forms of general-purpose program obfuscation. This work also formalized the pseudo-
canonicalization problem discussed above via the notion of indistinguishability obfuscation
(iO). Writing now in the language of Boolean circuits, we define the problem as follows:

Definition 1.1 (Indistinguishability obfuscator (iO) for circuits [22]). A probabilistic poly-
nomial-time algorithm iO is called a secure indistinguishability obfuscator for polynomial-
sized circuits if the following holds:

• (Completeness) For every � 2 N, every circuit C with input length n, and every
input x 2 ¹0; 1ºn, we have that

Pr
�
QC .x/ D C.x/ W QC  iO.1�; C /

�
D 1:

• (Indistinguishability) For every two ensembles ¹C0;�º�2ZC and ¹C1;�º�2ZC of
polynomial-sized circuits that have the same size, input length, and output length,
and are functionally equivalent, that is, 8� 2 ZC, C0;�.x/ D C1;�.x/ for every
input x, the distributions iO.1�; C0;�/ and iO.1�; C1;�/ are computationally
indistinguishable, that is, for every efficient polynomial-time algorithm D and
for every constant c > 0, there exists a constant �0 2 ZC such that, for all � > �0,
we have ˇ̌

Pr
�
D.iO.1�; C0;�/ D 1

�
� Pr

�
D.iO.1�; C1;�/ D 1

�ˇ̌
�

1

�c
:

As we discuss below in Section 1.2, indeed iO as a formalization of pseudo-
canonicalization lived up to the folklore promise of software obfuscation: there was, and
still is, a large research community studying novel applications of iO.

In contrast, demonstrating the feasibility of constructing iO proved far more chal-
lenging. Often one expects that theory will lag behind practice, and given the folklore
promise of software obfuscation, one might expect that over the years perhaps clever pro-
grammers had come up with heuristic approaches to software obfuscation that resisted attack.
The reality is the opposite. Indeed, in 2021 the third annual White Box Cryptography con-
test was held to evaluate heuristic methods for software obfuscation, and every one of the 97
submitted obfuscations was broken before the contest ended [44].

A large body of theoretical work, starting with the pioneering work of [55], has
attempted to construct iO using mathematical tools. However, prior to the result [68] by the
authors of this article, all previous mathematical approaches to constructing iO relied on
new, unproven mathematical assumptions, many of which turned out to be false. We survey
this work in Section 1.3 below.

We would like to build iO whose security rests upon cryptographic hardness
assumptions that have stood the test of the time, have a long history of study, and are widely
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believed to be true. The main result of our works [68,69] is the construction of an iO scheme
from three well-studied assumptions. We discuss this in more detail next.

Informal Theorem 1.1 ([68,69]). Under the following assumptions1:

• the Learning Parity with Noise (LPN) assumption over general prime fields Zp

with polynomially many LPN samples and error rate 1=kı , where k is the dimen-
sion of the LPN secret, and ı > 0 is any constant;

• the existence of a Boolean Pseudorandom Generator (PRG) in NC0 with stretch
n1C� , where n is the length of the PRG seed, and � > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime
order,

indistinguishability obfuscation for all polynomial-size circuits exists.

The three assumptions above (discussed further below in Section 1.1) are based
on computational problems with a long history of study, rooted in complexity, coding, and
number theory. Further, they were introduced for building basic cryptographic primitives
(such as public key encryption), and have been used for realizing a variety of cryptographic
goals that have nothing to do with iO.

1.1. Assumptions in more detail
We now describe each of the assumptions we need in more detail and briefly survey

their history.

The DLIN assumption. The Decisional Linear assumption (DLIN) is stated as follows: For an
appropriate �-bit prime p, two groups G and GT of order p are chosen such that there exists
an efficiently computable nontrivial symmetric bilinear map e W G �G! GT . A canonical
generator g for G is also computed. Following the tradition of cryptography, we describe the
groups above using multiplicative notation, even though they are cyclic. The DLIN assump-
tion requires that the following computational indistinguishability holds:®

.gx ; gy ; gxr ; gys; grCs/ j x; y; r; s  Zp

¯
�c

®
.gx ; gy ; gxr ; gys; gz/ j x; y; r; s; z  Zp

¯
:

This assumption was first introduced in the 2004 work of Boneh, Boyen, and
Shacham [31], and instantiated using appropriate elliptic curves. Since then DLIN and assump-
tions implied by DLIN have seen extensive use in a wide variety of applications throughout
cryptography, such as Identity-Based Encryption, Attribute-Based Encryption, Functional
Encryption for degree 2 polynomials, Noninteractive Zero Knowledge, etc. (see, e.g., [25,38,
62,89]).

1 For technical reasons, we need to hardness of these assumptions to be such that no
polynomial-time adversaries have beyond subexponentially small advantage in breaking
the hardness of the underlying problems.
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The existence of PRGs in NC0. The assumption of the existence of a Boolean Pseudorandom
Generator PRG in NC0 states that there exists a Boolean function G W ¹0;1ºn!¹0;1ºm where
m D n1C� for some constant � > 0, and where each output bit computed by G depends on
a constant number of input bits, such that the following computational indistinguishability
holds: ®

G.� / j �  ¹0; 1ºn
¯
�c

®
y j y  ¹0; 1ºm

¯
:

Pseudorandom generators are a fundamental primitive in their own right, and have
vast applications throughout cryptography. PRGs in NC0 are tightly connected to the funda-
mental topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were first
proposed for cryptographic use by Goldreich [49,61,65] 20 years ago. The complexity theory
and cryptography communities have jointly developed a rich body of literature on the crypt-
analysis and theory of constant-locality Boolean PRGs [10,12,13,16,17,30,45,48,49,61,73,86,87].

LPN over large fields. The Learning Parity with Noise LPN assumption over finite fields Zp

is a decoding problem. The standard LPN assumption with respect to subexponential-size
modulus p, dimension `, sample complexity n, and a noise rate r D 1=`ı for some ı 2 .0; 1/

states that the following computational indistinguishability holds:®
A; s �A C e mod p j A  Z`�n

p ; s Z1�`
p ; e  D1�n

r

¯
�c

®
A; u j A  Z`�n

p ; u Z1�n
p

¯
:

Above e Dr is a generalized Bernoulli distribution, i.e., e is sampled randomly from Zp

with probability 1=`ı and set to be 0 with probability 1 � 1=`ı . We consider polynomial
sample complexity n.`/, and the modulus p is an arbitrary subexponential function in `.

The origins of the LPN assumption date all the way back to the 1950s: the works
of Gilbert [60] and Varshamov [95] showed that random linear codes possessed remark-
ably strong minimum distance properties. However, since then, very little progress has been
made in efficiently decoding random linear codes under random errors. The LPN over fields
assumption above formalizes this, and was introduced over Z2 for cryptographic uses in
1994 [29], and formally defined for general finite fields and parameters in 2009 [66], under
the name “Assumption 2.”

While in [66] the assumption was used when the error rate was assumed to be a
constant, in fact, polynomially low error (in fact, ı D 1=2) has an even longer history in the
LPN literature: it was used by Alekhnovitch in 2003 [4] to construct public-key encryption
with the field Z2, and used to build public-key encryption over Zp in 2015 [11]. The exact
parameter settings that we describe above, with both general fields and inverse polynomial
error rate corresponding to an arbitrarily small constant ı > 0, were explicitly posed by [35],
in the context of building efficient secure two-party and multiparty protocols for arithmetic
computations.

Recently, the LPN assumption has led to a wide variety of applications (see, for
example, [11, 14, 35, 37, 52, 59, 66]). A comprehensive review of known attacks on LPN over
large fields, for the parameter settings we are interested in, was given in [35, 36]. For our
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parameter setting, the running time of all known attacks is �.2`1�ı
/, for any choice of the

constant ı 2 .0; 1/ and for any polynomial number of samples n.`/.

On search vs. decision versions of our assumptions. Except for the DLIN assumption, the
other two assumptions that we make can be based on search assumptions.

