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Abstract

Mathematics of computation and, in particular, computational complexity theory, is a fun-
damental research area in the intersection of computer science and mathematics.
The area revolves around classifying computational problems as feasible or alternatively as
infeasible, typically in the worst-case regime.
In some related areas—and even more prominently in practice—the notion of average-case
complexity is ubiquitous.
Cryptography is a prime example where proving security of protocols/primitives often
necessitates average-case type hardness assumptions.
We take the choice herein to analyze these notions through the lens of linear algebra.
This perspective allows us to smoothly present important future research directions, as
well as propose conjectures that lay a road-map for future progress.
The goal of this survey is to make research at the core of computation more accessible.
More importantly, it gives us an opportunity to naturally state open questions regarding
lattices; a solution to which would transform our perception of computation, not only sci-
entifically, but also practically.
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1. Synopsis

My presentation will cover central issues regarding the mathematics of computa-
tion, in particular the computational complexity of algorithmic problems, through the lens
of linear equations. The aim is to make research at the core of computation more accessible.
More importantly, though, I will take the opportunity to present open questions regarding
lattices. These are research questions whose solutions may transform our perception of com-
putation, not only scientifically, but also practically.

The presentation considers a series of computational problems through the lens of
linear algebra, and, more specifically, as problems regarding linear equations. This formal-
ism is flexible enough to provide a uniform perspective across well-known combinatorial
optimization problems (Max-Cut is just one example); to clearly present the Unique-Games
problem and associated conjecture; and to investigate fundamental advanced problems such
as the Shortest-Vector Problem and the Closest-Vector Problem, over codes and, more gener-
ally, lattices. Such an approach will help clarify the seemingly subtle key differences between
the feasible and infeasible.

We start with the basic framework of a system of linear equations, and the natural
computational problem of solving it or at least approximating the solution. The presentation
then proceeds through gradual generalizations:

(1) Consider the standard notion where one searches for an assignment to the vari-
ables that satisfies as many of the equations as possible, or at least approximating
the optimal solution.

(2) Next, refine this notion and consider more general norms by which to measure
the quality of an assignment. In the current context, one may think of the linear
system as having the form Mx D t , and the distance measure being `0-norm
of the difference (kMx � tk0

def
D Pri Œ.Mx/i ¤ ti �). Then, extend that notion to

a general `p-norm of the difference between the solution and the target values
kMx � tkp .

(3) Consider alternative ways to measure the quality of a solution; a natural one is
to assume that the assignment must satisfy all equations, albeit the shorter the
assignment, the better.

(4) Finally, further refine the setting by restricting the domain of the assignment. It
is natural to define the problem over some field F , and to restrict the domain of
the variables to a subset F � F .

2. History

The problem of solving a system of linear equations has been studied extensively
since the early history of mathematics—starting with al-Khwarizmi and his invention of
linear algebra. The computational, algorithmic question whether a complete solution exists
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has long been known to be efficiently solvable via Gaussian elimination. Nevertheless, when
changing the definition of the problem slightly, in order to obtain a partial solution of as many
of the equations as possible, it turns out that coming up with an optimal solution is hard. In
particular, an efficient algorithm that simultaneously solves almost all equations (assum-
ing such a solution exists) would imply that P D NP, resolving the most fundamental open
problem in computer science (and one of the most basic open questions of mathematics).

This problem was in fact raised by Hilbert and Ackerman [44] in their Entschei-
dungsproblem, calling for a systematic algorithm that determines the universality of any
given mathematical statement. Much of the basic research into the emerging field of com-
puter science during the 1970s and 1980s was devoted to this conundrum [23,45,62]. Conse-
quently, many classical optimization problems were shown to be NP-hard, implying that an
efficient algorithm for them would require P D NP.

Let us briefly define these classes of computational (decision) problems: P is the
class of all those problems that can be computed efficiently (in polynomial time), while NP is
a wider class of such problems and, for our discussion, it suffices to say that it contains many
problems that are not known to be in P. An efficient solution for a problem which has been
established to be NP-hard would imply that PDNP. The class coNP is the class of (decision)
problems whose complement is in NP. The intersection of NP and coNP (problems in NP
whose complement is in NP, too) plays an important (if yet not so clear) role in complexity
theory, and even more so in cryptography.

An important caveat here is that assuming P ¤ NP is the preferable option for
humanity: First, as it relates to the raison d’être of mathematicians, since, if P D NP, there
would be no fundamental distinction between the existence of a short mathematical proof
and finding it. Second, there are many useful implications to a problem (presumably) being
hard, most notably in cryptography, where there is no system or secret safe from the powerful
NP class.

The 1980s, through the 1990s and beyond, saw the development of novel techniques
designed to facilitate efficient approximation algorithms for such problems. Since coming up
with an optimal solution turns out to be unreachable, one naturally attempts to come up with
the next best option, that is, a solution that comes close to optimal, namely, within some
known ratio of approximation from optimal.

Approximation problems could also turn out to be NP-hard. This finding represents
the inception of a radically different approach, which requires fundamental novel mathe-
matics, and heralded the dawn of the PCP-era1 [11, 12, 36]. Indeed, proving the hardness of
approximation is vastly more complex and requires utilizing multiple connections to other
mathematical fields, including probability, combinatorics, geometry, and analysis. This led
to an avalanche of hardness of approximation theorems which established that for many
classical optimization problems, coming up with a solution even slightly better than the best-

1 PCP is a strong characterization of the NP class via gap problems (which replace decision
problems), thereby allowing proofs that approximation problems are NP-hard.
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known is NP-hard. The upshot is that even approximating such a partial solution efficiently
would imply the same dreaded consequence that P D NP.

Improving the PCP characterization of NP and proving hardness of approximation
problems is a central research topic that has had far reaching implications and is still in
flux [5, 7, 14, 17, 19, 26–30,30, 31, 42,43,46,48, 50, 51, 51–53,65, 69, 73, 76]. It also has implications
that extend beyond complexity, to cryptography, algorithms, and other areas.

Fortunately, most of the fundamental achievements of the PCP-era—where approx-
imation problems are being shown to be hard via the PCP characterization of NP—can be
presented clearly through the lens of linear equations. The same is true for the most funda-
mental open problems of the field of hardness of approximation.

As an immediate consequence, much effort that would have otherwise been spent
on trying to come up with approximation algorithms is avoided, as current research indicates
that they are unlikely to be efficiently solvable.

The related, but parallel, field of cryptography thrives through an endless quest for
reasonable assumptions regarding the hardness of computational problems. This is essential
when constructing protocols and primitives with highly intriguing properties that have both
theoretical and practical uses, especially with respect to their security. In short, the idea is to
hide some secret backdoor information by encoding it into some hard problem (for instance,
encoding a bit string as a solution to a system of linear equations), and then to use this
encoding to transfer data securely. This begs the question of whether cryptography can be
based on the gold standard of P ¤ NP.

In this context, it is worth noting that the rich theory of NP-hardness addresses only
the worst-case complexity of a problem. Accordingly, an efficient algorithm that is correct
on most instances of the problem (that is, on most systems of linear equations) is insufficient.
Therefore, an efficient average-case algorithm for an NP-hard problem does not imply P D
NP. This is apparently the reason we do not know how to base cryptography on the weakest
possible assumption that P ¤ NP. A cryptographic protocol chooses keys at random and, if
a problem is not known to be hard in the average-case, breaking it would not imply a general
algorithm according to the worst-case regime.

Thus, another question naturally arises: Is there a class of computational prob-
lems, whose hardness can be established mathematically, similarly to NP-hardness, while
maintaining enough flexibility to allow for cryptography? The main topic of interest herein—
lattices and lattice-based computational problems—is the prime source of such problems,
bringing on a tremendous surge of creative ideas.

2.1. Lattices take center stage
Broadly, a lattice is defined as a discrete subgroup of a topological group, such that

the quotient of the group by the lattice satisfies a certain finiteness property. Our interest is
in a special case, which we formally define below. The mathematical background on lattices
appears in Appendix B.
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Historically, lattices have been investigated since the late 18th century by math-
ematicians such as Lagrange, Gauss, and later, Minkowski (mostly for number-theoretic
applications) [68]. Interestingly, some of their theorems (especially Minkowski’s) are quite
relevant to various parts of our discussion and will thus be presented below in the mathe-
matical foundation section.

In the late 20th century, lattices became a topic of active research with regards to
computational aspects of various problems and, more specifically, to the complexity of solv-
ing related computational problems. Research in the area has thrived in two directions:

• the quest for algorithms to solve computational problems over lattices as effi-
ciently as possible;

• suggestions of computational problems over lattices as candidates for problems
that (presumably) cannot be solved efficiently.

The second point has proved to be more useful than the first, most notably in cryptography,
which is always on the lookout for credible assumptions regarding the hardness of computa-
tional problems.

