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Abstract

Our title challenges the reader to venture beyond linear algebra in designing models and
in thinking about numerical algorithms for identifying solutions. This article accompa-
nies the author’s lecture at the International Congress of Mathematicians 2022. It covers
recent advances in the study of critical point equations in optimization and statistics, and it
explores the role of nonlinear algebra for linear PDEs with constant coefficients.
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1. Introduction

Linear algebra is ubiquitous in the mathematical universe. It plays a foundational
role for many models in the sciences and engineering, and its numerical methods are a driving
force behind today’s technologies. The power of linear algebra stems from our ability, honed
through the practice of calculus, to approximate nonlinear shapes by linear spaces.

Yet, the world is nonlinear. Nonlinear equations are a natural ingredient in mathe-
matical models for the real world. In our view, the true nonlinear nature of a phenomenon
should be respected as long as possible. We argue against the common practice of passing
to a linear approximation immediately. Of course, in the final step of implementing scalable
algorithms, one will always employ the powerful tools of numerical linear algebra. However,
in the early phase of exploring and designing a model, there is significant benefit in going
beyond linear algebra. Mathematical fields such as algebraic geometry, algebraic topology,
combinatorics, commutative algebra, or representation theory furnish practical tools.

The growing awareness of theoretical mathematics in applications has led to a new
field called Nonlinear Algebra. The textbook [32] offers foundations for interested students.
The aim of this lecture is to introduce research trends and discuss a few recent results. At the
core of many problems lies the study of subsets of Rn that are defined by polynomials:®

x 2 Rn
W f1.x/ D � � � D fk.x/ D 0; g1.x/ � 0; : : : ; gl .x/ � 0;

h1.x/ > 0; : : : ; hm.x/ > 0
¯
: (1.1)

The set (1.1) is a basic semialgebraic set. The Positivstellensatz [32, Theorem 6.14] gives
a criterion for deciding whether this set is empty. This seemingly theoretical criterion has
become a practical numerical method, thanks to sums of squares [32, §12.3] and semidefinite
programming [7]. In addition to this, there are symbolic algorithms for real algebraic geom-
etry (cf. [5]). So, the user has a wide range of choices for working with semialgebraic sets.

In this article we disregard the inequalities in (1.1) and retain the equations only:

X D
®
x 2 Rn

W f1.x/ D � � � D fk.x/ D 0
¯
: (1.2)

This is a real algebraic variety. We wish to answer questions about X by reliable
numerical computations, in particular using tools such as Bertini [6] or
HomotopyContinuation.jl [10]. We focus on questions that are addressed by solving
auxiliary polynomial systems with finitely many solutions, where the number of complex
solutions can be determined a priori.

In Section 2 that number is the Euclidean distance degree (ED degree) of X . This
governs the following question: given u 2 RnnX , which point in X is nearest to u in
Euclidean distance? We derive the critical equations of this optimization problem (2.1),
and we consider all solutions to these equations, both real and complex. These include all
local minima and local maxima. Theorem 2.5 expresses the ED degree in terms of the polar
degrees of X . Knowing these invariants allows us to find all critical points numerically,
along with a proof of correctness [9]. We ask our nearest point question also for other norms,
notably those given by a polytope. The polar degrees appear again, in Proposition 2.9.

Section 3 concerns algebraic varieties X that serve as models in statistics. Their
points represent probability distributions. We focus on models for Gaussian distributions
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and discrete distributions. In these two scenarios, the ambient space Rn in (1.2) is replaced
by the positive-definite cone PDn and by the probability simplex �n. Given any data set,
we ask whether X is an appropriate model. To this end, maximum likelihood estimation
(MLE) is used. This optimization problem is stated in (3.2) and (3.7). We employ nonlin-
ear algebra [32] in addressing it. The number of complex critical points is the maximum
likelihood degree (ML degree) of the model X . Theorem 3.7 relates this to the Euler
characteristic of the underlying very affine variety. We apply this theory to a class of
models arising in particle physics, namely the configuration space of m labeled points
in general position in P k�1. Known ML degrees for these models are given in Theo-
rem 3.14.

In Section 4, we turn to an analytic interpretation of the polynomial system in (1.2).
The unknowns x1; : : : ; xn are replaced by differential operators @

@z1
; : : : ; @

@zn
. The polyno-

mials f1; : : : ; fk are viewed as linear partial differential equations (PDEs) with constant
coefficients. The variety X is replaced by the space of functions �.z1; : : : ; zn/ that are
solutions to the PDE. That space is typically infinite-dimensional. Our task is to compute
it. Algorithms are based on differential primary decompositions [2, 17, 18]. We also study
linear PDEs for vector-valued functions. These are expressed by modules over a polynomial
ring.

This article accompanies a lecture to be given in July 2022 at the International
Congress of Mathematicians in St. Petersburg. It encourages mathematical scientists to
employ polynomials in designing models and in thinking about numerical algorithms. Sec-
tions 2 and 3 are concerned with critical point equations in optimization and statistics.
Section 4 offers a glimpse on how nonlinear algebra interfaces with the study of linear PDEs.

2. Nearest points on algebraic varieties

We consider a modelX that is given as the zero set in Rn of a collection ¹f1; : : : ;fkº

of nonlinear polynomials in n unknowns x1; : : : ; xn. Thus, X is a real algebraic variety. We
assume that X is irreducible, that IX D hf1; : : : ; fki is its prime ideal, and that the set of
nonsingular real points is Zariski dense inX . The k � n Jacobian matrix J D .@fi=@xj / has
rank at most c at any point x 2X , where cD codim.X/, and x is nonsingular onX if the rank
is exactly c. Explanations of these hypotheses are found in Chapter 2 of the textbook [32].

The following optimization problem arises in many applications. Given a data point
u2 RnnX , compute the distance to the modelX . Thus, we seek a point x� inX that is closest
to u. The answer depends on the chosen metric. One might choose the Euclidean distance,
a p-norm [29], or polyhedral norms, such as those arising in optimal transport [15]. In all of
these cases, the solution x� can be found by solving a system of polynomial equations.