The LPN over Zp assumption we require is implied by the subexponential hardness
of its corresponding search versions [29,82,83,91]. As summarized in [94], there is a search-to-
decision reduction2 whose sample complexity is mD poly.dim.s/;m0; 1="/ (namely, polyno-
mial in the dimension dim.s/ of the secret, sample complexity m0 of the decision version, and
the inverse of the distinguishing gap ") and runtime poly.dim.s/;p;m/. In this work, we need
the pseudorandomness of (polynomially many) LPN samples to hold against polynomial-time
adversaries, with a subexponential distinguishing gap. We can further set the modulus p to
an arbitrarily small subexponential function3 in dim.s/. Decisional LPN with such parame-
ters are implied by the following subexponential search LPN assumption: There is a constant

 > 0 such that no subexponential-time 2dim.s/
 adversary, given a subexponential 2dim.s/


number of samples, can recover s with noticeable probability.
The works of [10,16] showed that the one-wayness of random local functions implies

the existence of PRGs in NC0. More precisely, for a length parameter m D m.n/, a locality
parameter d D O.1/, and a d -ary predicate Q W ¹0; 1ºd ! ¹0; 1º, a distribution FQ;m sam-
ples a d -local function fG;Q W ¹0;1ºd !¹0;1º by choosing a random d -uniform hypergraph
G with n nodes and m hyperedges, where each hyperedge is chosen uniformly and indepen-
dently at random. The i th output bit of fG;Q is computed by evaluating Q on the d input
bits indexed by nodes in the i th hyperedge. The one-wayness of FQ;m for proper choices of
Q; m has been conjectured and studied in [12, 45, 61, 86]. The works of [10, 16] showed how
to construct a family of PRG in NC0 with polynomial stretch based on the one-wayness of
FQ;m for any Q that is sensitive (i.e., some input bit i of Q has full influence) and any
m D n1Cı with ı > 0. The constructed PRGs have negligible distinguishing advantage and
the reduction incurs a multiplicative polynomial security loss. Therefore, the subexponential
pseudorandomness of PRG in NC0 that we need is implied by the existence of FQ;m that is
hard to invert with noticeable probability by adversaries of some subexponential size.

1.2. Applications of i O

The notion of iO occupies an intriguing and influential position in complexity
theory and cryptography. Interestingly, if NP � BPP, then iO exists for the class of all
polynomial-size circuits because if NP � BPP, then it is possible to efficiently compute a
canonical form for any function computable by a polynomial-size circuit. On the other hand,
if NP 6� io-BPP, then in fact the existence of iO for polynomial-size circuits implies that
one-way functions exist [71]. A large body of work has shown that iO plus one-way func-

2 Importantly, this reduction is oblivious to the distribution of the errors and hence applies to
both LWE and LPN.

3 In the construction, we set p D ‚.2�/ and dim.s/ to a large enough polynomial in �.
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tions imply a vast array of cryptographic objects, so much so that iO has been conjectured
to be a “central hub” [71,92] for cryptography.

An impressive list of fascinating new cryptographic objects are only known under
iO or related objects such as functional encryption and witness encryption. Hence, our con-
struction of iO from well-founded assumptions immediately implies these objects from the
same assumptions. Below, we highlight a small subset of these implications as corollaries.
In all the applications, by � we denote the security parameter.

Corollary 1.1 (Informal). Assuming the subexponential hardness of the three assumptions
in Theorem 1.1, we have:

• Multiparty noninteractive key exchange in the plain model (without trusted setup),
e.g., [33,70];

• Selectively sound and perfectly zero-knowledge Succinct Noninteractive ARGu-
ment (ZK-SNARG) for any NP language with statements up to a bounded poly-
nomial size in the CRS model, where the CRS size is poly.�/.nC m/, n; m are
upper bounds on the lengths of the statements and witnesses, and the proof size
is poly.�/ [92];

• (Symmetric or asymmetric) multilinear maps with bounded polynomial multilin-
ear degrees, following [3,53], and a self-bilinear map over composite and unknown
order group, assuming additionally the polynomial hardness of factoring [97];

• Witness Encryption (WE) for any NP language, following as a special case of iO

for polynomial size circuits;

• Secret sharing for any monotone function in NP [72];

• Fully homomorphic encryption scheme for unbounded-depth polynomial size cir-
cuits (without relying on circular security), assuming slightly superpolynomial
hardness of the assumptions above [41];

• Hardness of finding Nash equilibrium (more generally, for the class PPAD) [27].

1.3. Prior work on the feasibility of i O

There is a rich landscape of research on conjectured constructions of iO. Despite
being posed as a question at least 20 years ago [22,50], the first candidate mathematical con-
struction came only in 2013, through the work of [55]. This construction relied on a newly
constructed primitive called multilinear maps [54], which is a generalization of a bilinear
maps where one could do high degree computations in the exponents. Soon after, several
different candidates for multilinear maps were proposed [47, 57] and many other construc-
tions of iO were proposed. This propelled a huge body of constructions of iO relying on
multilinear maps and related ideas (e.g., [18,20,39,43,47,51,54,55,57,84,85,90].) Unfortunately,
all these works suffered from one of the three main problems:
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• Most constructions were heuristic in the sense that they were just conjectured to
be secure. There was no simple assumption on the multilinear maps on which you
could base security.

• Sometimes security was based on some new assumption, but it was a new assump-
tion proposed solely for proving that the construction was secure. Such assump-
tions lacked a long history of study.

• Most of the time, in the above both cases there were actually cycles of attacks and
fixes on the constructions and/or underlying assumptions (e.g., [19,21,42,43,63,81,
84,85]) which reduced our confidence further.

With this, the focus shifted to trying to minimize the degree of the multilinear
map needed, with the goal of eventually reaching degree 2. In a beautiful line of work
[9, 74, 75, 79, 80], it was shown that iO can be constructed just from succinct assumptions
on degree-3 multilinear maps. Unfortunately, the candidates for degree-3 multilinear maps
were the same as the candidates for high-degree multilinear maps and suffered from the same
class of attacks as before.

Soon after, a line of work [1,2,6,8,56,67,76] constructed iO relying on bilinear maps,
along with new kinds of pseudorandom generators. These assumptions were much simpler to
state than before. Even though earlier proposals for some of those pseudorandom generators
were attacked [19,21,81], exploring the limits of those attacks helped us design iO based on
new but simple-to-state assumptions [6,56,67] that resisted all known attacks. However, these
assumptions were newly stated and did not have a long history of study.

Therefore, building upon [6,8,56,67,76], these works culminated finally in our recent
works [68,69], which managed to construct iO from the three assumptions in Theorem 1.1.
This eliminated the need for making any new unstudied hardness assumptions. We now dis-
cuss some of the main open problems in the space of iO constructions.

1.4. Open problems
Our work places iO on firm foundations with respect to the assumptions it is based

on, thereby answering the main feasibility question for the primitive (until we resolve the
P vs. NP question). However, there are many important open questions that remain to be
answered:

• Concrete efficiency. Our work first builds the notion of functional encryption and
then boosts this object to iO via a complex transformation [5, 28]. As a result,
the final construction is quite complex. A highly important question that remains
open is the following one: Is it possible to construct iO either by fine-tuning our
approach, or otherwise (as in [23, 58]) in a way that the resulting scheme yields
concrete implementable efficiency? For this question, as a first step, it is even
interesting if the construction rests upon new assumptions as long as the assump-
tions are rigorously cryptanalyzed.
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• Postquantum iO. Our work relies on bilinear maps (in a somewhat crucial way).
As a result of that, our construction is broken in polynomial time using a quantum
computer. Therefore, an important and a natural question to ask here is if we can
build iO on any combination of well-studied postquantum assumptions such as
LWE; LPN, or PRG in NC0. This is indeed an active area of research.

• iO for quantum circuits.All known constructions of iO support only classical cir-
cuits. If quantum computers come one day, an interesting question is to construct
an iO scheme that can be used to actually obfuscate quantum circuits. There are
some results in restricted models [24, 40], but none of the known constructions
work to obfuscate general quantum programs.

• Understanding assumptions better.We are still in the early stages of understanding
the feasibility of iO. An immediate question that arises out of work is to identify
essential and nonessential assumptions out of the three assumptions, and if any
of the assumptions can be replaced by another. Identifying if there is any other
substantially different approach that also yields iO from well-studied assumptions
will also shed light on this question.

2. Technical overview: How to construct iO?

Below, we describe a very high-level overview of the main technical ideas imply-
ing iO. For simplicity of exposition, we choose the simplest path to iO that we are aware of.
This overview is based on a combination of ideas from [68] and [69]. However, for simplicity,
the route discussed below would require one additional assumption to the three stated above
(See Theorem 1.1)—namely, the Learning With Errors (LWE) [91] assumption. However,
we do not actually discuss the exact technical reasons for needing LWE, as this assumption
is actually unnecessary [69].

2.1. Preliminaries
Let us start with introducing some basic notation. Let size.X/ indicate the length of

the binary description of an object X (e.g., a string, a circuit, or truth table). Throughout, we
consider Boolean functions or circuits or algorithms mapping n-bit binary strings to m-bit
binary strings, for some n; m 2 ZC. Let time.A; x/ denote the running time of an algorithm
(or circuit) A on an input x (in the case of a circuit C , time.C; x/ is the same as size.C /).
We say that an algorithm or circuit is efficient if its running time is bounded by a (fixed)
polynomial in the length of the input, that is, time.C; x/D size.x/c for some positive integer
c 2 ZC. When we only care about the existence of a constant and the concrete value is not
important, we write O.1/ in place of that constant, e.g., time.C; x/D size.x/O.1/ (following
the big-O notation in complexity theory).