In 1982, Lenstra, Lenstra, and Lovasz [LLL or L3] discovered an algorithm that
approximates the Shortest-Vector Problem (henceforth SVP) in a lattice with a weak ratio
of approximation (exponential in the dimension). SVP is one of the most fundamental com-
putational problems regarding lattices and it will be covered thoroughly below. The LLL
algorithm, which is very useful despite the weak ratio of approximation, has since been
utilized for a wide variety of applications. In particular, it may be the first choice as a crypt-
analysis tool in an attempt to break a cryptographic system.

In the 1990s, this area was revitalized by a groundbreaking theorem of Miklós Ajtai
[4], which established a reduction from worst-case to average-case for a computational lattice
problem similar to SVP. He thus turned the spotlight on lattices and, in particular, demon-
strated the very interesting advantage that this type of computational problem has when it
comes to being presumably hard to compute. To explain this advantage, we need to explain
some basic notions in cryptography; we give a brief summary here and more details in the
next subsection.

Any modern cryptographic protocol is based on a hardness assumption, that is, a
computational problem that is presumed to be hard. The security of the protocol is then
established by showing that breaking the protocol entails an efficient solution for the problem
in question. But such problems, as we shall explain below, must always be in NP, so if PDNP
there would be no cryptography. Hence, any proof of security for a reasonable cryptographic
protocol must assume, at the very least, that P ¤ NP.

For cryptographic applications, however, one needs to rely on a problem that is hard
on average, that is, one for which solving a random instance from a prescribed distribution
is presumed to be infeasible. The assumption of P ¤ NP is not sufficient to guarantee this:
most known hardness results for computational problems only guarantee that the worst case
of the problem is difficult to solve, and in fact it is unlikely that we can find a problem
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that is NP-hard on average, for any probability distribution which can be algorithmically
sampled. Remarkably, Ajtai showed that for certain natural lattice problems, the worst case
of the problem reduces to the average case. When one has such a worst-to-average-case
reduction, one can more comfortably rely on the hardness assumption for the worst-case,
and, nevertheless, be able to trust and utilize the hardness of the problem on average.

Consequently, after a remarkable research journey that took more than a decade,
Oded Regev [77] eventually introduced the Learning-with-Errors (LWE) problem, which is
an average-case problem, and proceeded to establish that it is hard as a computational lattice
problem, which can be presumed to be hard in the worst-case. Almost all current cryptogra-
phy has since been based on the hardness of the LWE problem.

In the next subsection we expand on the preceding paragraphs.

2.2. Hardness assumptions
Let us elaborate on why there can be no modern cryptography without a computa-

tional hardness assumption: a protocol suggested for a cryptographic application must have
a secret that only authorized entities possess, which facilitates the authorized entities shar-
ing information inaccessible to unauthorized entities (due to their ignorance regarding the
secret). But what is the mechanism that keeps the secret secured? Consider the algorith-
mic problem of finding the secret, assuming access to the data exchanged in the protocol.
Modern cryptography, which relies on mathematical proofs of security, assumes full dis-
closure, that is, that all exchanges are public, and the security of the protocol is established
despite adversaries having access to everything but the secret. One must therefore guarantee
that it takes way too long to expose the secret, even using strong computers. But a nondeter-
ministic adversary can “guess” the secret and verify the correctness of the guess in similar
time (by attempting to decrypt the communication and checking whether the result makes
sense). Hence, if P D NP, for any cryptographic protocol which runs in polynomial time,
there exists a polynomial-time algorithm which breaks it.

Since we do not yet know that P ¤ NP, to prove the security of a cryptosystem, we
need to assume that a certain computational problem is hard, and then show that breaking
the cryptosystem is at least as hard as solving the problem. In this case, an algorithm which
breaks the cryptographic protocol (that is, exposes the secret, or just learns the secret data)
efficiently can also solve the original problem efficiently, which would contradict the hard-
ness assumption. By the above argument, this computational complexity assumption will
necessarily be at least as strong as P ¤ NP.

Many problems are by now known to be NP-hard. Thus, assuming they are hard is
equivalent to assuming P ¤ NP. Many problems—via PCP—are also known to be NP-hard
to approximate. Nevertheless, when focusing on hardness assumptions for cryptographic
application, one needs to choose a random secret from a distribution over all possible secrets,
and, consequently, the assumption should be related to how hard the problem is to solve
on average. This is in sharp contrast to the computational problems whose established NP-
hardness results apply only to the worst-case of the problem (that is, how hard it is to solve the
hardest instances of a given size). In fact, it is quite unlikely that we can have a problem that is
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NP-hard to solve on average (there are reasons to assume that one cannot efficiently identify
a subset of instances over which the problem is hard). Consequently, one has to establish
security via an assumption stronger than P ¤ NP and, furthermore, to come up with an
assumption regarding the hardness of the problem over a distribution over the inputs.

Typically, the weakest hardness assumption that enables security is that
P ¤ NP \ coNP—this may be because one must presume hardness on average, and it is
plausible that NP-hard problems are not hard on average for any reasonable, computable
distribution. In contrast, some problems in NP \ coNP are known to be as hard on average
as they are hard in the worst case—approximating lattice problems to within a weak enough
ratio is one great source for such problems.

Ajtai’s brilliant, very insightful theorem was a reduction from approximating a lat-
tice problem (a certain variant of SVP) in the worst case to approximating it in the average
case. Consequently, it is enough to assume that this problem is hard in the worst case in
order to be able to rely on its hardness on average. The assumption that the problem is hard
in the worst case is stronger than P¤NP, but, nevertheless, has proved a rather safe hardness
assumption: four decades since its introduction, there is not even a suggestion for an algo-
rithm that could substantially improve on LLL. Moreover, the ratio of approximation that is
presumed hard is much stronger (smaller) than that of LLL.

Regev’s expansive and wide-ranging perspective on complexity and lattices led him
to introduce the Learning-with-Errors (LWE) problem, which assumes a secret vector S that
one is trying to discover (i.e., learn). All one can do is press a button, which publicly reveals
a random vector x. The rules of the game could be that, in response, the secret holder must
announce the inner product of S with x. This, however, would be too easy, as Gaussian
elimination can be utilized to reveal the secret S within a small number of such rounds. In
LWE, when the button is pushed, x is revealed as before, but what is made public is the inner-
product hS; xi perturbed by some (small) error. Now, Gauss’ algorithm fails, and no other
efficient algorithm is known for the problem. Regev has shown a reduction from a lattice
problem (a certain variant of SVP) to LWE, thereby establishing a hardness result that is
very useful when proving the security of a cryptographic protocol whose hardness relies on
the hardness of that lattice problem.

Assuming LWE is hard leads naturally to cryptographic applications. Indeed, the
LWE problem yields a natural secret key, S , and a natural public key, the x’s and the noisy
inner products (we refer to [77] for a complete description of the cryptosystem).

Regev’s reduction from a lattice problem to LWE is not only quite complicated
but also a quantum reduction, i.e., it implies that LWE is as hard to solve as a shortest-
vector-type problem for a quantum computer, but not necessarily for a classical computer.
Simplifying the reduction and hopefully avoiding a quantum reduction (that is, finding a
classical reduction) is one great research direction to pursue which could greatly improve
our understanding of the issues involved and thereby lead to much sought-after progress.
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3. Foundation: a system of linear equations

Finding a solution for a system of linear equations is one of the most fundamental
computational problems. Let us start with definitions:

Definition 3.1 (Linear equations). A system of linear equations consists of a field F , a matrix
M 2 Fm�n, and a target vector t 2 Fm.

The most natural decision problem within this framework is whether a given linear
system has a solution that satisfies all the equations. Of course, this is an easy problem, which
can be efficiently solved via Gaussian elimination.

Consequently, given a system of linear equations, the next immediate goal is to find
an assignment x 2 Fn that satisfies as many of the equations of the system as possible.
For instance, given ‰ D ŒM; t; F � a system of linear equations, let us denote by valŒ‰� the
minimum, over all assignments x 2 Fn, of the fraction of equations that are unsatisfied,

valŒ‰�
def
D

1

m
min
x2Fn

ˇ̌®
i j ŒMx�i ¤ ti

¯ˇ̌
:

One should remark here that when measuring the computational complexity of a problem,
we look at the time it takes to solve it as a function of the length of the input. As the input
size grows to infinity, the number of equations could also grow rapidly. It then makes sense
to measure the fraction of equations unsatisfied. An algorithm that finds an assignment that
satisfies 0.99 of the equations (leaves 0.01 unsatisfied), assuming such an assignment exists,
solves it for unbounded input size.

The rest of this section surveys numerous variants of algorithmic problems over
a system of linear equations, representing the most fundamental open questions in the
field of the mathematics of computation. These are variants of the Closest-Vector Prob-
lem (CVP)—where one is given a target vector t and the algorithmic problems call for a
solution coming as close as possible to satisfying the equations. Another important variant
is the Shortest-Vector Problem (SVP)—where one assumes the target vector t D E0 is all 0,
albeit, disallows the all 0 assignment.

