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Abstract

“Nowhere to go but in” is a well-known statement of Osho. Osho meant to say that the
answers to all our questions should be obtained by looking into ourselves. In a para-
phrase to Osho’s statement we say “Nowhere to go but high.” This is meant to demonstrate
that for various seemingly unrelated topics and questions, the only way to get significant
progress is via the prism of a new philosophy (new field) called high-dimensional expan-
sion. In this note we give an introduction to the high-dimensional expansion philosophy,
and how it has been useful recently in obtaining progress in various questions in seemingly
unrelated fields.
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1. Introduction

What is common to the following very diverse and important themes: quantum
codes, counting bases of matroids, locally testable classical codes, fast mixing of Markov
chains, and Gromov’s topological overlapping question? Even if you have not heard of
some/any of these mentioned topics, it is clear that they emerge from completely differ-
ent branches of mathematics and computer science, and hence do not seem particularly
related.

The purpose of this note is to highlight the idea that all the topics mentioned above,
despite seeming unrelated up until recently, are in fact strongly related via a new perspective
that is obtained by introducing a new object called a high-dimensional expander. This object
created inherent, deep relations between topics that previously seemed unrelated. This new
perspective, as well as new connections between different problems via the idea of high-
dimensional expanders, had recently led to various important advances on the above topics
and beyond.

Our goal, in this note is not to provide a survey on high-dimensional expanders, but
rather to give our own perspective on this newly emerged object, and its connections/strong
implications to the above topics, namely to highlight recent advances on the said topics using
the new perspective of high-dimensional expanders.

We intend to highlight how this newly emerged object (or maybe newly emerged
philosophy) is, in fact, tightly related to the above notions and beyond. High-dimensional
expansion has different angles, enabling one to relate these diverse questions/phenomena.

Our aim here is to present what high-dimensional expanders are and how these newly
defined objects give a unified perspective of the topics mentioned above that, prior to the
introduction of high-dimensional expanders, seemed unrelated.

High-dimensional expanders, as we will see, are a generalization of graph expanders
to higher dimensions. But, as we will see, the importance of high-dimensional expanders
does not stem from the fact that they generalize expander graphs to higher dimensions, but
rather from the fact that when objects exhibit expansion in higher dimensions they also have
strong local-to-global properties/nature.

This local-to-global behavior that high-dimensional expanders exhibit is unique to
the high-dimensional case in the sense that it is not present in one-dimensional expanders.
Indeed, this local-to-global philosophy is what makes them so powerful and so connected to
the various topics mentioned above.

Our focus here is not on rigorous proofs, but rather on presenting different angles
of the high-dimensional expansion philosophy, with their recent implications for various
unrelated fields.

Structure of this note. The structure of this note will be as follows. We will start by intro-
ducing basic facts about expander graphs, with specific focus on weighted graphs which are
essential to the theory of high-dimensional expanders (see Section 2). Then, in Section 3, we
will move to introduce the object which is the focus of this note, namely a high-dimensional
expander. We will highlight the fact that there is a notion of high-dimensional topological
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expansion, which generalizes the Cheeger constant for graphs, and high-dimensional spectral
expansion that generalizes the spectral expansion of graphs. In graphs the Cheeger inequal-
ity says that the topological expansion is, in a sense, equivalent to spectral expansion. In
higher dimensions, however, Cheeger inequality does not hold (the spectral definition does
not imply the topological definition, and vise versa). This demonstrates some of the deepness
of the high-dimensional expansion phenomenon.

We then turn to discuss high-dimensional random walks (see Section 4). We define
what high-dimensional random walks are and show that if all links (i.e., local neighborhoods)
of the high-dimensional expander are expanding enough then high-dimensional random
walks mix rapidly.

We follow that discussion by a discussion of the local-to-global aspects of high
dimensional expanders—aspects which are nonexistent in graph expansion. The local-to-
global implication will hold (via different proofs) both for spectral and topological expansion.
We will show that a high-dimensional simplicial complex whose every local link (i.e., local
neighborhoods) are spectrally/topologically expanding must be a global spectral/topological
high-dimensional expander (see Section 5 for local-to-global expansion in the spectral sense,
and see Section 6 for local-to-global expansion in the topological sense).

Using the local-to-global premise and the fact that we have fast mixing of high-
dimensional random walks if all the links are sufficiently expanding, we will deduce fast
mixing of high-dimensional random walks from local expansion in very local neighbor-
hoods.

Then, in Section 7, we move to show that high-dimensional expansion is a form of
local testability of codes and use that towards results on local testability of codes.

We then, in Section 8, demonstrate that local testability of classical codes and quan-
tum LDPC codes are both born together from a high-dimensional expander. Thus, we show
that classical locally testable codes and quantum LDPC codes are connected together via
the high-dimensional expansion perspective. Prior to the introduction of high-dimensional
expanders, these two objects were not known to be related. We will survey some of the major
recent developments in these fields that emerge from this recent viewpoint that connects them
both to high-dimensional expanders.

We then turn to discuss the Gromov topological overlapping problem, its discovered
relation to classical local testability, and its solution via high-dimensional expanders and their
connection to locally testable codes (see Section 9).

We will then (see Section 10) introduce the Mihail–Vazirani Conjecture about
counting bases of matroids that was recently resolved via high-dimensional expansion. We
will introduce the conjecture and will show a rigorous proof of its resolution via local-to-
global theorems on high-dimensional expanders and random walks.

In the end (see Section 11), we mention some topics that are not covered by our
note.
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2. Some classical facts about expander graphs

Before we discuss high-dimensional expanders, we need a solid foundation in the
original theory of expander graphs. Broadly speaking, there are two types of expanders,
combinatorial expanders and spectral expanders. The former generally refers to graphs
G D .V; E/ where all subsets S � V expand outward in some sense (this includes defi-
nitions such as edge expansion, vertex expansion, or unique neighbor expansion). The latter
is somewhat more of a technical condition: it requires that all “nontrivial” eigenvalues of G’s
adjacency matrix be of bounded size. While a priori it is not obvious that these two notions
of expansion are connected, it is well known that they are (at least morally) equivalent (see,
e.g., discussion of Cheeger’s inequality and the expander-mixing lemma in [23]).

2.1. Weighted graphs
In order to introduce expander graphs in a way that is consistent with their higher

dimensional counterparts, we begin by introducing weighted graphs. We assume that there
are no isolated vertices and define weighted graphs as graphs that are equipped with a weight
function for the edges that satisfies the following condition:

Definition 2.1 (Weight function for the edges). Let G D .V;E/. A function wE W E ! .0; 1�

is a weight function for the edges if
P

e2E wE .e/ D 1.

The weight function for the edges of the graph induces a weight function over the
vertices of the graph in the following way:

Definition 2.2 (Weight function for the vertices). Let G D .V; E/ and let wE be a weight
function for the edges of the graph. Then the following wV W V ! .0;1� is the induced weight
function on the vertices of the graph:

wV .v/ D

X
e2E
v2e

1

2
wE .e/:

We note that this weight function over the vertices also sums up to 1 (and therefore
both weight functions define a probability distribution over the edges/vertices). We can now
use these two functions to define the weight function for the graph:

Definition 2.3 (Weight function for a graph). Let G D .V; E/ be a graph and let wE be
a weight function over the edges of the graph. Define the weight function over the graph
w W ¹;º [ V [ E ! R to be the function that satisfies w.;/ D 1, w jV D wV and w jE D wE .