Our goal is designing an efficient randomized algorithm, called the obfuscator O,
that, given a Boolean circuit C W ¹0; 1ºn ! ¹0; 1º with size s � nO.1/, referred to as the
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original circuit, outputs another Boolean circuit OC W ¹0; 1ºn ! ¹0; 1º, called the obfuscated
circuit, such that the following three properties hold:

• (Correctness) The obfuscated circuit OC is functionally equivalent to the original
circuit C , denoted as OC � C , meaning that for every x 2 ¹0; 1ºn, OC .x/ D C.x/.
Correctness must hold no matter what random coins the obfuscator O uses.

• (Efficiency) The obfuscator is efficient, meaning O runs in time polynomial in the
size of the original circuit, namely, time.O; C / D size.C /O.1/.

• (Security) The obfuscated circuit OC hides the implementation details in the orig-
inal circuit C . This is formalized as follows: for every two equally-sized and
functionally-equivalent circuits C0 and C1 (i.e., size.C0/ D size.C1/ and
C0 � C1), the obfuscated circuits OC0 and OC1 are computationally hard to dis-
tinguish.

In the above by distinguish we mean having an algorithm D acting as a distinguisher and
which, given an obfuscated circuit OC generated from C0 or C1 chosen at random with equal
probability, tries to determine which of C0 and C1 is the original circuit. By computationally
hard we mean that no efficient distinguisher D can do much better than random guessing,
that is, the probability of guessing correctly is bounded by 1

2
C " for some very small ".

And we say that OC0 and OC1 are computationally indistinguishable, which intuitively implies
that they hide all implementation differences between C0 and C1 to computationally limited
adversaries. However, computationally unlimited adversaries may well be able to distinguish
them. We focus on computational security, since if iO with security against computationally
unlimited adversaries were to exist, this would imply a collapse of the polynomial hierar-
chy [34] in complexity theory, a collapse which is widely conjectured to be false.

Next, we give an informal overview of how to construct iO from well-studied
assumptions. In Section 2.2, we describe first how to reduce the task of constructing iO

that compiles general Boolean circuits to a much simpler task—building xiO (introduced
shortly) for specific simple circuits. In Section 2.3, we illustrate how this simplified task
connects with bilinear pairing groups. This overview paints the overall blueprint. In the
next section, Section 3.2, we will zoom into the key ideas that bridge the simpler task with
bilinear pairing groups. These ideas are the last jigsaw pieces that complete the construction
of iO, which appeared in our latest works [68,69].

2.2. Simplifying the task of i O

Perhaps the simplest starting point is the following: If there is no restriction on the
time the obfuscator O can take, then there is an extremely intuitive obfuscator: the obfuscated
circuit is the truth table of the original circuit. The truth table TTC of a Boolean circuit C is
an array indexed by inputs, where TTC Œx� D C.x/. It can be computed in time 2n � s if the
input length is n and circuit size is s. Perfect security comes from the fact that, for any two
functionally equivalent circuits C0 � C1, their truth tables are identical TTC0 D TTC1 and
hence impossible to distinguish.
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To put simply, a truth table is a canonical form of all circuits producing it. While
outputting the truth table satisfies the correctness and security requirement of iO, the obvious
flaw with this is that the obfuscator is far from efficient: The running time of an iO scheme
should be sO.1/, rather than 2n � s. The input length n of a Boolean circuit can be close to its
size s, and hence the time to compute a truth table is exponentially large! This inefficiency
is likely inherent, as efficient methods of finding canonical forms of circuits implies the
collapse of the polynomial hierarchy, which is widely conjectured to be false.

Therefore, to improve efficiency, we seek canonical forms that fool computationally
limited adversaries. Naturally, we start with a more humble goal:

Can we improve efficiency slightly to, say 2n.1�"/ � sO.1/ for some small " > 0?
What does iO with such nontrivial efficiency imply?

Simplification 1: obfuscation with nontrivial exponential efficiency. iO with nontriv-
ial efficiency was studied in [26,77, 78]. Surprisingly, their authors showed that very modest
improvement on efficiency—captured in the notion of exponential-efficiency iO, or xiO for
short—is actually enough to construct completely efficient (polynomial time) iO:

• xiO is an obfuscator O whose running time is still “trivial” .2n � s/O.1/, but out-
puts an obfuscated circuit OC of “nontrivial” size 2n.1�"/ � sO.1/ for some " > 0.4

We can think of xiO (as well as iO) as a special kind of encryption method,
where the obfuscated circuit OC is a “ciphertext” of the original circuit C , also denoted
as spCT.C / D OC , such that

• the ciphertext spCT.C / hides all information about C , except that it lets anyone
with access to it learn the truth table of C . This is unlike normal encryption that
reveals no information of the encrypted message.

• The size of the ciphertext spCT.C / is 2.1�"/�n for some 0 < " < 1. So it can be
viewed as a (slightly) compressed version of the truth table (that reveals no other
information of C to computationally limited adversaries).

Such a special encryption scheme is known as functional encryption [32,88,93], which con-
trols precisely which information of the encrypted message is revealed, and hides all other
information. This notion is tightly connected with xiO and iO, and, in fact, the implication
of xiO to iO goes via the notion of functional encryption [5,7,28].

When viewing spCT.C / as a compressed version of the truth table. It becomes clear
why even slight compression is powerful enough to imply iO: The idea is keeping com-
pressing iteratively until the size of the special ciphertext becomes polynomial. The works

4 We note that xiO should be distinguished from the Minimal Circuit Size Problem (MCSP)
in complexity theory, which asks to compute the circuit complexity of a function, given as a
truth table TT. In contrast, the obfuscator is given a small circuit C as input.
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of [5,28,77,78] turn this high-level idea into an actual proof that xiO implies iO5 and allows
us to focus on constructing xiO, or equivalently, the special encryption described above.

Simplification 2: it suffices to obfuscate simple circuits. Unfortunately, despite the effi-
ciency relaxation, it is still unclear how to obfuscate general Boolean circuits, which can be
complex. Naturally, we ask:

Can we obfuscate simple subclasses of circuits?
What does xiO for simple circuits imply?

It turns out that it suffices to focus on an extremely simple class of circuits C D NC0, where
NC0 is the set of all circuits with constant output locality, meaning every output bit depends
on a constant number of input bits. To do so, we will rely on two cryptographic tools, ran-
domized encodings and Pseudorandom Generators (PRGs).

Randomized encoding in NC0. A randomized encoding (RE) scheme consists of two effi-
cient algorithms .RE; Decode/. It gives a way to represent a complex circuit C.�/ by a much
simpler randomized circuit REC .�I �/ WD RE.C; �I �/ such that

• (Correctness) For every input x, the output �x of RE.C; xI r/ produced using
uniformly random coins r encodes the correct output; in other words, there exists
an efficient decoding algorithm Decode such that Decode.�/ D C.x/.

• (Security) �x reveals no information of C beyond the output of x to efficient
adversaries.

• (Simplicity) RE is a simple circuit by some measure of simplicity. Classic works
[15,64,98] showed that RE can be simply an NC0 circuit, when assuming the exis-
tence of PRGs in NC0 like we are.

The correctness and security of the randomized encoding suggests that, instead of directly
obfuscating a general circuit C , we can alternatively obfuscate a circuit D that on input x

outputs an encoding �x , which reveals only C.x/. The potential benefit is that D depending
on RE and C should be simply an NC0 circuit. Hence, it would suffice to construct xiO for
simple NC0 circuits!

To make the above idea go through, there are, however, a few wrinkles to be ironed
out. The issue is that the security of randomized encoding only holds if an encoding �x is
generated using fresh random coins. There are concrete attacks that learn information of C

beyond the outputs, when �x is generated using nonuniform random coins, or when two
encoding �x and �x0 are generated using correlated random coins. If the truth table of the

5 This implication, however, comes with a quantitative weakening in the security. To obtain
iO that is secure against adversaries that run in time polynomial in the input length, the
original xiO needs to be secure against adversaries that run in time subexponential 2n" for
some " 2 .0; 1/ in its input length n.
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circuit D contains an encoding �x for every input x (i.e., TTDŒx� D �x) the random coins
for generating these encoding must be embedded in D, that is,

D D DC;RE;r1;r2;:::;r2n such thatD.x/ D RE.C; xI rx/:

Such a circuit D has size at least 2n. In particular, we cannot hope to “compress” the random
coins r1; r2; : : : ; r2n into 2n.1�"/ space, which is the target size of the obfuscated circuit. To
resolve this problem, we will use a Pseudorandom Generator.