The rest of this section surveys numerous variants of algorithmic problems over a
system of linear equations. Here is a table of progression, with informal description—the
box denotes a computational problem:

• 3.1Error correcting codes (ECC)—the standard setting for computational prob-
lems regarding a system of linear equations:

– CVP-code search version; Compute 1—decoding a received word
by searching for the closest vector.

– CVP-code decision; Compute 2—deciding if the received word is
acceptable.

– SVP-code decision; Compute 3—finding the distance of a linear
ECC.
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– Max-Cut; Compute 4—partitioning the vertices of a graph into two
sets, maximizing crossing edges.

• 3.2 Complexity of approximation considers approximation versions:

– CVP gap["; 1 � "] over linear-ECC; Compute 5—distinguishing
whether the received word is acceptable or the received word is very
far from acceptable.

– Unique games (UG) PCP1$1["; 1 � "] Compute 6—structurally
restricted gap-CVP-code. It is an open problem.

– 2-to-1 games PCP2!1["; 1 � "]; Compute 7—almost linear equa-
tions (see below for precise definition). It is NP-hard.

– Unique games PCP1$1[1
2
; 1 � "]; Compute 8—a little harder than

UG above. It is NP-hard.

• 3.3 General norm—one can extend all computational problems mentioned so far
to general metrics.

• 3.4 Alternative measures

– Shortest integer solution; Compute 9—finding the shortest all-
satisfying assignment; or at least approximating it.

• 3.5 Average-case complexity

– Shortest integer solution average case; Compute 10—finding the
shortest all-satisfying assignment over a random system of linear equa-
tions; or at least approximating it.

– Learning-with-Errors (LWE); Compute 11—assuming a secret
target vector and, given a random system of linear equations plus a
random, noisy version of the secret, finding the satisfying assignment.

• 3.6 Lattices—general sparse subdomain (discrete subgroup). For example,
including full-rank matrices.

– CVP-lattice-search version; Compute 12—finding the closest
vector in a lattice.

3.1. Error correcting codes (ECC)
In brief, a linear error correcting code (linear-ECC) takes a data vector x 2 Fn

and transmits instead the vector Mx 2 Fm, where m� n. The transfer rate of information
decreases, as one sends a string of length m instead of length n. Nevertheless, if vectors in
the subspace ¹Mxº are distinct enough, assuming not too many errors occur in transmission,
the received vector t 2 Fm is not too different from Mx and could therefore be decoded, and
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the original vector x extracted. The matrix M is referred to as the generating matrix of the
linear ECC, and the question becomes whether there is a legal codeword within a certain
radius of t , where the radius corresponds to the number of errors that can be handled by the
code.

In other words, the decoding problem calls for an almost complete solution for a
system of linear equations. Unfortunately, once one allows some equations to not be satisfied,
the computational complexity of the problem becomes strikingly different. In terms of linear
equations, it goes as follows:

Compute 1 (CVP-code-search). The Closest-Vector-Search Problem over linear-ECCs is

• Input: a system of linear equations ŒM; t; F � and distance " > 0.

• Goal: find a vector generated by M within distance " from t , kMx � tk0 � ",
assuming one exists. (Alternatively, find the one closest to t ).

For a broader perspective, consider the `0 (Hamming) metric over all vectors Fm

and, within it, the set of vectors that are spanned by M , that is, all vectors of the form Mx

for x 2 Fn. Since m� n, the set of such vectors is sparse within the metric and possibly
spread thin so that the distance between any pair of vectors is high; hence, finding a vector
closest to a general target vector in Fm is nontrivial.

Our focus throughout is on this type of objects, namely, a discrete sparse subgroup
which is sparse within a geometric space over some field. The field could be continuous, for
example, R; nevertheless, by default, the set of vectors spanned is discrete, as will become
clear below.

The reason this computational problem is classified as concerning ECCs is that the
sparse subset is the set of all legal codewords, Mx for x 2 Fn. Accordingly, the target can
be thought of as the received word and the algorithm’s goal is to decode it, namely, find the
original transmitted codeword.

When dealing with the computational complexity of a problem, it makes more sense
to consider the decision version, which then takes the following form:

Compute 2 (CVP-code). The Closest-Vector decision problem over linear ECCs is

• Input: a system of linear equations ŒM; t; F � and distance " > 0.

• Goal: decide if there is a vector generated by M within distance " from t—is
valŒM; t; F � � "?

In words, given a system of linear equations, can one satisfy almost all of them?
The CVP code ( Compute 2) problem turns out to be NP-hard for any not too large

" > 0. Consequently, the above search version ( Compute 1) of finding the legal codeword of
a linear-ECC closest to a given vector t (for a general generating matrix M ) is also NP-hard.

A similar, yet quite distinctive, highly important computational problem regarding
codes is the Shortest-Vector problem:
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Compute 3 (SVP-code). The Shortest-Vector decision problem over linear ECC is

• Input: a system of linear equations ŒM; F � and distance " > 0.

• Goal: decide if there is a nonzero vector generated by M within distance " from E0.

In the linear ECC framework, the smallest " for which such an x exists is the distance
of the code.

Max-Cut. Observe that the classical Max-Cut problem is a special case of the CVP-code
problem. Recall that an instance of Max-Cut consists of a graph G D .V; E/, and the goal is
to find a bipartition of the vertices, that is, V D L[R, such that as many as possible edges
go across the cut. Here is a way to phrase the Max-Cut problem as an instance of linear
equations: for each vertex v 2 V , introduce a variable xv , set the field to be F2. As for the
matrix M , we take it from Fm�n

2 where m D jEj, n D jV j, and associate each row with an
edge and each column with a vertex. We set MŒe; v�D 1 if the vertex v is an endpoint of the
edge e, otherwise set MŒe; v�D 0. Observe that M ’s columns are now linearly independent.
Finally, let the target vector be t D E1 2 Fm. It is easy to see that for an assignment x 2 Fn, the
Hamming weight of Mx � t represents the number of edges missing from the cut defined by
the bipartition L D ¹v j xv D 0º, R D ¹v j xv D 1º. Therefore, minimizing this Hamming
weight corresponds exactly to maximizing the size of the cut.

Compute 4 (Max-Cut). The Max-Cut problem is

• Input: a system of linear equations ŒM; E1; F2� and distance " > 0; all rows have
exactly two 1 entries while all others are 0.

• Goal: is there a vector generated by M within distance " from t D E1? (Alterna-
tively, find the one closest to E1).

Claim A.1 [folklore] below establishes that Max-Cut is NP-hard. Since this is a
special case of CVP, the same is true for CVP.

Interestingly, a similar reduction applies when the field is R and the domain for the
solution is Z.

3.2. Complexity of approximation
An approximation algorithm abandons the option of finding an assignment that

leaves the smallest possible number of equations unsatisfied. It settles instead for an assign-
ment that leaves a larger fraction of the equations unsatisfied; still, the number of unsatisfied
equations is within the ratio of approximation times the optimal.

As it turns out, however, it is hard to distinguish even between the two extreme cases:
the case where almost all equations can be simultaneously satisfied versus the case where
almost none can be satisfied.

To prove an approximation problem hard, one has to define a problem that is close
in structure to a decision problem, nevertheless, whose hardness implies hardness of approx-
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imation. Such problems form a gap problem where the algorithm is required to distinguish
between two extreme cases for the value of the system, but is free to return an arbitrary
outcome for the in-between values.

Compute 5 (Gap CVP-code). The Closest-Vector gap["; 1� "] over linear-ECCs problem
is

• Input: a system of linear equations ŒM; t; F �.

• Goal: distinguish between

– Accept: valŒM; t; F � � ",

– Reject: valŒM; t; F � > 1 � ".

Note that in a gap problem the algorithm is free to accept or reject all inputs that fall
within the gap; in the gap-CVP case, these are equation systems ‰ D ŒM; t; F � whose value
valŒ‰� is between the two thresholds, " < valŒ‰� � 1 � ".

Claim 3.1. For any " > 0, there is a large enough field F so that CVP-code gapŒ"; 1 � "� is
NP-hard.

A proof can be found at Claim A.2 below.
We have just established that the gap version of the CVP problem is hard. Numerous

other versions of these problems are known to be NP-hard. In fact, for most classical approx-
imation problems, any improved ratio of approximation, beyond the best-known efficiently
achievable, is NP-hard—as a consequence of the PCP theorem. There are only a handful of
those approximation problems that do not have such a result established, and most of them
do have some hardness established—albeit not NP-hardness. Their hardness is relative to a
problem whose complexity is not yet established, namely UG—where the hardness of UG
(see below) is possibly the most fundamental open problem of the field.