We begin by discussing the Euclidean distance (ED) problem, which is as follows:

minimize
nX

iD1

.xi � ui /
2 subject to x 2 X: (2.1)
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We now derive the critical equations for (2.1). The augmented Jacobian matrix AJ is the
.k C 1/ � n matrix obtained by placing the row .x1 � u1; : : : ; xn � un/ atop the Jacobian
matrix J. We form the ideal generated by its .c C 1/ � .c C 1/ minors, we add the ideal of
the model IX , and we then saturate [19, (2.1)] that sum by the ideal of c � c minors of J. The
result is the critical ideal CX;u of the modelX with respect to the data u. The variety of CX;u

is the set of critical points of (2.1). For random data u, this variety is finite and it contains
the optimal solution x�, provided the latter is attained at a nonsingular point of X .

The algebro-geometric approach to the ED problem was pioneered in a project
with Draisma, Horobeţ, Ottaviani, and Thomas [19]. That article introduced the ED degree
of X . This is the cardinality of the complex algebraic variety in Cn defined by the critical
ideal CX;u. The ED degree of a model X measures the difficulty of solving the ED problem
for X .

Example 2.1 (Space curves). Fix nD 3 and letX be the curve in R3 defined by two general
polynomials f1 and f2 of degrees d1 and d2 in x1; x2; x3. The augmented Jacobian matrix
is

AJ D

0B@x1 � u1 x2 � u2 x3 � u3

@f1=@x1 @f1=@x2 @f1=@x3

@f2=@x1 @f2=@x2 @f2=@x3

1CA : (2.2)

For random data u 2 R3, the ideal CX;u D hf1; f2; det.AJ/i has d1d2.d1 C d2 � 1/ zeros
in C3, by Bézout [32, Theorem 2.16]. Hence the ED degree of X equals d1d2.d1 C d2 � 1/.
This can also be seen using the general formula from algebraic geometry in [19, Corol-

lary 5.9]. If X is a general smooth curve of degree d and genus g, then EDdegree.X/ D

3d C 2g � 2. The above curve in 3-space has degree d D d1d2 and genus g D d2
1 d2=2C

d1d
2
2 =2 � 2d1d2 C 1.

Here is a general upper bound on the ED degree in terms of the given polynomials.

Proposition 2.2. Let X be a variety of codimension c in Rn whose ideal IX is generated by
polynomials f1; f2; : : : ; fc ; : : : ; fk of degrees d1 � d2 � � � � � dc � � � � � dk . Then

EDdegree.X/ � d1d2 � � � dc �

X
i1Ci2C���Cic�n�c

.d1 � 1/i1.d2 � 1/i2 � � � .dc � 1/ic : (2.3)

Equality holds when X is a generic complete intersection of codimension c (hence c D k).

This appears in [19, Proposition 2.6]. We can derive it as follows. Bézout’s Theorem
ensures that the degree of the varietyX is at most d1d2 � � �dc . The entries in the i th row of the
matrix AJ are polynomials of degrees di � 1. The degree of the variety of .cC 1/� .cC 1/

minors of AJ is at most the sum in (2.3). The intersection of that variety withX is our set of
critical points, and the cardinality of that set is bounded by the product of the two degrees.
Generically, that intersection is a complete intersection and inequality (2.3) is attained.

Formulas or a priori bounds for the ED degree are important when studying exact
solutions to the optimization problem (2.1). The paradigm is to compute all complex crit-
ical points, by either symbolic or numerical methods, and to then extract one’s favorite
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real solutions among these. This leads, for instance, to all local minima in (2.1). The ED
degree is an upper bound on the number of real critical points. This bound is generally not
tight.

Example 2.3. Consider the case n D 2, c D 1, d1 D 4 in Proposition 2.2, where X is a
quartic curve in the plane R2. The number of complex critical points is EDdegree.X/D 16.
But, they cannot be all real. For an illustration, consider the Trott curve X D V.f /, defined
by

f D 144
�
x4

1 C x4
2

�
� 225

�
x2

1 C x2
2

�
C 350x2

1x
2
2 C 81:

For general data u D .u1; u2/ in R2, we find 16 complex solutions to the critical
equations f D

@f
@x2
.x1 � u1/ �

@f
@x1
.x2 � u2/ D 0. For u near the origin, eight of them are

real. For u D .7
8
; 1

100
/, which is inside the rightmost oval, there are 10 real critical points.

The two scenarios are shown in Figure 1. Local minima are green, while local maxima are
purple. For uD .2; 1

100
/, to the right of the rightmost oval, the number of real critical points

is 12.

Figure 1

ED problems on the Trott curve: configurations of eight (left) or ten (right) critical points.

In general, our task is to compute the zeros of the critical ideal CX;u. Algorithms
for this computation can be either symbolic or numerical. Symbolic methods usually rest
on the construction of a Gröbner basis, to be followed by a floating-point computation to
extract the solutions. In recent years, numerical methods have become increasingly popular.
These are based on homotopy continuation. Two notable packages are Bertini [6] and
HomotopyContinuation.jl [10]. The ED degree is important here because it indicates
how many paths need to be tracked to solve (2.1). We next illustrate current capabilities.

Example 2.4. Suppose X is defined by c D k D 3 random polynomials in n D 7 variables,
for a range of degrees d1; d2; d3. The table below lists the ED degree in each case, and
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the times used by HomotopyContinuation.jl to compute and certify all critical points
in C7.

d1 d2 d3 3 2 2 3 3 2 3 3 3 4 2 2 4 3 2 4 3 3 4 4 2 4 4 3
EDdegree 1188 3618 9477 4176 10152 23220 23392 49872
Solving (s) 3.849 21.06 61.51 31.51 103.5 280.0 351.5 859.3
Certifying (s) 0.390 1.549 4.653 2.762 7.591 17.16 21.65 50.07

Here we represent CX;u by a system of 10 equations in 10 variables. In addition to the three
equations f1 D f2 D f3 D 0 in x1; : : : ;x7, we take the seven equations .1;y1;y2;y3/ � AJ D

0. Here y1; y2; y3 are new variables. These ensure that the 4� 7matrix AJ has rank � 3. In
all cases the timings include the certification step [9] that proves correctness and complete-
ness. These computations were performed using HomotopyContinuation.jl v2.5.6 on
a 16 GB MacBook Pro with an Intel Core i7 processor working at 2.6 GHz. They suggest
that our critical equations can be solved fast and reliably, with proof of correctness, when
the ED degree is less than 50000. For even larger numbers of solutions, success with numer-
ical path tracking will depend on the specific structure of the problem. If the discriminant is
well-behaved, then larger ED degrees are feasible. An example of this appears in [34, Table 1].