Pseudorandom generator in NC0. A pseudorandom generator is a Boolean function
PRG W ¹0; 1ºn ! ¹0; 1ºm that takes as input a uniformly random string sd 2 ¹0; 1ºn, called
a seed, and produces a polynomially longer output r 2 ¹0; 1ºm, where m D n1C� for some
constant � > 0, such that r is indistinguishable from a uniformly random m-bit string to
computationally limited adversaries. Pseudorandom generators are among the most basic
cryptographic primitives and have been extensively studied. Among these studies is a beau-
tiful line of works, initiated by [61], investigating pseudorandom generators in NC0, for which
there are several candidates, including those proposed in [17,86,87].

Equipped with a pseudorandom generator in NC0, we can now replace uniformly
random coins r1; r2; : : : ; r2n with pseudorandom coins expanded from a much shorter seed
sd of length roughly 2n=.1C�/ D 2n.1�"0/ for some "0 2 .0; 1/.6 This gives a variant of the
circuit D above:

D0 D D0C;RE;PRG;sd such that D0.x/ D RE
�
C; xI

�
rx D PRGx.sd/

��
;

where PRG.sd/ expands to output r1; : : : ; r2n and rx D PRGx.sd/ is the xth chunk of the
output. Thanks to the fact that both PRG and RE are in NC0, so is D0.

Moving forward, it suffices to devise a way to encrypt spCT.C; sd/, from which we
can expand out the truth table of D0, while hiding all other information of C and sd :

C; sd
GRE;PRG
�����! TTD0 ; spCT.C; sd/

Expand
����! TTD0 :

Note that the special encryption only needs to hide .C; sd/ instead of the entire description
of circuit D0 since RE and PRG are public algorithms.

2.3. Special encryption for NC0 mappings
In our works [68,69], we constructed the needed special encryption for general NC0

mappings G W ¹0; 1ºl ! ¹0; 1ºm, where ciphertext spCT.X/ reveals the output of G on X

while hiding all other information of X , such that size.spCT.X//� size.X/Cm1�ı for some
ı > 0. In this overview, we describe half of the ideas behind our construction, which connects
the special encryption with bilinear pairing groups and a new object called structured-seed
pseudorandom generator. The other half of ideas is explained in Section 3.2, captured by the
construction of structured-seed pseudorandom generator.

6 More precisely, the length of sd is .2nsO.1//1=.1C�/ since each rx is an sO.1/-bit string
instead of a single bit. However, the dominant term is 2n=.1C�/ as s is only polynomial in n.
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Connection with bilinear pairing groups. As a starting point, suppose that the function
G is really simple—simple enough so that it can be computed by a degree-2 polynomial
mapping Q W Zl

p ! Zm
p over the finite field Zp for some prime modulus p. Namely,

8X 2 ¹0; 1ºl ; G.X/ D Q.X/;

where Qi .X/ D

�X
j;k

j̨;kXj �Xk C

X
k

ˇkXk C 


�
mod p:

Then, the special encryption can be implemented using bilinear pairing groups as shown
in [9,75].

Bilinear pairing groups. At a high-level, pairing groups allow for computing quadratic
polynomials over secret encoded values and reveal only whether the output is zero or not.
More specifically, they consist of cyclic groups G1, G2, and GT with generators g1, g2,
and gT , respectively, and all of order p; G1 and G2 are referred to as the source groups and
GT as the target group. (In some instantiations, the two source groups are the same group,
which is called symmetric pairing groups.) They support the following operations:

• (Encode) For every group Gi , one can compute gx
i for x 2Zp . The group element

gx
i is viewed as an encoding of x in the group Gi .

• (Group Operation) In each group Gi , one can perform the group operation to get
g

x1

i ı g
x2

i D g
x1Cx2

i , corresponding to “homomorphic” addition modulo p in the
exponent. Following the tradition of cryptography, we write the group operation
multiplicatively.

• (Bilinear Pairing) Given two source group elements gx1 and g
x2

2 , one can effi-
ciently compute a target group element g

x1�x2

T , using the so-called pairing oper-
ation e.g

x1
1 ; g

x2
2 / D g

x1�x2

T . This corresponds to “homomorphic” multiplication
modulo p in the exponent. However, after multiplication, we obtain an element in
the target group which cannot be paired anymore.

• (Zero Testing) Given a group element gx
i , one can always tell if the encoded value

is x D 0, by comparing the group element with the identity in Gi . Similarly, one
can do equality testing to see if gx

i D gc
i for any c.

Combining above abilities gives a “rudimentary” special encryption scheme that supports
evaluation of degree-2 polynomials. A ciphertext of X 2 Zl

p includes encodings of every
element Xl in both source groups, ..g

X1
1 ; : : : g

Xl
1 /; .g

X1
2 ; : : : g

Xl
2 //. Given these, one can

“homomorphically” compute a quadratic mapping Q to obtain an encoding of the output
y DQ.X/ in the target group .g

y1

T ; : : : ; g
ym

T / (without knowing the encoded input X at all);
finally, if the output y happens to be a bit string, one can learn y in the clear via zero-testing.
In summary,�

.g
X1

1 ; : : : g
Xl

1 /; .g
X1

2 ; : : : g
Xl

2 /
� Expand
����! Q.x/; if Q.x/ 2 ¹0; 1ºm:
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This fulfills the correctness of the special encryption. What about security? The ciphertext
must hide all information about X beyond what is revealed by Q.x/, for which we resort
to the security of pairing groups. For simplicity of this overview, let us gain some security
intuition by assuming the strongest hardness assumptions pertaining to the pairing groups,
known as the generic group model. Think of encoding as black boxes and the only way of
extracting information (of the encoded values) is by performing (a combination of) the above
four operations. In this model, given gx for a secret and random x 2Zp , no efficient adversary
can learn x. Extending further, if X were random (in Zp) subject to Q.X/ D y, then the
encoding would reveal only y and hide all other information of X . The only issue is that X

in our example is not random—it is binary. Nevertheless, the works of [9,75] designed clever
ways of randomizing an arbitrary input X , to a random input NX subject to the only condition
that an appropriate quadratic mapping NQ reveals the right output NQ. NX/DQ.X/. Therefore,
security is attained. We refer the reader to [9, 75] for details about how such randomization
works; in fact, it is possible to rely on much weaker assumption than the generic group
model [75,96].

Challenges beyond degree 2. Unfortunately, the mapping GRE;PRG we care about can only
be computed by polynomials of degree much larger than 2. It is known that a Boolean func-
tion with output locality l can be computed by a multilinear degree l polynomial over Zp .
However, the locality of Boolean PRG we need is at least 5 [86] and known randomized
encodings have locality at least 4 [15].

Key idea: the preprocessing model. To overcome this challenge, our first idea is using
preprocessing of inputs to help reduce the degree of computation. Instead of directly com-
puting G.X/ in one shot, we separate it into two steps: First, the input is preprocessed
X 0 D pre.X I r/ in a randomized way using fresh random coins r , then the output is com-
puted from the preprocessed input yDQ.X 0/. The idea is that the preprocessing can perform
complex transformations on the input in order to help the computation later. The only con-
straint is that the preprocessing should not increase the size of its input too much, that is,
size.X 0/� size.X/Cm1�ı , for some ı > 0. As such, it suffices to encrypt the preprocessed
input spCT.X 0/, from which one can recover the desired output y D G.X/, by evaluating a
(hopefully) simpler function Q. Unfortunately, because of the restriction on the size of X 0,
it is unclear how preprocessing alone can help.

Our second idea is to further relax the preprocessing model to allow the prepro-
cessed input to contain a public part and a secret part X 0 D .P; S/. Importantly, the public
part P should reveal no information about X to computationally limited adversaries. (In
contrast, P and S together reveal X completely.) Moreover, we allow the second stage com-
putation Q.P; S/ to have arbitrary constant degree in P and only restrict its degree on S

to 2, that is,

Qi .P; S/ D

�X
j;k

j̨;k.P / � Sj � Sk C

X
k

ˇk.P / � Sk C 
.P /

�
mod p;

where j̨;k ; ˇk ; 
 are constant-degree polynomials.
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It turns out that the techniques alluded to above for special encryption for degree 2 computa-
tions can be extended (see [6,56,67,96]), so that given ciphertext spCT.S/ and P in the clear,
one can homomorphically compute Q and thereby learn the output G.X/.