Unique-games (UG). When the equations are restricted to include only two variables—
in particular, where every row of the matrix M is zero except for one 1 entry and one �1

entry—it becomes the infamous Unique-Games problem, which is not known to be NP-hard
despite strenuous efforts to prove such a statement:

Compute 6 (UG). The Unique-Games [UG] PCP1$1Œ"; 1 � "� problem is

• Input: a system of linear equations ŒM; t; F � so that every equation is of the form

xi � xj D tij :

• Goal: distinguish between

– Accept: valŒM; t; F � � ",

– Reject: valŒM; t; F � > 1 � ".
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The syntactic restriction, of every equation consisting of the difference between 2
variables required to be a prescribed value, makes it a special case of CVP and thereby
potentially easier than the general form. This opened the door for considerable attacks via
sophisticated algorithms, which have succeeded in reducing the time it takes to solve UG to
less than a trivial exponential of the size of the input. The infamous UG conjecture [47] states
that the problem is (NP-)hard to compute.

A grueling effort of more than a decade of work culminated in 2018 in considerable
progress on this nearly two-decade-old open problem; the progress concerns the resolution
of the related 2-to-1-games conjecture (a problem similar to UG, but where each equation
has two optional solutions):

Compute 7 (2-to-1 is hard). The 2-to-1-Games PCP2!1Œ"; 1 � "� problem is

• Input: a set of linear sums ŒM; F � where all constraints are of the form

xi � xj 2
®
tij ; t 0

ij

¯
:

• Goal: distinguish between

– Accept: valŒM; F � � ",

– Reject: valŒM; F � > 1 � ".

Theorem 3.1 ([53]). The 2-to-1-Games PCP2!1Œ"; 1 � "� is NP-hard.

As a side note, the (highly complex) proof of Theorem 3.1 starts with hardness of,
again, linear equations over F2 [43] and extend it considerably. This has discouraged research
attempting to show an efficient algorithm for UG. A fundamental reason for this apparent
disinclination is the observation that Theorem 3.1 implies that distinguishing between the
value of a UG system of linear equations being � 1

2
versus it being > 1 � " is NP-hard:

Compute 8 ( 1
2
UG). The Unique-Games PCP1$1Œ 1

2
; 1 � "� problem is

• Input: a system of linear equations ŒM; t; F � so that every equation is of the
form

xi � xj D tij :

• Goal: distinguish between

– Accept: valŒM; t; F � � 1
2
,

– Reject: valŒM; t; F � > 1 � ".

Corollary 3.2. PCP1$1Œ 1
2
; 1 � "� is NP-hard.

Proof. First, turn each constraint of PCP2!1 into two equations, for each of the possible
target values. This turns a system of value 1 � " into a PCP1$1 system of linear equations
of value 1�"

2
. Then, add a small fraction of obviously satisfied linear equations to take care

of the ".
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All the above-mentioned sophisticated algorithms proposed so far for UG, however,
produce an assignment satisfying roughly the same fraction of the equations, assuming the
value of the system is 1

2
in the “accept” case or the case where the value is 1� ". Therefore,

these algorithms are ill-equipped to resolve the UG-conjecture (unless P D NP) and that
direction seems to have been completely abandoned.

3.3. General norm
The next paradigm shift involves altering the measure of the distance of a solu-

tion from a perfect solution, by generalizing the `0 distance (D Hamming distance, that is,
the fraction of equations left unsolved) to any norm, for example, the Euclidean `2-norm
or any `p-norm. This seemingly simple technical change has a considerable impact on the
computational complexity of problems, as well as on the mathematics involved.

Cables and wires. Consider the ECC paradigm we have used so far; one can think of it as
a way to correct messages transmitted over a cable, which comprises numerous wires. The
simplistic approach we have considered so far is that each wire can carry a binary value,
namely, can be in either of two options for each clock tic. A more realistic approach is where
the wires can carry some specific voltage, depending on the value transmitted, however, there
is no reason to limit the number of possible voltages to two. One can have numerous plausible
values, each indicating a value of a predetermined range. In that case, the transmitted voltage
might come out different at the other end of the wire, nevertheless, it is more likely to change
a little than to change by much. Now, recovering the transmitted message, one better utilize
this to facilitate a more efficient transmission. The error is thus measured by the distance
between the set of voltages transmitted, on each wire, and those received, according to some
natural distance (norm). The goal is to figure out the data most likely to have been transmitted,
even if all values have changed (not by much) in transmission.

In other words, one may take a more general perspective, nonetheless, over the same
object; instead of looking for the assignment with the smallest number of equations left
unsatisfied, which amounts to looking for a vector x so that Mx is within a small radius `0-
ball around t . The question becomes how small a radius ball contains a vector Mx, however,
according to a general norm

valŒM; t; F �
def
D min

x2Fn
kMx � tk;

where the norm kMx � tk could be any prescribed norm that the definition of the problem
calls for. In other words, take the difference between the prescribed target values t and the
actual values the assignment x gives to each sum, and measure them according to some norm
such as the Euclidean (`2) norm or the taxi-cab (`1) norm, that is, instead of counting how
many equations are unsatisfied, measure how close the assignment is to satisfying all the
equations.

As a broader perspective, considered as a discrete subgroup of a metric space, the
only thing that has changed here is that the metric is now allowed to be any general metric.
The set of vectors would still, by default, be a sparse set within the metric.
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Consequently, the solution, as well as the computational complexity of the problem,
may be different depending on the chosen norm.

Norm over fields. Note that one must assume a well-defined norm over the elements of
the field F , and, consequently, over vectors of elements of the field, otherwise the def-
inition would be meaningless. For example, for your typical fields, say R (j˛j) or Zq

(min ¹j˛j; jq � ˛jº the `1-norm is naturally defined.
From the ECC perspective, the questions corresponding to classical linear equations

ask for a legal codeword closest to a given vector t according to the Hamming distance: In
the general-norm framework, one changes the distance applied in the last formulation, but
otherwise considers the same question: pick your favorite norm `p , “Is there a legal codeword
close enough to the word t?”, which results in the following computational question:

9x W kMx � tkp � "‹

In other words, one may consider the CVP-code-search computational problem from above
( Compute 1) with the more general definition of val, which, by default, is interpreted over
the `2-norm (even though any other norm could work, and, in fact, `1 may be more natural
in such settings). Accordingly, one could define the more general versions for all the above
problems (versions of CVP and SVP).

3.4. Alternative measures
Another alternative type of problems concerning the same object (a system of linear

equations) calls for a complete solution for all the equations, albeit optimizing a different
parameter. Let us rank distinct all-satisfying assignments according to their norm as vectors
x 2 Fn, each value being an element of the field. Once the norm of elements of the field
has been defined, every assignment has a well-defined norm. We may now consider an algo-
rithmic problem that calls for an all-satisfying assignment while minimizing the norm of the
assignment.

The Shortest-Integer-Solution (SIS) problem. The resulting problem—which turns out to
be quite important due to the implications discussed below—is the Shortest-Integer-Solution
(SIS) problem which is another variation on finding a solution for a system of linear equa-
tions.

For SIS, the equations must all be solved, and the parameter that measures the quality
of the solution is the norm of the assignment, so that the closer those numbers are to 0, the
better the solution.

This computational problem is central to worst-to-average-case reductions, and
thereby natural, when it comes to hardness assumptions, which facilitates cryptographic
security. Indeed, assuming SIS hardness entails the security of some One-Way-Functions
(OWF) and Collision-Resistant Hash-functions (CRH) as presented below.
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Let us start with a basic definition. For a matrix over a field F , the shortest nonzero
vector in the kernel of M is naturally defined as

� ŒM; F �
def
D min

Eo¤x2Fn

MxDE0

kxk:

The algorithmic approximation problem searches for a short vector in the kernel
of M :

Compute 9 (SIS-worst-case). The Shortest-Integer-Solution (SIS) SISŒM; F ; �� is

• Input: a matrix M 2 Fm�n.

• Goal: find a nonzero assignment E0¤ x 2 Fn such that Mx D E0 and whose norm
is small, namely 0 < kxk � �.

For the last part of the definition, relating to the norm of the assignment, one may
want to consider the field Zq , for a prime q, and a norm p̀ , in which case the problem is
well-defined.

Therefore, the algorithmic problem is to find a relatively short solution, under the
assumption that a short solution exists. As will become clear below, coming up with such an
algorithm entails a solution to other classical lattice problems and, moreover, to the worst-
case versions of those problems, making it natural to assume that SIS is hard.

3.5. Average-case complexity
Average-case complexity is fundamental in terms of complexity theory: we wish we

had the proper tools to analyze problems, not in the worst case, but on average, over some
prescribed distribution. By default, the complexity of a computational problem (for instance,
the time complexity, that is, the number of steps it takes for the algorithm to solve the prob-
lem) is regarded as the worst-case complexity: given an algorithm that solves the problem,
one measures, for any input length n, how long it takes for the algorithm to solve any input
of length n. That function, from n to the upper bound on the number of steps, over all inputs
of length n, is the time complexity of the algorithm. Average-case complexity, in contrast,
calculates the complexity according to the number of steps that would suffice to solve inputs
of some length n with high probability, or the average time it would take over inputs (accord-
ing to some prescribed distribution). Average-case complexity makes more sense in general;
unfortunately, our tools are insufficient for a coherent theory of the relationships between
classes of average-case problems.

