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Abstract

Planning is one of the oldest and most important problems in artificial intelligence. Sim-
ulation-based search algorithms, such as AlphaZero, have achieved superhuman perfor-
mance in chess and Go and are used widely in real-world applications of planning. In
this paper we provide a unified framework for simulation-based search. Algorithms in this
framework interleave operators for policy evaluation (better estimating the value function
of the current policy) and policy improvement (using the value function to form a better
policy). These operators are applied to states and actions that are sampled in sequential
trajectories, and that may branch recursively into other sampled trajectories. The value
function and policy may also be represented by a function approximator. Our framework
includes a broad family of search algorithms that includes Monte-Carlo tree search, sparse
sampling, nested Monte-Carlo search, classification-based policy iteration, and AlphaZero.
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1. Introduction

One of the oldest and most important problems in artificial intelligence is to select
an action by looking ahead. Such planning methods are ubiquitous across several decades of
artificial intelligence research, and have achieved superhuman level performance in chess [9]

and Go [34], as well as contributing to real-world applications such as process control [15],
robotics [24], and logistics [26].

Planning algorithms may be described by successive applications of operators that
propagate information from subsequent states back to a previous state. The nature of plan-
ning is determined both by the nature of those operators, and by the order in which they are
applied. A large family of planning algorithms may be understood as instances of general-
ized policy iteration [39]. In these algorithms, operators alternate between policy evaluation
(better estimating the value function of the current policy) and policy improvement (using
the value function to form a better policy). If operators of both types are applied repeatedly
to all states, this procedure will result in the optimal value function and an optimal policy
for any Markov decision process.

The precise order in which operators are applied, known as the search control
method, has a significant impact on the efficiency of the algorithm. While many approaches
to search control exist, we focus on simulation-based search. In this approach, actions and
state transitions are sampled in sequential trajectories; this allows simulation-based search
algorithms to look many steps ahead. Simulation-based search algorithms such as Monte-
Carlo tree search [12] have been successful in large and complex planning problems such as
the game of Go. We also consider recursive simulation algorithms that branch into many
child simulations before backtracking to the parent. This ensures that the dependencies of an
operator are accurately computed, by recursive simulation, before that operator is applied.

Many complex problems are intractable to exact solution. The state space may be
too large to explicitly represent all states. In this case, the value function or policy may be rep-
resented by a function approximator such as a neural network. We show that some of today’s
most powerful planning algorithms, such as AlphaZero [36], can be understood as instances
of generalized policy iteration using recursive simulation and function approximation.

The contribution of this paper is a unified understanding of simulation-based search
algorithms. Algorithms in this framework are elucidated by three complementary mecha-
nisms. First, equations are provided, based on the application of operators to the joint space
of value functions and policies. Second, diagrams are provided, akin to backup diagrams
[39], that show the states and actions used by an operator. Third, pseudocode is provided for
several key algorithms.

2. Related work

Extensive literature exists on policy iteration and value iteration methods, e.g., [6,27].
However, there is little discussion of search control in this literature. The relationship of
policy and value iteration to AlphaZero is discussed in [5], including an elegant exposi-
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tion of their relationship to Newton’s method. However, search control is not discussed in
depth.

Operators that act upon a value function, such as the Bellman operator, are thor-
oughly analyzed within the dynamic programming literature [6, 27]. Several operators that
act upon a policy are introduced in [17]. Generalized operators that unify the treatment of
maximizing and minimaximizing operators, among others, are discussed in [23]. The treat-
ment of generalized policy iteration using operators that act jointly upon a value function
and policy may be novel to this paper.

Tree-based search algorithms are extensively analyzed in the search literature, e.g.,
[10]. Simulation-based search algorithms are discussed in [7] and their relationship to rein-
forcement learning is discussed in [31,32]. Several search algorithms have combined elements
of both depth-first search and simulation, e.g., [11,29,32,36] but there has been little prior dis-
cussion of the common principles underlying these algorithms.

3. Operators

We consider a discounted Markov decision process (MDP) with a finite state space �

and a finite action space A [27]. The MDP has reward and transition dynamics R;S 0� ".s;a/,
where " is a joint probability distribution over reward R 2R and next state S 0 2 � conditioned
on current state s 2 � and action a 2A. The discount factor of the MDP is  2 Œ0;1/. A policy
� W � !�jAj�1 specifies the probability of selecting each action a 2 � in every state s 2 � ;
here �jAj�1 is the probability simplex of dimension jAj � 1. We will use I to denote a
complete metric space composed of all possible policies.