2.2. Spectral expansion of graphs
Let us start by describing the spectral notion of expansion. We will start by going

over some basic spectral properties of weighted graphs. To start, we need to define the main
object of interest, the adjacency matrix.
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Definition 2.4 (Adjacency matrix). The adjacency matrix of a weighted graph G D .V; E/

with a weight function w is
Av;w D

w.¹v; wº/

2 w.v/
:

One natural (and useful) way to think about the adjacency matrix is as the transition
matrix1 of the random walk underlying G which moves from a vertex v to vertex w with
probability corresponding to the edge weights incident to v. Indeed, much of this survey
will focus on standard connections between properties of this walk and the eigenvalues of A,
and how they generalize to higher dimensions. First, however, we need a few basic spectral
facts about the adjacency matrix A.

Proposition 2.5. Let G D .V;E/ be a weighted graph, and AG its corresponding adjacency
matrix. Then AG has a spectral decomposition (i.e., an orthonormal basis of eigenvectors).

Proof. This follows from the Cauchy’s celebrated spectral theorem that any self-adjoint oper-
ator can be diagonalized. The trick is then to find an inner-product space over which AG is
self-adjoint. One can show that this is the case for the standard inner product normalized by
the distribution w induces over vertices. For f; g W V ! R, let

hf; gi D

X
v2V

w.v/f .v/g.v/:

A simple computation verifies that hAf; gi D hf; Agi.

Now that we know AG has a well-defined spectrum, we can examine properties of
its eigenvalues. For a graph G on n vertices, denote the eigenvalues of AG in decreasing
order by �1 � � � � � �n. For our purposes, we are most interested in two basic properties of
these eigenvalues.

Claim 2.6. Let G D .V; E/ be a weighted graph, and AG its corresponding adjacency
matrix with eigenvalues �1 � � � � � �n. Then (i) the all 1’s vector is an eigenvector sat-
isfying AG1 D 1 and (ii) it is also the maximal eigenvalue (in absolute value), 1 D �1 �

�2 � � � � � �n � �1.

It is well known that a graph G is connected if and only if �2 < 1. Spectral expansion
studies a strengthening of this condition, when the second eigenvalue is bounded away from 1

by some constant.

Definition 2.7 (Weighted spectral expansion). We say a weighted graph G D .V; E/ is a
(one-sided) �-spectral expander if �2 � �. The quantity 1 � �2 is often called the spectral
gap, and is an equivalent way to express one-sided spectral expansion.

At the beginning of this section, we mentioned that spectral expansion is intimately
tied to combinatorial expansion. Intuitively, this follows from the fact that the latter can be
viewed as a sort of robust connectivity. Thought of in this manner, it is no surprise that

1 Technically, the transpose, as we will discuss later.
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since �2 < 1 enforces G to be connected, smaller �2 corresponds to stronger notions of
connectivity akin to combinatorial expansion.

2.3. Topological expansion of graphs
Informally, a finite graph is called an expander if relatively many edges cross

between every set of vertices and its complement.
If G is a weighted graph with w as its weight function (one can take wE D

1
jE j

to
ignore the weights), then one can define the following norm over sets of vertices/edges (or
the indicator of such sets):

kSkw D

X
s2S

w.s/; k1S kw D kSkw :

In this case, the topological expansion of .G;w/ is quantified by its Cheeger constant, defined
as

h.G; w/ D min
;¤S¨V

kı1S kw

min ¹k1S kw ; k1V nS kwº
;

where ı1S is a function that accepts an edge ¹u; vº and returns 1 iff 1S .u/ C 1S .v/ D 1 (the
sum is performed modulo 2). Note that the numerator of the Cheeger constant is the norm
of the edges that connect S and V n S . One says that .G; w/ is an "-expander if h.G/ � ".

We know that if a weighted graph .G;w/ is a �-spectral expander, then .G;w/ is has
a good Cheeger constant. We call such inequalities Cheeger inequalities and in the following
establish a weighted version of the Cheeger inequality. Recall that given a weighted graph
.G; w/ and A � V , we write 1A for the indicator function of A.

Theorem 2.1 (Weighted Cheeger inequality). Let .G; w/ be a weighted graph which is also
a �-spectral-expander and let A � V . Then (see [31, Theorem 4.4])

kı1Akw � 2.1 � �/k1Akw
�
1 � k1Akw

�
:

In addition (see [16, Theorem 2.1]), if h.G;w/ � � then .G;w/ is a
q

1 �
�2

4
-spectral expander.

Importantly, we have no analogue for the Cheeger inequality in higher dimen-
sions; i.e., high-dimensional spectral expansion does not imply high-dimensional topological
expansion, and the implication in the other direction also does not hold.

3. High-dimensional expanders: The object of study

3.1. Simplicial complexes and links
In order to generalize an expander graph to higher dimensions, we first have to

define an object that has higher dimension. Our object of choice is a pure simplicial com-
plex. These are objects generalize graphs in two important ways: firstly, much like graphs
only contain an edge if both its vertices are in the graph. If a simplicial complex contains
a higher-dimensional edge then it contains all of the lower dimensional edges that are con-
tained in it. Secondly, the complex does not include a high-dimensional isolated vertex, i.e.,
every edge is contained in a maximal edge.
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Definition 3.1 (Pure simplicial complex). A collection of sets X is a pure simplicial complex
if it satisfies the following:

• X is a simplicial complex, i.e., if � 2 X and � � � then � 2 X .

• X is pure, i.e., if �; � 2 X are maximal sets (a set is maximal if it is not contained
in any strictly larger set of the complex) in X then j� j D j� j.

We call subsets in X the faces of X .

We define the dimension of a face as follows:

Definition 3.2 (Dimensions). Given a face � 2 X , we define the dimension of � to be
dim.�/ D j� j � 1 and the dimension of the complex to be the dimension of the maximal
face in X . We also define the set of faces of a certain dimension in the following way:

X.i/ D
®
� 2 X W dim.�/ D i

¯
:

We should also stress that X.�1/ D ¹;º.

Definition 3.3 (Degree). The degree of a simplicial complex is the maximal number of faces
on a single vertex. A family of simplicial complexes with growing number of vertices is said
to have bounded degree if their degree is independent on the number of vertices, and remains
fixed as the number of vertices in the family grows.

We note that one can think of pure d -dimensional complex as a d -uniform hyper-
graph with closure property.

We often refer to local neighborhoods of a simplicial complex. These are called
links. Links play a major role in studying high-dimensional expanders, as much of the study
is done via the local-to-global paradigm, where we study a complex by its links. Links are
defined as follows.

Definition 3.4 (Links). Let X be a d -dimensional pure simplicial complex. For every i and
� 2 X.i/, the link of � is the restriction of the complex to faces containing � , that is,

X� D ¹� n � W � 2 X and � � �º:

Put into words, X� is the complex that arises by selecting all d -faces that contain � , then
removing � itself. Finally, it is often convenient to refer to the set of links for all � 2 X.i/,
which we will refer to as the i -links.

Links provide a natural method for decomposing global functions on simplicial
complexes into local parts. For instance, it is not hard to see that given a function on k-faces
f W X.k/ ! R, its expectation over the complex is equal to the average of its expectation
over links:2

E
X.k/

Œf � D E
�2X.i/

�
E

�2X� .k�i/

�
f .� [ �/

��
:

2 Formally, these expectations are defined over weighted complexes where each level (and
link) is endowed with a distribution. We cover this in the following section.
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3.2. Weighted simplicial complexes and weighted links
When defining high-dimensional expanders, we would need to work with weighted

simplicial complexes.

Definition 3.5 (Weighted simplicial complex). A weighted pure d -dimensional simplicial
complex .X; …/ is a pure d -dimensional simplicial complex X endowed with a distribution
… on faces of the maximal dimension. The weight of a k-dimensional face in the simplicial
complex is then defined in the following way:

w.�/ D

8<: ….�/ if � 2 X.d/;

1
j� jC1

P
�2X.kC1/

���

w.�/ otherwise.

When … is not specified, it is assumed to be uniform.

