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Abstract

We survey the last 40 years of algorithm development for finding frequent items in data
streams, a line of work which surprisingly wound up developing new tools in informa-
tion theory, pseudorandomness, chaining methods for bounding suprema of stochastic
processes, and spectral graph theory.
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In many big data applications, data continuously arrives in a streaming fashion, for
example, the constant stream of queries to a search engine, purchases from online vendors,
or posts to social media. Such applications gave rise to the popularity of so-called streaming
algorithms, which process such data on the fly as it arrives to later answer some queries of
interest, with such algorithms often times using memory sublinear in the data seen so that
most data is forgotten at query time. Aside from minimizing memory consumption, such
sublinear memory algorithms also have the advantage of potentially being faster, since the
working memory of the algorithm can fit in the faster CPU cache instead of RAM or disk, or
minimize communication in distributed environments where the stream of data is sharded
to many different servers for processing, which must then communicate intermediate results
(or their memory footprints) to then reconstruct query answers to the aggregate data.

One of the oldest and most well-studied problems in the streaming literature is that
of finding frequent items in data streams. This line of work began with an algorithm of
Boyer and Moore, originally published as a technical report in 1981 and later republished a
decade later [9], and still continues into the present. The results along the way have led to
the development of new tools in information theory, pseudorandomness, chaining methods
for bounding suprema of stochastic processes, and spectral graph theory. In this survey, we
discuss some of the progress on this problem over the last 40 years.

1. The early work

We henceforth assume that all items in the data stream, which is finite, come from
some finite universe UD Œn� WD ¹1; : : : ; nº. We also define the frequency histogram f 2Rn,
where fi denotes the number of times item i was seen in the stream. Thus, seeing i in the
stream corresponds to the update “fi  fi C 1,” where f is initially the zero vector. The
frequent items problem then asks us to report the i such that fi is “large” at the end of the
stream.

As mentioned, the first algorithm for finding frequent items in data streams was
the so-called MJRTY algorithm, discovered by Boyer and Moore in 1981 [9]. The largeness
criteria used by their algorithm is that i is frequent iff fi > `=2, where ` is the stream’s
length. That is, the MJRTY algorithm should report any i which appears a strict majority
of the time (and if no such item exists, the algorithm’s output is allowed to be arbitrary).
Clearly, at most one majority item can possibly exist. The algorithm uses O.1/ memory1

and is simple to both describe and analyze. The algorithm at any point in time stores only
two things in memory: a candidate i 2 Œn� [ ¹?º for the majority element, and a counter
value C which is initialized to 0. For each item j seen in the stream, if i D j then C is

1 Here we measure memory in machine words, where a word is a unit of memory large
enough to hold the name of an item (dlog2 ne bits) as well as the largest frequency of any
item (dlog2kf k1e bits). Whenever measuring memory in bits instead, we write so explic-
itly.
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incremented, else if i ¤ j then C is decremented. If C becomes nonpositive, then i is set
to j and C is set to 1. Pseudocode is given in Figure 1.

MJRTY:
initialize./.

1. i  ?

2. C  0

update.j /. // process item j in stream
1. if i D j :

C  C C 1

2. else:
C  max¹0; C � 1º

3. if C D 0:
i  j

C  1

query./.
1. return i

Frequent:
initialize.k/.

1. i1; : : : ; ik�1  ?

2. C1; : : : ; Ck�1  0

update.j /. // process item j in stream
1. if 9r such that ir D j :

Cr  Cr C 1

2. else:
for r D 1; : : : ; k � 1:

Cr  max¹0; Cr � 1º

3. if 9 r such that Cr D 0:
pick such r arbitrarily
ir  j

Cr  1

query./.
1. return ¹i1; : : : ; ik�1ºn¹?º

Figure 1

Pseudocode for MJRTY and Frequent.

Theorem 1.1. If there exists some i� 2 Œn� such that fi� > `=2, then at the time of query we
must have i D i�.

Not long after the development of the MJRTY algorithm, Misra and Gries developed
the generalized Frequent algorithm [32], which outputs a list L � Œn� such that (1) jLj < k,
and (2) if i is k-frequent then i 2 L; see the pseudocode in Figure 1. Here k is a parameter
that is given at the time of initialization, and we say an item is k-frequent if fi > `=k.
That is, whereas MJRTY must report any item that appears strictly more than half the time
in the stream, Frequent must report any item that appears strictly more than a 1=k fraction
of the time. The MJRTY problem thus solves the special case k D 2. Rather than store a
single candidate frequent item i , Frequent stores k � 1 candidate items i1; : : : ; ik�1 together
with counters C1; : : : ; Ck�1 (observe that the number of k-frequent items is at most k � 1).
When a stream item j matches one of these candidate items, its corresponding counter is
incremented. Otherwise, all counters are decremented and some arbitrary candidate with
counter zero (if one exists) is replaced with the new item j and its counter is reset to 1.
From the description and pseudocode, the memory consumption of Frequent is O.k/, which
is clearly optimal since �.k/ memory is required since there can be up to k � 1 frequent
items and just writing down their names would take �.k/ memory.

An alternative (randomized) algorithm is to, of course, sample: if an item appears
often, then we expect it to also appear often in a substream obtained by sampling m uniformly
random updates without replacement. Such a sample can be maintained in O.m/ memory

4874 J. Nelson



on the fly as the stream is being updated using a fairly simple technique known as reservoir
sampling [37], which we do not discuss in detail here. Unfortunately, it is not too hard to
show that to identify all frequent items in the sense of [32], one must take m D �.k2 log k/,
which yields significantly worse memory consumption than the O.k/ memory of the Fre-
quent algorithm, while also being randomized with a chance of error rather than providing
the deterministic guarantees enjoyed by Frequent.

2. Problem reformulations and more general algorithms

Rather than finding k-frequent items as defined in Section 1, one may aspire to
identify a more natural set of items: the “top k” items by frequency, i.e., the k indices i with
the largest fi values (breaking ties arbitrarily). Unfortunately, we will see in Section 3 that
such a task is impossible using memory sublinear in n. Instead, we try to approximate the
top k set as follows. We say item i is .k; p/-tail frequent if

f
p

i >
1

k

nX
j DkC1

�
f �

j

�p
WD

1

k
kftail.k/k

p
p :

Here x� denotes the decreasing rearrangement of a vector x, i.e., x with its entries permuted
so that jx�

1 j � jx
�
2 j � � � � � jx

�
n j; xtail.k/ denotes x but with its k largest entries (in magnitude)

zeroed out; ties are broken arbitrarily. Similarly, we define xhead.k/ WD x � xtail.k/. One sees
that the number of items i which can be .k; p/-tail frequent is less than 2k: every index in
the head could be frequent, and the number of tail indices which are frequent must be strictly
less than k.

Definition 2.1. For integer k � 2 and real p � 1, a (randomized) streaming algorithm is said
to solve the .k; p/-tail frequent problem with failure probability ı 2 .0; 1/ if at query time
it outputs a list L � Œn� such that (1) jLj D O.k/, and (2) with probability at least 1 � ı, L

contains every .k; p/-tail frequent item.

When k is understood by context or not particularly relevant to the point of dis-
cussion, we sometimes refer to the .k; p/-tail frequent problem as the p̀ tail heavy hitters
problem, or even more simply, the p̀ heavy hitters problem. When discussing the nontail
version, we say the p̀ nontail heavy hitters problem.