Let Q be a complete metric space whose elements are action–value functions
q W � � A! R that map a state s 2 � and an action a 2 A onto a scalar value. We will
henceforth simply refer to action-value functions as value functions. The true value function1

of a policy � , denoted by q� 2 Q, is defined as q�.s; a/ D E�;"Œ
P1

kD0 kRtCkC1jSt D s;

At D a�, where E�;"Œ�� denotes expectation over the Markov process St ; At ; RtC1; StC1;

AtC1; RtC2; : : : where RtC1; StC1 � ".St ; At / and At � �.St / for t D 1; 2; : : : The opti-
mal value function is defined as q�.s; a/D max�2I q�.s; a/ for all .s; a/ 2 � �A; it is well
known that such a function always exists and is unique [27]. An optimal policy �� is any
policy that achieves the maximum value for all states and actions, that is, any policy whose
value function is q�.

We consider operators o W Q � I ! Q � I that transform functions and policies
into other functions and policies. When the same operator is applied multiple times, we use
the shorthand on.q; �/ D .oo : : : o/.q; �/. When composing different operators, we use
.
Qn

iD1 on/.q; �/ to denote the sequence of operators o1o2 : : : on applied to .q; �/ from
right to left, .

Qn
iD1 on/.q; �/ D .o1o2 : : : on/.q; �/ D o1.: : : .on.q; �///.

1 We will refer to any q 2 Q as a value function, and use the term “true” value function to
denote the specific value function corresponding to an expected return.
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We begin with two primitive operators: evaluation operators that update the func-
tion q, but leave the policy � unchanged, and improvement operators that update � but leave
q unchanged. An evaluation operator e.q; �/ has the property that it moves q closer to the
value function of � , such that a sequence of n applications of that operator converges to the
true value function of � as n grows, limn!1 en.q;�/D .q� ;�/. A canonical example of an
evaluation operator would be the one-step Bellman expectation operator, eB.q;�/D .Bq;�/

where .Bq/.s; a/ D ER;S 0�".s;a/;A0��.S 0/ŒRC q.S 0; A0/�.
An improvement operator i is an operator that, when applied to a policy � and its

value function q� , produces a new policy � 0 whose value function is at least as large, for
all state-action pairs, as that of � : i .q� ; �/ D .q� ; � 0/ such that q� 0 � q� with equality if
and only if q� D q�. A canonical example of an improvement operator would be the greedy
operator, i �.q� ; �/, which produces a new policy defined as � 0.s/ 2 argmaxa2A q�.s; a/

for all s 2 � ; however, many other improvement operators are possible [17].
By alternating evaluation and improvement operators, one can compute an optimal

policy for an MDP. For example, the well known value iteration algorithm can be understood
as successive applications of the operators eB and i �; starting from any function q, the
sequence .eBi �/n.q; �/ approaches .q�; ��/ as n!1. If instead we consider the sequence
.i �e1

B /n.�; �/, we obtain the well known policy iteration algorithm, which converges to
.q�; ��/ in a finite number of iterations.

3.1. State and state–action operators
Interesting problems typically contain many state variables (that is, the state space

� is high-dimensional). The size of � grows exponentially with the number of variables, an
issue known as the curse of dimensionality. Consequently, it may be infeasible to update all
state-action pairs.

However, it is not necessary to apply operators to the entire state space at once. We
will use oŒs� or oŒs; a�.q; �/ to denote a state or state–action operator that is specific to
that state or state–action. An evaluation operator .q0; �/ D e.q; �/ has a corresponding state–
action evaluation operator .q00; �/D eŒs; a�.q; �/ where the resulting value function q00 is only
modified at a single state–action .s; a/ and not modified for other states and actions,

q00.Ns; Na/ D

8<: q0.s; a/ if Ns D s and Na D a;

q.s; a/ otherwise.

Similarly, an improvement operator i Œs� improves the policy only at that single state s, and
does not modify the policy for other states.

We will also encounter other operators xŒs� or xŒs; a� D oŒs1; a1� : : : oŒsn; an� that
are indexed by a state s, state–action .s; a/, or other variables. These operators may be com-
posed internally of multiple state–action operators and hence may modify the value function
and policy at multiple states.

State–action operators provide great flexibility on how pairs .q; �/ are updated.
Let i be a generic improvement operator and let e be a generic evaluation operator. Given
any sequence of states and actions .s1; a1/; .s2; a2/; : : : that includes all state–action pairs

4803 Simulation-based search



infinitely many times, the application of
Qn

iD1.i e/Œsi ; ai �.q; �/ will approach .q�; ��/ as
n!1. The order in which state–action pairs show up in the sequence can have a significant
impact on the convergence rate. This flexible way of updating .q; �/ is called generalized
policy iteration [39].