The weighted links of a weighted complex are, naturally, themselves weighted com-
plexes with distributions inherited from the global distribution ….

Definition 3.6 (Weighted links). Let .X; …/ be a d -dimensional weighted simplicial com-
plex. For all 0 � i � d and � 2 X.i/, the weighted link .X� ; …� / is given by:

(1) X� D ¹� n � W � 2 X and � � �º,

(2) w� .�/ D Pr� 0�… Œ� 0 D � j � � � 0� D
w.�[�/

.j� jCj� j

j� j
/w.�/

.

In other words, the distribution over X� is simply given by normalizing … over the top level
faces of X� . Finally, note that we usually drop the distribution …� when clear from context.

Much like in the one-dimensional case, we will be interested in defining a norm on
sets of faces of some dimension. And, again, much like in the graph case, we will do so in
the following way:

Definition 3.7 (Norm). For any weighted pure d -dimensional simplicial complex and every
dimension i , define the following norm:

8S � X.i/; kSkw D

X
s2S

w.s/; k1S kw D kSkw :

3.3. Spectral definition of high-dimensional expansion
We are now ready to give definitions of high-dimensional expanders. We will

give spectral and topological definitions of high-dimensional expanders. The first defini-
tion we are going to consider is a spectral definition of high-dimensional expanders that are
called local spectral expanders. These are simplicial complexes whose links are excellent
expanders in the sense that their underlying graph is an expander. Formally, consider the
following two definitions:

Definition 3.8 (Skeleton). Let X be a simplicial complex and define the i skeleton of X to
be the following simplicial complex:

X .i/
WD ¹� 2 X W dim � � iº:
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Using this definition, we consider the underlying graph of the links as their 1-
skeleton and arrive at the following definition that was introduced by [12,25,39].

Definition 3.9 (Local spectral expander [12,25,39]). A d -dimensional complex X is a �-local
spectral expander if for every i � d � 2 and � 2 X.i/ it holds that:

• X
.1/
� is connected,

• �2.X
.1/
� / � �.

A simplicial complex X will be called a strong local spectral expander if it is a �-local
spectral expander with � < 1

d
. Otherwise, it is called a weak local spectral expander.

Note that in this definition we only regarded some of the links. This is because the
rest of the links are either a set of unconnected vertices or a complex that contains only the
empty face.

3.4. Topological definition of high-dimensional expansion
Another generalization of expander graphs to higher dimensions generalizes them

in a topological sense. Consider the Cheeger constant definition of expansion in the graph
case. The Cheeger constant is the proportion between the weight of edges that “go out” of the
set and the weight of the set itself (for sufficiently small sets). In case of higher dimension,
it will be useful to think of the indicator function of a set of sets. We therefore define:

Definition 3.10 (Cochains). For a weighted simplicial complex .X; w/, define the set of
cochains of X over an abelian group G to be

C i .X I G/ WD GX.i/:

For G D F2, this definition coincides with an indicator function for a set of sets of
size i C 1. For the vast majority of this note, the cochains will be, indeed, defined over F2.
We will therefore state explicitly when we are using a different underlying group. Moreover,
the rest of the definitions in this section are out of the scope of this note for cochains that are
defined over groups that are not F2. Therefore we will only present the following definitions
over F2.

It is then natural to ask how to define, for example, a triangle leaving a set of edges
(similar to an edge leaving a set of vertices). Consider the following generalization of ı:

Definition 3.11 (Coboundary operator). The coboundary operator

ıi W C i .X I F2/ ! C iC1.X I F2/

is defined by
ıi F.�/ D

X
�2. �

iC1/

F.�/: (1)

In most cases, the dimension will be clear from context and therefore omitted.
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Therefore we say that a triangle is leaving a set of edges if an odd number of its
edges is in the set. In addition, a standard computation shows that ıiC1 ı ıi D 0. We can
therefore define the spaces of i -coboundaries and the space of i -cocycles as

B i
D B i .X/ D B i .X I F2/ D Im.ıi�1/ and Zi

D Zi .X/ D Zi .X I F2/ D ker.ıi /; (2)

respectively, where ı�2 D 0 by convention. We have B i � Zi � C i because ıi ı ıi�1 D 0,
and the quotient space H i .X I F2/ D Zi =B i is the i th cohomology space. The space dual to
H i .X I F2/ is the i th homology space denoted as Hi .X I F2/. We say that X is i -dimensional
F2-connected if H i .X I F2/ D 0.

We would now like to move on to describe the high-dimensional generalization of
the Cheeger constant. Before we do that, however, we have to thoroughly inspect the denom-
inator of the Cheeger constant. Note that in any graph there are sets that are guaranteed not
to expand. These sets are the empty set and the whole graph. Therefore, in the Cheeger con-
stant we are not looking for the absolute expansion of a set, but rather we relate the expansion
of the set to how different it is from one of these trivially nonexpanding sets. In the high-
dimensional case we very much do the same. Here, however, there will be more sets that
are trivially nonexpanding. Specifically, these sets are coming from the dimension below.
Formally, a set of the form ıF where F is an .i � 1/-dimensional set is trivially nonexpand-
ing in the i th dimension. These sets are called the coboundaries of X and are denoted as
B i .X/. We therefore define coboundary expansion, the higher dimensional analogue of the
edge expansion in the following way. The definition is originated in the work of Linial and
Meshulam and the work of Gromov [21,36].

Definition 3.12 (Coboundary expansion [21, 36]). Let .X; w/ be a pure, d -dimensional
weighted simplicial complex. Define the following generalization of the Cheeger constant:

hi .X; w/ D min
F 2C i .X/nB i .X/

²
kıF kw

minG2B i .X/ ¹kF C Gkwº

³
:

We say that a simplicial complex is an "-coboundary expander if hi .X; w/ � � for every
dimension.

Note here that h0.X; w/ is the Cheeger constant of the graph corresponding to the
one skeleton of the complex. Note further that hi .X; w/ > 0 iff H i .X I F2/ D 0.

To date, no bounded-degree coboundary expanders are known. However, in most
cases a relaxation of this condition suffices, namely cosystolic expansion. These cosystolic
expanders are the high-dimensional analogue of a graph with several large connected com-
ponents that are all expanders. The high-dimensional analogue very much follows suite: the
high-dimensional analogue of connected component is a generalization of the fact that a
connected component is a set of vertices that has no outgoing edges which are, in fact, the
cocycles. Therefore a complex with large connected components that are all expanders has
been defined by [12,25] as follows.

Definition 3.13 (Cosystolic expansion [12,25]). Let .X; w/ be a pure, d -dimensional simpli-
cial complex. Consider the following two definitions:
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(1) The expansion of the connected components

Qhi .X; w/ D min
F 2C i .X/nZi .X/

²
kıF kw

minG2Zi .X/ ¹kF C Gkwº

³
:

(2) The minimal connected component

cosysti .X; w/ D min
F 2Zi .X/nB i .X/

®
kF kw

¯
:

We say that a weighted simplicial complex is an .�; �/-cosystolic expander if for every
dimension it holds that both all the connected components are expanding, i.e., Qhi .X;w/ � �,
and all of the connected components are large cosysti .X; w/ � �.

Now that we have generalized expansion to higher dimensions, let us discuss some of
the properties of high-dimensional expanders. We will start with considering one of the most
important properties of high-dimensional expanders, namely the fact that high-dimensional
random walks converge rapidly to their stationary distribution.

4. Random walks on high-dimensional expanders

High-dimensional random walks are one of the major tools in the study of high-
dimensional expanders. They were introduced by Kaufman and Mass [27] and were further
developed in [1,10,30,33]. They have various implications; however, in this note we are going
to mention only a few. One of the most important properties of local spectral expanders is
the fast convergence of random walks to their stationary distribution.