We next present a general formula for ED degrees in terms of projective geometry.

Theorem 2.5. IfX meets both the hyperplane at infinity and the isotropic quadric transver-
sally, then EDdegree.X/ equals the sum of the polar degrees of the projective closure of X .

The projective closure of X � Rn is its Zariski closure in the complex projective
space P n, which we will also denote byX . Theorem 2.5 appears in [19, Proposition 6.10]. The
hypothesis is stated precisely in [19, equation (6.4)]. It holds for all X after a general linear
change of coordinates. We now explain what the polar degrees of a variety X � P n are.
Points h in the dual projective space .P n/_ represent hyperplanes ¹x 2 P n W h0x0 C � � � C

hnxn D 0º. We are interested in all pairs .x; h/ in P n � .P n/_ such that x is a nonsingular
point of X and h is tangent to X at x. The Zariski closure of this set is the conormal variety
NX � P n � .P n/_.

It is known that NX has dimension n � 1, and if X is irreducible then so is NX .
The image ofNX under projection onto the second factor is the dual varietyX_. The role of
x 2 P n and h 2 .P n/_ can be swapped. The following biduality relations [22, §I.1.3] hold:

NX D NX_ and .X_/_ D X:

The class of NX in the cohomology ring H�.P n�.P n/_; Z/ D ZŒs; t �=hsnC1; tnC1i has
the form

ŒNX � D ı1.X/s
nt C ı2.X/s

n�1t2 C ı3.X/s
n�2t3 C � � � C ın.X/st

n:

The coefficients ıi .X/ of this binary form are nonnegative integers, known as polar degrees.
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Remark 2.6. The polar degrees satisfy ıi .X/ D #.NX \ .L � L0//, where L � P n and
L0 � .P n/_ are general linear subspaces of dimensions nC 1 � i and i , respectively. This
geometric interpretation implies that ıi .X/D 0 for i < codim.X_/ and for i > dim.X/C 1.

Example 2.7. Let X be a general surface of degree d in P 3. Its dual X_ is a surface of
degree d.d � 1/2 in .P 3/_. The conormal varietyNX is a surface in P 3 � .P 3/_, with class

ŒNX � D d.d � 1/2s3t C d.d � 1/s2t2 C d st3:

The sum of the three polar degrees equals EDdegree.X/D d3 � d2 C d ; see Proposition 2.2.

Theorem 2.5 allows us to compute the ED degree for many interesting varieties,
e.g., using Chern classes [19, Theorem 5.8]. This is relevant for applications in machine learn-
ing [11] which rest on low-rank approximation of matrices and tensors with special structure
[33].

The discussion so far was restricted to the Euclidean norm. But, we can measure
distances in Rn with any other norm k � k. Our optimization problem (2.1) extends naturally:

minimize kx � uk subject to x 2 X: (2.4)

The unit ball B D ¹x 2 Rn W kxk � 1º is a centrally-symmetric convex body. Conversely,
every centrally-symmetric convex body B defines a norm, and we can paraphrase (2.4) as
follows:

minimize � subject to � � 0 and .uC �B/ \X 6D ;: (2.5)

If the boundary of B is smooth and algebraic then we express the critical equations
as a polynomial system. This is derived as before, but we now replace the first row of the
augmented Jacobian matrix AJ with the gradient of the map Rn ! R, x 7! kx � uk.

Another case of interest arises when k � k is a polyhedral norm. This means that B
is a centrally-symmetric polytope. Familiar examples of polyhedral norms are k � k1 and
k � k1, where B is the cube and the crosspolytope, respectively. In optimal transport theory,
one uses a Wasserstein norm [15] whose unit ball B is the polar dual of a Lipschitz polytope.

To derive the critical equations, a combinatorial stratification of the problem is used,
given by the face poset of the polytope B . Suppose that X is in general position. Then .uC

��B/ \ X D ¹x�º is a singleton for the optimal value �� in (2.5). The point 1
�� .x

� � u/

lies in the relative interior of a unique face F of the unit ball B . Let LF denote the linear
span of F in Rn. We have dim.LF / D dim.F /C 1. Let ` be any linear functional on Rn

that attains its minimum over the polytope B at the face F . We view ` as a point in .P n/_.

Lemma 2.8. The optimal point x� in (2.4) is the unique solution to the optimization problem

minimize `.x/ subject to x 2 .uC LF / \X: (2.6)

Proof. The general position hypothesis ensures that uCLF intersects X transversally, and
x� is a smooth point of that intersection. Moreover, x� is a minimum of the restriction of `
to the variety .uC LF / \ X . By our hypothesis, this linear function is generic relative to
the variety, so the number of critical points is finite and the function values are distinct.
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Problem (2.6) amounts to linear programming over a real variety. We now determine
the algebraic degree of this optimization task when F is a face of codimension i .

Proposition 2.9. Let L be a general affine-linear space of codimension i � 1 in Rn and ` a
general linear form. The number of critical points of ` on L \X is the polar degree ıi .X/.

Proof. This result is [15, Theorem 5.1]. The number of critical points of a linear form is the
degree of the dual variety .L\X/_. That degree coincides with the polar degree ıi .X/.

Example 2.10. Consider (2.4) and (2.5) whereX is a general surface of degree d in R3. The
optimal face F of the unit ball B depends on the location of the data point u. This is shown
for d D 2 and k � k1 in Figure 2. The algebraic degree of the solution x� equals ı3.X/ D d

if dim.F / D 0, it is ı2.X/ D d.d � 1/ if dim.F / D 1, and it is ı1.X/ D d.d � 1/2 if
dim.F / D 2.