3.2. Sample-based evaluation
The curse of dimensionality also means that computing an expectation over all suc-

cessor states, such as the one appearing in the evaluation operator eB , may be infeasible.
Sample-based evaluation operators address this issue by estimating the true value func-
tion using samples from the distribution underlying the expectation. This is achieved by
decomposing evaluation into two steps: constructing a return from a sampled trajectory, and
updating the value function towards the return. These two steps may be represented by a
return operator and a value update operator, respectively. These operators are applied to
triples .q; �; g/ rather than pairs .q; �/. The additional argument to the operator is a scalar,
g 2 R, that is used to maintain a sample of a return, such as the total discounted return
RC R0 C 2R

00

C � � � , that follows a state–action pair .s; a/ when executing policy � .
A return operator r only modifies g, leaving q and � unaltered. The Monte-Carlo

return operator is defined as r1Œr; s0�.q; �; g/ D .q; �; r C g/, where r is the reward and
s0 is a state. When applied repeatedly to the transitions of a trajectory St ;At ;RtC1; : : : ; ST it
produces the total discounted return, r1ŒRtC1; StC1� : : : r1ŒRT ; ST �.q; �; 0/ D

.q; �;
PT �t

j D1 j �1RtCj /, recalling that a sequence of operators is applied from right to
left, corresponding to the application of operator r1 over the sequence in reverse order.2

More generally, we define the �-return operator r� as

r�

�
r; s0

�
.q; �; g/ D

�
q; �; r C 

�
�g C .1 � �/v.s0/

��
(1)

where v.s/ D
P

a2A �.ajs/q.s; a/ is the value of state s.
When applied to a sampled trajectory S1; A1; R1; : : : ; ST the �-return operator

computes a geometrically weighted mixture, .1 � �/
PT �t�1

lD1 �l�1Gt WtCl C �T �l�1Gt WT ,
of l-step returns, Gt WtCl D

Pl�1
j Dt j �t Rj C1 C  l�1v.StCl / [38], which as a special case

includes the Monte-Carlo return operator r1 when � D 1.
Equipped with the concept of return operators, we can now introduce value update

operators. These operators update the value function to approximate the return g. A canonical
example of a value update operator adjusts the value function q by a fixed3 step-size ˛ 2 .0;1�

in the direction of the return g, eqŒs;a�.q;�;g/D .q0;�;g/ where q0.s;a/D q.s;a/C ˛.g�

q.s; a//. By composing the update with the �-return operator, eqŒs; a�r�Œr; s0�.q; �; g/, we
recover the well known temporal difference update TD(�).

2 One could also conceive other operators, such as eligibility traces [39], that are applied to
the sequence in forward order.

3 In practical algorithms, step-sizes may vary or adapt over time.
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We can make any improvement operator i “compatible” with sample-based evalu-
ation operators by simply defining i 0.q; �; g/ D .q; � 0; g/, where .�; � 0/ D i .�; �/. In what
follows we will focus exclusively on operators that operate over triples .q; �; g/. We will
henceforth use i as a generic improvement operator defined over .q;�;g/; this may be instan-
tiated by any improvement operator, such as the greedy improvement operator i �, or a policy
gradient operator [40]. We will illustrate algorithms using value update operator eq and a
�-return operator r�, although these could in practice be replaced by other value update and
return operators.

4. Search control

We now turn our attention to the order in which states and actions are visited, so
that operators may be applied in an efficient sequence.

Because the state space is typically very large, it is often infeasible to compute the
optimal value function and optimal policy for all states. Instead, planning methods often
focus upon the computation of the optimal value q�.s; �/ and an optimal policy ��.�js/ for a
specific state s. To solve this problem, it is sufficient to solve a local MDP MŒs� consisting of
a subset of states in the original MDP M that are reachable from state s with nonzero proba-
bility. The local MDP otherwise has the same action space, reward, and transition dynamics
as the original MDP M .

Ideally, we would like to have algorithms that are guaranteed to solve the local plan-
ning problem. We will define a sound planning operator xŒs� to be one that converges with
repeated application to the optimal value function and an optimal policy .q�; ��/ for the
local MDP MŒs�,

lim
n!1

xŒs�n.q; �; �/ D .q�; ��; �/; for any q 2 Q; � 2 I : (2)

Since generalized policy iteration finds the solution to general MDPs, it is also a sound
algorithm for local planning, so long as all reachable states and actions are visited infinitely
often. Note that the set of reachable states may be dramatically smaller than in the complete
problem. For example, only a tiny fraction of possible positions in chess are reachable from
a given endgame position; solving that endgame may be considerably simpler than solving
the entire game. However, the number of reachable states may nevertheless still be large, so
the order in which those states are visited remains of crucial importance.