The proof of fast mixing of random walks on high-dimensional expanders is in the
spirit of the local-to-global method developed by Garland [18] who has shown that a simpli-
cial complex whose all links spectrally expand has vanishing cohomology over R. One can
think about Garland’s result as studying expansion over R using local-to-global arguments.
Essential to Garland’s method is the fact that over R one can use self-adjoint operators and
inner products which do not exist in all spaces, for example, over F2.

We use a method similar in spirit Garland to prove fast mixing of high-dimensional
random walks.

Unlike the graph case, in which there is one canonical random walk, in a high-
dimensional expander many random walks are considered. We will be interested in the up–
down walk and the down–up walk of every dimension. The k-dimensional up–down walk
transitions between faces of dimension k. Every step of the walk comprises two substeps,
the up step and the down step. If at the beginning of the step the walk is at � then in the up
step, a .k C 1/-dimensional face � is chosen that contains � with distribution proportional
to its weight. Then in the down step, a k-dimensional face that is contained in � is selected
with equal probability. The down–up walk can similarly be defined as taking the step down
first and then taking the step up. Formally, these are defined as follows:

Definition 4.1 (Down and up walks). Define the up walk as U k W C k.X I R/ ! C k.X I R/,
where

U kF.�/ D E�2X.k/

�
F.�/ j � � �

�
:
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And the down walk Dk W C k.X I R/ ! C k�1.X I R/ is defined as

DkF.�/ D E�2X.k/

�
F.�/ j � � �

�
:

And the corresponding random walks were defined as:

Definition 4.2 (Up–down and down–up random walks). Define the up–down random walk
and the down–up random walks as

�C

k
D DkC1U k and ��

k D U k�1Dk ;

respectively.

As previously mentioned, the convergence of these random walks is a key prop-
erty of high-dimensional expanders. Since their introduction by Kaufman and Mass in [27],
high-dimensional random walks have proven themselves to be the backbone of many appli-
cations of high-dimensional expander in computer science. Examples include resolution [3]

of the Mihail–Vazirani conjecture [38] (which we will rigorously present in Section 10),
derandomization of direct product testing [7,10,28], and more.

We say that these random walks converge rapidly due to:

Theorem 4.3 (Random walks converge rapidly on good enough local spectral expanders
[30]). If X is a 
 -local spectral expander then

�2.�C

k�1
/ D �2.��

k / � 1 �
1

k C 1
C

k

2

:

Note that Theorem 4.3 yields nontrivial results for every dimension only when

 2 O. 1

d2 /, which suffices for many applications. There are, however, cases in which we
might be interested in convergence of random walks and will not have such strong expansion
assumptions (for example, when trying to sample an independent set with the hardcore dis-
tribution [2]). In [1] Alev and Lau relaxed this requirement and proved the following theorem:

Theorem 4.4 (Random walks converge rapidly even for weak local spectral expanders [1]).
Let X be a pure d -dimensional simplicial complex and let


i D max
®
�2.X .1/

� / W � 2 X.i/
¯
:

Then

�2.��
k / � 1 �

Qk�2
iD�1 .1 � 
i /

k C 1
;

which is meaningful whenever all the 1-skeletons of the links are connected.

It is important to note that in both Theorems 4.3 and 4.4 the key observation is that
the k-dimensional random walks can be viewed through the random walks over the links
of the complex. For example, consider a step in the up–down random walk. This step cor-
responds to first picking a link to walk over (specifically, the link of a .k � 1/-dimensional
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face). In that link, the original face is a vertex. Then the walk simply picks one of its neighbors
and walks there.3

Recent works on high-dimensional random walks focuss on a stronger property,
namely they are interested in optimal mixing time and have studied conditions under which
such an optimal mixing time exists (see, e.g., [6]).

5. Local-to-global spectral expansion of

high-dimensional expanders

In this section we present a local-to-global property of spectral high-dimensional
expanders. Specifically, we will show that if all the links are connected, global expansion
can be derived from local expansion. The philosophy implemented in the proof is similar in
spirit to that of Garland, where one uses self-adjoint operators and inner products defined
over R to study expansion over R.

However, the local-to-global descent of spectral gaps is inherently different from the
random walks’ result in the following way. The fast mixing of random walks’ result assumes
spectral expansion in all links including the link of the empty set (which is a global expansion
condition on the whole complex!) to conclude fast mixing of random walks. Hence that result
is not based only on local assumptions. In contrast, the following result about descent of
spectral gaps from links to the entire complex only assumes spectral expansion in local links
to deduce global expansion! So the following result is a genuine local-to-global result, while
the random walk result also assumed some global property.

We emphasize, however, that the ability to get the descent of spectral expansion from
the links to the global object requires the complex to be a strong local spectral expander.
By this we mean that the complex is a 
 -local spectral expander with 
 < 1

d
, where d is the

dimension of the complex. Namely, the descent of spectral gaps that we are going to present,
and is known under the name of the “Trickling Down Theorem” is only possible under a
strong local spectral expansion guarantee. This is in contrast with the previously discussed
fast mixing of random walks in local spectral expanders, which we have shown to hold for any
local spectral expander, not necessarily strong (see, e.g., [19] for an example of a local spectral
expander that is not strong). The point we are making is that strong local spectral expansion
is inherently different than nonstrong local spectral expansion, as both allow for fast mixing
of random walks, but only the strong one exhibits trickling down effects. We further note
that all currently known combinatorial constructions of high-dimensional expanders yield
only weak spectral expanders. Constructions of strong spectral expanders are only known
via algebraic means.

Theorem 5.1 (Trickling Down Theorem [39]). Let X be a pure n-dimensional simplicial
complex with connected links. If, for every vertex v, it holds that Xv is a �-local spectral
expander then X is a �

1��
-local spectral expander.

3 Note that this yields a walk whose lazy component is larger and therefore it stays in the
original face with higher probability.
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We will prove the theorem by looking at the Laplacian of the adjacency matrix. We
will denote the adjacency matrix of the complex by A and introduce the following:

Definition 5.2. Let L C
0 be the Laplacian of an up–down walk on the complex X , i.e.,

L C
0 D I � A. In addition, denote the Laplacian of the link of � by L C

�;0.

We note that L C
0 is self-adjoint and present the following:

Definition 5.3 (Restriction). Let � be a face and F 2 C k.X I R/ be a cochain. Define the
restriction of F to � to be F � 2 C k.X� I R/ such that F � .�/ D F.�/.

Lemma 5.4. Let F; G 2 C k.X I R/ and let 0 � l � n � k � 1. Then

hF; Gi D E�2X.l/

�˝
F � ; G�

˛�
:

In addition, if F; G 2 C 0.X I R/ then˝
L C

0 F; G
˛
D E�2X.l/

�˝
L C

�;0F � ; G�
˛
�

�
:

This lemma is the key of the local-to-global argument. We are interested in study-
ing the behavior of some process over the complex; in this example, the up–down random
walk. In order to do so, we look at the process from a local point of view, i.e., the links of
the complex. We then use properties we already know about the links in order to derive that
the entire complex satisfies the property as well. We are interested in the smallest nonzero
eigenvalue of L C

0 . It would therefore be useful to understand the eigenspace whose eigen-
value is exactly 0. We would therefore consider the following projection into the eigenspace
of 0:

Definition 5.5. We let L �
0 be the projection to the space of constant functions, formally

8F 2 C 0.X I R/ W L �
0 F.v/ D hF; 1i1 D Eu2X.0/

�
F.u/

�
:

And, as with L �
0 , we also define local versions of this operator as

L �
u;0F.v/ D hF; 1uiu1u D Eu2Xu.0/

�
F u.u/

�
:

Lemma 5.6. For every cochain F 2 C 0.X I R/, it holds that

L C
0 F.v/ D F.v/ � L �

v;0F v:

Proof. Notice that

L C
0 F.v/ D .I � A/F.v/ D F.v/ � AF.v/ D F.v/ �

X
u2X.0/

ŒA�v;u�.u/

D F.v/ �

X
u2X.0/

��2X.1/

ŒA�v;u�.u/

D F.v/ �

X
u2Xv.0/

wv.u/�v.u/ D F.v/ � L �
v;0F v:
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We are now ready to prove the trickling down theorem. We will, however, present
the proof for the Laplacian instead of the actual walk operator. Theorem 5.1 can be deduced
using the standard connection between the eigenvalue of an operator and its Laplacian.