Figure 2

The cube is the k � k1 ball ��B around the green point u. The variety X is the sphere. The contact point x� is
marked with a cross. The optimal face F is a facet, a vertex, or an edge.

We conclude that the conormal variety NX and its cohomology class ŒNX � are key
players when it comes to reliably solving the distance minimization problem for a varietyX .
The polar degrees ıi .X/ reveal precisely how many paths need to be tracked by numerical
solvers like [6,10] in order to find and certify [9] the optimal solution x� to (2.1) or (2.4).

3. Likelihood geometry

The previous section was concerned with minimizing the distance from a given data
point u to a modelX that is described by polynomial equations. In what follows, we consider
the analogous problem in the setting of algebraic statistics [36], where the modelX represents
a family of probability distributions. Distance to u is replaced by the log-likelihood function.
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The two scenarios of most interest for statisticians are Gaussian models and discrete
models. We shall discuss them both, beginning with the Gaussian case. Let PDn denote the
open convex cone of positive-definite symmetric n� nmatrices. Given a mean vector�2 Rn

and a covariance matrix†2 PDn, the associated Gaussian distribution on Rn has the density

f�;†.x/ WD
1p

.2�/n det†
� exp

�
�
1

2
.x � �/T†�1.x � �/

�
:

We fix a model Y � Rn � PDn that is defined by polynomial equations in .�;†/. Suppose we
are givenN samples U .1/; : : : ;U .N / in Rn. These are summarized in the sample mean NU D

1
N

PN
iD1 U

.i/ and in the sample covariance matrix S D
1
N

PN
iD1.U

.i/ � NU/.U .i/ � NU/T .
Given these data, the log-likelihood is the following function in the unknowns .�;†/:

`.�;†/ D �
N

2
�
�
log det†C trace.S†�1/C . NU � �/T†�1. NU � �/

�
: (3.1)

The task of likelihood inference is to minimize this function subject to .�;†/ 2 Y .
There are two extreme cases. First, consider a model where † is fixed to be the

identity matrix Idn. Then Y D X � ¹Idnº and we are supposed to minimize the Euclidean
distance from the sample mean NU to the varietyX in Rn. This is precisely our problem (2.1).

We instead focus on the second case, the family of centered Gaussians, where � is
fixed at zero. The model has the form ¹0º �X , where X is a variety in the space Sym2.R

n/

of symmetric n � n matrices. Following [36, Proposition 7.1.10], our task is now as follows:

minimize the function † 7! log det†C trace.S†�1/ subject to † 2 X: (3.2)

Using the concentration matrix K D †�1, we can write this equivalently as follows:

maximize the function † 7! log detK � trace.SK/ subject to K 2 X�1: (3.3)

Here the variety X�1 is the Zariski closure of the set of inverses of all matrices in X .
The critical equations of the optimization problem (3.3) can be written as polyno-

mials, since the partial derivatives of the logarithm are rational functions. These equations
have finitely many complex solutions. Their number is the ML degree of the model X�1.

Let L � Sym2.R
n/ be a linear space of symmetric matrices (LSSM), whose general

element is assumed to be invertible. We are interested in the modelsX�1 D L andX D L. It
is convenient to use primal–dual coordinates .†;K/ to write the respective critical equations.

Proposition 3.1. Fix an LSSM L and its orthogonal complement L? for the inner product
hX;Y i D trace.XY /. The critical equations for the linear concentration modelX�1 D L are

K 2 L; K† D Idn; and † � S 2 L?: (3.4)

The critical equations for the linear covariance model X D L are

† 2 L; K† D Idn; and KSK �K 2 L?: (3.5)

Proof. This is well known in statistics. For proofs see [35, Propositions 3.1 and 3.3].
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The system (3.4) is linear in K, but the last group of equations in (3.5) is quadratic
in K. The numbers of complex solutions are the ML degree of L and the reciprocal ML
degree of L. The former is smaller than the latter, and (3.4) is easier to solve than (3.5).

Example 3.2. Let n D 4 and let L be a generic LSSM of dimension k. Our degrees are as
follows:

k D dim.L/ 2 3 4 5 6 7 8 9
ML degree 3 9 17 21 21 17 9 3
reciprocal ML degree 5 19 45 71 81 63 29 7

These numbers and many more appear in [35, Table 1].

ML degrees and the reciprocal ML degrees have been studied intensively in the
recent literature, both for generic and special spaces L. See [3,8,21] and the references therein.
We now present an important result due to Manivel, Michałek, Monin, Seynnaeve, Vodička,
and Wiśniewski. Theorem 3.3 paraphrases highlights from their articles [30,31].

Theorem 3.3. The ML degree of a generic linear subspace L of dimension k in Sym2.R
n/ is

the number of quadrics in P n�1 that pass through
�

nC1
2

�
� k general points and are tangent

to k � 1 general hyperplanes. For fixed k, this number is a polynomial in n of degree k � 1.

Proof. The first statement is [31, Corollary 2.6 (4)], here interpreted classically in terms of
Schubert calculus. For a detailed discussion, see the introduction of [30]. The second state-
ment appears in [30, Theorem 1.3 and Corollary 4.13]. It proves a conjecture of Sturmfels and
Uhler.

Example 3.4 (n D 4). Fix 10 � k points and k � 1 planes in P 3. We seek quadratic
surfaces containing the points and tangent to the planes. This imposes 9 constraints on
P .Sym2.C

4// ' P 9. Passing through a point is a linear equation. Being tangent to a plane
is a cubic equation. Bézout’s Theorem suggests that there could be 3k�1 solutions. This is
correct for k � 3 but it overcounts for k � 4. Indeed, in Example 3.2 we see 17; 21; 21; : : :
instead of 27; 81; 243; : : :

The intersection theory in [30, 31] leads to formulas for the ML degrees of linear
Gaussian models. From this we obtain provably correct numerical methods for maximum
likelihood estimation. Namely, after computing critical points as in [35], we can certify them
as in [9]. Since the ML degree is known, one can be sure that all solutions have been found.