4.1. Backup diagrams for search control
A search control strategy determines the order in which operators are applied to

states and state–actions. It may be illustrated by a backup diagram [39] that shows the states
and actions used by a search operator xŒs�. In these backups diagrams, large white circles
represent states and small black circles represent state–actions. Arrows indicate transitions
from state to state–action and from state–action to state. If arrows are labeled by the action
space A or by the state space � then this denotes corresponding transitions for all actions
a 2 A or to all states that may follow a state–action pair. If an arrow is labeled by an envi-
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ronment " or policy � this denotes that the successor state or action is sampled from the
corresponding environment or policy (these labels may be omitted where clear from con-
text). At most two transitions will be shown from each state or state–action. The leftmost
circle indicates the root state s to which the search operator xŒs� is applied (or sometimes
the root state-action s; a to which the search operator xŒs; a� is applied). Some search oper-
ators xk Œs� may be indexed by a level k, and are defined recursively in terms of lower-level
operators xk�1Œs0�; in this case the states in the backup diagram associated with s and s0 may
be labeled by the corresponding operators. For example, a depth-first search operator could
be represented by the following backup diagram:

A

�

xk

xk�1

xk�1

xk�1

xk�1

4.2. Simulation
Simulation is a search control strategy in which trajectories are generated by sam-

pling actions from the policy and sampling next states from the environment, as represented
by the following search control diagram:

: : :� " � "

St At StC1 AtC1 ST
(3)

Simulation ensures that the most likely future outcomes under the current policy are explored
most frequently, and may provide an effective mechanism for estimating future value, even
when the state space is prohibitively large for full-width tree search. A simulation-based
search applies evaluation and improvement operators to the sequence of states and actions
encountered during simulation.

To simplify the definition of the operators, we will assume that all policies eventually
reach a terminal state. The operator xŒs� defined below applies evaluation and improvement
operators to the sequence following state s until termination,

xŒs�.q; �; g/ D

8<: .q; �; 0/ if s is terminal,

i Œs� eqŒs; A� r�ŒR; S 0� xŒS 0�.q; �; g/ otherwise,

with A � �.s/ and R; S 0
� ".s; A/: (4)

All the operators introduced from this point on will be based on the assumption that every
policy eventually terminates. When this is not the case, one can easily modify the simulation-
based operators to ensure that they terminate after T steps.
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Note that, unlike the evaluation, improvement and return operators previously
defined, the simulation operator x potentially modifies all of its arguments .q; �; g/. This
operator is typically iterated over n simulations, xnŒs�, to compute the value and policy
at a root state s 2 � . Pseudocode for simulation-based search with sample operators is
given in Algorithm 1. The function called Improve.) may invoke any suitable improvement
operator i .

Algorithm 1 Simulation-Based Search
procedure Sim(", q, � , s)

if s is terminal then return 0

A � �.s/

R; S 0  ".s; A/

v.S 0/ 
P

a2A �.ajS 0/q.S 0; a/

G  RC .� Sim."; q; �; S 0/C .1 � �/v.S 0//

q.s; A/ q.s; A/C ˛.G � q.s; A//

�.s/ Improve.�.s/; q.s; �/; G/

return G
end procedure

Algorithm 2 Recursive Simulation-Based Search
procedure RSim(", q, � , s, k)

if s is terminal or k D 0 then return 0

for i D 1 to n do
RSim."; q; �; s; k � 1/

end for
A � �.s/ F � may have changed
R; S 0  ".s; A/

v.S 0/ 
P

a2A �.ajS 0/q.S 0; a/

G  RC .� RSim."; q; �; S 0; k/C .1 � �/v.S 0//

q.s; A/ q.s; A/C ˛.G � q.s; A//

�.s/ Improve.�.s/; q.s; �/; G/

return G
end procedure

One may also compute the return from a simulation without any value update or
policy improvement. These simple simulations are known as rollouts,

zŒs; a�.q; �; g/ D

8<: .q; �; 0/ if s is terminal,

r�ŒR; S 0� zŒS 0; A0�.q; �; g/ otherwise,

with R; S 0
� ".s; a/ and A0

� �.S 0/: (5)
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Exploration with soft improvement operators. For a simulation-based search to be sound,
the simulation policy � must continue to visit all states and actions infinitely often as we
apply the operator multiple times. That is, if .�; � 0; �/ D xn.�; �; �/, we want � 0 to select all
actions with nonzero probability. This does not necessarily follow for all x. For example,
if we plug in the greedy improvement operator i � in (5), the resulting � 0 is a deterministic
policy—that is, �.ajs/ D 1 for a specific a 2 A. Even when � 0 is not deterministic, one
may want to sample actions from a distribution that ensures an appropriate level of explo-
ration [39].