Theorem 5.7. Let X be a simplicial complex whose 1-skeleton is connected and in which,
for every v 2 X.0/, it holds that �2.Lv;0/ � �. Then �2.L0/ � 2 �

1
�

.

Proof. Let � be a nontrivial eigenvalue of L0 with the eigenfunction F , i.e.,

L0F D �F:

Note that due to Corollary 5.4, it holds that

�kF k
2

D �hF; F i D h�F; F i D
˝
L C

0 F; F
˛
D Ev2X.0/

�˝
L C

0;vF v; Gv
˛
v

�
: (3)

For every v 2 X.0/, let F vk D hF v; 1viv1v be the projection of F v to a constant on Xv and
F v? D F v � F vk, and note that it is orthogonal to F vk. Note that for every v it holds that
F vk is constant over Xv and therefore

L C
v;0F vk

D .I � A/F vk
D F vk

� AF vk
D F vk

� F vk
D 0;

where AF vk D F vk due to A being an averaging operator and F vk being constant. We denote
by ¹Gi ºi2I the eigenfunction basis of L C

v when excluding the constant functions over Xv

(i.e., the eigenfunctions whose eigenvalue is 0). We then use the previous fact to conclude
that˝

L C
v;0F v; F v

˛
D

˝
L C

v;0.F v?
C F vk/; F v

˛
D

˝
L C

v;0F v?; F v
˛
D

˝
F v?; L C

v;0F v
˛

D
˝
F v?; L C

v;0F v?
˛
D

˝
L C

v;0F v?; F v?
˛�

L C
v

X
i2I

˛i Gi ; F v?

�
D

X
i2I

˛i

˝
L C

v Gi ; F v?
˛
D

X
i2I

˛i

˝
�i Gi ; F v?

˛
D

X
i2I

˛i �i

˝
Gi ; F v?

˛
� �

X
i2I

˛i

˝
Gi ; F v?

˛
D �

�X
i2I

˛i Gi ; F v?

�
D �

˝
F v?; F v?

˛
D �



F v?


2

:

We combine this with (3) to conclude that

�kF k
2

D Ev2X.0/

�˝
L C

0;vF v; Gv
˛
v

�
� �Ev2X.0/

�

F v?


2�

:

We will move on to calculate Ev2X.0/ŒkF v?k�. Note that

F v


2

D
˝
F v; F v

˛
D

˝
F vk

C F v?; F vk
C F v?

˛
D

˝
F vk; F vk

˛
C

˝
F v?; F v?

˛
D



F vk


2

C


F v?



2
: (4)

In addition, due to Lemma 5.4,

kF k
2

D Ev2X.0/

�

F v


2�

: (5)

We note that

L �
v F v.u/ D Eu02X.0/

�
F v.u0/

�
1v.u/ D

� X
u02X.0/

wv.u0/F v.u0/1v.u0/

�
1v.u/

D
˝
F v; 1v

˛
1v:
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And conclude that

�F.v/ D F.v/ � F vk
) F vk

D .1 � �/F.v/:

We can now calculate Ev2X.0/ŒkF vkk2� as

Ev2X.0/

�

F vk


2�

D .1 � �/2Ev2X.0/

�
kF k

2
�

D .1 � �/2
kF k

2: (6)

Combining (4)–(6), we get that

Ev2X.0/

�

F v?


�

D Ev2X.0/

�

F v


2�

� Ev2X.0/

�

F vk


2�

D kF k
2

� .1 � �/2
kF k

2

D �.2 � �/kF k
2

Using this, we conclude that

�kF k
2

� ��.2 � �/kF k
2:

And thus,
1 � �.2 � �/ )

1

�
� 2 � � ) � � 2 �

1

�
;

as claimed.

Applying the trickling theorem repeatedly yields the following local-to-global result:

Corollary 5.8. Let X be a d -dimensional pure simplicial complex. If there exists � 2 .0; 1�

such that:

• For every � 2 X such that dim.�/ � d � 2, it holds that X
.1/
� is connected.

• For every � 2 X such that dim.�/ D d � 2, it holds that �2.X
.1/
� / �

�
1C.d�1/�

.

Then X is a �-local spectral expander.

6. Local-to-global topological expansion of

high-dimensional expanders

In the previous section, we have seen local-to-global spectral expansion over R. As
we have explained, that result is based on Garland’s philosophy using the fact that over the
reals we have inner products and self-adjoint operators, which are useful in deriving the
local-to-global theorem.

In order to prove local-to-global expansion in the topological sense, we need to
show that a local-to-global statement occurs over finite fields (in particular, over F2) in the
case of high-dimensional expanders. Thus, we have to deviate dramatically from the Garland
paradigm that uses self-adjoint operators and inner products as they do not exist over F2.

The local-to-global method we develop here (that is used to prove the local-to-global
expansion over F2) uses the following idea. It shows how to derive expansion of small sets
on a complex with topologically expanding links using a newly introduced notion of local
minimality. It then shows that expansion of large sets can be inferred from expansion of small
sets in the case of a complex with high enough dimensions.
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The following theorem is a central local-to-global theorem in topological high
dimensional expansion. It essentially says that global topological expansion denoted as
cosystolic expansion can be obtained from local topological expansion known as coboundary
expansion.

We see here again the philosophy that in high-dimensional expansion we have a
local-to-global deduction with some loss, i.e., from local coboundary expansion, we deduce
a global cosystolic expansion, which is a weaker topological notion of expansion. Recall that,
in the local-to-global spectral expansion, we have a larger loss in the spectral expansion the
more we move down in the trickling procedure.

The local-to-global topological expansion theorem first appeared in [25], albeit only
for dimension 2. It was then extended to any dimension in [12], and recently was extended
further by [29] to show that cosystolic expansion could be defined with regard to not only
binary cochains, but also to cochains that get values in any group. The work of [29] shows
that, even under this more generalized setting, global cosystolic expansion could be deduced
from coboundary expansion in links.

Theorem 6.1 (Local-to-global cosystolic expansion [12, 25, 29]). For any d; q 2 N and
0 < ˇ < 1, there exist 0 < �; � < 1 such that the following holds: Let X be a d -dimensional
q-bounded degree simplicial complex satisfying the following local conditions:

• Spectral expansion in links, i.e., X is one sided-�-local spectral expander;

• Topological expansion in links, i.e., X ’s links are ˇ-coboundary expanders.

Then the .d � 1/-skeleton of X is an .�; �/-global cosystolic expander, where

� D min
²

�2d �1;
1

qd
d
2

³
and � D �2d �1:

As previously mentioned, an important concept that was introduced in [25] and is a
major tool in the analysis of the above theorem is a notion called local minimality.

Definition 6.2 (Local minimality). Given a weighted simplicial complex .X;w/, a k-cochain
f 2 C k.X/ is (globally) minimal if jjf jj D minb2Bk.X/¹jjf C bjjº. Cochain f is called
locally minimal if f� is minimal in X� for every � 2 X.i/, 0 � i < k.