We now shift gears and turn our attention to discrete statistical models. We take the
state space to be ¹0; 1; : : : ; nº. The role of the cone PDn is played by the probability simplex

�n D
®
p D .p0; p1; : : : ; pn/ 2 RnC1

W p0 C p1 C � � � C pn D 1 and p0; p1; : : : ; pn > 0
¯
:

(3.6)
Our model is a subset X of �n defined by polynomial equations. As before, for venturing
beyond linear algebra, we identifyX with its Zariski closure in complex projective space P n.
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We shall present the algebraic approach to maximum likelihood estimation (MLE).
See [14,20,25,27,28,36] and references therein. Suppose we are given N i.i.d. samples. These
are summarized in the data vector u D .u0; u1; : : : ; un/ where ui is the number of times
state i was observed. Note that N D u0 C � � � C un. The associated log-likelihood function
equals

`u W �n ! R; p 7! u0 � log.p0/C u1 � log.p1/C � � � C un � log.pn/:

Performing MLE for the model X means solving the following optimization problem:

maximize `u.p/ subject to p 2 X: (3.7)

The ML degree ofX is the number of complex critical points of (3.7) for generic data u. The
optimal solution is denoted Op and called the maximum likelihood estimate for the data u.

The critical equations for (3.7) are similar to those of (2.1). Let IX D hf1; : : : ; fki C

hp0 C p1 C � � � C pn � 1i be the defining ideal of the model. Let J D .@fi=@pj / denote the
Jacobian matrix of size .k C 1/� .nC 1/, and set c D codim.X/. The augmented Jacobian
AJ is obtained by prepending one more row, namely the gradient of the objective function

r`u D .u0=p0; u1=p1; : : : ; un=pn/:

To obtain the critical equations, enlarge IX by the c � c minors of the .k C 2/ � .n C 1/

matrix AJ, then clear denominators, and finally remove extraneous components by satura-
tion.

Example 3.5 (Space curves). Let n D 3 and X the curve in �3 defined by two general
polynomials f1 and f2 of degrees d1 and d2 in p0; p1; p2; p3. The augmented Jacobian
matrix is

AJ D

0BBB@
u0=p0 u1=p1 u2=p2 u3=p3

1 1 1 1

@f1=@p0 @f1=@p1 @f1=@p2 @f1=@p3

@f2=@p0 @f2=@p1 @f2=@p2 @f2=@p3

1CCCA : (3.8)

Clearing denominators amounts to multiplying the i th column bypi , so the determinant con-
tributes a polynomial of degree d1 C d2 C 1 to the critical equations. Since the generators of
IX have degrees d1; d2; 1, we conclude that the ML degree ofX equals d1d2.d1 C d2 C 1/.

The following MLE analogue to Proposition 2.2 is established in [25, Theorem 5].

Proposition 3.6. Let X be a model of codimension c in �n whose ideal IX is generated by
polynomials f1; f2; : : : ; fc ; : : : ; fk of degrees d1 � d2 � � � � � dc � � � � � dk . Then

MLdegree.X/ � d1d2 � � � dc �

X
i1Ci2C���Cic�n�c

d
i1
1 d

i2
2 � � � d ic

c : (3.9)

Equality holds when X is a generic complete intersection of codimension c (hence c D k).

We next present the MLE analogue to Theorem 2.5. The role of the polar degrees is
now played by the Euler characteristic. Consider X in the complex projective space P n, and
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letXo be the open subset ofX that is obtained by removing ¹p0p1 � � �pn.
Pn

iD0pi /D 0º. We
recall from [26,27] that a very affine variety is a closed subvariety of an algebraic torus .C�/r .

Theorem 3.7. Suppose that the very affine variety Xo is nonsingular. The ML degree of the
model X equals the signed Euler characteristic .�1/dim.X/ � �.Xo/ of the manifold Xo.

Proof and discussion. This was proved with a further smoothness assumption in [14, Theo-

rem 19], and in full generality in [26, Theorem 1]. IfXo is singular then the Euler characteristic
can be replaced by the Chern–Schwartz–MacPherson class, as shown in [26, Theorem‘2].

Of special interest is the case when the ML degree is equal to one. This means that
the estimate Op is a rational function of the data u. Here are two examples where this happens.

Example 3.8 (n D 3). The independence model for two binary random variables is a
quadratic surface X in the tetrahedron �3. This model is described by the constraints

det

"
p0 p1

p2 p3

#
D 0 and p0 C p1 C p2 C p3 D 1 and p0; p1; p2; p3 > 0:

Consider data u D
�

u0 u1
u2 u3

�
of sample size juj D u0 C u1 C u2 C u3. The ML degree of the

surface X equals one because the MLE Op is a rational function of the data, namely

Op0 D juj�2.u0Cu1/.u0Cu2/; Op1 D juj�2.u0Cu1/.u1Cu3/;

Op2 D juj�2.u2Cu3/.u0Cu2/; Op3 D juj�2.u2Cu3/.u1Cu3/:
(3.10)

In words, we multiply the row sums with the column sums in the empirical distribution 1
juj
u.

Example 3.9 (n D 2). Given a biased coin, we perform the following experiment: Flip a
biased coin. If it shows heads, flip it again. The outcome is the number of heads: 0, 1, or 2.
This simple model is visualized in Figure 3.

Figure 3

Probability tree that describes the coin toss model in Example 3.9.

If s is the bias of the cone, then the model is the parametric curve X given by

.0; 1/ ! X � �2; s 7!
�
s2; s.1 � s/; 1 � s

�
:

This model is the conic X D V.p0p2 � .p0 C p1/p1/ � P 2. The MLE is given by the
formula

. Op0; Op1; Op2/ D

� .2u0 C u1/
2

.2u0C2u1Cu2/2
;
.2u0Cu1/.u1Cu2/

.2u0 C 2u1 C u2/2
;

u1 C u2

2u0C2u1Cu2

�
: (3.11)

Since the coordinates of Op are rational functions, the ML degree of X is equal to one.
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The following theorem explains what we saw in equations (3.10) and (3.11):

Theorem 3.10. If X � �n is a model of ML degree one, so Op is a rational function of u,
then each coordinate Opi is an alternating product of linear forms with positive coefficients.