In [68,69], we show how to compute any NC0 Boolean function G in such a prepro-
cessing model, assuming the Learning Parity with Noises assumption over general fields,
which completes the puzzle of iO. When applied to specific cryptographic tools, our tech-
niques give interesting new objects. For instance, it converts any PRG in NC0 into what we
call structured-seed PRG. Given a preprocessed seed .P; S/ D PRG.sd I r 0/, the structured-
seed PRG expands out a polynomially longer output r D sPRG.P;S/, where the computation
has only degree-2 in the private seed S , and the output r is pseudorandom given the public
seed P . In the next section, we describe how to do preprocessing in the context of construct-
ing structured-seed PRG. The same ideas can be extended to handle general NC0 functions.

3. Structured seed PRG

In this section we define and construct our main object, namely a structured seed
PRG (sPRG). But before we do that, we introduce a few preliminaries. For any distribution X,
we denote by x  X the process of sampling a value x from the distribution X. Similarly,
for a set X , we denote by x  X the process of sampling x from the uniform distribution
over X . For an integer n 2 N; we denote by Œn� the set ¹1; : : : ; nº. A function negl W N ! R

is said to be a negligible function if for every constant c > 0 there exists an integer Nc such
that negl.�/ < ��c for all � > Nc .

Throughout, when we refer to polynomials in the security parameter, we mean
constant degree polynomials that take positive value on nonnegative inputs. We denote by
poly.�/ an arbitrary polynomial in � satisfying the above requirements of nonnegativity.
We denote vectors by bold letters such as b and u. Matrices will be denoted by capital-
ized bold letters for such as A and M . For any k 2 N, we denote by the tensor product
v˝k D v˝ � � � ˝ v„ ƒ‚ …

k

to be the standard tensor product, but converted back into a vector. This

vector contains all the monomials in the variables inside v of degree exactly k.
For any two polynomials a.�; n/; b.�; n/ W N �N ! R�0, we say that a is poly-

nomially smaller than b, denoted as a� b, if there exist an " 2 .0; 1/ and a constant c > 0

such that a < b1�" � �c for all large enough n; � 2 N. The intuition behind this definition is
to think of n as being a sufficiently large polynomial in �.

Multilinear representation of polynomials and representation over Zp. A straightfor-
ward fact from analysis of Boolean functions is that every NC0 function F W ¹0; 1ºn! ¹0; 1º

can be represented by a unique constant degree multilinear polynomial f 2 ZŒx1; : : : ; xn�

that agrees with F over ¹0;1ºn. At times, we will also interpret f .x/ as a polynomial over Zp

for some prime p. This is done by actually reducing coefficients of f modulo p, and then
evaluating the same multilinear polynomial over Zp . Observe that for every x 2 ¹0; 1ºn,
f .x/ D f .x/ mod p, as the for every x 2 ¹0; 1ºn, f .x/ 2 ¹0; 1º. Furthermore, given any
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NC0 function F , finding these representations over Z, as well as Zp , takes polynomial time.
We now describe the notion of computational indistinguishability.

Definition 3.1 ("-indistinguishability). We say that two ensembles X D ¹X�º�2N and
Y D ¹Y�º�2N are "-indistinguishable where " W N! Œ0; 1� if for every nonnegative polyno-
mial poly.�/ and any adversary A running in time bounded by poly.�/ it holds that, for every
sufficiently large � 2 N,ˇ̌

Pr
x X�

�
A.1�; x/ D 1

�
� Pr

y Y�

�
A.1�; y/ D 1

�ˇ̌
� ".�/:

We say that two ensembles are indistinguishable if they are "-indistinguishable
for some " that is a negligible function, and subexponentially indistinguishable if they are
"-indistinguishable for ".�/ D 2��c for some positive constant c.

We now formally define our LPN assumption [11,29,35,66].

Definition 3.2 (ı-LPN assumption, [11, 29, 35, 66]). Let ı 2 .0; 1/. We say that the ı-LPN
assumption is true if the following holds: For any constant �p > 0, any function p W N ! N

such that, for every ` 2N, p.`/ is a prime of `�p bits, any constant �n > 0, we set p D p.`/,
n D n.`/ D `�n , and r D r.`/ D `�ı , and we require that the following two distributions
are computationally indistinguishable:®

.A; b D s �A C e/ j A  Z`�n
p ; s Z1�`

p ; e  D1�n
r .p/

¯
`2N

;®
.A; u/ j A  Z`�n

p ; u Z1�n
p

¯
`2N

:

In addition, we say that subexponential ı-LPN holds if the two distributions above are subex-
ponentially indistinguishable.

We now define the notion of an sPRG.

3.1. Definition of structured-seed PRG
Definition 3.3 (Syntax of structured-seed pseudorandom generators (sPRG)). Let � > 1.
A structured-seed Boolean PRG (sPRG) with polynomial stretch � is defined by the following
PPT algorithms:

• IdSamp.1n; p/ takes as input the input length parameter n and a prime p. It sam-
ples a function index I .

• SdSamp.I / jointly samples two strings, a public seed and a private seed,
sd D .P; S/, which are both vectors of dimension `sd D O.n/ over Zp .

• Eval.I; sd/ computes a string in ¹0; 1ºm. Here m D n� .

Looking ahead, the prime p, that we choose, is set to the order of the bilinear group
which has a bit length of n‚.1/.

Definition 3.4 (Security of sPRG). A structured-seed Boolean PRG, sPRG, satisfies the
security requirement if, for any constant � > 0, any function p W N ! Z that takes as input
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a number k 2N and outputs a k� bit prime p.k/, any n 2N, with probability 1� o.1/ over
IdSamp.1n; p D p.n//! I , it holds that the following distributions are ".n/ indistinguish-
able: ®

I; P; Eval.I; P; S/ j I  IdSamp.1n; p/; sd  SdSamp.I /
¯
;®

I; P; r j I  IdSamp.1n; p/; sd  SdSamp.I /; r  ¹0; 1ºm.n/
¯
;

where ".n/ is a negligible function. Further, we say that sPRG is subexponentially secure if
".n/ D 2�n�.1/ .

Definition 3.5 (Complexity and degree of sPRG). Let � > 0, d1; d2 2 N be any constants,
and p WN!Z be any function that maps an integer k into a k� bit prime p.k/. An sPRG has
degree d1 in public seed P and degree d2 in S over Zp , denoted as sPRG 2 .degd1;degd2/,
if for every I in the support of IdSamp.1n; p D p.n//, there exist efficiently generatable
polynomials gI;1; : : : ; gI;m over Zp such that:

• Eval.I; .P; S// D .gI;1.P; S/; : : : ; gI;m.P; S//, and

• the maximum degree of each gI;j over P is d1, while the maximum degree of
gI;j over S is d2.

We remark that the above definition generalizes the standard notion of families of
PRGs in two aspects: (1) the seed consists of a public and a private parts, jointly sampled and
arbitrarily correlated, and (2) the seed may not be uniform. Therefore, we obtain the standard
notion as a special case.

Definition 3.6 (Pseudorandom generators, degree, and locality). A (uniform-seed) Boolean
PRG (PRG) is an sPRG with a seed sampling algorithm SdSamp.I / that outputs a public seed
P that is an empty string and a uniformly random private seed S  ¹0; 1ºn. Let d; c 2 N.
The PRG has multilinear degree d if, for every n 2 N and I in the support of IdSamp.1n/,
we have that Eval.I; sd/ can be written as an m.n/-tuple of degree-d polynomials over Z

in S . It has constant locality c if, for every n 2 N and I in the support of IdSamp.1n/, every
output bit of Eval.I; sd/ depends on at most c bits of S .

In what follows next we will construct an sPRG from the LPN assumption and the
existence of PRG in NC0. For the ease of exposition, we will actually use Goldreich’s PRG
candidate [61] which is the most well-known conjectured PRG in NC0.

Definition 3.7 (Goldreich’s PRG). A Goldreich PRG of locality c mapping n bits to m bits
is described using a predicate f W ¹0; 1ºc ! ¹0; 1º and a hypergraph H D ¹Q1; : : : ; Qmº

where each Qi is a randomly chosen ordered subset of Œn� of size c. The index I consists
of f and H . Further, on input x 2 ¹0; 1ºn, PRG:Eval.I; x/ D y , where y D .y1; : : : ; ym/.
Here each yi D f .xi1 ; : : : xic / where Qi D .i1; : : : ; ic/.

Remark 3.1. In a Goldreich’s PRG, when the hypergraph is randomly chosen, with probabil-
ity 1

nO.1/ it fails to be an expander. With probability 1� o.1/, the hypergraph has appropriate
expansion properties. Under such conditions, the security of Goldreich PRGs has been very
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well studied [10, 12, 13, 16, 17, 30, 45, 48, 49, 61, 73, 86, 87] and is widely believed to hold. This
is the precise reason in the security definition, we require pseudorandomness to hold with
probability 1 � o.1/ over the choice of I .