It turns out the Frequent algorithm of Section 1 in fact solves the .k; 1/-tail frequent
problem [7], i.e., it finds items that are not just more than a 1=k fraction of kf k1, but even of
kftail.k/k1 (with failure probability 0 in fact, as it is a deterministic algorithm). An interesting
fact about the formulation of the frequent items problem in Definition 2.1 is that the notion
provides a hierarchy of approximation to the actual top k problem, up to potentially changing
k by a small constant factor.

Lemma 2.2. For p > q � 1 and a frequency vector f 2 Rn, if i is .k; q/-tail frequent for
f then it is also .2k; p/-tail frequent for f .

4875 Forty years of frequent items



Proof. Item i being .k; q/-tail frequent is equivalent to fi > 1

k1=q kftail.k/kq . We must thus
show that

1

k1=q
kftail.k/kq �

1

.2k/1=p
kftail.2k/kp:

Define Bj WD ¹jk C 1; : : : ; j.k C 1/º for j D 0; 1; : : : ; n=k � 1 (we can assume that n is
divisible by k without loss of generality by padding it with 0 entries, which does not affect
the subsequent argument). Then

1

.2k/1=p
kftail.2k/kp D

 
1

2k

n=k�1X
j D2

f �
Bj

p

p

!1=p

�

 
1

2k

n=k�1X
j D2

k � kfB�
j
k

p
1

!1=p

�

 
1

2k

n=k�1X
j D2

k �

�
kf �

Bj �1
k

q
q

k

�p=q
!1=p

D
1

2k1=q

 
n=k�2X
j D1

�f �
Bj �1

q

q

�p=q

!1=p

�
1

2k1=q

 
n=k�2X
j D1

f �
Bj �1

q

q

!1=q �
kzkp � kzkq since p > q

�
�

1

2k1=q
kftail.k/kq

�
1

k1=q
kftail.k/kq :

Thus, up to changing k by a factor of at most 2, an algorithm which solves the p-
version of the problem is strictly stronger than one for the q-version for p � q, in the sense
that it is guaranteed to find at least as many items in its output list L. It is also not hard to
show via Hölder’s inequality that for any fixed x, the value p can be taken large enough (but
finite) so that L is guaranteed to contain every element in the top k, regardless of how small
its actual frequency is. Thus for some large but finite p the problem is essentially the top k

problem, and we can gradually relax the problem (i.e., make it easier) by making p smaller
and smaller. What then is the largest value of p for which the problem is algorithmically
tractable in small memory? As we will see in Section 3, p > 2 requires n�.1/ memory.
Meanwhile, Charikar, Chen, and Farach-Colton developed the CountSketch algorithm for
the case p D 2 [14], using space O.k log n/, which we now discuss in Section 2.1.

2.1. `2 heavy hitters and the turnstile model
We show a diagram representing the CountSketch data structure in Figure 2. Memory

stores BR counters Cr;b for r 2 ŒR�, b 2 ŒB�, all initialized to zero. We also pick R random
functions h1; : : : ;hR W Œn�! ŒB� and another R random functions �1; : : : ;�R W Œn�!¹�1;1º.
The functions are drawn independently, and each such function is drawn uniformly at random
from the set of all functions mapping Œn� to its respective range. Note that just storing these
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C�1.i/

C�2.i/

C�3.i/

C�R.i/

B

R

� � �

i

Figure 2

Diagram showing an update to CountSketch, when seeing item i in the stream.

functions would require an exorbitant amount of memory (more memory than simply storing
the frequency histogram f explicitly in memory); we ignore the cost of storing these func-
tions for now and address this issue later in Section 2.2. When seeing item i in the stream,
for r D 1; 2; : : : ;R we perform the update Cr;hr .i/ Cr;hr .i/C �r .i/. Thus at the end of the
stream, each Cr;j will equal

P
i Whr .i/Dj �r .i/fi . At query time, any fi can then be estimated

as Qfi WD median¹�r .i/Cr;hr .i/º
R
rD1.

Although we are ultimately interested in answering queries for the list of frequent
items, we state two different types of queries the CountSketch can answer:

• point_query(i): return a value Qfi in Œfi�
1p
k
kftail.k/kj2;fiC

1p
k
kftail.k/kj2�.

• frequent(): return a list L � Œn� such that (1) jLj D O.k/, and (2) if i is
.k; 2/-tail frequent then i 2 L.

The CountSketch has randomized correctness guarantees: for any query, there is some
(tunably small) probability that its output is not correct. As mentioned above, to answer
point_query(i) we return Qfi WD median¹�r .i/Cr;hr .i/º

R
rD1. To answer frequent(),

we return the 2k coordinates i with the largest j Qfi j values. Below we show that this algorithm
is correct with large probability.

Lemma 2.3. For B � 6k, for any 1 � i � n,

P

�
j Qfi � fi j >

r
6

B
kftail(k)k2

�
� exp.�R=16/:

Proof. Write Qfr;i D �r .i/Cr;hr .i/. Let H � Œn� denote the locations of the largest k entries of
f in magnitude so that fhead.k/ D fH . Let Er be the event that hr .i/ … hr .Hn¹iº/. Consider
also the random variable Zr WD

P
j ¤i
j …H

1¹hr .j /D hr .i/º�r .j /fj and let E 0
r denote the event

that jZr j �
p

6=Bkftail.k/k2.
Then by Markov’s inequality,

P .:Er / D P
�ˇ̌�

Hn¹iº
�
\ h�1

r .i/
ˇ̌
� 1

�
�

k

B
�

1

6
:
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Also, E Z2
r � kftail.k/k

2
2=B , and thus

P
�
:E 0

r

�
D P

�
jZr j >

r
6

B
kftail.k/k2

�
D P

�
Z2

r >
6

B
kftail.k/k

2
2

�
<

1

6
;

also by Markov’s inequality. Thus by a union bound P .Er ^ E 0
r / > 2=3. Note that when Er ^

E 0
r occurs, we necessarily have j Qfr;i � fi j �

q
6
B
kftail(k)k2. We just showed that in expec-

tation this fails to occur for fewer than R=3 values of r . Thus by the Chernoff–Hoeffding
bound,

P

�ˇ̌̌̌²
r W j Qfr;i � fi j>

r
6

B
kftail(k)k2

³ˇ̌̌̌
�R=2

�
� exp

�
�R

.1=6/2

2.1=3/.2=3/

�
D exp.�R=16/;

which implies the claim since Qfi is the median of the Qfr;i values over all r 2 ŒR�.

Lemma 2.3 implies the following corollary by setting B D 6k, R D d16 ln.1=ı/e.
The query time follows since the median of T numbers can be found in linear time O.T / [8].

Corollary 2.4. For any ı 2 .0; 1/ and k � 1, there is an algorithm for answering a single
call to point_query with .k; 2/-tail error and failure probability ı using memory
O.k log.1=ı// with update time ‚.log.1=ı// and query time ‚.log.1=ı//.

A simple algorithmic reduction, which we now describe, shows how to obtain an
algorithm to answer frequent queries in a black box way given an algorithm that solves
point_query.

Theorem 2.5. The CountSketch data structure with parameters B D 54k and R D

d16 ln.n=ı/e provides a solution to the `2 heavy hitters problem with failure probabil-
ity ı. The memory usage is O.k log.n=ı//, the update time is O.log.n=ı//, and the query
time is O.n log.n=ı//. The output list L has size at most 18k.