Proof and discussion. This was shown for very affine varieties in [27]. It was adapted to
statistical models in [20]. These articles offer precise statements via Horn uniformization for
A-discriminants [22], i.e., hypersurfaces dual to toric varieties. See also [28, Corollary 3.12].

This section concludes with a connection to scattering amplitudes in particle physics
that was discovered recently in [34]. We consider the CEGM model, due to Cachazo and his
collaborators [12, 13]. The role of the data vector u is played by the Mandelstam invariants.
This theory rests on the space Xo of m labeled points in general position in P k�1, up to
projective transformations. Consider the action of the torus .C�/m on the Grassmannian
Gr.k;m/� P .

m
k/�1. Let Gr.k;m/o be the open Grassmannian where all Plücker coordinates

are nonzero. The CEGM model is the .k � 1/.m � k � 1/-dimensional manifold

Xo
D Gr.k;m/o=

�
C�

�m
: (3.12)

Proposition 3.11. The varietyXo is very affine, with coordinates given by the k�k minors of

Mk;m D

2666666664

0 0 0 � � � 0 .�1/k 1 1 1 � � � 1

0 0 0 � � � .�1/k�1 0 1 x1;1 x1;2 � � � x1;m�k�1

:::
:::

::: . . .
:::

:::
:::

:::
:::

: : :
:::

0 0 �1 � � � 0 0 1 xk�3;1 xk�3;2 � � � xk�3;m�k�1

0 1 0 � � � 0 0 1 xk�2;1 xk�2;2 � � � xk�2;m�k�1

�1 0 0 � � � 0 0 1 xk�1;1 xk�1;2 � � � xk�1;m�k�1

3777777775
:

(3.13)

To be precise, the coordinates on Xo � .C�/.
m
k/ are the nonconstant minors pi1i2���ik .

Following [1, equation (4)], the antidiagonal matrix in the left k � k block of Mk;m

is chosen so that each unknown xi;j is precisely equal to pi1i2���ik for some i1 < i2 < � � �< ik .
The scattering potential for the CEGM model is the following multivalued function on Xo:

`u D

X
i1;i2;:::;ik

ui1i2���ik � log.pi1i2���ik /: (3.14)

The critical point equations, known as scattering equations [1, equation (7)], are given by
@`u

@xi;j

D 0 for 1 � i � k � 1 and 1 � j � m � k � 1: (3.15)

These are equations of rational functions. Solving these equations is the agenda in [12,13,34].

Corollary 3.12. The number of complex solutions to (3.15) is the ML degree of the CEGM
model Xo. This number equals the signed Euler characteristic .�1/.k�1/.m�k�1/ � �.Xo/.
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Example 3.13 (k D 2, m D 6). The very affine threefold Xo is embedded in .C�/9 via
p24 D x1; p25 D x2; p26 D x3; p34 D x1 � 1; p35 D x2 � 1;

p36 D x3 � 1; p45 D x2 � x1; p46 D x3 � x1; p56 D x3 � x2:

These nine coordinates on Xo � .C�/9 are the nonconstant 2 � 2 minors of our matrix

M2;6 D

"
0 1 1 1 1 1

�1 0 1 x1 x2 x3

#
:

The scattering potential is the analogue to the log-likelihood function in statistics:

`u D u24 log.p24/C u25 log.p25/C � � � C u56 log.p56/:

This function has six critical points in Xo. Hence MLdegree.Xo/ D ��.Xo/ D 6.

We now examine the number of critical points of the scattering potential (3.14).

Theorem 3.14. The known values of the ML degree for the CEGM model (3.12) are as
follows. For k D 2, the ML degree equals .m � 3/Š for all m � 4. For k D 3, it equals
2; 26; 1272; 188112; 74570400 for m D 5; 6; 7; 8; 9, respectively, and for k D 4, m D 8 it
equals 5211816.

Proof. We refer to [1, Example 2.2], [1, Theorem 5.1] and [1, Theorem 6.1] for k D 2; 3; 4.

Knowing these ML degrees helps in solving the scattering equations reliably. We
demonstrated in [1,34] how this can be done in practice with HomotopyContinuation.jl

[9,10]. For instance, we see in [34, Table 1] that the 10ŠD 3628800 solutions for kD 2,mD 13

are found in under one hour. See [1, Section 6] for the solution in the challenging case k D 4,
m D 8.

4. Nonlinear algebra meets linear PDEs

In his 1938 article on the foundations of algebraic geometry, Wolfgang Gröbner
introduced differential operators to characterize membership in a polynomial ideal. He
solved this for zero-dimensional ideals using Macaulay’s inverse systems [24]. Gröbner
wanted this for all ideals, ideally with algorithmic methods. This was finally achieved in
the article [18].

Analysts made substantial contributions to this subject. In the 1960s, Leon Ehren-
preis and Victor Palamodov studied solutions to linear partial differential equations (PDEs)
with constant coefficients. A main step was the characterization of membership in a primary
ideal by Noetherian operators. This led to their celebrated Fundamental Principle. That result
is presented in Theorem 4.4. For background reading, see [2,17,18] and their references.

Example 4.1 (n D 3). We give an illustration by exploring a progression of four questions.

Question 1: What are the solutions to the system of equations x2
1 D x2

2 D x1x3 � x2x
2
3 D 0?

Question 2: Determine all functions �.z1; z2; z3/ that satisfy the following three linear PDEs:
@2�

@z2
1

D
@2�

@z2
2

D
@2�

@z1@z3

�
@3�

@z2@z
2
3

D 0:
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Question 3: Which polynomials lie in the ideal

I D
˝
x2

1 ; x
2
2 ; x1 � x2x3

˛
\

˝
x2

1 ; x
2
2 ; x3

˛
‹ (4.1)

Question 4: Describe the geometry of the subscheme V.I / of affine 3-space given by (4.1).
Here are our answers to these four questions. Notice how they are intertwined:

Answer 1: Assuming that x2
i D 0 implies xi D 0, the equations are equivalent to x1 D x2 D 0.

Their solution set is a line through the origin in 3-space, namely the x3-axis.

Answer 2: The solutions to these PDEs are precisely the functions �.z/ that have the form

�.z1; z2; z3/ D �.z3/C
�
z2 .z3/C z1 

0.z3/
�

C ˛z1z2 C ˇz1; (4.2)

where ˛; ˇ are constants, and � and  are differentiable functions in one variable.