Exploration may be accomplished by using a soft improvement operator that yields
a policy that selects all actions with nonzero probability. If the soft improvement operator
approaches the greedy operator as the number of applications tends to infinity,
limn!1 i n

D i �, then under mild conditions convergence is assured (c.f. (2)). This type
of exploration is referred to as “greedy in the limit of infinite exploration” (GLIE) [37].

As an example, the �-greedy operator i D �i � is a soft improvement operator that
introduces randomness via a noisy operator �.q; �; g/ D .q; ��rand C .1 � �/�; g/, where
�rand is any policy that selects all actions with nonzero probability. A common choice is to
have �rand select actions uniformly at random, �rand.�js/ D 1=jAj. Note that, if we think of
� as a parameter of �.q; �; g/ that is decreased at each application of �, we obtain a GLIE
operator. Alternatively, an upper-confidence rule i UCB may be used to encourage exploration
of uncertain values, by acting greedily with respect to an upper confidence bound on the
value function, argmaxa2A q.s; a/C u.s; a/, where u.s; a/ represents value uncertainty [3].

In what follows we will define some operators using a generic improvement opera-
tor i ; unless noted otherwise, the reader should think of i as some instantiation of a GLIE
soft improvement operator.

Example 4.1: All-Action Monte-Carlo Search

Historically, the earliest forms of simulation-based search [8,41], used for example to
achieve superhuman performance in Scrabble [30], were based upon rollouts zŒs; a�

that start immediately after a single action a from state s. The main idea is to esti-
mate the action–value of every action a 2 A from the root state by the outcome of
simulations starting from that action. Finally, the action with maximum value is exe-
cuted. We refer to this search algorithm as all-action Monte-Carlo search, which can
be described by the following search control diagram,

: : :

: : :A " � " �
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In this case a single improvement operator i � is applied to the root state based on
the valuesa estimated through the Monte-Carlo simulations:

xŒs�.q; �; g/ D i �Œs�
Y
a2A

eqŒs; a�zŒs; a�.q; �; g/:

a In practice, Monte-Carlo algorithms often update the value function using a step-
size ˛ D 1=visits.s; a/. In this case the update eq incrementally updates the value
q.s; a/ to the mean return following state-action s; a.

Example 4.2: Monte-Carlo Tree Search

A simulation-based search algorithm using sample operators at each state and action
is known as Monte-Carlo tree search (MCTS) [12], as used in the first master-level
9 � 9 [13, 16] and 19 � 19 [34] Go programs. Each simulation of MCTS consists of
two stages: a first stage in which sample-based evaluation and improvement operators
are applied, and a rollout that samples the remainder of the trajectory. The first stage
of simulation typically finishes upon reaching a previously unvisited state, while the
rollout finishes upon reaching a terminal state, as shown below,

: : : : : :
x x unvisited z z

xŒs�.q; �; g/ D

8<: i Œs� eqŒs; A� zŒs; A�.q; �; g/ if s is unvisited;

i Œs� eqŒs; A� r�ŒR; S 0� xŒS 0�.q; �; g/ otherwise,

with A � �.s/ and R; S 0
� ".s; A/: (6)

This leads to a gradual expansion of the frontier of visited states as each subsequent
simulation goes one step further. When the operator i used in (6) is a GLIE soft
improvement operator, MCTS is sound under mild assumptions (cf. Eq. (2)). An
upper confidence bound around an estimate of q� is often used to guide exploration
[21]. As in value iteration, policies are not explicitly represented.
MCTS typically uses Monte-Carlo returns, z, with � D 1. However, a variant of
MCTS that uses instead TD(�) returns is sometimes known as temporal-difference
search [33]

4.3. Recursive simulation
Classical search methods traverse a search tree by branching from a parent state to a

child state, performing a search from the child, and then backtracking to the parent. Branch-
ing and backtracking in this manner may be advantageous because it ensures that child values
are accurate before applying any operation to the parent. If the value and policy of each child
are optimal, only a single operation needs to be applied to the parent to ensure optimality.
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By contrast, simulation breaks the curse of dimensionality by sampling trajectories, allowing
search to look deeply ahead even in large state spaces. However, it may need to visit each
state multiple times.