Note that minimality implies locally minimality, but not vice versa. The main idea
of [25] and its followup works was to use the notion of local minimality for showing that
small sets topologically expand. Namely, for showing that a simplicial complex with local
links that are both spectrally and topologically expanding is, in fact, a small set coboundary
expander, which is defined as follows.

Definition 6.3 (Small set coboundary expander, i.e., a complex in which small sets topolog-
ically expand). A d -dimensional weighted simplicial complex .X; w/ is called .�; �/-small
set coboundary expander for some constants 0 < �;� � 1, if for every k-cochain f 2 C k.X/,
k < d , with jjf jj < �, it holds that jjıf jj > �jjf jj.
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Thus, [12,25,29] have used the notion of local minimality to show that a complex with
expanding links is a small-set coboundary expander (i.e., it topologically expands small sets).
Specifically, the following was shown:

Theorem 6.4 (Small set coboundary expansion from expanding links). A q-bounded degree
d -dimensional complex, whose links are sufficiently strong �-local spectral expanders and
ˇ-coboundary expanders, is a d -dimensional .�; �/-small set coboundary expander where
.�; �/ depends on �; ˇ, and q.

The next major idea of [12, 25, 29] is that there is a way to deduce expansion of all
sets (in particular, large sets) from expansion of small sets, assuming the complex is of high
enough dimension. Specifically, the following was shown:

Theorem 6.5 (Cosystolic expansion from small set coboundary expansion). If .X; w/ is
a d -dimensional weighted simplicial complex of bounded degree that is a .�; �/-small set
coboundary expander then its .d � 1/-skeleton is a .�; �/-cosystolic expander.

Using all the above and the known existence of bounded degree complexes with
expanding links, the following was deduced:

Corollary 6.6 (There are bounded degree cosystolic expanders of every dimension [12,25]).
For every d � 1, the d -skeleton of the .d C 1/-dimensional Ramanujan complex [37] is a
bounded degree cosystolic expander of dimension d .

This local-to-global paradigm that we have introduced was proven to be very useful
recently in order to deduce cosystolic expansion in covers of high-dimensional expanders
[14,20] as the links’ structure of the cover of a simplicial complex is the same as in the base
complex.

As we next discuss, the topological high-dimensional expansion is tightly related to
local testability of codes. The local-to-global proof of the cosystolic expansion that we have
discussed here can be seen, via this prism, as a method to get global local-testability of codes
from local local-testability. This philosophy was then implemented in various subsequent
works.

7. High-dimensional expansion and local testability of

codes

One of the major motivations for studying high-dimensional expanders within theo-
retical computer science (TCS) was the discovery of their strong relation to a central notion
within TCS known as a locally testable code. Locally testable codes were extensively studied,
however, their study was mostly ad hoc and there was no known mathematical phenomenon
that implies local testability of codes.

The discovery that topological high-dimensional expansion is equivalent to local
testability of some particular codes suggested that local testability of codes is implied by
high-dimensional expansion. In order to indeed confirm this ideology, there was a need
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to show that (1) known locally testable codes can be explained via the high-dimensional
expansion prism, and (2) a method to get new LTCs from topological high-dimensional
expanders. Both of these goals were materialized using the local-to-global effect existing
in high-dimensional expanders, as we discuss in the following. However, it turned out that
the LTCs emerging from high-dimensional expanders are not of high enough rate.

Recent works have shown how to overcome the rate issue existing in LTCs emerging
from high-dimensional expanders, and get high rate LTCs from a product of two (one-
dimensional) expander graphs. These works have adjusted the local-to-global machinery
developed in the realm of high-dimensional expanders, to work for products of expanders,
thus overcoming the rate barrier existing in using genuine high-dimensional expanders to
get LTCs. We, nevertheless, conjecture that high rate LTCs with stronger guaranties should
emerge from genuine high-dimensional expanders.

We start by defining locally testable codes.

Definition 7.1 (Locally testable code). A locally testable code (LTC) is an error correcting
code admitting a randomized algorithm—called a tester—which, given access to a word, can
decide with high probability whether it is close to a codeword or not by querying just a few
(i.e., O.1/) of its letters. A tester is called an �-tester for some � > 0 if it accepts all codewords
and the probability of rejecting a word outside the code is �-proportional to its Hamming
distance from the code. An LTC with an �-tester is called an �-locally testable code.

Topological high-dimensional expansion is a form of local testability of codes. The first
discovery of the connection between high-dimensional expanders and locally testable codes
was made by [26] where the authors have shown that a coboundary expansion is, in fact,
equivalent to the local testability of the coboundary code.

Theorem 7.2 (Coboundary expansion is equivalent to local testability of the coboundary
code [26]). A d -dimensional complex X is an �-coboundary expander iff the linear code
B i .X/, i < d is �-locally testable by the .i C 1/-cocycle test. This test, given access to
f 2 C i .X/, chooses a face � 2 X.i C 1/ uniformly at random and accepts f if ıi f .�/ DP

�2. �
iC1/

f .�/.

Global local-testability from local local-testability via high-dimensional expanders.
The works [12,25,29] have, in fact, shown that a global code defined over a high-dimensional
expander, by requiring its projection to every link to belong to a small (local) locally-testable
code, is a global locally-testable code. Namely, the local testability of the global code stems
from the local testability of the small codes that compose it. In these works the global locally-
testable code is H i .X/ where X is a cosystolic expander, and the local locally-testable codes
are B i .X� / for � 2 X .

Theorem 7.3 (Cosystolic expansion implies locally testable codes with linear distance [12,25,

29]). Let X be a d -dimensional complex which is .�; �/-cosystolic expander. Then for every
i � d � 2, H i .X/ is a �-locally testable code whose normalized distance is at least �. For
i D d � 1, the code H i .X/ is of distance at least �.
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Using the latter theorem, one can get locally testable codes associated, for example,
with H i .X/ of an .i C 2/-dimensional cosystolic expander X , i � 0. However, the rate of
such codes tends to be small.

Thus, the lesson is that cosystolic expanders imply locally testable codes via the
local local-testability implies global local-testability paradigm, but such codes tend to be
of small rate. Nevertheless, the philosophy of global local-testability from local one is very
strong and it has recent important implications to locally testable codes as we now discuss.

Explaining and improving testability of known LTCs via high-dimensional expanders.
This idea of global local-testability from local ones was used recently by [31], see also [8], to
reprove the local testability of single orbit affine invariant codes [32] via the high-dimensional
expansion paradigm. The new analysis has also provided tighter bounds than were previously
obtained.

High rate LTCs. Another important implication of the local-to-global testability occurs in
the recent works [9, 40] that have constructed high rate (good) locally testable codes from
twisted products of expander graphs. Using products of expander graphs, they were able to
adopt the philosophy of local-to-global testability to construct new LTCs of high rate. The
importance of turning to products of expander graphs was to overcome the small rate barrier
that existed in attempts to implement the local-to-global testability from two-dimensional
genuine high-dimensional expanders.

Given the recent discovery of good LTCs constructed from two-dimensional objects
obtained from a product of two graphs, it is natural to ask whether good LTCs could be con-
structed from genuine high-dimensional expanders, and what advantages such constructions
might have over current ones.

On 2-LTCs from genuine high-dimensional expanders. A recent work [14] suggests a
framework to get good 2-queries LTCs from genuine high-dimensional expanders by intro-
ducing expanding high-dimensional sheaves. The currently known good LTCs are of very
high locality. However, for hardness of approximation, it is desirable to get 2-queries LTCs.
We conjecture that LTCs emerging from genuine high-dimensional expanders should be
much stronger in various respects than those constructed from products of one-dimensional
graphs; however, these seem much harder to construct.