Formally, there is a complexity function t .n/ and a small parameter " so that, for
distribution ƒn over all inputs of length n,

E
x�ƒn

�
the time it takes for A.x/ to solve the problem

�
� t .n/:

Note that the complexity of a problem could be drastically different in the average-case com-
pared to the worst-case. Take, for example, the Factoring problem: given an n-digit number,
find out its prime-number factorization. This problem is easy to compute on average over
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the uniform distribution, as most numbers have small factors; in contrast, numerous security
assertions rely on the problem to be hard in the worst-case, and, in fact, even on average, on
some particular distributions. Nevertheless, no distribution is known over which Factoring is
hard.2 Another striking example is SAT. It is one of the basic problems shown hard to com-
pute in the worst-case. On average, some distributions are known to follow a sharp-threshold,
namely, where increasing the parameter causes the resulting formula to be satisfiable until
some critical parameter when it suddenly becomes nonsatisfiable.

3.5.1. SIS
The first problem considered herein under this regime is SIS; unlike the above def-

inition, let us consider the average-case version of the problem where instances are drawn
from a distribution, and the computational complexity relates to how long it takes to solve
the problem on average or with high probability:

Compute 10 (SIS-average-case). The Shortest-Integer-Solution (SIS) in the average-case
regime is a computational problem with parameters SISŒn; m; F ; �� as follows:

• Input: a uniformly random matrix M 2R Fm�n.

• Goal: find a nonzero assignment E0¤ x 2 Fn such that Mx D E0 and whose norm
is small, namely 0 < kxk � �.

3.5.2. Learning-with-Errors
This is another average-case problem that is even more important than SIS. In fact,

most of the recent—quite fantastic—cryptographic primitives have their proof of security
that relies on the (presumed) hardness of this problem.

The Learning-with-Errors (LWE) problem was introduced by Regev in 2005 [77]

and is another variant of the system of linear equations problem, in fact, it is in some sense
a special case of the CVP-code-search from above.

This problem introduces a twist, as each instance is made up of two parts where
one is a randomly chosen secret target vector, while the other is a system of linear equations
chosen according to the distribution. The former remains a secret while the latter is made
public. The goal of the algorithm is to figure out the secret.

In particular, following the linear equation framework, the secret is a vector x 2R Fn.
Next, a random set of homogeneous linear sums is chosen as well—the matrix M—inde-
pendently of x, which is made public. Lastly, the evaluation of these sums over the secret
vector—only perturbed by some small noise—becomes public, too.

Routinely, one assumes a set of n variables Ex, over a field Zq for a prime number
q D q.n/ so that q � n. In addition, let us assume a (noise) distribution � over Œ��; �� for
some � � q.

2 Interestingly, Factoring, in its decision version, is known to be both in NP and in coNP.
Hence, it is unlikely to be NP-hard as this would imply NP=coNP.
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Compute 11 (LWE, search). The LWE� Œn; m; Zq; �� is an average-case problem where

• Secret: a chosen secret random vector x 2R Zn
q .

• Input: a random set of linear sums, namely, a matrix M 2R Zm�n
q ; further, a

vector of noisy evaluations t D Mx C e where e � �m (that is, one applies the
noise � independently for each linear sum).

• Goal: find the secret vector x (given M and t ).

The computational goal is to find the secret vector, however, for the approximate
version, it suffices to find a vector x0 so that kMx0 � tk � �.

An algorithm for CVP-code clearly solves LWE—given M and t as input. This
problem is a substantial special case for two reasons: first, it is an average-case problem, and,
second, the target vector is not arbitrary, but is rather chosen randomly, via a known noise
distribution. Nevertheless, Regev showed LWE to be as hard as the general case (of SVP),
thereby providing strong evidence for it being hard, and allowing its (presumed) hardness to
be extensively utilized for the purpose of establishing cryptographic security.

One may assume that the number of equations is rather large m� n compared to
the number of variables; thus, information-wise, there should be a unique solution for x that
brings the linear sums close to the noisy evaluations of t . In other words, the algorithm must
overcome the error (e � �m) introduced when choosing t in order to find a vector x0 that
brings the product with the matrix M not too far from the public (slightly perturbed) target
t , i.e., so that kMx0 � tk is small.

This problem is shown to be as hard as solving worst-case version of lattice prob-
lems, hence, one can rather safely assume that it is hard and, consequently, that it is safe to
construct cryptographic protocols whose security relies on the hardness of LWE.

3.6. Discrete subgroup—Lattices
So far, the natural cause for the set of selected vectors being sparse within the general

domain is the difference in dimension m� n. Let us now generalize this notion to produce
a natural subdomain regardless of that difference. In particular, one may even consider the
cases where the matrix has full rank, namely a set of independent vectors where mD n. The
computational problems as defined thus far become far easier since there is always a good
solution to all equations.

Consequently, let us require the solution (the values assigned to the variables) be
not arbitrary values in the field, but rather contained in a restricted sparse subset of the field.
The resulting construct is a discrete subgroup, i.e., a lattice that is sparse within the general
metric (over Fm); if the subdomain of the assignment is discrete, the resulting subgroup is
also discrete, even if the field is not.

In what follows, we assume the matrix is of full rank, for exposition purposes, so
that it is clear that the sparseness of a lattice does not stem from the global dimension m

being quite larger than the domain of the subgroup. Note, however, that lattices could be
similarly defined more generally for non-full-rank matrices.
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Definition 3.2. A lattice is defined by a (full-rank) matrix (called a basis) M 2 Fn�n over
a field F and a subdomain F � F . The lattice comprises vectors of the form below:

LŒM �
def
D

®
Mx j x 2 F n

¯
:

An extensive mathematical background on lattices appears in Appendix B. We may
now consider computational problems over lattices, similar to that we have considered so
far. These serve not only as a new perspective on the complexity of computational problems,
but also provide further information about the complexity of problems in the average-case.
This calls for fundamentally different mathematical analysis and has caused a tectonic shift
in cryptography, which is always in need of hardness assumptions for average-case problems
on which to base the security of protocols.

The computational problems call for a restricted type of assignments to satisfy the
equations. Once the domain of x is sparse within the general domain, the computational and
mathematical problems become more interesting. The most natural restriction in general
(and in particular throughout our analysis of lattices below) is when the domain of M is the
reals R, while the domain of the assignment x comprises the integers Z.

Computational problems over lattices, in particular CVP, consider a lattice plus a
target vector ŒM; t; F ; F �. By default, F is sparse in F and F conforms to F ’s structure, for
instance, F could be a ring: the archetypal example is where F D R and F D Z. Now, the
distance of the closest vector to a target vector t in this context is the smallest radius of a ball
around t which contains a vector of Mx; however, in this case, x is restricted to be a vector
over F :

valŒM; t; F ; F �
def
D min

x2F n
kMx � tk:

Restricting the domain and insisting on x taking this form allows the fantastic phenomena (as
described extensively below) associated with lattices, in particular the intricate dependency
of the computational complexity of problems on the ratio of approximation in quest.

Compute 12 (CVP-lattices). The Closest-Vector problem, over F ; F , is as follows:

• Input: a lattice basis/matrix M 2 Fn�n, a target vector t 2 Fn, and distance " > 0.

• Goal: find a vector Mx for some x 2 F n within distance " from t , that is, where
kMx � tk � ".

This small amendment to the parameter optimized by the algorithmic problem trans-
lates to a striking difference with regards to the complexity of these problems. It also diverts
the mathematics involved in a completely different direction, opening new and exciting paths
of research on interesting relationships between these problems and other variants, as well
as on the complexity classes in which they reside.

3.7. Worst-to-average-case
Many classical problems, including some of the above mentioned, are known to be

hard, typically NP-hard. Hence, an efficient solution for them implies an efficient solution for
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the entire class NP thus PDNP. Some classical problems, however, are not known to be NP-
hard, nevertheless, no efficient algorithm is known for them. Their complexity is unclear and
are thus a great source of fundamental open research questions regarding their complexity.
One option not to be overlooked is that some of these problems may form their own class,
which could lie between P (namely, efficiently solvable) and NP-hard. Some of these options
will be discussed in the next section.

This, however, is all with respect to a problem’s worst-case complexity. When it
comes to hardness for the same problem’s in the average-case, very little is known. It is
unlikely that one could show NP-hardness for an average-case problem, as finding a prob-
ability distribution that assigns nonnegligible probability to the set of hard cases is a step
towards solving the problem efficiently.

So how does one show hardness on average? For starters, as just observed, one
should show hardness relative to a class or a problem different than NP, in particular, relative
to a problem unlikely to be NP-hard. Still, what could be a good source for a hard problem
that is not NP-hard?

What Ajtai suggested in his groundbreaking paper [4] is to assume that weak approx-
imation of the classical computational problems regarding general lattice (such as CVP and
SVP) are hard, and then come up with a worst-to-average-case reduction, which would estab-
lish that an efficient solution for an average-case problem (such as SIS) entails an efficient
solution for a worst-case lattice problem.