We propose here a marriage of these two search control strategies by allowing
parent simulations to branch recursively into child simulations. This produces a recursive
simulation-based search. Each level k simulation samples a sequence of states and actions;
multiple level k � 1 simulations are invoked from each state (or state–action) of the sequence
before sampling the next action. This is illustrated in the search diagram below, where each
arrow labeled xk�1 represents a lower level simulation starting from that state, correspond-
ing to the recursive application of the same search diagram with k � 1,

: : :
x k�1x k�

1

x k�1x k�
1

xk xk

(7)

Applying improvement and evaluation operators to the states and actions of the search results
in the following search algorithm:

xk Œs�.q; �; g/ D

8̂̂<̂
:̂

.q; �; 0/ if s is terminal or k D 0,

i Œs� eqŒs; A� r�ŒR; S 0� xk ŒS 0� xn
k�1Œs�.q; �; g/„ ƒ‚ …

.�;� 0;�/

otherwise, (8)

where .�; � 0; �/ D xn
k�1

Œs�.q; �; g/, A � � 0.s/ and R; S 0 � ".s; A/.
One can think of the operator above as a simulation, akin to Eq. (5), in which the

action A to be taken is sampled from a policy � 0 resulting from the application of the oper-
ator itself. The overall algorithm, shown in Algorithm 2, is similar to Algorithm 1 with the
addition of a recursive call that corresponds to the operator xn

k�1
in Eq. (8) (see for example

nested Monte-Carlo tree search [4]).

Example 4.3: Nested Monte-Carlo Search

Recursive simulation may be used with an all-action Monte-Carlo search. This gives
rise to the more powerful algorithm of nested Monte-Carlo search [11, 42]. In this
algorithm, rollouts are nested within rollouts. At level k C 1, all possible actions are
enumerated. Each action a 2 A is evaluated by the average outcome (i.e., Monte-
Carlo evaluation eqz) of level k simulations that start from action a. The policy at
the root state of the simulation selects the action with maximum value (i.e., greedy
improvement i �). An instance of this algorithm is illustrated by the following search
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control diagram and equations:

: : :

: : :

x k�1x k�
1

x k�1x k�
1

A

x k�1x k�
1

x k�1x k�
1

xk

yk yk

yk yk

xk Œs�.q; �; g/ D i �Œs�
Y
a2A

eqŒs; a�yk Œs; a�.q; �; g/;

yk Œs; a�.q; �; g/ D

8<: .q; �; 0/ if s is terminal or k D 0;

r�ŒR; S 0�yk ŒS 0; A0�xn
k�1

ŒS 0�.q; �; g/ otherwise,

where R; S 0
� ".s; a/; .�; � 0; �/ D xn

k�1

�
S 0

�
.q; �; g/; and A0

� � 0.S 0/:

Nested Monte-Carlo search achieved superhuman performance in Morpion soli-
taire [11] and a variant of Klondike solitaire [42]. Each additional level of recursion
x1Œs�; : : : ; x4Œs� produced stronger results (even when taking account of the addi-
tional computational cost).
If simulations are truncated after one time-step, yk Œs; a�.q; �; g/ D

r�ŒR; S 0�xn
k�1

ŒS 0�.q; �; v.S 0//, then we recover a sparse sampling tree search
algorithm [20]

x
k�1

xk�1

A x
k�1

xk�1

xk

yk

yk

5. Approximation

Many problems are so large that they are intractable to exact methods—even when
using simulation. To address this issue, we consider approximate methods that use a function
approximator (such as a neural network) q� with parameters � to represent a value function,
or a function approximator �� with parameters � to represent a policy. We will consider oper-
ators that aim at finding the closest representable value parameters �� D argmin� `q.q; q� /

to target value function q according to some loss `q , such as squared error, or the closest
representable policy parameters �� D argmin� `�.�; ��/ to a target policy � according to
some loss `� , such as the KL divergence.
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We formalize these operators as modified versions of their counterparts which
project their operands onto the space of representable value functions or policies. They
do so by directly manipulating the parameters � or �. In practice most approximation meth-
ods incrementally optimize parameters by gradient descent. We define a gradient-based
evaluation operator that acts upon an approximate value function as

e� .q� ; �; g/ D .q� 0 ; �; g/;

where � 0
D � � ˛

@

@�
`q.g; q� /: (9)

Gradient descent on policy parameters may be formalized analogously by defining a generic,
gradient-based improvement operator,

i �.q; ��; g/ D .q; ��0 ; g/;

where �0
D � � ˛

@

@�
`�.� 0; ��/ and .�; � 0; �/ D i .�; ��; �/: (10)

In the above equation, � 0 is the policy resulting from applying the generic improvement
operator i to policy �� . For example, a gradient-based greedy improvement operator may be
instantiated, i �

�.q; ��; g/ D .q; ��0 ; g/ using a corresponding greedy improvement operator
.�; � 0; �/ D i �.�; ��; �/ to provide the target policy � 0 for the loss function `� .