Proof. We use the CountSketch to answer point_query(i) for every i 2 Œn� to obtain
Qf D . Qfi /

n
iD1. We then define L to be the largest 18k entries of Qf in magnitude (ties broken

arbitrarily). We now analyze correctness. We show that correctness is guaranteed when we
condition on the event k Qf � f k1 �

1

3
p

k
kftail.k/k2, which happens with probability at least

1 � ı by Lemma 2.3 and a union bound over all i 2 Œn�. Now conditioned on this event,
consider some .k; 2/-tail frequent item i ; we must show that i is in L. Note that if i 0 is not
even .9k;2/-tail frequent, then necessarily Qfi 0 < Qfi . This is because Qfj D fj ˙k

Qf � f k1D

fj ˙
1

3
p

k
kftail.k/k2 for any j . Thus, the only items that could appear more frequent than an

actual frequent item are the .9k; 2/-tail frequent items, but since there are fewer than 18k

such items the claim is proven.

Not only does the CountSketch solve the `2 tail heavy hitters problem, but it does
so in a more general streaming model known as the turnstile model. In this model, each
stream update is an .i; �/ pair for i 2 Œn� and � 2 R (� may even be negative). Such an
update causes the change fi  fi C�. The previous model discussed implicitly took �D 1

always. The definition of a .k; 2/-tail frequent item is then similar as before except that we
take absolute values: i is such a frequent item if jfi j >

1p
k
kftail.k/k2.
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2.2. A digression on pseudorandomness
As mentioned in Section 2.1, the CountSketch makes use of independently chosen,

uniformly random functions h1; : : : ; hR W Œn�! ŒB� and �1; : : : ; �R W Œn�! ¹�1; 1º. Naively
storing such functions would require �.nR/ memory, whereas the frequent items problem
already admits a trivial O.n/ memory solution by simply storing the frequency vector f

in memory explicitly. We remedy this issue by not storing perfectly random functions, but
rather functions that are pseudorandom.

Definition 2.6. Given integer n � 1 and a finite range M , a hash family is simply a collec-
tion H of functions mapping Œn� to M . For integer k � 1, we say a hash family is k-wise
independent if for all distinct x1; : : : ; xk 2 Œn� and all (possibly not distinct) y1; : : : ; yk 2M ,

P
h2H

 
k̂

tD1

h.xt / D yt

!
D

1

jM jk
;

where h is chosen uniformly at random from H . That is, the distribution of .h.xt //
k
tD1 is

uniform for any choice of k distinct values xt 2 Œn�. Similarly H is �-almost k-wise inde-
pendent if the distribution of .h.xt //

k
tD1 is �-close to uniform in total variation distance for

any choice of k distinct xt .

The benefit of Definition 2.6 is that a uniformly random function from a hash family
H can be specified using only dlog2 jH je bits. Thus whereas the �r from Section 2.1 are
drawn uniformly from the set HŒn�;¹�1;1º of all functions from Œn� to ¹�1; 1º, requiring
log2dHn;¹�1;1ºe D n bits each (and even worse for the hr ), we could hope that (1) picking
these hash functions from k-wise independent hash families instead still guarantees correct-
ness of CountSketch, and (2) for small k there are k-wise independent hash families that
are significantly smaller than the set of all functions mapping Œn� to some range. Item (2) is
indeed true: if n and m are powers of 2, for example, Carter and Wegman showed that k-wise
independent hash families exist mapping ¹0; 1; : : : ; n � 1º to ¹0; 1; : : : ; m � 1º of size only
N WD max¹n; mºO.k/ [38], thus requiring only O.k log N / bits to specify a random function
from the family. For example, one can consider the family

Hk;poly D

´
h.x/ D

 
k�1X
iD0

ai x
i

!
mod m W a0; : : : ; ak�1 2 FN

µ
;

where the arithmetic in computing h.x/ is done over FN , and the “mod m” simply identifies
FN with ¹0; 1ºlog2 N then projects to the least significant log2 m bits. That is, Hk;poly is the
set of less than degree k polynomials over FN (with a mod operation after evaluation).

It can be shown that the analysis of the CountSketch in Section 2.1 only requires the
hr ; �r to be drawn from 2-wise independent hash families, thus requiring only O.R log n/

bits (i.e., O.R/ machine words) of memory to store all hash functions combined. Essentially,
this is because the analysis of the data structure only depends on first and second moment
calculations of linear forms, which are fully determined by 2-wise independence of the hash
functions (note we can round B up to the nearest power of 2).
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Note: The construction of Hk;poly does not actually require that n;m be powers of 2,
but rather can be any prime powers. In practice, evaluation of the hash function is fastest when
they are primes (and not prime powers) to allow for faster arithmetic over the finite field. The
domain size n can simply be rounded up to the nearest prime. If the range size m is not a
prime power, often in the analysis one can make do with �-almost k-wise independence (as
defined above) instead of exact k-wise independence; to achieve this, one can simply pick
a prime p > mk=� and pick polynomials over Fmax¹n;pº then output the evaluation of any
polynomial mod m. The number of bits to specify h is then O.k log.nm=�//.

3. Impossibility results

So far we have discussed how to obtain and analyze algorithms for the frequent items
problems, which provides an upper bound on the minimum memory required to solve the
problem. In this section we focus on lower bounds, i.e., proving that any correct algorithm
requires at least some amount of memory.

3.1. `p heavy hitters for p > 2

Whereas the dependence on n in the memory of CountSketch is logarithmic, it turns
out that any solution to p̀ heavy hitters requires memory that grows polynomially with n

when p > 2 [3]. The source of this lower bound is via reduction from a problem in commu-
nication complexity [29]. In the simplest communication complexity setting, there are two
parties Alice and Bob. Alice receives an input x 2X, and Bob receives y 2 Y, and they also
both know some function f WX � Y! Z. They would like to communicate back and forth
(if Alice speaks first then she sends a message to Bob, who in response sends a message to
Alice, who then sends a message to Bob, etc.) until some player is certain of the answer and
outputs f .x; y/. A trivial solution is for Alice to simply send her input to Bob explicitly,
taking dlog2 jXje bits of communication; similarly, Bob can send his input to Alice using
dlog2 jYje bits. The question is whether it is possible to devise a communication protocol
whose total communication, that is, the sum of the lengths of all messages sent, is smaller.

In the proof of the memory lower bound for the p̀ heavy hitters problem [3], we
imagine there are not just two parties Alice and Bob, but rather t � 2 parties P1; P2; : : : ; Pt .
Each Pi receives an input from the same domain Xi , which is the power set of Œn�; that is,
the input to Pi is some subset Si � Œn�. The model of communication considered is that Pi

sends a message to PiC1, in sequential order starting from i D 1, and Pt must then output
its guess of the function evaluation; this model is referred to as one-way communication,
since the players only speak once each, to the next player in turn, and there is no back-and-
forth conversation. The relevant function considered to show hardness of the frequent items
problem is the following partial function known as set disjointness:

Disjn;t .S1; S2; : : : ; St / WD

8<: 1; 8i ¤ j; Si \ Sj D ;;

0; 9x 2 Œn� W 8i ¤ j; Si \ Sj D ¹xº:
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Note Disjn;t is partial since it is not defined when the pairwise intersections are not all equal
(or contain more than one item). Furthermore, we will be concerned with the randomized
complexity of the problem, in which we imagine all players share knowledge of an infinite
sequence of uniform random bits, for free without any communication. Pt then need only be
correct with some failure probability of at most ı, where ı 2 .0; 1/ is a parameter known to
all parties at the beginning of the communication game. We refer to the minimum number
of total bits (sum of message lengths sent by all players) required for a one-way random-
ized communication protocol to solve any input to Disjn;t (on the subdomain where it is
defined) with failure probability at most ı 2 .0; 1/ as R!;pub

ı
.Disjn;t / (“pub” signifies that

the randomness is public, and “!” signifies that we only consider one-way communication
protocols). The following theorem is due to [3,13] (see also [24,25], with a more recent lower
bound in [27] for a slightly modified problem but which implies new lower bounds for heavy
hitters and other problems).