8. High-dimensional expansion and quantum LDPC codes

Good classical LDPC codes were known since the works of Gallager in the 1960s
[17]. However, their quantum analogues seemed elusive until recently, the problem being
that random LDPC classical codes can be shown to be good with high probability, while a
quantum LDPC code is composed of two codual classical LDPC codes (see the following
definition). Such a pair of codual classical LDPC codes that are both good cannot be obtained
by random means, hence there was no natural source for obtaining such good codes.
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Definition 8.1 (Quantum LDPC code (CSS code) [5]). A quantum LDPC CSS code is a
quintet C D .CX ; CZ ; Fn; ˆX ; ˆZ/ such that the X -code CX and the Z-code CZ are sub-
spaces of Fn, ˆX is a set of vectors generating C ?

X , ˆZ is a set of vectors generating C ?
Z ,

and C ?
X � CZ (equivalently, C ?

Z � CX ). The code is LDPC if each vector in ˆX ; ˆZ

has constant (independent of n) support. The rate of C is dim CX � dim C ?
Z D dim CZ �

dim C ?
X and its distance is min¹dX ; dZº, where dX D min¹jwjHam j w 2 CX � C ?

Z º and
dZ D min¹kwkHam j w 2 CZ � C ?

X º; we call dX and dZ the X - and Z-distance, respec-
tively. The relative distance and rate of C are its distance and rate divided by n, respectively.

Up until recently, most quantum LDPC codes were obtained from smooth topolog-
ical objects with very simple local structure (surfaces, manifolds), see, e.g., the toric codes
[35]. This is since in such cases there is a natural way to get a pair of such codes that the dual
code is isomorphic to the primal code (thus, there is a need only to design one code). The
best distance achieved by such codes has exceeded slightly

p
n by the notable work of Freed-

man et al. [15] from about 20 years ago. Going beyond the
p

n distance barrier of Freedman
et al. with any rate seemed beyond reach for many years. Very recently, [13,34] managed to
get quantum LDPC codes improving the distance record of Freedman et al. to

p
n logk n

for any k, using a novel approach based on high-dimensional expanders. Furthermore, the
codes of [13] have fast decoding algorithms.

Theorem 8.2 (Decodeable quantum LDPC codes beyond the
p

n distance barrier [13]).
There exist quantum LDPC codes of distance O.

p
n log n/ and rate O.

p
n= log n/ that

are efficiently decodeable.

In fact, the work of [13] has used the following realization:

Quantum LDPC codes, as well as classical LTCs, are born together from a single
object—a topological high-dimensional expander.

Theorem 8.3 (Cosystolic expanders imply simultaneously quantum codes with linear
X -distance and a locally testable code with a linear distance [12, 25, 29]). Two-dimensional
cosystolic expander X implies a quantum LDPC code whose X -code corresponds to H 1.X/,
its Z-code corresponds to H1.X/; thus the X -code has linear distance. The rate of the code
is dim H i .X/. Furthermore, H 0.X/ is a locally testable code with linear distance, whose
rate is dim H 0.X/.

Thus, a two-dimensional cosystolic expander gives both a locally testable code cor-
responding to H 0.X/ and a quantum LDPC code corresponding to H 1.X/ and H1.X/.

Applying this wisdom to cosystolic expanders arising from Ramanujan complexes
[37] implies a quantum code with linear X -distance, logarithmic Z-distance, and nonzero
rate. One can even use higher dimensional cosystolic expanders to get that the X -code both
has good distance and is a locally testable code!

The idea of [13], following Hastings, was to apply the following balancing procedure
that balances the X - and Z-distances to get a quantum code whose distance is a geometric
average of the two.
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Theorem 8.4 (Weight balancing procedure for quantum LDPC codes [13]). There exists a
way to multiply a two-dimensional cosystolic expander X with a one-dimensional expander
graph to get a quantum code whose distance is the geometric average of the distances of
H 1.X/ and H1.X/ and whose rate is roughly

p
n.

Following the works [13, 34], there was a flurry of improvements starting with [22]

(see also [4]) that have replaced the product of a two-dimensional simplicial complex with a
graph with a twisted product of two graphs. The resulted object has been a two-dimensional
expanding cubical complex. These advances culminated in the work of [40] that found a way
to use methods inspired by the proof of local-to-global cosystolic expansion of [25] and, in
particular the local minimality concept, in order to prove linear distance for these codes, thus
obtaining good quantum LDPC codes. Recall that [25] managed to prove linear distance only
for the X -code. By turning to cubical complexes, [40] managed to derive the linear distance
for both the X -code and Z-code. The dimension of the code arose simply from counting
degrees of freedom.

Importantly, the new good LDPC quantum codes are not known to be efficiently
decodeable. Another major question is whether there are good quantum LTCs. We conjecture
that high-dimensional expansion will be a key towards progress on both of these questions.

9. Gromov topological overlapping problem via

topological high-dimensional expanders

More than a decade ago, Misha Gromov, one of the greatest mathematicians of our
era, defined the notion of topological overlapping property of a simplicial complex and posed
the following question: Are there bounded-degree simplicial complexes with the topological
overlapping property? In the following we discuss how the topological high-dimensional
expansion perspective, and in particular its connection to locally testable codes, has been
recently used to provide a positive answer to Gromov’s question by combining the works
[11,12,25].

We start by introducing the topological overlapping property.

Definition 9.1 (Topological overlapping property [21]). A d -dimensional complex X is said
to have the topological overlapping property if for any continuous map F W X ! Rd , there
exists a point p 2 Rd such that F �1.p/ is covered by � > 0 fraction of the d -faces of X .

In order to study the question on the existence of bounded-degree complexes with
topological overlapping property, Gromov has introduced the notion of coboundary expan-
sion of simplicial complexes (that was introduced independently by Linial and Mehsulam
[36]). Gromov has shown that coboundary expansion implies the topological overlapping
property. By doing that, he, in fact, showed that there are unbounded-degree complexes with
the topological overlapping property. However, the question on the existence of bounded-
degree complexes with this property remained unsolved at that point.
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By the connection Gromov made between coboundary expansion (which is a notion
of local testability of a code as we have explained!) and the topological overlapping question,
it became evident that, in order to positively answer Gromov’s question, one should find
bounded-degree coboundary expanders.

The natural candidates for such bounded-degree coboundary expanders were the
famous bounded-degree Ramanujan complexes [37]. Alas, these complexes are known not to
be coboundary expanders. However, the local-to-global cosystolic result of [12,25] could, in
fact, be applied to these complexes to show that they possess the weaker property of cosys-
tolic expanders, thus they come close to satisfying the condition implying the topological
overlapping property.

Thus, in order to give a positive resolution to Gromov’s question, one had to prove
that small set coboundary expansion (which implies cosystolic expansion) is, in fact, suffi-
cient for the topological overlapping property, and this was indeed proved in [11].

Thus, combining the works [12,25] and [11] led to a positive resolution of Gromov’s
question on the existence of bounded-degree complexes with the topological overlapping
property.

Another interesting aspect of this question is the following. Since we know that
cosystolic expansion is a form of local testability of codes, we, in fact, see an evident connec-
tion between locally testable codes and the topological overlapping property. This connection
might be proven useful in future application within theoretical computer science.

10. Sampling bases of a matroid using local spectral

expanders

In this section we will present Anari, Liu, Gharan, and Vinzant’s [3] resolution of
the Mihail–Vazirani conjecture [38] by rigorously showing how rapid convergence of the
down–up walk over local spectral expanders [30] was used in their solution. Before we can
present the conjecture, consider the following definition:

Definition 10.1 (Matroid). A matroid M D .X; I/ is a combinatorial structure consisting
of a ground set X of elements and a nonempty collection I of independent subsets of X

satisfying:

(1) (Heredity property) If T 2 I and S � T then S 2 I.

(2) (Exchange axiom) If T1; T2 2 I and jT2j < jT1j then there exists i 2 T1 n T2

such that T2 [ ¹iº 2 I.