Answer 3: A polynomial f is in the ideal I if and only if the following four conditions hold:
Both f and @f

@x2
C x3

@f
@x1

vanish on the x3-axis, and both @2f
@x1x2

and @f
@x1

vanish at the origin.

Answer 4: This scheme is a double x3-axis together with an embedded point of length two
at the origin. Hence I has arithmetic multiplicity four: two for the line and two for the point.

Answer 4 reveals the multiplicity structure on the naive solution set in Answer 1.
This is characterized by four features, one for each differential condition in Answer 3. These
are in natural bijection with the four summands of the general solution (4.2) in Answer 2.

We now turn to ideals I in the polynomial ring CŒx� D CŒx1; : : : ; xn�. We identify
then variables with differential operators xi D @zi

that act on functions�.z/D�.z1; : : : ; zn/.
In this manner, each I is a system of linear homogeneous PDEs with constant coefficients.
This role of polynomials is the topic of Section 3.3 in the textbook [32]. The story begins in
[32, Lemma 3.25] with the following encoding of the variety V.I / in the solutions to the PDE.

Lemma 4.2. A point a 2 Cn lies in the variety V.I / if and only if the exponential function
exp.a � z/ D exp.a1z1 C � � � C anzn/ is a solution to the system of linear PDE given by I .

Since our PDEs are linear, their solution sets are linear spaces. Arbitrary C-linear
combinations of solutions are again solutions. The following proposition makes this precise.

Proposition 4.3. Given any measure � on the variety V.I /, here is a solution to our PDEs:

�.z/ D

Z
V.I/

exp.a � z/ d�.a/: (4.3)

If I is a prime ideal then every solution to the PDEs admits such an integral representation.

The first part of Proposition 4.3 is straightforward. Recall that an idealQ is primary
if it has only one associated primeP . The second part is a special case of the following result.

Theorem 4.4 (Ehrenpreis–Palamodov). Fix a prime ideal P in CŒx�. For any P -primary
idealQ in CŒx�, there exist polynomials B1; : : : ; Bm in 2n unknowns such that the function

�.z/ D

mX
iD1

Z
V.P /

Bi .x; z/ exp.x � z/ d�i .x/ (4.4)
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is a solution to the PDEs given by Q, for any measures �1; : : : ; �m on the variety V.P /.
Conversely, every solution �.z/ of the PDEs given by Q admits such an integral represen-
tation.

Proof. See [17, Theorem 3.3] and the pointers to the analysis literature given there.

The polynomialsB1.x; z/; : : : ;Bm.x; z/ are known as Noetherian multipliers. They
depend only on the primary idealQ, and not on the function �.z/. They encode the scheme
structure imposed byQ on the irreducible variety V.P /. The Noetherian multipliers furnish
a finite representation of a vector space that is usually infinite-dimensional, namely the space
of all solutions to the PDE, within a suitable class of scalar-valued functions on n-space.

Example 4.5 (nD 3). LetQ D hx2
1 ; x

2
2 ; x1 � x2x3i be the first primary ideal in (4.1). Here

mD 2,B1 D 1, andB2 D x3z1 C z2. Solutions toQ are given by the two summands in (4.4):

�1.z/ D

Z
1 � exp.0z1 C 0z2 C x3z3/ d�1.x/ D �.z3/

and

�2.z/ D

Z
.z2 C z1x3/ � exp.0z1 C 0z2 C x3z3/ d�2.x/

D z2

Z
exp.0z1C0z2Cx3z3/d�2.x/C z1

Z
x3 exp.0z1C0z2Cx3z3/d�2.x/

D z2 .z3/C z1 
0.z3/:

We conclude that our solution �1.z/C �2.z/ agrees with the first two summands in (4.2).

Switching the roles of x and z, we now set z1 D @x1 ; : : : ; zn D @xn in the Noetherian
multipliers. Here it is important that the x-variables occur to the left of the z-variables in the
monomial expansion of each Bi .x; z/. This results in the Noetherian operators Bi .x; @x/.
These operators are elements in the Weyl algebra and they act on polynomials in CŒx�. We
use � to denote the action of differential operators on polynomials and other functions.

Proposition 4.6. The Noetherian operators determine membership in the primary idealQ.
Namely, a polynomial f .x/ lies inQ if and only ifBi .x;@x/ � f .x/ lies inP for i D 1; : : : ;m.

Proof. This is the content of [2, Proposition 4.8]. See also [17, Theorems 3.2 and 3.3].

Example 4.7. From B1 and B2 in Example 4.5, we obtain the Noetherian operators 1 and
x3@x1 C @x2 . A polynomial f lies in Q if and only if f and .x3@x1 C @x2/ � f are in
P D hx1; x2i.

We have seen that Noetherian multipliers and Noetherian operators are two sides of
the same coin. While the latter characterize the membership in a primary ideal, as envisioned
by Gröbner [24], the former furnish the general solution to the associated PDEs. A next step is
the extension from primary to arbitrary ideals in the polynomial ring R D CŒx�. To be more
general, we consider an arbitrary submodule M of the free module Rk . Such a submodule
represents a system of linear PDEs as before, but for vector-valued functions � W Cn ! Ck .
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For a vectorm 2Rk , the quotient .M Wm/ is the ideal ¹f 2R W f m 2M º. A prime
idealPi �R is associated to the moduleM if .M Wm/D Pi for somem 2Rk . The list of all
associated primes ofM is finite, say P1; : : : ; Ps . If s D 1 thenM is P1-primary. A primary
decomposition of M is a list of primary submodules M1; : : : ; Ms � Rk where Mi is Pi -
primary andM D M1 \M2 \ � � � \Ms . The contribution of the primary moduleMi toM
is quantified by a positive integer mi , called the arithmetic length of M along Pi . To define
this, we consider the localization .RPi

/k=MPi
. This is a module over the local ringRPi

. The
arithmetic length is the length of the largest submodule of finite length in .RPi

/k=MPi
. The

sum m1 C � � � Cms is denoted amult.M/ and called the arithmetic multiplicity of M .