Theorem 3.1. There exists universal ı0 > 0 such that 81 � t � n, R!;pub
ı0

.Disjn;t / D

�.n=t/.

Corollary 3.2. There exists universal constant ı0 > 0 such that for p > 2, any randomized
streaming algorithm solving the .2; p/-tail heavy hitters problem with failure probability at
most ı0 must use at least �.n1�2=p/ bits of memory.

Proof. Suppose there exists an algorithm A using at most s bits of memory which solves
the .2; p/-tail heavy hitters problem with failure probability at most ı0, which is the same
ı0 from the statement of Theorem 3.1. We use such A to define an efficient communication
protocol for Disjn;t as follows for t D d.2n1=p/eC 1. P1 initializes the algorithm, then feeds
A the stream consisting of all elements of S1. They then take the memory state of A, which
is simply an element of ¹0; 1ºs , and send this state to P2. P2 can then continue running A

from where it left off, and feed it as input a stream consisting of all elements of S2, etc.,
for each of the first t � 1 players. After feeding S1; : : : ; St�1 to A, the .t � 1/st player then
queries A to obtain a list L of size O.1/ which contains all the .2; p/-tail frequent items.
They then send L \ St�1 to Pt , using O.jLj � log n/ D O.log n/ bits, who then outputs 1

iff L \ St D ;.
Note if there exists an x in the intersection of all Si , then after processing S1; : : : ;

St�1, x is .2; p/-tail frequent (in fact is it even non-tail frequent) since f
p

x � 2n yet
kftail.k/k

p
p < n, and thus x will be included in L with probability at least 1� ı0. Meanwhile,

if all Si have pairwise empty intersection, then the protocol will output 1 with probability 1.
Thus we have given a correct protocol for Disjn;t where each player communicates at most
max¹s; O.log n/º bits. Note that Theorem 3.1 measures total communication, and thus by
an averaging argument, there must be some particular player who sends �.n=t2/ bits. Thus
max¹s; O.log n/º D �.n=t2/, which implies the desired lower bound on s.
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4. State-of-the-art algorithms

4.1. Insertion-only streams: the BPTree
Recall that in insertion-only streams, the frequency vector f 2 Rn is updated at

each time step by incrementing a particular coordinate, “fi  fi C 1.” The CountSketch pro-
vides a solution to `2 heavy hitters under such updates with high probability using memory
O.k log n/. In this section we outline the state-of-the-art algorithm, BPTree [10] (following
the CountSieve data structure of earlier work [11]), which solves the same problem using
O.k log k/ memory. It is an open problem as to whether O.k/ memory is achievable. As
this article is meant to be a survey of many results, we provide only informal arguments and
not rigorous proofs. We also specifically focus on the case of failure probability ı < 1=3, say
(for general ı, the BPTree uses space O.k log.k=ı//).

The main approach of the BPTree (and of the earlier CountSieve) is to reduce from
the problem of finding O.k/ frequent items to that of finding a single item that is superheavy.

Definition 4.1. Given a frequency vector f 2 Rn and C > 1, i 2 Œn� is C -superheavy if

f 2
i > C �

X
i 0¤i

f 2
i 0 :

One should have in mind C being a large constant, e.g., 105. Then, a superheavy
item is one that not only contributes a noticeable fraction of the frequency vector’s energy
(in an `2 sense), but rather contributes almost everything.

The reduction. We show a reduction that if we have a space-S randomized algorithm A

that identifies a C -superheavy item if one exists with probability at least 9=10 (where C is
e.g., 105), then we can use A in a black box manner to solve `2 heavy hitters with failure
probability 1=3 using space O.S � k log k/ (we then ultimately design such A with S D

O.1/).
Now we sketch the details of the reduction. Imagine instantiating B independent

copies A1; : : : ; AB of algorithm A for B equal to some large constant times k (the constant
depends on C ). We also pick a hash function h W Œn�! ŒB� at random from a 2-wise inde-
pendent hash family as described in Section 2.2. An update to i is then fed to the algorithm
Ah.i/. It is not hard to show that if i is a .k; 2/-tail frequent item, then with probability at
least 9=10, over the randomness of h, i will be C -superheavy in the projected frequency
vector fh�1.h.i//, and thus Ah.i/ will report i with probability at least .9=10/2 > 4=5. Thus
in expectation, we recover 80% of the .k;2/-tail frequent items. To recover them all with high
probability, we repeat this basic scheme ‚.log k/ times, so that overall the total number of
instantiations of A is B log k D ‚.k log k/. We then return

L D
®
i 2 Œn� W at least k=2 of the Bk instantiations of A output i

¯
:

Then jLj D O.k/ simply by counting, and a Chernoff–Hoeffding bound implies that any
frequent item is contained in L with probability at least 1� 1=poly.k/; thus all are contained
with probability 1 � 1= poly.k/ by a union bound.
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Finding a superheavy item. The remaining task is then to identify a superheavy item in
a stream with large constant probability; if one does not exist, the algorithm is allowed to
behave arbitrarily. Suppose the superheavy item is i� 2 Œn�, which we wish to learn.

Before we describe the algorithm, we first need the concept of a tracker.

Definition 4.2. Let F WNn!R�0 be a function mapping frequency vectors to nonnegative
reals. Let f .0/; f .1/; : : : ; f .`/ 2 Nn be the evolution of a frequency vector throughout a
stream, where f .t/ is the frequency vector after seeing the first t stream updates (where
f .0/ D 0). An algorithm A is a weak tracker for F with failure probability ı and error " if
after every time step t it outputs some QFt 2 R such that

P
�
9t 2 Œ`�;

ˇ̌
F.f .t// � QFt

ˇ̌
> " sup

q2Œ`�

F.f .q//
�
� ı;

where the probability is taken over the internal randomness used by A.

We omit the proof of the following theorem from [10]; it primarily follows from the
chaining arguments of [28], but slightly modified to take bounded independence into account.

Theorem 4.3. Let F2.f / D kf k22, and consider the algorithm B which stores … 2

¹�1;1ºm�n with Rademacher entries drawn from an 8-wise independent family for m� c="2

for some sufficiently large constant c, and which provides estimates QFt Dk…f .t/k22=m. Then
B is a weak tracker for F2 with failure probability 1=10 and error ". Its memory usage is
O.1="2/.