Note that this a priori is a surprising concept: reductions from problem A to problem
B utilize a procedure for B to solve A. It reads A’s input and calls on a procedure for B with
instances that encodes A’s input so that altogether one can derive a solution for problem A
on its input. Here, one is expected to reduce the problem, given an arbitrary input, to random
instances that seemingly have no relation to the original input.

Ajtai, in his field-transforming mathematical breakthrough, showed that a version of
SVP, the unique-Shortest-Vector problem (uSVP) (namely, when �2 � �1) can be reduced
to a problem similar to the SIS-average-case problem:

Theorem 3.2 (SIS is hard [4,66]). SIS-average-case is as hard as uSVP [4] and SIVP [66].

In terms of mathematical ideas and strategy, this emerging area relies heavily on a
program laid out by the great Minkowski; this includes his original theorems, as well as their
extensions. These are covered below: the mathematics involved is discussed in Appendix B
while some conjectures that could greatly enhance our understanding and abilities in fig-
uring out the complexity of these problems can be found in the next section, as well as
in Section 4.3.

Regev’s LWE problem. Ajtai’s worst-to-average-case reduction to SIS is, nevertheless, not
the most natural for applications to cryptography, which prefers computational problems
more like CVP—so that the target vector can be kept secret while the matrix is public. One
of the most useful theorems—whose applications are highly ubiquitous in cryptography—is
the other fundamental worst-to-average-case reduction by Regev [77], who showed a reduc-
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tion3 of a similar lattice problem to the LWE problem. Regev came up with a reduction
from GapSVP and SIVP (a lattice problem that computes a set of short linearly independent
lattice vectors) to DGS problem—the problem of sampling from the Gaussian distribution
over a lattice; he proceeded that with a quantum reduction from DGS to the LWE problem.
One of the drawbacks, still a wonder, is that this reduction calls for the Quantum Fourier
Transform—which is the basic advantage of quantum algorithms that Shor’s algorithm [81]

relies on.
By establishing hardness of LWE based on worst-case hardness, Regev constructed

a simple and elegant public key cryptography system. Consequently, the security of many (if
not almost all) important cryptographic primitives was proved building on this assumption:
digital signatures [63], fully homomorphic encryption [20], and many more.

4. Plan: In a class of their own

In the grand project of classifying computational problems into feasible or infeasi-
ble, one of the remaining fundamental tasks is to identify problems that are in-between, that
is, problems that are neither efficiently solvable nor NP-hard. Let us hence define the class
of computational problems:

Definition 4.1. The class NP-intermediate NPI
def
D ¹A unsolvable in polynomial-time and

A … NP-hardº.

Our understanding of the principles that govern such problems and this class is lim-
ited at best. Here is the immediate caveat: if a problem is proven to be in that class, it would
imply P ¤ NP; so our goal is to just give some evidence that a problem belongs in that
class. The best evidence is if an apparently hard problem is in NP\ coNP, thus it being NP-
hard implies NPD coNP. Nevertheless, taking into consideration that some of the problems
whose complexity is not yet settled could be in that class, one should develop methodolo-
gies to enable such evidences. Some of these problems may be extra related so as to make
up a class of their own, in which case one hopes for a computational problem complete for
that class. The plan is to identify such subclasses, if they exist, and find more connections
between various such problems.

In particular, let us consider approximation problems. Some optimization problems
are NP-hard, hence, one tries to approximate them. It is naturally the case that some weak
ratios of approximation are known to be feasible while some stronger are known to be NP-
hard. For most classical problems, improving even slightly on the ratio known to be feasible
is NP-hard; while, for a selected few, there is no known precise ratio of approximation at
which the problem immediately switches from feasible to NP-hard.

Computational problems over lattices could serve a crucial role in giving evidence to
a problem in or out of the NPI class and in general exhibiting connections between problems:

3 Albeit, a quantum one—this is a bug not a feature: presuming LWE is found to be easy, this
implies an efficient quantum algorithm, not a classical one.
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• The first project is to establish up to which ratio these few still unresolved approxi-
mation problems are NP-hard, hopefully obtaining tight infeasibility results. This
would most likely require novel PCP-reductions, as current technology has not
shown any progress on this for nearly two decades.

• Once novel PCP-reductions are developed, these techniques may facilitate reduc-
ing apparently hard problems to weaker ratios of approximation for lattice prob-
lems, hopefully, to within ratios for which these lattice problems are known to be
in coNP (beyond square-root of the dimension). If the reduction manages to cross
that threshold, it would prove that the original problem is in coNP, which is the
best evidence for not being NP-hard, therefore a great evidence to being in NPI.

• The next project is to extend the scope of the worst-to-average-case reductions.
These would require stronger properties of lattices related to Minkowski’s theory
and, in particular, to reverse Minkowski theorems. With regards to computational
problems, it may be quite productive to identify a restricted class of lattices, for
which stronger Minkowski-type theorems are true, allowing strong connections
with regards to the computational complexity of those problems.

• Lattice-based cryptography relies on the hardness of lattice problems and almost
invariably on LWE presumed hard. Richer set of hardness assumptions could
broaden and provide more general proofs of security for protocols.

• To complete the picture, note that it is quite possible that some of these lattice
problems can be efficiently approximated to within polynomial ratios by a quan-
tum machine (compared to the exponential ratio of the LLL algorithm). Shor’s
algorithm considers the multiplicative group modulo the number N and utilizes
quantum Fourier transform to find cyclic subgroups of it, thereby factoring N .
Minkowski developed lattice theory as the “Geometry of Numbers” as it general-
izes phenomena related to numbers to high dimensions. It would be only fitting to
apply quantum Fourier transform on a lattice L to find cyclic subgroups within it,
thereby finding (or at least approximating) the best basis for the lattice L. If true,
this would drastically transform our perspective on compatibility, as the class of
feasible computational problems would include much more than those solvable
by efficient (random) algorithms. It would mean that the natural process of solv-
ing an algorithmic problem would be to translate it into approximating, say, SVP
(possibly on average) then applying a quantum machine to solve that.

Let us therefore point out some conjectures and questions that could advance this
grand plan. The most fundamental problem in this regards is the Unique-Games [47]. If
proven NP-hard, it will immediately imply tight infeasibility results for a large class of
approximation problems [51,56,71,73]. Furthermore, it will draw a very strict border of com-
putational infeasibility of approximation and show that, for practically all classical problems,
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it is infeasible to improve even slightly on the best known approximation algorithm, assuming
P ¤ NP.

Moreover, just improving beyond the current 1
2

barrier [28, 29, 52, 53] would be a
tremendous achievement. Namely, showing that the following algorithmic problem is NP-
hard: given a Unique-Games instance promised to be 0.51-satisfiable (namely, of value 0.49),
satisfy a nonnegligible fraction of the constraints:

Question 4.1. Is there c < 1
2
, so that 8" > 0 there exists an alphabet size q D q."/ such that

PCP1$1Œc; 1 � "� is NP-hard?

Already here, one of the options that should be given serious consideration is that
the Unique-Games problem is not NP-hard, yet neither in P:

Question 4.2. Is there,8" > 0, an alphabet size qD q."/ such that PCPq
1$1Œ"; 1� "� 2 NPI?

That is, one may be able to show that the problem is in coNP, which would be quite
earth-shuttering:

Question 4.3. Is it true that PCPq
1$1Œ"; 1 � "� 2 coNP?

Another manner of giving an evidence of a problem residing in NPI—besides prov-
ing a problem is in coNP (as an evidence it is not NP-hard)—is to show connection between
problems in that class by reducing one to another.

Thus, naturally, the question arises: For those problems in coNP and NP, how does
one establish hardness?

A prime candidate to belong to the class NPI and show it is related to other prob-
lems is the canonical Factoring problem, where, given a (binary representation) of a natural
number, the algorithmic goal is to find its representation via prime factorization. It is quite
likely that this problem is in NPI, furthermore, one should hope that its complexity can be
related to lattice problems [1].

Lattices. The complexity of computational problems over lattices is wide open, neverthe-
less, there are some striking results already established. These problems are interesting in
their own right but, furthermore, have the capacity to facilitate results that give evidence to
problems being in NPI. Beyond the Factoring problem above, other problems could benefit
from being reduced to an approximation variant of a lattice problem.

There could be two purposes for such a reduction: either to establish hardness of the
lattice problem, or to show the problem resides in coNP. To show that the lattice problem is
hard, one reduces a problem known to be NP-hard to it. To show that the original problem is
in coNP, reduce it to a lattice problem, for a weak enough approximation (square-root of the
dimension)—these are known to be in NP\ coNP. The known complexity results for lattice
problems are summarized in Figure 1.

The LLL algorithm [61], including Schnorr’s refinement [79] and Babai’s exten-
sion [15] to CVP, give the exponential upper bound on the right. The hardness for SVP is

4936 M. Safra



Figure 1

Complexity scale of lattice problems for approximation ratios

by Khot [49] following the original result by Micciancio [65]; while the hardness for CVP is
from [30].