3.2. Construction of structured-seed PRG
Now we show how to construct our sPRG. We prove:

Theorem 3.1. Let d 2N, ı 2 .0; 1/, and � > 1 be constants. Then, assuming the following:

• the security of locality d Goldreich’s PRG with stretch � , and

• the ı-LPN-assumption,

there exists an sPRG with polynomial stretch in .deg d; deg 2/. Additionally, if both assump-
tions are subexponentially secure, then so is the sPRG.

We first give an overview and then dive into the construction.

Technical overview. We start with a Goldreich PRG PRG D .IdSamp; Eval/ with stretch � .
Such a PRG is associated with a d -local predicate f W ¹0; 1ºd ! ¹0; 1º. Recall now

how the index sampling IdSamp works. The IdSamp algorithm on input n outputs a random
hypergraph H .

We start by observing that on any input � 2 ¹0; 1ºn, y D PRG:Eval.I; � / can be
computed by degree d multilinear polynomials over Z as f is a d local predicate. Our high-
level strategy is to somehow “preprocess” � into two vectors .P; S/ of small dimension
(preferably O.n/, but anything sublinear in m works) such that y 2 ¹0; 1ºm can be computed
in .deg d; deg 2/. Thereby this will have an effect of transferring complexity of computation
to the public input. To achieve this, we preprocess � into appropriate public and private seeds
.P; S/ and leverage the LPN assumption over Zp (which is the input to sPRG:IdSamp) to
show that the seed is hidden.

Our first idea towards this is that we can “encrypt” the seed � using LPN samples
over Zp as follows:

Sample: A  Z`�n
p ; s Z1�`

p ; e  D1�n
r .p/;

Add to the function index I 0: A;

Add to public seed P : b D sA C e C � ;

where ` is set to be the dimension for the LPN samples. It is set so that `d
d
2 e D n; Dr .p/

is a distribution that samples randomly from p with probability r , and 0 otherwise. Finally,
r D `�ı .

It follows directly from LPN assumption that .A; b/ is pseudorandom and hides � .
Furthermore, due to the sparsity of LPN noises, the vector � C e differs from � only at an
`�ı fraction of components—thus it is a sparsely erroneous version of the seed. For i 2 Œm�,
let fi .� / be the locality d , degree d polynomial over Z such that yi D fi .� /. Then, for
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i 2 Œm�, consider the following polynomial:

hi .b; s˝d
d
2 e/ D fi .b � sA/; s D sjj1:

Above we first interpret fi over Z into the field Zp by simply reducing coefficients mod p,
and then compute as given. Observe that fi is a degree d polynomial in b and s, therefore its
degree over b is d and over s˝d

d
2 e is two. Thus hi is a .deg d; deg 2/ polynomial. Observe

that hi .b; s˝d
d
2 e/ D fi .� C e/. The main point of this is that if we set the polynomial map

G.1/ D .G
.1/
1 ; : : : ;G

.1/
m / by letting each G

.1/
i D hi , and set the private seed S D s˝d

d
2 e, then

G.1/.P; S/ D PRG:EvalI .� C e/:

The reason G.1/ is interesting is because e is sparse. With probability 1 � 2�n�.1/ , it is
nonzero at O.n`�ı/ locations. As a consequence, for any given i 2 Œm�, fi .� / D

fi .� C e/ with all but O.`�ı/ probability as fi is a d local function depending on d

randomly chosen inputs. Since in the hypergraph H of the Goldreich PRG, each set Qi is
chosen independently, every output is independently error prone with probability O.`�ı/.
Because of this, due to Chernoff style concentration bounds, out of m outputs, with proba-
bility 1 � 2�n�.1/ , all but T D O.m`�ı/ outputs are error prone.

This gives us as a nice candidate for sPRG that satisfies almost all properties! The
dimension of S and P is O.n/ which is sublinear in m, and it can be computed by a degree
.deg d; deg 2/ polynomial G.1/. We would be done if we could somehow force the output
to be correct on all the m coordinates. For the rest of the overview, we refer to the indices
i 2 Œm� such that fi .� / ¤ fi .� C e/ as bad indices/outputs.

To correct errors, we further modify the polynomial and include more preprocessed
information in the private seeds. We describe a sequence of ideas that lead to the final correc-
tion method, starting with two wrong ideas that illustrate the difficulties we will overcome:

• The first wrong idea is correcting by adding the difference CorrD y � y 0 between
the correct and erroneous outputs, y D EvalI .� / and y 0 D EvalI .� C e/; we
refer to Corr as the correction vector. To obtain the correct output, evaluation can
compute the polynomial map G.1/.b; .s˝d

d
2 e//C Corr. The problem is that Corr

must be included in the seed, but it is as long as the output and would destroy
expansion. Thus, we have to make use of the fact that Corr is sparse.

• To fix expansion, the second wrong idea is adding correction only for bad outputs,
so that the seed only stores nonzero entries in Corr. Recall that Corr is sparse with
at most T nonzero elements. More precisely, the j th output can be computed as
G

.1/
j .b; .s˝d

d
2 e//C Corrj if output j is bad and without adding Corrj otherwise.

This fixes expansion, but now the evaluation polynomial depends on the location
of bad outputs. If these locations are included in public information, this would
leak information of the location of LPN noises, and jeopardize security. If, on the
other hand, the locations are included in the private seed, then it is unclear how
to maintain the requirement that the polynomial map computes only a degree-two
polynomial in the private seed.
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These two wrong ideas illustrate the tension between the expansion and security of
our sPRG. Our construction takes care of both, by compressing the correction vector Corr to
be polynomially shorter than the output and stored in the seed, and expanding it back during
evaluation in a way that is oblivious of the location of bad output bits. This is possible thanks
to the sparsity of the correction vector and the allowed degree-two computation on the private
seed. We first illustrate our idea with the help of a simple case.

Simple case 1: much fewer than
p

m bad outputs. Suppose hypothetically that the number
of bad outputs is bounded by z which is much smaller than

p
m. Thus, if we convert Corr

into a
p

m �
p

m matrix,7 it has low rank z. We can then factorize Corr into two matrixes U
and V of dimensions

p
m� z and z �

p
m, respectively, such that CorrD UV, and compute

the correct output as follows:

8j 2 Œm�; G
.2/
j

�
b;

�
s˝d

d
2 e; U; V

��
D G

.1/
j

�
b;

�
s˝d

d
2 e

��
C .UV/kj ;lj ;

where .kj ; lj / is the corresponding index of the output bit j in the
p

m�
p

m matrix. When
z�
p

m, the matrices U; V have 2z
p

m field elements, which is polynomially smaller than
m D n� . As such, G.2/ is expanding. Moreover, observe that G.2/ has only degree 2 in the
private seed and is completely oblivious of where the bad outputs are.

While the idea above works for fewer than
p

m bad outputs, it does not work for the
case we are dealing with. We have T D ‚.m`�ı/ bad outputs. Nevertheless, we show that
a similar idea works for this case.

T bad outputs. The above method, however, cannot handle more than
p

m bad outputs,
whereas the actual number of bad outputs can be up to T D�.m=`ı/, much larger than

p
m

since ı is an arbitrarily small constant. Consider another hypothetical case where the bad
outputs are evenly spread in the following sense: suppose that if we divide the matrix Corr
into m=`ı blocks, each of dimension `ı=2 � `ı=2, there are at most `� bad outputs in each
block where � > 0 is a really small constant (say ı=10). In this case, we can “compress”
each block of Corr separately using the idea from case 1. More specifically, for every block
i 2 Œm=`ı �, we factor it into Ui Vi , with dimensions `ı=2 � `� and `� � `ı=2, respectively,
and correct bad outputs as follows:

8j 2 Œm�; G
.2/
j

�
b;

�
s˝d

d
2 e; .Ui ; Vi /i2Œ m

`ı
�

��
D G

.1/
j

�
b;

�
s˝d

d
2 e

��
C .Uij Vij /kj ;lj ;

where ij is the block that output j belongs to, and .kj ; lj / 2 Œ`ı=2�� Œ`ı=2� is its index within
this block. We observe that G.2/ is expanding, since each matrix Ui or Vi has `ı=2C� field
elements, and the total number of elements is `ı=2C� �

m

`ı , which is polynomially smaller than
m as long as ı is positive and m is polynomially related to `. Moreover, G.2/ is oblivious of
the location of bad outputs just as in case 1.