Henceforth, for ease of exposition we assume we exactly know Q2 WD kf .`/k22

before the stream even starts, where ` is the stream’s length (the subsequent arguments can
all be slightly modified if we only know Q up to a constant factor). In reality, we do not
actually know Q (we do not know the future!), but this issue is circumvented in the follow-
ing way. We run a weak tracker B for F2 as in Theorem 4.3 with error " D 1=3. We make
10 guesses in parallel that Q2 is approximately 2j for j D b C 0; b C 1; : : : ; b C 9, say,
for b D 0. For each of these guesses independently, we run an algorithm A for finding the
superheavy item using S D O.1/ memory which assumes that the corresponding guess for
Q2 was correct (up to a factor of two). Conditioned on the weak tracker succeeding, when
it first reports QFt � 21, then we are certain that Q2 > 1 (which is 20). More generally, when
it first reports QFt � 2bC1, then we are certain Q2 > 2b . In this case, we can terminate the
copy of A which assumed Q2 � 2b , increment b, then start a new copy of A (recycling the
memory from the terminated algorithm) that assumes Q2 � 2bC9 for the new value of b.
The key observations are that (1) since we only operate on 10 guesses in parallel at any given
time, our overall memory usage is still O.S/, and (2) when we instantiate a new copy of A,
if that new copy corresponds to the (approximately) correct guess of Q, then it is not hard to
show that the prefix of the stream it missed processing only contained a very small constant
fraction of the number of occurrences of the superheavy item and that the item must thus
still be superheavy (with a slight adjustment to the constant C ) in the remaining suffix of the
stream.
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The idea behind the algorithm A assuming we know Q exactly is then as follows.
Knowing Q D kf .`/k2 exactly is equivalent to approximately knowing Q0 D .f .`//i� since
.f .`//i� � kf .`/k2 due to superheaviness. We write i� expanded in base-2 as i�

T i�
T �1 � � � i

�
0

for T D blog2 nc and aim to learn these bits one at a time, starting from i0 then moving
from the least to most significant bit. The strategy to learn i�

0 is as follows: first, we initialize
two counters B0; B1, each to zero. We also pick a random function � W Œn�! ¹�1; 1º from
a 4-wise independent family as described in Section 2.2. When we see i in the stream, we
simply add �.i/ to Bi0 (where ij here denotes the j th least significant bit in the base-2
representation of i ). We wait until the first time t that jB.t/

r j � Q=10 for some r 2 ¹0; 1º,
and at that moment we declare that we have learned i�

0 D r . We must iterate in some fashion
to learn the remaining bits, but before we describe that, let us first get a sense for why this
approach is reasonable. Consider the values of the two counters at some time t :

B
.t/

i�
0
D �.i�/f

.t/
i� C

X
i¤i�

i0Di�
0

�.i/f
.t/

i

„ ƒ‚ …
˛

; B1�i�
0
D

X
i0D1�i�

0

�.i/f
.t/

i„ ƒ‚ …
ˇ

:

The variances of ˛; ˇ are each at most kf .t/

Œn�n¹i�º
k22, which is far less than .f

.`/
i� /2 � Q2

by superheaviness. Thus we expect j˛j; jˇj � jf .`/
i� j at any fixed point in time with large

probability, by the second moment method. But not only do we expect this inequality to hold
at any fixed point in time, but with large probability it turns out to hold at all points in time,
simultaneously. This fact follows by the following lemma, which can be proven by applying
a Dudley-type chaining argument using limited independence (see Section 4.1.1).

Lemma 4.4. Let 0 D y.0/; y.1/; : : : ; y.T / 2 Rn be the evolution of a frequency vector in an
insertion-only stream. Let � 2 ¹�1; 1ºn be drawn from a 4-wise independent family. Then

E
�

sup
0�t�T

ˇ̌˝
�; y.t/

˛ˇ̌
D O

�y.T /


2

�
:

Remark 4.5. Consider a random walk on the integers, starting at 0, where at every time step
one decrements with probability 1=2 and increments with probability 1=2. Let the position
of this random walk at time t be x.t/. Then one can model the evolution of this position
in the following way: consider the stream 1; 2; 3; : : : ; T . This stream yields the sequence of
frequency vectors

y.t/
D .1; 1; : : : ; 1„ ƒ‚ …

t entries

; 0; : : : ; 0/>; (4.1)

and then x.t/ D h�; y.t/i for � 2 ¹�1; 1ºT uniformly at random. Lemma 4.4 then implies
E sup1�t�T jx.t/j D O.

p
T /, which follows from the Lévy–Ottaviani maximal inequality

(see, e.g., [30, Proposition 1.1.1]). Lemma 4.4 generalizes this maximal inequality in two
ways: (1) the entries of � do not need to be independent, but rather only 4-wise indepen-
dent, and (2) the lemma generalizes to the arbitrary evolution of the y.t/ vectors where each
y.tC1/ � y.t/ can be any standard basis vector.
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With Lemma 4.4 in hand, by Markov’s inequality j˛j; jˇj � Q=10 at all points in
time with large constant probability. Thus, with large constant probability, (1) we will never
have jˇj � Q=10 and thus never declare some r ¤ i�

0 , and (2) at the moment in time that
we have seen the dQ=9eth occurrence of i� in the stream, j˛j will be sufficiently small in
magnitude that jB.t/

r j D f
.t/

i� ˙ j˛j will be at least Q=10. How then though do we learn all
the bits of i�? One we learn i�

0 , we could reset B0;B1 to 0 again and restart a similar process
to learn i�

1 , but the argument given so far requires us to see potentially dQ=9e occurrences
of i� to learn a single bit of its binary representation. Thus we could only learn at most
9 of its bits this way, whereas we need to learn log2 n bits! The idea to overcome this is
to first pick a random permutation � on Œn� (it is possible to do this pseudorandomly as
well so that � can be represented using only O.1/ words of memory; we omit the details).
Then for every update we see in the stream, we feed �.i/ to A instead of i (then at the end
of the entire algorithm, we apply ��1 to the superheavy index founded to recover i�). This
permutation has the effect that the `2

2 energy of the vector is randomly spread (in expectation).
Then, after we have learned rj �1rj �2 � � � r0 D �.i�/j �1�.i�/j �2 � � ��.i�/0 and are trying to
learn �.i�/j , for every index i in the stream we simply ignore i (and do not feed into to A)
unless i is consistent with the bits we have learned so far, i.e., �.i/j �1�.i/j �2 � � ��.i/0 D

rj �1rj �2 � � � r0. Intuitively this makes sense: if these bits do not match that of i� then surely i

cannot be i�, so feeding it into A can only contribute to the noise ˛;ˇ. Since the coordinates
are randomly permuted and the energy from the nonsuperheavy item is randomly spread, by
dropping a 1=2j fraction of coordinates (other than i�), the effect is that i� only becomes
heavier in the projected frequency vector that remains, at a geometric rate as j increases.
This means that we no longer need to see � Q=9 occurrences of i� to learn the next bit,
but rather can get away with seeing a geometrically smaller number of occurrences! If we
iterate in this way, then eventually there will be a unique consistent i in the remaining part
of the stream (possibly because we learned all the bits of �.i�/), and this i must be i�. This
concludes the description of A.

4.1.1. A brief introduction to chaining arguments
We here sketch the proof of Theorem 4.4. We will be considering Rademacher pro-

cesses defined as follows. Given a collection of vectors X , we can define a collection of
random variables .Zx/x2X by Zx WD h�; xi, where � 2 ¹�1; 1ºn is a vector of independent
Rademachers. We now study methods for upper bounding W.X/ WD E supx2X jZxj; in what
remains, we assume X is a subset of the unit sphere Sn�1.