Example 4.8 (n D 3, k D 1). The ideal I in (4.1) has arithmetic multiplicity 4. The arith-
metic length is m1 D m2 D 2 along each of the associated primes P1 D hx1; x2i and P2 D

hx1; x2; x3i.

We now present an extension of Theorem 4.4 to PDEs for vector-valued functions.
Let Vi D V.Pi /� Cn be the irreducible variety defined by the i th associated primePi ofM .

Theorem 4.9 (Ehrenpreis–Palamodov for modules). For any submodule M � Rk , there
exist amult.M/ D

Ps
iD1 mi Noetherian multipliers: these are vectors Bij 2 CŒx; z�k such

that

�.z/ D

sX
iD1

miX
j D1

Z
Vi

Bij .x; z/ exp.x � z/d�ij .x/ (4.5)

is a solution to the PDE given by M . Here �ij are measures that are supported on the
variety Vi . Conversely, every solution to that PDE admits such an integral representation.

Proof. This statement appears in [2, Theorem 2.2]. Differential primary decomposition [18,

Theorem 4.6 (i)] shows that the number of inner summands equals the arithmetic length mi .

As before, we can pass from Noetherian multipliers Bij .x; z/ to Noetherian opera-
torsBij .x; @x/ and obtain a differential primary decomposition ofM ; see [18] and [2, §4]. We
write � for the application of a vector of differential operators to a vector of functions. This
is done coordinatewise and followed by summing the coordinates. The result is a function.

Corollary 4.10. The Noetherian operators determine membership in the moduleM . Namely,
a vector m 2 Rk lies in M if and only if Bij .x; @x/ �m.x/ vanishes on Vi for all i; j .

The package NoetherianOperators [16] in the software Macaulay2 [23] is a
convenient tool for solving the PDE given by a submodule M ofRk . Typing amult(M) gives
the arithmetic multiplicity of M. The command solvePDE(M) lists all associated primes Pi

along with their Noetherian multipliers Bij .x; z/. These features are described in [2, §5].
What is intended with the command solvePDE vastly generalizes the problem of

solving systems of polynomial equations, which is central to nonlinear algebra. That point
is argued in [32, Chapter 3], which culminates with writing polynomials as PDEs. First steps
towards a numerical version of solvePDE are discussed in [2, §7.5] and [16]. It is instructive
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to revisit [32, Theorem 3.27] through the lens of Theorem 4.9. The solution space of an ideal
I is finite-dimensional if and only if each Vi is a point. If, furthermore, s D 1 and V1 D ¹0º,
then the Noetherian multipliers B1.z/; : : : ; Bm1.z/ form a basis for the solution space of I .

If we pass from ideals to modules then even the case s D 1, V1 D Cn is quite rich
and interesting, especially in connection with the theory of wave cones [4]. We close with a
nontrivial example which shows what wave solutions are and how they can be constructed.

Example 4.11 (n D 4, k D 7). Let R D CŒx� and letM � R7 be the module generated by
.x1; x2; x3; x4; 0; 0; 0/, .0; x1; x2; x3; x4; 0; 0/, .0; 0; x1; x2; x3; x4; 0/, and .0; 0; 0; x1; x2;

x3; x4/. This module is primary with V1 D C4 and amult.M/ D 3. It represents a first-
order PDE for unknown functions � W R4 ! R7. To explore solutions of M , we apply the
Macaulay2 command solvePDE. The code outputs three Noetherian multipliers, namely
the rows of24 x4

2 � 3x1x2
2 x3 C x2

1 x2
3 C 2x2

1 x2x4 2x2
1 x2x3�x1x3

2 �x3
1 x4 x2

1 x2
2 �x3

1 x3 �x3
1 x2 x4

1 0 0

x3
2 x3�2x1x2x2

3 �x1x2
2 x4C2x2

1 x3x4 x2
1 x2

3 �x1x2
2 x3Cx2

1 x2x4 x2
1 x2x3�x3

1 x4 �x3
1 x3 0 x4

1 0

x3
2 x4 � 2x1x2x3x4 C x2

1 x2
4 �x1x2

2 x4 C x2
1 x3x4 x2

1 x2x4 �x3
1 x4 0 0 x4

1

35 :
These rows are syzygies of M . They span all syzygies as a vector space over the function
field R.x/. Solutions � to the PDE can be constructed from any syzygy by applying that
differential operator to any function f .z1; z2; z3; z4/. For instance, writing subscripts for
differentiation, the first row of the matrix above gives the following solution to our PDEM :

� D .f2222 � 3f1223 C f1133 C 2f1124; 2f1123 � f1222 � f1114; f1122 � f1113;

� f1112; f1111; 0; 0 /:

Next, we show how nonlinear algebra makes waves. Consider the Hankel matrix

H.u/ D

26664
u1 u2 u3 u4

u2 u3 u4 u5

u3 u4 u5 u6

u4 u5 u6 u7

37775 :
We identify the four entries of x �H.u/ with the generators ofM . The wave cones of [4] are
the determinantal varieties ¹u 2 P 6 W rank.H.u//� rº. For r D 1, this is the rational normal
curve in P 6. For r D 2, it is the secant variety to the curve, of dimension 3. For r D 3, it is the
variety of secant planes. The latter is the quartic hypersurface ¹u 2 P 6 W det.H.u//D 0º. The
span of our three Noetherian multipliers furnishes a parametrization of that hypersurface.

Any u 2 P 6 with H.u/ of low rank yields wave solutions to M . For an illustra-
tion, let

u D .1; 2; 4; 8; 16; 32; 64/:

HereH.u/ has rank 1. Its kernel is spanned by 2e1 � e2, 2e2 � e3, 2e3 � e4. For any scalar
function in three variables, we obtain a function that satisfies the PDE given byM , namely

�.z/ D  .2z1 � z2; 2z2 � z3; 2z3 � z4/ � u:
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This vector is an example of a wave solution. If we take  to be the Dirac distribution at the
origin in R3 then � is a distributional solution that is supported on a line in R4. Character-
izing such low-dimensional supports of solutions is the objective of the article [4].
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