Function approximation may be combined with simulation-based search by simply
replacing the regular improvement and evaluation operators with their counterparts defined
above.

The combination of approximation with recursive simulation-based search (see Sec-
tion 4.3) yields well-known algorithms that have been successfully applied to large and
complex problems, as discussed in the examples below. Algorithm 3 illustrates a canoni-
cal algorithm using function approximation.

Algorithm 3 Approximate Recursive Simulation-Based Search
procedure ARSim(", � , �, s, k)

if s is terminal or k D 0 then return 0

for i D 1 to n do
ARSim."; �; �; s; k � 1/

end for
A � ��.s/ F � may have changed
R; S 0  ".s; A/

v.S 0/ 
P

a2A �.ajS 0/q.S 0; a/

G  RC .� ARSim."; �; �; S 0; k/C .1 � �/v.S 0//

�  � � ˛ @
@�

`q.G; q� .s; A//

� 0.s/ Improve.��; q� .s; �/; G/

� � � ˛ @
@�

`�.� 0.s/; ��.s//

return G
end procedure
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Algorithm 4 AlphaZero
procedure AlphaZero(", � , �, s, k)

if s is terminal or k D 0 then return 0

� 0  ��; q0  q�

for i D 1 to n do
MCTS."; q0; � 0; s; k � 1/�

end for
A � � 0.s/

R; S 0  ".s; A/

v.S 0/ 
P

a2A �.ajS 0/q.S 0; a/

G  RC .� AlphaZero."; �; �; S 0; k/C .1 � �/v.S 0//

�  � � ˛ @
@�

`q.G; q� .s; A//

� � � ˛ @
@�

`�.� 0.s/; ��.s//

return G
end procedure

� MCTS is an instantiation of Sim (Algorithm 1).

Example 5.1: Dyna-k

The Dyna-k algorithm [32] is an example of recursive simulation-based search with
value function approximation. At every level k it uses an approximate evaluation
operator e� that minimizes squared error with respect to a sampled return. This
return corresponds to the outcome of a level k simulation in which actions are sam-
pled from the improved policy resulting from multiple lower level k � 1 simulations.
The search control diagram follows the same pattern as Eq. (7).

xk Œs�.�; q� ; g/ D

8<: .q; �; 0/ if s is terminal or k D 0;

i �Œs�e� Œs; A�r�ŒR; S 0�xk ŒS 0�xn
k�1

Œs�.�; q� 0 ; g/;

with � 0
D �; .�; � 0; �/ D xn

k�1Œs�.�; q0
� ; g/; A � � 0.s/ and R; S 0

� ".s; A/:

Dyna-k may also be adapted to apply function approximation to the policy (see
Algorithm 3). For example, policy gradient search [1] utilizes a gradient-based
improvement operator i � based upon policy gradient algorithms [40].
In practice, the value function (or policy) is represented separately at different levels
of the recursion by distinct parameters. Level k � 1 parameters are copied from level
k parameters, and are then updated based upon the level k � 1 returns. This allows
parameters to specialize to a local region of the search tree. Using multiple repre-
sentations boosted performance in 9 � 9 Go, compared to a single representation
[32].
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Example 5.2: Classification-Based Policy Iteration

Classification-based policy iteration (CBPI) combines all-action Monte-Carlo
search with policy approximation [22]. The rollouts of the Monte-Carlo search sample
actions according to �� ,

: : :

: : :A " �� " ��

yŒs�.q; ��; g/ D i �
�

Y
a2A

eqŒs; a�zŒs; a�.q; ��; g/;

The main search consists of a second level of simulations. At every step of the
main search, an all-action Monte-Carlo search is called recursively from state s,
to compute an improved policy. Policy parameters � are updated by an approxi-
mate improvement operator i �

� that minimizes a classification loss, `�.� 0; ��/, with
respect to a greedy improvement operator .�; � 0; �/ D i �.q; �; g/,

: : :

y

y

y

y

x x

xŒs�.q; ��; 0/ D

8<: .q; ��; 0/ if s is terminal or k D 0;

xŒS 0�ynŒs�.q; ��; g/;

where .�; ��0 ; �/ D ynŒs�.q; ��; g/, A � ��0.s/ and R; S 0 � ".s; A/.
Expert iteration applies CBPI to a Monte-Carlo tree search; it achieved state-of-the-
art performance in Hex [2]. In practice, both expert iteration and CBPI are often
combined with value function approximation [28].