When reading the subsequent bounds, a good example to keep in mind is the special
case of Lemma 4.4 related to a random walk on the integers of length n. That is, we define
yt D .

Pt
iD1 ei /=

p
n (similarly as in (4.1) but normalized to lie in the unit Euclidean ball) and

Y D ¹ytº
n
tD1. Here ei denotes the i th standard basis vector. Then we know W.Y / D O.1/

by Levy’s maximal inequality. In the case of independent Rademachers this can be proven
simply via a simple reflection argument, but since our aim is to prove this bound even when
the Rademachers are only 4-wise independent, we develop another approach.
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Union bound. The first bound is via a union bound over all x 2 X :

W.X/ D

Z 1

0

P
�
sup

x
jZxj > u

�
du

D

Z u�

0

P
�
sup

x
jZxj > u

�
duC

Z 1

u�

P
�
sup

x
jZxj > u

�
du

� u�
C

X
x2X

Z 1

u�

P
�
jZxj > u

�
du (union bound)

. u�
C jX je�.u�/2=2

.
p

log jX j
�
choose u�

D ‚
�p

log jX j
��

: (4.2)

Thus in the case of Y we obtain the bound W.Y / D O.
p

log n/, which is not sharp.

�-net. Let N .X; `2; �/ denote the minimum number of `2 balls of radius � required to cover
X (the covering number), and let X 0 be the set of centers in such a minimum covering. Any
such covering is called an �-net, and X 0 is thus an �-net of optimum (i.e., minimum) size.
Then for any x 2X let x0 2X 0 be defined as the closest point in X 0 to x in `2 distance. Then

E sup
x2X

ˇ̌
h�; xi

ˇ̌
D E sup

x2X

ˇ̌˝
�; x0
C .x � x0/

˛ˇ̌
� W.X 0/C E sup

x2X

ˇ̌˝
�; x � x0

˛ˇ̌
. log1=2 N .X; `2; �/C � � k�k2 ((4.2) and Cauchy–Schwarz)

. log1=2 N .X; `2; �/C �
p

n:

Note one can take � D 0 and recover (4.2). In the case of Y , an optimal �-net is Y 0 D

¹ybk�2ncº
b1=�2c

kD1
, and so log1=2 N .Y; `2; �/ D ‚.

p
log.1=�//. The bound is asymptotically

optimized by taking � D ‚.1=
p

n/, which yields the same suboptimal bound W.X/ D

O.
p

log n/ as above.

Dudley’s inequality. Dudley iterates the �-net approach by taking a sequence of �-nets
X0; X2; X3; : : : where Xj is a 2�j -net. Letting x.j / denote the closest point in Xj to
x, one can write x D x.0/C

P1

j D1.x.j / � x.j � 1//. Then, taking X0 D ¹0º,

E sup
x2X

ˇ̌
h�; xi

ˇ̌
D E sup

x2X

ˇ̌˝
�; x.0/

˛
C

1X
j D1

h�; x.j / � x.j � 1/i
ˇ̌

�

1X
j D1

E sup
x2X

ˇ̌˝
�; x.j / � x.j � 1/

˛ˇ̌
.

1X
j D1

1

2j
� log1=2

�
N
�
X; `2; 2�j

�
�N

�
X; `2; 2�.j �1/

��
.

1X
j D1

1

2j
� log1=2 N

�
X; `2; 2�j

�
:

In the case of Y , the above sum is
P

j

p
j =2j D O.1/, which is correct. How can we

deal with the issue though that in our case � only has 4-wise independent entries? The key
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observation is that the appearance of the “log1=2” function in Dudley’s inequality arises as
the inverse of the gaussian tail of h�; xi (Khintchine’s inequality). If � only has 2k-wise
independent entries, then we still have some tail bound from applying Markov inequal-
ity on the .2k/th moment (it is important that we only look at even moments, since then
jh�;xij2k D h�;xi2k , whose expectation is determined by bounded independence via expan-
sion into a sum of monomials). This tail leads to a converging sum for k D 2, and hence
4-wise independence suffices. Interestingly, it was shown that 4-wise independence is neces-
sary; Narayanan constructed a distribution over 3-wise independent Rademachers for which
the conclusion of Levy’s maximal inequality fails to hold [33].

Remark 4.6. Dudley’s inequality is not sharp, as can be seen, for example, by taking X D `n
1 .

Then W.X/D 1, but a calculation reveals Dudley’s bound yields only W.X/DO.log3=2 n/.
A sharp approach that is correct for any X when � is replaced by a gaussian vector is given
by Fernique [22], with an asymptotically matching lower bound by Talagrand [35]. In the
Rademacher case as discussed here, an upper bound was observed by Talagrand with a con-
jectured matching lower bound (the so-called “Bernoulli Conjecture”); that lower bound was
eventually proven by Bednorz and Latała [6].

4.2. General turnstile streams: the ExpanderSketch
While the BPTree of Section 4.1 achieves an improved memory bound of O.k logk/

to solve the `2 heavy hitters problem, it only works in the insertion-only model. Recall the
more general turnstile model is one in which each update in the stream consists of a pair
.i; �/, which triggers the change fi  fi C� (where � 2 R may even be negative). Unfor-
tunately, a lower bound of �.k log n/ memory is known to hold in the turnstile model, even
for the `1 heavy hitters problem [26], showing that the memory usage of CountSketch is
asymptotically optimal in this more general model.

What then is there left to study in the general turnstile model? Memory turns out to
not be the only resource we care about, but rather we should judge the quality of algorithms
based on at least four measures of efficiency:

1. Memory: as already discussed.

2. Update time: How much time does it take the algorithm to process a new update
in the stream?

3. Query time: At the end of the stream, when queried how long does it take the
algorithm to produce the list L of frequent items?

4. Failure probability: Fixing the above three quantities, the lower the failure
probability, the better.

Using O.k log n/ memory, examining the proof of Theorem 2.5 reveals the CountSketch
has update time ‚.log n/, failure probability O.1=nc/ for arbitrarily large constant c (by
increasing the constant in the big-Oh of the memory bound), and query time ‚.n log n/. It
is this query time that we wish to improve: the output L is of size at most k, yet it takes
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time more than linear in the universe size n to find the items in this list! Can we obtain an
algorithm that has the same asymptotic memory, update time, and failure probability as the
CountSketch but with much better query time? The answer is “yes,” and this is achieved by
the ExpanderSketch [31], following prior work which had shown to improve the query time
but at the expense of increased memory and update time [16,17].

Theorem 4.7. There is an algorithm for the `2 heavy hitters problem, the ExpanderSketch,
which uses O.k log n/ memory, and which has update time O.log n/, query time O.k �

poly.log n//, and failure probability 1=nc for a constant c > 0 that can be made arbitrarily
large.

We do not prove the theorem here but rather just give an overview of the main ideas.
The main idea is to reduce to the case of small n, so that the CountSketch can then be used
after the reduction. The idea behind the algorithm can be broken down into two steps. We
describe Step 2 only in the case of the easier `1 heavy hitters problem, and in the so-called
strict turnstile model, where we are promised that fi � 0 for all i at query time. The ideas
can be extended to the general turnstile model, and for the `2 version of the problem, but the
details are a bit more technical and so we do not discuss them here; the simplified setting we
discuss here is sufficient to highlight most of the main ideas.