We call maximal independent sets in M the bases of M .

Matroids are natural combinatorial objects and can be thought of as generalizations
of a basis of some vector field or subforests of a graph. It is natural to try to sample a basis
of a matroid (i.e., sample a basis of some vector field or a spanning tree of a graph). One
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natural process to try and sample a random basis of a matroid is using the “basis exchange
random walk,” which is a random walk over the bases of a matroid, defined as follows:

Definition 10.2 (The basis exchange random walk). The basis exchange walk is a walk
between bases of a matroid whose step is defined by Algorithm 1:

Algorithm 1: Step in the basis exchange walk

1 Pick a member of the basis chosen uniformly at random and then remove it
creating the independent set I .

2 Pick a new basis that contains I .
3 return the new basis.

Mihail and Vazirani conjectured the following:

Conjecture 10.3 (Mihail and Vazirani Conjecture [38]). The basis exchange walk converges
rapidly.

We note that, due to the heredity property, one can think of a simplicial complex
that comprises the independent sets of a matroid. Moreover, it is easy to see that the matroid
exchange walk is the d -dimensional down–up walk! We will therefore be interested in the
expansion properties of that simplicial complex, since if that complex is indeed a local spec-
tral expander, then the base exchange walk converges rapidly and we could sample a basis
of the matroid by picking some constant basis to start from (which corresponds to a face of
maximal dimension) and then perform a few steps in the down–up walk. Then we can con-
clude that we have arrived at a random basis due to the convergence of that walk. We will
show that matroids are the best possible local spectral expanders, 0-local spectral expanders.
Note that the simplicial complex that is constructed by the independent sets of the matroid
satisfies the following property:

Definition 10.4 (Exchange property). We say that a simplicial complex satisfies the exchange
property if the following holds: For every two faces �; � 2 X such that j� j < j� j, there exists
v 2 � n � such that � [ ¹vº 2 X .

It is easy to see that if a simplicial complex satisfies the exchange property then so
do all its links and skeletons. We will therefore try to use the trickling down theorem in order
to prove that matroids are indeed local spectral expanders. We will start with proving that all
the links of codimension 2 are 0-local spectral expanders:

Lemma 10.5. If a graph G satisfies the exchange property and E ¤ ; then there exists a
partition of V into V1; V2; V3 such that:

• V1 and V2 are not empty and independent.

• For all i ¤ j , as well as for every u 2 Vi and v 2 Vj , it holds that ¹u; vº 2 E.
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Proof. Let ¹u; vº 2 E and consider the following sets:

Vu D
®
w W ¹v; wº 2 E; ¹u; wº … E

¯
; Vv D

®
w W ¹u; wº 2 E; ¹v; wº … E

¯
;

V¹u;vº D
®
w W ¹v; wº 2 E; ¹u; wº 2 E

¯
:

We will show that Vu is independent (and note that Vv is also independent using the
same considerations). Indeed, assume that Vu is not independent. Then there exist w; w0 2

Vu such that ¹w; w0º 2 E. Therefore, due to the exchange property, either ¹v; wº 2 E or
¹v; w0º 2 E, which contradicts our choice of w or w0.

We will now show that any vertex in Vu is connected to every vertex in Vv . Let
u0 2 Vu and v0 2 Vv . Then u0 2 Vu, therefore ¹u0; uº 2 E. Applying the exchange property
to ¹u0;uº and w0 yields that either ¹v0; vº 2 E or ¹u0; v0º 2 E. Therefore, due to the definition
of Vu, it holds that ¹v0; vº … E and thus ¹u0; v0º 2 E.

We follow by showing that any vertex is Vu is connected to any vertex in V¹u;vº (the
case of Vv is analogous). Let u0 2 Vu and w 2 V¹u;vº. Then w 2 V¹u;vº therefore ¹w; vº 2 E.
Applying the exchange property to ¹w;vº and u0 yields that either ¹w;u0º 2 E or ¹v;u0º 2 E.
Therefore, due to the definition of Vu, it holds that ¹u0; vº … E and thus ¹w; u0º 2 E.

We finish the proof by setting:

V1 D Vu [ ¹vº; V2 D Vv [ ¹uº; V3 D V¹u;vº

and noting that the properties listed in the lemma hold for these sets.

We will use this lemma to prove the following:

Lemma 10.6 (Graphs with the exchange property are 0-spectral expanders). Let G be a pure
graph that satisfies the exchange property then G is a 0-spectral expander.

Proof. We will show that G is a complete partite graph and therefore a 0-spectral expander.
Using Cauchy’s interlacing theorem on the nonnormalized adjacency matrix and its com-
plement yields that the nonnormalized matrix’s second eigenvalue is bounded from above
by 0. The normalization can then be performed by noting that it is equivalent to multiplica-
tion from the right by a positive semidefinite matrix. Then one can use Cauchy’s interlacing
theorem again in order to show that the resulting matrix has at most one positive eigenvalue.

We will do so by constructing the described partition using recursive application
of Lemma 10.5. Start by setting QV D V and set the partition to be V D ;. While there are
edges in the subgraph induced by QV , do the following: apply Lemma 10.5 to QV , add V1 and
V2 to V , and set QV D V3. Note that every set in V is independent due to Lemma 10.5. Also
note that if U1; U2 2 V are two different sets then every vertex in U1 is connected to every
vertex in U2. Therefore G is a complete partite graph.

Now all we have to check is that all of the links’ 1-skeletons are connected, as we
will in the following lemma:

Lemma 10.7 (Connectivity of graphs that satisfy the exchange property). Let X be a pure
simplicial complex that satisfies the exchange property. Then X .1/ is connected.
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Proof. Let v; u 2 X .1/.0/. Then X .1/ is pure, therefore there exists Qv such that ¹v; Qvº 2 E.
Furthermore, X .1/ is a skeleton of a complex that satisfies the exchange property and there-
fore it satisfies the exchange property as well, meaning that either ¹v; uº 2 E or ¹ Qv; uº 2 E.
Therefore v and u are either connected directly or through Qv and thus X .1/ is connected.

Therefore we can conclude that:

Theorem 10.8. If M D .X; I/ is a matroid then I is a 0-local spectral expander.

Proof. Combining Lemmas 10.6, 10.7, and the tricking down theorem proves this theorem.

Therefore high-dimensional expanders can be used to resolve the Mihail–Vazirani
conjecture simply by noting the following: The basis exchange walk is the down–up walk
on the maximal dimension of a simplicial complex that exhibits the exchange property. Any
simplicial complex that exhibits the exchange property is a 0-local spectral expander and,
therefore, as we presented in Theorem 4.3, the second largest eigenvalue of the down–up
walk is smaller than 1 �

1
kC1

, which is bounded away from 1. Therefore the basis exchange
walk converges rapidly.

We end this chapter by noting that there are strong connections between counting
and sampling for self-reducible problems [24] and therefore being able to sample a random
basis for the matroid also proves the existence of a randomized algorithm that estimates the
number of bases the matroid has.

11. Additional topics that are not covered in this note

Before ending this note we mention some topics related to high-dimensional expan-
sion that were not covered in this note. These topics include a discussion of explicit con-
structions of high-dimensional expanders, in particular bounded-degree constructions. Here
we note that currently there are no combinatorial constructions of strong local spectral
expanders, only algebraic ones. Other topics include high-dimensional expanders beyond
simplicial complexes, for example, the Grassmanian complex and its properties; concentra-
tion of measure via high-dimensional expanders, Fourier analysis and hypercontractivity
on high-dimensional expanders; agreement expanders and low-degree testing via high-
dimensional expanders, superfast mixing of Markov chains and Glauber dynamics via strong
high-dimensional expanders; unique games and high-dimensional expanders.
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