Example 5.3: AlphaZero

The AlphaZero algorithm [35, 36] achieved superhuman performance across chess,
Go and shogi. It is a two-level recursive simulation-based search that utilizes both
value function and policy approximation at the second level.
At the first level, AlphaZero uses a Monte-Carlo tree search. Simulations finish upon
reaching an unvisited state, without any rollout, at which point the return is initialized
to the value function of this state.a To ensure adequate exploration, an improvement
operator i UCB selects the action that maximizes an upper confidence bound u.s; a/ /
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��.ajs/=.visits.s; a/C 1/ that is informed by the policy �� [34],b

: : :
y y y

unvisited

yŒs�.q; �; g/ D

8<: i UCBŒs� eqŒs; A�.q; �; v.s// if s is unvisited;

i UCBŒs� eqŒs; A� r�ŒR; S 0� yŒS 0�.q; �; g/ otherwise,

where A � �.s/ and R; S 0 � ".s; A/.
At the second level, AlphaZero represents its value function and policy by neural net-
works with parameters � and �, respectively.c An approximate improvement operator
i � is applied to the Monte-Carlo tree search operator defined above, yŒs�. The oper-
ator i � is based on a classification loss, similar to the one used in Example 5.2, that
“projects” a policy � onto the space spanned by �. An approximate evaluation oper-
ator e� is applied to the Monte-Carlo return corresponding to the outcome of the
high-level simulation, in a similar manner to Algorithm 3,

: : :

y

y

y

y

x x

xŒs�.q� ; ��; g/ D

8̂̂<̂
:̂

.q� ; ��; 0/ if s is terminal or k D 0;

e� Œs; A�r�ŒR; S 0�xŒS 0� i �Œs�ynŒs�.q� ; ��; g/„ ƒ‚ …
.�;��0 ;�/

;

where .�; ��0 ; �/ D i �Œs�ynŒs�.q� ; ��; g/; A � ��0.s/; S 0
� ".s; A/:

In reality, the operator y is called with copies of q� and �� ,d and the resulting policy
is used as a targete for the gradient-based policy improvement �� (see Algorithm 4).

a AlphaZero uses a state value function; for consistency, it is illustrated here using
an action value function.

b Other policy improvement operators may also be used [14,18].
c In practice both neural networks share the same parameters.
d The policy copy passed into the operator y may be modified by noise, .�; ��0 ; �/ D

i � Œs�ynŒs��.q� ; �� ; g/; this ensures adequate exploration, even when using a
small number of simulations [14].

e The target can also incorporate an improvement step based upon the outer return
[19].
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6. Discussion

We have developed a framework for understanding simulation-based search algo-
rithms in terms of their search control methods. We have seen that many algorithms can be
described as instances of generalized policy iteration, interleaving evaluation and improve-
ment operators to ensure convergence towards an optimal value function and policy. In large
problems, approximate evaluation and improvement operators may also be introduced, so as
to search for an approximately optimal value function and policy.

The formalism we proposed allowed us to describe many existing search algorithms
– from a basic Monte-Carlo search to more sophisticated search algorithms such as Alp-
haZero – that nest multiple levels of simulation. However, many other strategies exist for
search control that cannot be described in these simple terms. For example, many planning
algorithms utilize prioritization to sort states according to an appropriate criterion [25]; the
highest priority state is visited next.

We have presented several specific examples of simulation-based search algorithms
that utilize simulation and recursion, including many of the most successful methods used
in games such as chess and Go – the canonical challenges for planning. However, the frame-
work presented in this paper also suggests a much broader space of search algorithms that
combine elements of existing algorithms. For example, could AlphaZero [36] be improved
by introducing deeper levels of recursion, as in nested Monte-Carlo search [11]? Or by uti-
lizing function approximation inside its lower level Monte-Carlo tree search, as in Dyna-2
[32]? Could other evaluation and improvement operators be more effective [14,18,19]?

Understanding the underlying principles may also enable existing heuristic search
algorithms to be replaced with sound algorithms that converge to the optimal solution under
a broader range of conditions. For example, the heuristic improvement operator in AlphaZero
may be replaced with a principled policy improvement operator [14]. Finally, we hope that
a greater understanding of these principles may result in the development of new search
algorithms that go beyond our current frontiers.
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