Let us go on the edge here and conjecture that both SVP and CVP are NP-hard to
approximate to within a ratio of almost

p
n:

Conjecture 4.4. Both CVP and SVP problems are NP-hard to approximate within a ratio of
Qo.
p

n/.

Beyond the
p

n ratio of approximation, these problems are in coNP4 (and are clearly
in NP) [2, 39]. Thus, Conjecture 4.4 asserts that CVP and SVP are NP-hard almost to the
approximation ratio beyond which, if proven NP-hard, it would imply that NPD coNP. Prov-
ing these problems are hard almost to the ratios they are known to be in coNP is the holy
grail of the field, nevertheless, this direction has seen no progress for almost two decades.
A proof for any of these would be monumental and immensely extend our understanding of
the complexity of lattice problems. It would also naturally require new types of PCP reduc-
tions:

Conjecture 4.5. Approximating CVP/SVP to within c
p

n (for some global constant c) is in
NPI.

These conjectures are all important and with far-reaching consequences. Neverthe-
less, the connection between classical conjectures (such as UGC) and those related to lattices
has not yet been established. Such potential connections are explored next—we discuss some
conjectures that could illuminate the tight interplay between classical infeasibility and the
complexity of lattice problems.

4.1. Break the soundness barrier
There are two major outstanding open research questions regarding classical gap

problems whose resolution would greatly deepen our understanding of the complexity of
approximation; these are the unique-games, PCP1$1, and 2-to-1-games, PCP2!1. There are
two major versions for each with distinct characteristics, depending on the placement of the
gap: either the assumption is that, in the “accept” case, all constraints are satisfied (also

4 Recall that coNP is the class of problems whose complements are in NP.
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known as perfect completeness) or where the assumption is that all but a small fraction
are satisfied. In PCP1$1, when the assumption is that all are satisfied, the problem becomes
trivially feasible (via Gaussian elimination). In the PCP2!1 problem, when the assumption is
that, in the “accept” case, only almost all constraints are satisfied, even satisfying a negligible
fraction of the constraints (in the “reject” case) is NP-hard [53].

And thus, the only two versions to further investigate, regarding the “accept” case
are:

(1) PCP1$1Œ 1
2
� "; 1 � "�,

(2) PCP2!1Œ0; ��.

Note that the PCP1$1 problem has been discussed above and, despite the progress made in
the last few years, it still seems wide open; as mentioned above, even improving the “accept”
case beyond one-half is an open Conjecture 4.1.

Let us then direct our attention to the PCP2!1 with perfect completeness. Its com-
plexity is not only fundamentally interesting but—as will be discussed shortly—could prove
fruitful in uncovering deep connections between classical PCP and lattice problems, which
in turn could have a huge impact on cryptography.

Consider then the stronger promise regarding the “accept” instances, namely, that
there is a solution satisfying all the constraints. Such a promise makes the problem easier,
moreover, adapting the reduction of [53] (for the harder case where the promise is only that
there is an assignment satisfying almost all constraints) fails fundamentally.

Khot conjectures that PCP2!1 is hard even when trying to satisfy a small fraction
of the constraints:

Conjecture 4.6 (Khot [47]). For any field size q, there exists ".q/ > 0, where
limq!1 ".q/ D 0, for which PCP2!1Œ0; 1 � ".q/� is NP-hard.

One should note here that, for � close enough to 0, there is a folklore theorem indi-
cating that the problem PCP2!1Œ0; �� is NP-hard (in words, given an instance that can be
fully satisfied, finding an assignment that satisfies almost all constraints is NP-hard). Noth-
ing so far is known when the fraction of satisfiable constraints in the “reject” case becomes
quite smaller than 1.

And here comes the central question in this context: What is the complexity of the
PCP2!1 problem when the algorithm needs to distinguish between the case where there is
an all-satisfying assignment versus the case where not even a tiny fraction of the constraints
can be simultaneously satisfied?

Let us boldly go against the “public opinion” here and suggest:

Conjecture 4.7. For any alphabet size q, let "P > 0 be the largest number so that
PCP2!1Œ0; 1 � "� 2 P; there is "0.q/� "P so that for all " < "0.q/,

PCP2!1Œ0; 1 � "� 2 NP \ coNP:
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In words, it is clear that all these variants of PCP2!1 are in NP; the conjecture claims
that once the goal is to satisfy only a very small fraction, the problem could be in coNP as
well.

If true, the PCP2!1 problem with such parameters could be a perfect computational
problem to assume being hard and build on it to prove other problems in NPI are as hard.
As discussed above, cryptography needs problems in NP\ coNP that can be safely assumed
hard, hence, a plausible goal is a worst-to-average-case reduction relying on this hardness
assumption.

4.2. Through lattices
Now, how does one go about proving such a statement? The most natural strategy—

in light of progress in the last two decades—is to come up with a reduction from this problem
to approximating CVP (or SVP) to within a ratio larger (weaker) than the square root of the
dimension:

Conjecture 4.8. Approximating CVP to within �.
p

n/ (where n is the lattice dimension)
is as hard as solving the PCP2!1Œ0; 1 � "� for small enough " < ".q/ (q is the size of the
field/alphabet).

The reason Conjecture 4.8 suffices for proving Conjecture 4.6 is that approximating
CVP to within such a ratio is known to be in coNP (and is trivially in NP) [2,39].

Consequently, one may contemplate a more comfortable hardness assumption to
base cryptography on, in particular to base the hardness of LWE on this type of assumption:

Question 4.9. Is LWE as hard as approximating 2-to-1-games? That is, assuming an efficient
algorithm for LWE, can one solve PCP2!1Œ0; 1� "� for small enough ", in particular for any
" < "NP where "NP is the smallest so that PCP2!1Œ0; 1 � "NP� is NP-hard.

This would immediately allow cryptography to rely on the hardness of 2-to-1-games
(albeit, with parameters as stated above) for security proofs. Furthermore, assuming such a
reduction is exhibited, one could consider other cryptographic hardness assumptions (prefer-
ably those that are not yet established) and try prove them being as hard as 2-to-1-games.

The assumption that the 2-to-1-games problem is infeasible seems more natural,
hence the security of a cryptographic protocol based on its worst-case hardness seems more
reliable (than being based on the infeasibility of a problem like the unique-SVP). Still, even
those who trust the latter assumption would welcome another option for proving security.

Here is an example of such a question: Could the existence of bilinear (or 3-linear)
maps be based on the hardness of PCP2!1?

4.3. What’s hard with lattices?
The fundamental, mathematical principles involved in lattices are crucial in various

distinct fields. The theorems proven by Minkowski [67] more than a century ago and the
research program he laid out continue to be very relevant. Some aspects affect the complexity
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of computational problems over lattices, in particular their average-case complexity, with
natural applications to cryptography.

Naturally, the same lattice may be represented by numerous bases. Some properties
are abstract and true regardless of the particular basis while some others depend on the basis.
From computation’s perspective, the lattice is given via a particular basis and the complexity
of the computational problem depends fundamentally on the specific basis given as input.
If that basis is close to orthogonal, a problem such as SVP could be computed efficiently,
while, given an arbitrary basis, the same problem may turn out to be infeasible.

In other words, the hardness of computational problems over lattices stems from the
hardness of finding a “good” basis given an arbitrary one. How could one establish such a
statement (without proving computational lower bounds)? One could show relative hardness
(that is, a reduction) and prove that efficient algorithm for, say, SVP could be utilized to effi-
ciently transform a bad basis for a lattice to the best one, or at least to one that approximates
the best one.

One property of a lattice L, which is clearly independent of the choice of basis,
is its “orthonormality,” that is, how close to orthonormal the “most orthonormal” basis of
L is. For standard lattices—namely, lattices which have a basis that achieve the successive
minima (see Definition B.8 below)—one could examine this property via the minima: the
more similar the lengths of the basis vectors to the minima, the closer to orthonormal the
lattice.

Best lattice basis. There are a few distinct (not necessarily equivalent) plausible definitions
for the best basis for a lattice; these formulate different manners by which to assert that the
basis is either short or close as possible to being orthogonal. Several options exist for how
to define what it means for a basis to be short. It could be the length of the longest vector,
the sum of lengths, or the product of lengths. The discussion below is quite abstract, hence
could apply to any of these definitions.

Consider the following greedy algorithm (not necessarily efficient) to find such a
basis: add to the basis the shortest vector in the lattice, and then the next shortest vector, albeit
one that is linearly independent of previous basis vectors (that is, not in the span of current
basis), etc. Those vectors achieve, in terms of norms, the successive minima. Nevertheless,
they do not necessarily form a basis for the lattice; in fact, there are canonical examples of
lattices that have no basis achieving the successive minima (any such set of vectors spans a
sublattice). Naturally, one should look for a full characterization of nonstandard lattices.