Step 1. We first reduce to the case of small k: more specifically, to the case k D O.log n/.
This is accomplished by defining B WD dk= logne and picking a hash function h W Œn�! ŒB� at
random from a ‚.log n/-wise independent family. A simple argument based on Bernstein’s
inequality implies that any k-frequent item in the original stream will be O.log n/-frequent
in the projected vector fh�1.h.i//. Thus, by running a frequent items data structure Aj for
each j 2 ŒB�, we can recover the full list L as the union of the Lj returned by each Aj .

Step 2. Due to Step 1, we can now assume that k D O.log n/, and we show here how to
implement each Aj . As mentioned above, we focus only on the strict turnstile model, and for
the `1 heavy hitters problem. As mentioned, the main idea is to reduce the universe size n,
which we accomplish as follows. For each update .i;�/ in the stream, we view i in base-b for
bD poly.logn/. In this base, i has t DO.logb n/DO.logn= log logn/ digits it�1it�2 � � � i0.
We instantiate t independent CountSketch data structures CS0; : : : ; CSt�1.2 We would like to
then feed the update .ij ;�/ to CSj for each 0� j < t . The reasoning is that if i is k-frequent,
then ij will be k-frequent from the viewpoint of CSj for each j . This is because all the mass
from i contributes to the frequency of ij , plus other indices in Œn� with the same base-b digit
in the j th position can only contribute more (this is where the strict turnstile assumption
comes in, since otherwise other such indices might have frequencies with opposing sign and
cause cancellation). Thus, we would like to query each CMj to obtain ij as frequent, then
simply concatenate these digits. Note that since each CSj only operates over a frequency
histogram of dimension b D poly.log n/, its query time is a fast O.b log b/ D poly.log n/.

2 Though CountSketch solves the `2 version of the problem, we know by Lemma 2.2 that it
must also solve the p̀ version for any p � 2 (specifically, it solves the `1 version)
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There are two main issues with the above scheme. The first, and easiest to fix, is
the following: recall that the CSj are randomized data structures, and so CSj may fail to
report ij with probability as large as 1=bc . It is possible to show that with probability 1=nc ,
at most 1% of the CSj data structures fail, which means we may miss 1% of the digits of
a heavy hitter i . This is easily fixed though using error-correcting codes. For our purposes,
an error-correcting code is simply a collection C of at least n vectors in Œb�O.t/ such that the
pairwise Hamming distances between vectors in C is large. In that way, given some x 2 C

then corrupting 1% of its entries in an arbitrary way, there is a unique way to “decode”
that corrupted vector to recover x. Since jC j � n, there is an injection (which we call the
“encoding”) Enc W Œn� ! C . Then when we process update .i; �/ in the stream, we first
compute i 0 D Enc.i/ and run the above scheme on i 0, which is represented by t 0 D O.t/

digits in base-b. With high probability we will recover 99% of these digits from the CSj ,
which we can then error-correct uniquely to recover i 0 fully, at which point we can invert
the injection Enc to recover i . Codes which let us recover from such errors with linear time
encoding, error-correction, and decoding exist [34], which can be used here.

The more serious issue though is that there may not be just one heavy hitter, but up
to k D O.log n/ of them; that is, CSj will not only output a single ij , but rather a list Lj

of O.log n/ elements in ¹0; : : : ; b � 1º. The question is then: how do we now disentangle
these lists to know which digits in different lists Lj correspond to the same i 2 Œn�? Note the
number of possible combinations is

Q
j jLj j, which can be as big as kt 0

D poly.n/. We now
discuss the approach to overcoming this issue.

First, consider the following simple idea which does not quite work: pick hash
functions h1; : : : ; ht 0 W Œn�! Œr� independently from a 2-wise independent hash family for
r D logc n, for some large constant c > 0. Then when processing the update .i; �/, rather
than feeding .Enc.i/j ; �/ to CSj , we instead feed the update .hj .i/ ı hj C1.i/ ı Enc.i/j ; �/,
where ı denotes concatenation of objects. Note that from the perspective of CSj it is receiv-
ing updates that index into a vector of length 2bC2r D poly.log n/, so its query time is still
fast. The main intuition is that since the range of each hj is r� k2, with good probability (1)
the set of frequent items are mapped injectively by hj and thus have a unique “name” hj .i/

in block j . Furthermore, since b � k, one can show that (2) the total amount of infrequent
item mass that collides with i under hj is small with large probability. We also still have that
(3) CMj succeeds with large probability. We say that any block j 2 Œt 0� satisfying (1) through
(3) is a “good” block.

Suppose all blocks are good. Then for each j , we first perform a filtering step on
Lj : if two different returned elements have the same hj .i/ values, we remove the one with
the smaller estimated frequency. After this filtering, if (1)–(3) hold then Lj contains every
frequent item and no items whose hj .i/ values collide with any frequent item. We can then
create a graph G on the vertex set Œt 0� � Œ2r �. Recall that an element of Lj will be a concate-
nation of three strings ˛; ˇ;  (ideally, ˛ is a name hj .i/, ˇ D hj C1.i/, and  D Enc.i/j );
each such element adds an edge in G from vertex .j; ˛/ to .j C 1; ˇ/. Then, in the ideal
situation that all blocks are good, G will contain a collection of at most k disjoint paths: one
for each frequent item. We can thus recover all the frequent items by finding the connected

4889 Forty years of frequent items



components of G to recover these paths, concatenating the  values along each component
path to obtain a codeword, then decoding the codeword to recover the corresponding frequent
item name in Œn�.

Of course, life is not so simple: if we want success probability 1� 1= poly.n/, then
we can only condition on 99% of the blocks j 2 Œt 0� being good, not them all being good.
In such a case, however, we lose each frequent item corresponding to a path connected com-
ponent of length t 0. Specifically, every roughly 100 vertices along the path on average, we
expect to hit a bad block j , which might cause us to miss seeing the edge from block j to
j C 1. Bad blocks might also introduce spurious edges between path fragments correspond-
ing to different heavy hitters. Thus, it may be not be possible to extract the vertex-disjoint
paths, one corresponding to each heavy hitter, from the graph G we end up seeing after
these corruptions. The main issue is that the errors introduced into G hide the underlying
connected components (paths) that we were hoping to find. This final obstacle is overcome by
borrowing an idea from [23], but with a more sophisticated disentangling algorithm. Specif-
ically, rather than represent each heavy hitter by a path, we represent it by a base graph H

which is robust, in that if one deletes a small fraction of edges within H and also attaches
a small number of edges to H from outside parts of G, it is still possible to identify most
of H inside G. Intuitively such an H should be tightly connected internally, and in fact a
clique would serve this purpose. We will want an H with constant degree though, so rather
we use a constant degree expander. Specifically, say H has vertex set Œt 0� and is regular with
degree D, and let each vertices neighbors be ordered arbitrarily. Let �.j /r be the r th neigh-
bor of j 2 Œt 0� according to H . Then now when receiving an update .i; �/ in the stream, we
feed .hj .i/ ı h�.j /1

.i/ ı � � � ı h�.j /D
.i/ ı Enc.i/j ;�/ to CSj for each j 2 Œt 0�. Thus when we

recover each Lj , we hope to not only recover the random name of a heavy hitter i in block j ,
but also its random name in every block adjacent to j according to the expander H . In this
way, we ideally recover each heavy hitter as an expander connected component in H . How-
ever, due to bad blocks each such component may be slightly corrupted as mentioned above,
with some internal edges missing, and some spurious edges leading outside the component.
This is overcome by developing a spectral-based graph clustering algorithm, based upon the
graph version of Cheeger’s inequality [2,18], to recover most of the original components; we
omit the details.