This completely solves our problem except that we need to ensure that the bad out-
puts are well spread out in the manner described above. Our main observation here is that this

7 Any injective mapping from a vector to a matrix that is efficient to compute and invert will
do.
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is ensured due to the fact that in a Goldreich’s PRG candidate the input dependence hyper-
graph Q1; : : : ; Qm is randomly chosen. Therefore, once we fix the location of the nonzero
errors locations inside e (where with high probability O.n`�ı/ locations are nonzero), in
every block of `ı output bits, each entry j is independently nonzero with probability O.`�ı/.
Thus, in expectation each block has a constant number of bad output bits. More so, due to the
Chernoff bound, it can be seen that with probability 1� 2�`�.1/ , each has at most `� nonzero
elements. Thus, our construction can be summarized as follows:

Step 1: Assign outputs. We partition the outputs into B buckets, via a mapping
�bkt W Œm�! ŒB�. The number of buckets is set to B Dm=`ı and the number
of elements in each bucket is set to be `ı so that they exactly form partition
of m. The mapping �bkt simply divides m by B , and outputs the remainder.
Since the error e is chosen to be from the LPN error distribution and the
hypergraph H of the PRG is randomly chosen, by a Chernoff-style argu-
ment, we can show that in each bucket out of `ı output bits, at most t of
them are bad, except with probability 1 � 2�t�.1/ . We will set t D `� for a
tiny constant � > 0.

Step 2: Compress the buckets. Next, we organize each bucket i into a matrix Mi

of dimension `ı=2 � `ı=2 and then compute its factorization Mi D Ui Vi ,
where Ui ; Vi are matrices of dimensions `ı=2 � t and t � `ı=2, respectively.
To form matrix Mi , we use another mapping �ind W Œm�! Œ`ı=2� � Œ`ı=2� to
assign each output bit j to an index .kj ; lj / in the matrix of the bucket ij it
is assigned to. This assignment must guarantee that no two output bits in the
same bucket (assigned according to �bkt) have the same index. One such way
to compute �ind.j / is to divide j 2 Œm� by B . The remainder is set as �bkt.j /,
and the quotient is divided further by `ı=2. The quotient and the remainder
from this division are set as the resulting indices .kj ; lj /. Once we have this,
.Mi /k;l is set to Corrj if there is j such that �bkt.j /D i and �ind.j /D .k; l/.
Since every matrix Mi has at most t nonzero entries, we can factor them and
compute the correct output as:

8j 2 Œm�; G
.2/
j

�
b;

�
s˝d

d
2 e; .Ui ; Vi /i2ŒB�

�„ ƒ‚ …
S

�
D G

.1/
j

�
b;

�
s˝d

d
2 e

��
C .U�bkt.j / � V�bkt.j //�ind.j /;

G.2/ is expanding because the number of field elements in Ui ’s and Vi ’s
are much smaller than m, namely 2t`ı=2B D O.m`�ı=2C�/� m. We set
I 0 D .I; A; �bkt; �ind/.

Step 3: Zeroize if uneven buckets. Finally, to deal with the low probability event
that some bucket contains more than t bad outputs, we introduce a new vari-
able called a flag. If this occurs, our sPRG sets P and S as all-zero vectors.
In this case the evaluation always outputs 0. This gives us our candidate
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sPRG. For security, observe that the polynomial map G.2/ is independent
of the location of LPN noises. With probability 1 � 2�n�.1/ , the evaluation
results in output y . Therefore, by the LPN over Zp assumption, the seed �

of PRG is hidden and the security of PRG ensures that the output is pseudo-
random when it is not all zero (which occurs with a subexponentially small
probability). We now proceed to the formal construction and proof.

Construction. We now formally describe our scheme. Assume the premise of the theorem.
Let .IdSamp; Eval/ be the function index sampling algorithm and evaluation algorithm for
the Goldreich PRG. Recall that its seed consists of only a private seed sampled uniformly at
random.

We first introduce and recall some notation. The construction is parameterized by

• the input length n and output length m D n� of the Goldreich PRG (PRG),

• the stretch � > 1 and degree/locality d of the Goldreich PRG,

• the LPN secret dimension ` D n1=dd=2e and the error probability r D `�ı ,

• a slack parameter t D `� used for bounding the number of bad outputs in each
bucket,

• a parameter B D m=`ı that indicates the number of buckets used, and

• a parameter c D `ı that indicates the capacity of each bucket; it is set so that
c � B D m,

• a parameter �, which is the dimension of each bucket; we set � D
p

c,

• assignment function �bkt W Œm�! ŒB� that is computed by dividing input j by B

and returning its remainder,

• assignment function �ind W Œm�! Œ�� that is computed by dividing input j 2 Œm�

by B and dividing further the quotient with �, and returning the quotient and the
remainder of this division.

I 0  IdSamp0.1n0 ; p/: Generate the public index as follows:

• Sample I  PRG:IdSamp.1n/ and A  Z`�n
p .

• Output I 0 D .I; � D .�bkt; �ind/; A/.

(Note that the PRG seed length n below is an efficiently computable polynomial
in n0, and can be inferred from the next seed sampling algorithm. See Claim 3.1
for the exact relationship between n and n0.)

sd  SdSamp0.I 0/: Generate the seed as follows:

• Sample a PRG seed �  ¹0; 1ºn.
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• Prepare samples of LPN over Zp: Sample s Z1�`
p , e D1�n

r .p/,
and set

b D sA C � C e:

• Find indices i 2 Œn� of seed bits where � C e and � differ, which
are exactly these indices where e is not 0, and define

ERR D ¹i j �i C ei ¤ �iº D ¹i j ei ¤ 0º:

We say a seed index i is erroneous if i 2 ERR. Since LPN noise is
sparse, errors are sparse.

• Find indices j 2 Œm� of outputs that depend on one or more erro-
neous seed indices. Let Varsj denote the indices of seed bits that the
j th output of EvalI depends on. Define

BAD D
®
j j jVarsj \ ERRj � 1

¯
:

We say an output index j is bad if j 2 BAD, and good otherwise.

• Set flagD 0 if there is some bucket containing too many bad outputs:
9i 2 ŒB�, j��1

bkt .i/ \ BADj > t . Otherwise, set flag D 1.

• Compute the outputs of PRG on inputting the correct seed and the
erroneous seed, y D PRG:EvalI .� / and y 0 D PRG:EvalI .� C e/.
Set the correction vector Corr D y � y 0.

• Construct matrices M1; : : : ; MB by setting

8j 2 Œm�; .M�bkt.j //�ind.j / D Corrj :

Every other entry is set to 0.

• “Compress” matrices M1; : : : ; MB as follows:

– If flag D 1, for every i 2 ŒB�, compute factorization

Mi D Ui Vi ; Ui 2 Z��t
p ; Vi 2 Zt��

p :

This factorization exists because, when flag D 1, each
bucket has at most t nonzero entries, and therefore its
rank is less than or equal to t .

– If flagD 0, for every i 2 ŒB�, set Ui and Vi to be 0 matri-
ces.

• Set the public seed to

P D .b � flag/:

This means that, if flag D 0, P is the all-zero vector in Zn
p .
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• Prepare the private seed S as follows. Let s D sjj1 and set

S D
�
flag � s˝d

d
2 e; ¹Ui ; Viºi2ŒB�

�
: (3.1)

This means that, if flag D 0, S is the all-zero vector over Zp .
Output sd D .P; S/ as Zp elements.

y ! Eval0.I 0; sd/: Compute y  Eval.I; � / and output z D flag � y . Looking
ahead, flag D 1 will happen with all but subexponentially small probability.
This computation is done via a polynomial map G.2/:

• Every output bit of Eval is a linear combination of degree d mono-
mials (without loss of generality, assume that all monomials have
exactly degree d which can be done by including 1 in the seed � ).

Notation. Let us introduce some notation for monomials.
A monomial h on a vector a is represented by the set of indices
h D ¹i1; i2; : : : ; ikº of variables used in it; h evaluated on a isQ

i2h ai if h ¤ ; and 1 otherwise. We will use the notation
ah D

Q
i2h ai . We abuse notation to also use a polynomial g to

denote the set of monomials involved in its computation; hence
h 2 g says monomial h has a nonzero coefficient in g.