5. Frequent items with privacy constraints

A new model that is increasingly gaining relevance comes from the following exam-
ple. Suppose a company makes mobile devices and wishes to train better spellcheckers and
autocomplete features for its messaging software. To this end, it wishes to train machine
learning models based on words that its customers are texting to their contacts. The device
manufacturer could accomplish this by monitoring all its customers’ activity, embedding
code in its messaging software which reports all text messages back to the company. Such
behavior is of course problematic, as it violates most users’ expectation of privacy and could
even be illegal in some countries.
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One way around this issue is to use differential privacy [19], and specifically the
so-called local model model for differential privacy (see also [40] for so-called federated
analytics approaches). Given some database D D ¹x1; : : : ; xnº and a randomized algorithm
M.D/ for releasing information, we say the algorithm is "-differentially private if for all
possible outputs M and for all “adjacent” D; D0,

P
�
M.D/ DM

�
� e"

� P
�
M.D0/ DM

�
;

where two databases are said to be adjacent if D; D0 differ on exactly one data item x (either
x is in one but not the other, or the metadata associated with x is altered between the two). An
example to keep in mind is a hospital storing a database of patient records, with public health
analysts wishing to query that data for their own research. Then the hospital is (possibly even
legally) bound to maintain privacy of patients, which is at odds with the public health utility
from obtaining that information. On the one hand, the hospital could release exact answers
to all queries or even release the entire database (i.e., M.D/ D D), which would allow the
analysts to determine the answer to any query they would like and thus provide them with
optimal utility but at the expense of no privacy; on the other hand, the hospital could release
M.D/ D ? (or a random string independent of D) which provides perfect privacy (" D 0)
but zero utility.

In the local model that is relevant for the original example with mobile devices, there
is not one central server that owns the entire database, but rather the data is distributed across
all devices (each device knows the words it communicated). Thus each individual device i

will run its own algorithm Mi to decide a randomized message to send a central server
(being run by the device manufacturer). Unlike the example of the hospital, in this scenario
the central server is untrusted. As one might imagine for the case of training spellcheck or
autocomplete software, it would be useful to know popular words, i.e., frequent words, that
are being typed on the devices; indeed, a patent even exists on precisely such an approach
[36]. One can then devise differentially private algorithms that allow efficient procedures for
solving point_query and frequent in this model. One wishes for solutions which (1)
trade off utility and privacy as efficiently as possible, (2) require low communication per
device, and (3) require low processing time from the central server to answer queries given
all the randomized messages it received. Finding solutions to these problems has been a
very active area of research in the last several years [1,4,5,12,15,20,21,39]. We do not attempt
to describe the latest and most efficient solutions in-depth, but rather we describe just two
simple solutions for point_query to give a reader of the flavor of how such private algo-
rithms look.

Below, we again assume the universe is Œn�, and d denotes the number of devices.

Randomized response. The idea here is simple: if a device holds x 2 Œn�, then they send x to
the server with some probability p, and otherwise they send a uniformly random x 2 Œn�n¹xº.
Picking p D e"

e"Cn�1
ensures that "-differential privacy is satisfied.
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To then produce an unbiased estimator Qfx of fx to answer point_query(x), the
central server uses an estimator of the form

Qfx D

dX
iD1

�
˛ � 1¹mi D xº C ˇ

�
; (5.1)

for some ˛; ˇ 2 R, where mi is the message sent by device i . Also, 1¹Eº is the indicator
random variable for event E . For the above estimator to be unbiased, we must have that
each summand has expectation 1 when xi D x and has expectation 0 when xi ¤ x. Taking
expectations, we thus obtain the following two linear constraints:

˛ �
e"

e" C U � 1
C ˇ D 1 and

˛ �
1

e" C U � 1
C ˇ D 0:

Solving this system of two linear equations with two unknowns gives

˛ D
e" C n � 1

e" � 1
; ˇ D �

1

e" � 1
:

One can also compute the variance (which is our proxy for “utility”) and find

VarŒ Qfx � D
e" C n � 2

.e" � 1/2
d C

n � 2

e" � 1
fx :

The message length from each device in this protocol is b D dlog2 ne. The query time for
the server to obtain Qfx for all x is ‚.d C n/. Note the dependence of the variance on n is
linear, which can be quite large.

RAPPOR. We describe a simplified version of the RAPPOR scheme [20]. There are two
versions depending on the specific privacy guarantees desired. In so-called deletion privacy,
a device should be able to opt out from sending its data without the server knowing it opted
out, in which case it will send a message based on some dummy input “x�.” In replacement
privacy, we want privacy in the sense that what the server receives should be nearly indistin-
guishable if that device had been replaced by some other device holding some other data x.
We focus only on deletion privacy, as the scheme is slightly simpler to present in this way,
and for that we use the symmetric version of RAPPOR. In this scheme, a device holding x

maps it to the standard basis vector ex 2 Rn, also known as the one-hot encoding of x. The
device then flips each bit of ex independently with probability p to form its message M ,
which it then sends to the server (in asymmetric RAPPOR, the probabilities of flipping 0

to 1 versus 1 to 0 are different). One would expect the variance of a resulting estimator to
monotonically increase as p increases from 0 to 1=2, so the goal is to make p as small as
possible while preserving privacy. To ensure privacy, we must ensure that the message that
is sent has roughly the same probability for any device even if it chooses to “delete” its input
and replace it with some canonical dummy input x�.

A device that opts out of sharing its data at all will pretend that it holds x� D ?

(resulting in the vector ex� D E0). Consider x 2 Œn�; we must ensure that for any message M

e�"
� P .M jx�/ � P .M jx/ � e"

� P .M jx�/:
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For these two inputs, the message M is either obtained by flipping bits independently in ex

or in ex� . The only index for which the resulting bit in M has differing probabilities is the
index x, differing by a factor of .1 � p/=p D 1=p � 1. Since this quantity must be at least
e", the smallest we can set p is p D 1=.e" C 1/.

We must now determine an unbiased estimator for the server to estimate fx in
answering point_query(x). If device i sends message mi 2 ¹0; 1ºn, we will use an esti-
mator of the form

Qfx D

dX
iD1

�
˛ � 1

®
.mi /x D 1

¯
C ˇ

�
: (5.2)

We focus on each summand and again after taking expectations have two linear constraints
that arise from the cases xi D x and xi ¤ x. These constraints are

˛.1 � p/C ˇ D 1 and

˛p C ˇ D 0:

Some calculation then yields the solution

˛ D
1

1 � 2p
; ˇ D �

p

1 � 2p
:

To compute VarŒ Qfx �, we again have independence of summands, where summands
with xi D x each contribute some value A, and those with xi ¤ x contribute B . The total
variance is then A � fx C B � .d � fx/. Some computation then yields

VarŒ Qfx � D
p.1 � p/

.1 � 2p/2
d C

p2

.1 � 2p/2
fx :

Unlike the case of Randomized Response, we do not have such a large dependence on n in the
variance, and thus the utility is far superior especially for large n. The message length in this
protocol is b D n, and the query time for the server to obtain Qfx for all x is ‚.dn/; both are
much worse than Randomized Response. A recent scheme of Feldman and Talwar provides
a slight variant of RAPPOR which significantly reduces the message length to O.log n/

bits [21].
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