With the above notation, we can write Eval as

8j 2 Œm�; yj D Evalj .� / D Lj ..�h/h2Evalj /; for a linear Lj :

• .A;bD sAC x/ in the public seed encodes x D � C e. Therefore,
we can compute every monomial xv as follows:

xi D hci ; si; ci D �aT
i jjbi ; ai is the i th column of A;

xv D h˝i2vci ;˝i2vsi:

(Recall that˝i2vzi D zi1 ˝ � � � ˝ zik if v D ¹i1; : : : ; ikº and is not
empty; otherwise, it equals 1.) Combining with the previous step,
we obtain a polynomial G.1/.b; S/ that computes Eval.� C e/:

G
.1/
j .b; S/ WD Lj

��
h˝i2vci ;˝i2vsi

�
v2Evalj

�
: (3.2)

Note that G.1/ implicitly depends on A contained in I 0. Since all
relevant monomials v have degree d , we have that G.1/ has degree
at most d in P , and degree 2 in S . The latter follows from the fact
that S contains s˝d

d
2 e, and hence S ˝ S contains all monomials in

s of total degrees d .
Since only bad outputs depend on erroneous seed bits such that
�i C ei ¤ �i , we have that the output of G.1/ agrees with the correct
output y D Eval.� / on all good output bits:

8j 62 BAD; Evalj .� / D G
.1/
j .b; S/:
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• To further correct bad output bits, we add to G.1/ all the expanded
correction vectors as follows:

G
.2/
j .P; S/ WD G

.1/
j .b; S/C

�
U�bkt.j /V�bkt.j /

�
�ind.j /

D G
.1/
j .b; S/C .M�bkt.j //�ind.j /:

We have that G.2/ agrees with the correct output y D Eval.� /

if flag D 1. This is because, under the condition for flag D 1,
every entry j in the correction vector Corrj is placed at entry
.M�bkt.j //�ind.j /. Adding it back as above produces the correct output.
Observe that the function is quadratic in S and degree d in the public
component of the seed P .

• When flag D 0, however, sPRG needs to output all zero. This hap-
pens because P and S are both all-zero vectors and G.2/ does not
use a constant term. At last, G.2/ has degree d in the public seed,
and only degree 2 in the private seed, as desired.

Analysis of stretch. We derive a set of constraints, under which sPRG has polynomial
stretch. Recall that PRG output length is m D n� , degree d , LPN secret dimension
` D n1=dd=2e, modulus p is a prime, and the slack parameter t D `�.

Claim 3.1. For the parameters as set in the Construction, sPRG has stretch of � 0 for some
constant � 0 > 1.

Proof. Let us start by analyzing the dimension of the public and private seeds:

• The public seed contains P D .b � flag/ and has O.n/ field elements.

• The private seed S contains S1; S2 as follows:

S1 D flag �
�
s˝d

d
2 e

�
; S2 D ¹Ui ; Viºi2ŒB�:

The dimension of S1 is O.n/ as ` D n
1

d d
2 e , and S2 consists of O.B � � � t / field

elements. This consist of O.m`�.ı=2��// field elements. Because m D n� and

` D n
1

d d
2 e , we have:

dim.S1/ D O.n/;

dim.S2/ D O
�
n

��
.ı=2��/

d d
2 e

�
;

dim.P; S/ D O
�
nC n

�� 2ı

5�d d
2 e

�
:

The last equality uses � D ı=10. We set n0 D nC n
�� 2ı

5d d
2 e , and therefore mD n0

� 0 for some
� 0 > 1. This concludes the proof.
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Proof of pseudorandomness. We prove the following proposition which implies that sPRG
is secure.

Proposition 3.1. Let ı > 0, � > 1, d 2 N, and ˇ � 0 be constants. Assume the following
assumptions hold:

• ı-LPN, and

• PRG is a secure Goldreich PRG with stretch � and locality d .

Then, for any prime generating function p W N ! N that takes as input an integer k and
outputs a prime p of bit length kˇ , we have the following. Let n 2 N and p D p.n/, then it
holds that, with probability 1 � o.1/ over I  IdSamp.1n/,®

.I 0; P; z/ W A  Z`�n
p ; I 0 D .I; �; A; p/; .P; S/ SdSamp0.I 0/; z Eval0.I; sd/

¯
;®

.I 0; P; r/ W A  Z`�n
p ; I 0 D .I; �; A; p/; .P; S/ SdSamp0.I 0/; r  ¹0; 1ºm

¯
;

are computationally indistinguishable. Further assuming that the assumptions are subexpo-
nentially secure, these distributions are subexponentially indistinguishable.

We first recall the structure of P and the evaluation z: P consists of flag � P , where
b D sA C e C � and � is a randomly generated PRG seed. As shown in the correctness
proof, z D flag � y , where y D Eval.I; � /. If flag is always equal to 1, the proof becomes
trivial: P is pseudorandom due to LPN assumption and therefore it computationally hides � .
Secondly, once � is hidden with probability 1 � o.1/ over choice of I , y D Eval.I; � / is
computationally indistinguishable to a random string r . We observe that flag D 1, with all
but 2�n�.1/ probability, by the random choice of hypergraph underlying the PRG. We thus
have (proof omitted, see [68] for details):

Lemma 3.2. In the sPRG construction, PrŒflag D 1� D 1 � 2�n�.1/ .

We now list a few hybrid experiments, H0; H1; H2, and H3, where the first corre-
sponds to the first distribution in the proposition, and the last corresponds to the second
distribution in the proposition. We abuse notation to also use Hi to denote the output distri-
bution of the hybrid.

Hybrid H0 samples .I 0; P; y/ honestly as in the first distribution, that is,

Sample: A  Z`�n
p ; s Z1�`

p ; e  D1�n
r .p/; �  ¹0; 1ºn

b D sA C e C � ; I  IdSamp.1n/; y D EvalI .� /

Output: I; �; A; P D flag � b; flag � y

where flag D 1 iff:

8i 2 ŒB�;
ˇ̌
��1

bkt .i/ \ BAD
ˇ̌
� `�
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Hybrid H1 computes the distribution as before, except that we set flag D 1:

Sample: A  Z`�n
p ; s Z1�`

p ; e  D1�n
r .p/; �  ¹0; 1ºn

b D sA C e C � ; I  IdSamp.1n/; y D EvalI .� /

Output: I; �; A; P D b; y

Note that Hybrid H0 and Hybrid H1 are statistically indistinguishable
with statistical distance 2�n�.1/ due to Lemma 3.2.

Hybrid H2 computes b by sampling it as a random vector over Zp:

Sample: A  Z`�n
p ; �  ¹0; 1ºn

b Zn
p; I  IdSamp.1n/; y D EvalI .� /

Output: I; �; A; P D b; y

Note that Hybrid H1 and Hybrid H2 are computationally indistinguish-
able due to the security of the LPN assumption. The only difference
between the hybrids is how b is generated. In Hybrid H1, b is generated
by sampling s and computing b D sA C e C � where e is generated
using LPN error distribution, and in Hybrid H2 it is generated by sam-
pling b by first sampling a uniform vector u and then adding � (which
is equivalent to just sampling b uniformly). Note that e and s appear
nowhere else in the hybrids. Thus, relying on a straightforward reduc-
tion, one can reduce indistinguishability of these hybrids to the security
of LPN. Further, if LPN is subexponentially secure, then these hybrids are
subexponentially indistinguishable.

Hybrid H3 simply replaces y by sampling it as a random vector in ¹0; 1ºm:

Sample: A  Z`�n
p

b Zn
p; I  IdSamp.1n/; y  ¹0; 1ºm

Output: I; �; A; P D b; y

We now show the following claim:

Claim 3.2. Assuming PRG is a secure Goldreich’s PRG, then, with prob-
ability 1 � o.1/ over I , for any probabilistic polynomial time adver-
sary A, ˇ̌

Pr
�
A.H2/ D 1

�
� Pr

�
A.H3/ D 1

�ˇ̌
� "PRG.n/;

where "PRG is the distinguishing advantage of the PRG.

We prove it by contradiction. Assume that for 1��.1/ probability over
the choice of I ,ˇ̌

Pr
�
A.H2/ D 1

�
� Pr

�
A.H3/ D 1

�ˇ̌
> "PRG.n/:
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We will show that if this happens then there exists a polynomial time dis-
tinguisher D, for which with probability 1��.1/ over I  IdSamp.1n/,ˇ̌

Pr
�
D

�
I; Eval

�
I; �  ¹0; 1ºn

��
D 1

�
� Pr

�
D.I; Eval

�
I; r  ¹0; 1ºm

�
D 1

�ˇ̌
> "PRG.n/;

thereby breaking the PRG security. We show this by building D as a
reduction relying on A. The reduction gets as input an index I , y from
the PRG challenger, and samples A Zn�`

p and b Zn
p . It sends to A

the input .I; �; A; P D b; y/ and outputs whatever it outputs. Note that
the view of D is identical to the adversary for the PRG game. For A, if
y is generated using PRG:Eval, then its view is identical to Hybrid H2,
otherwise it is identical to Hybrid H3. Therefore, if A manages to distin-
guish between the hybrids with probability more than "PRG over 1� o.1/

choice of I , then D will also be able to win the PRG game security with
probability more than "PRG. Thus, the claim follows.
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