Question 4.10. Is it possible to characterize nonstandard lattices, that is, lattices which have
no basis achieving their successive minima?

Question 4.11. Let L be a nonstandard lattice and consider various sequences of linearly
independent vectors achieving the successive minima. Is the sublattice L0 �L generated by
each of those sequences the same?

Question 4.12. Can one bound from above the length of the vectors in the shortest basis,
relative to the successive minima?
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Such a characterization could greatly improve our understanding of nonstandard lat-
tices. Moreover, they may facilitate improving our technique regarding compatibility issues.

Another attempt to construct the best basis for a lattice is the (not necessarily effi-
cient) algorithm of Korkin–Zoltriev [60]. The resulting basis is indeed quite short, however,
it is clearly not the shortest (whichever reasonable definition of “short” one is interested in):
there exists a lattice L such that we can perform an elementary operation over the Korkin–
Zoltriev basis which makes the basis shorter while spanning L.

Therefore, one should first sort out the plausible definition of a global shortest basis.
Once that has been clarified, the natural question is

Question 4.13. Is CVP/SVP as hard as finding the shortest basis (given an arbitrary one)?
Or at least approximating the shortest one?

In reverse. Consider the discrete-Gaussian distribution over a lattice with parameter � as
follows. First, choose a random vector according to the Gaussian distribution, with mean 0
and standard deviation � . Then, round each point in a parallelepiped to the canonical vertex
of that parallelepiped.

If � is large enough, the discrete nature of the lattice becomes negligible. That is, the
probability of being outside a relatively large ball (large with respect to the standard deviation
of the Gaussian) in the discrete-Gaussian is comparable to the Gaussian. A somewhat related
phenomenon is that for a large enough � , if one chooses a random point according to the
Gaussian distribution, then, taking it modulo a fundamental parallelepiped, the resulting
distribution is very close to uniform.

Worst-to-average-case reductions fundamentally rely on the latter property. This is
how the magic of removing any reference to the original input takes place; one can call on
the average-case algorithm only giving the vectors modulo the parallelepiped, and use the
outcome, knowing the entire vectors.

Stepping back, one should investigate the mathematics of lattices to figure out how
large � needs to be for the Gaussian to satisfy that property (the complexity heavily depends
on that stretch). This was addressed by Miccancio and Regev in their fundamental paper [66].
Reverse Minkowski theorems play a central role when trying to either approximate lattice
problems, or, alternatively, when trying to translate solving them into another problem, to
establish its relevant hardness (these two processes are similar).

Minkowski’s convex body theorem [67] states that an upper bound on the determi-
nant of a lattice implies a lower bound on short vectors, that is, that global density implies
local density. A reverse Minkowski theorem, proven in [78], states that a lower bound on the
determinant of a lattice and its sublattices (intersection of L with a lattice subspace) implies
an upper bound on the amount of short points, i.e., that local density implies global density
on a sublattice. Note that local density does not in general imply global density if the lattice
is long and narrow. This leads us to define the class of stable lattices.

Definition 4.2. A stable lattice L is a lattice such that detŒL� D 1 and for any L0 � L

(intersection of L with a subspace) it holds that detŒL0� � 1.
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Theorem 4.1 (Reverse Minkowski [78]). For any stable lattice L � Rn, �1=t .L/ � 3=2,
where t WD 10.lognC 2/. Here, for a lattice L�Rn and s > 0, �s.L/ WD

P
y2L e��kyk2=s2

is the Gaussian mass of the lattice with parameter s.

This theorem allows one to derive a bound on the number of short vectors in the
lattice—this is the reason this is referred to theorem as “Reverse Minkowski.” Another corol-
lary of that paper is with regards to the covering radius parameter of stable lattices.

Definition 4.3. For a lattice L � Rn, define the covering radius �.L/ as

�.L/ WD max
t2Rn

dist.t; L/ D min
®
r j LCB.r/ D Rn

¯
:

Regev and Stephens-Davidowitz [78] showed that for any stable lattice it holds that
�.L/ � 4

p
n.log n C 10/. One important open question regarding stable lattices is the

Shapira–Weiss conjecture which aims to prove a stronger result.

Conjecture 4.14 ([80]). Let L � Rn be stable lattice. Then �.L/ � �.Zn/ D 1
2

p
n.

4.4. Synergy
In summary, the above far-reaching plan includes several huge projects, each of

which may prove highly difficult (if true). Putting together all the parts could, nevertheless,
prove reformative.

The first part concerns PCP reductions that would establish NP-hardness of approx-
imating CVP/SVP to within the square-root of the dimension—these problems have been
open for nearly two decades [30, 49]. Extending that further, the hope is to manage reduc-
ing problems in NPI to CVP/SVP with larger (weaker) ratios of approximation, say, some
polynomial in the dimension. If true (and proven), such a statement would establish that uti-
lizing a computer that can approximate SVP/CVP to such ratios, one could efficiently solve
problems beyond those currently known to have (even randomized) efficient algorithms.

One may interpreted such a result in two ways: first, as implying that trusting the
security of a cryptographic protocol relative to such an approximation of SVP/CVP is safe.
On the positive side, such reductions could show that a computer that solves the average-case
of these problems can solve efficiently problems not necessarily in P (or BPP).

Moreover, one might be able to utilize a worst-to-average-case reduction to be able
to trust that average-case SVP/CVP to within some polynomial ratios is hard. The last piece
of the puzzle could be a quantum algorithm that actually efficiently solves SVP/CVP, to
within such ratio of approximation, on average. This would be a radical transformation of
our perspective of computation: If that entire plan is true, it would mean that computation is
not an adaptation of mechanical decision making to electronics. It could mean that solving
a computational problem would mean translating it to appropriate approximation of lattice
problems, on average, then utilizing quantum effects to solve it efficiently.
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5. About computational complexity and PCP

The most fundamental open research question of computer science is whether the
class P of efficiently solvable problems differs from the class NP, a class that includes many
natural problems with no known efficient solution. Almost half a century after research into
computational complexity theory has began, we are still quite clueless regarding these gen-
eral questions. The questions are referred to as computation lower bounds, that is, proving
that some problem is not computable by some class of computation. Even some weakest
models—which are presumed to include only very simple computational problems—are not
known to not contain the entire NP class. In light of this fundamental deficiency, a substitute
infeasibility proof establishes a problem to be NP-hard, implying that, assuming P ¤ NP, it
is infeasible.

5.1. The dawn of NP-hardness
Cook and Levin [23, 62] and Karp [45] proposed a framework by which to bypass

this deficiency in proving computational lower bounds. Their suggestion was to prove that
problems are NP-hard, so that any efficient algorithm for the problem would yield an effi-
cient algorithm for the entire class NP. This serves as a conditional proof of infeasibility: if
P ¤ NP, then NP-hard problems are infeasible. Subsequent works have shown many algo-
rithmic problems to be NP-hard. This research field, which has been going strong ever since,
is by now the bread and butter of computer science, and is taught in undergraduate courses
on the computational complexity theory.

As a result, the focus of research has shifted towards introducing ideas and method-
ologies by which to tackle NP-hardness. The most natural choice is to design approximation
algorithms, that is, algorithms that are guaranteed to find close-to-optimal solutions. This
line of research—approximation algorithms—has been carried with various degrees of suc-
cess. Let us pick two classical approximation problems to demonstrate this with, namely
Vertex-Cover and Max-Cut.

For Vertex-Cover, a simple algorithm due to Gavril and Yannakakis5 guarantees
a ratio-2 approximation, while an ingenious algorithm by Geomans and Williamson [38]

achieves a surprisingly good approximation for Max-Cut. The algorithm of Geomans and
Williamson introduces the roaring power of Semi-Definite-Programs (SDP), a technique that
has since become central in the design of approximation algorithms, especially for constraint
satisfaction problems.

Despite this considerable progress with respect to the design of algorithms, there
was still no way to tell whether a certain approximation ratio for a given problem is attainable
efficiently or not, causing researchers to waste precious time in futile attempts to find better
approximation algorithms.

5 Papadimitriou and Steiglitz [72] credit this algorithm to Gavril and Yannakakis.
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5.2. The PCP era
While it was quite plausible at this point that some approximation solutions are

unattainable efficiently, there was no known method to establish this fact, even for those
problems for which no known algorithmic techniques could come close to solve.

Fortunately, the Probabilistic Checking of Proofs characterization of NP (PCP) was
introduced [11,12,36]. The intuitive concept—and the reason behind the name—is to model
the class NP via a protocol where a weak Verifier verifies the validity of a solution. In PCP, the
Verifier is allowed to use randomness and sampling, albeit only to read a constant number of
bits. It must accept a valid proof with probability 1, and reject an input with no valid solution
with probability close to 1. The proof of the PCP characterization of NP is quite complex,
involving sum-check, low-degree (Reed–Muller code) test, and the core engine that makes it
all happen, namely composition/recursion [12]. Once established, however, one can assume
a genesis gap-problem is NP-hard, and proceed to show other problems are NP-hard via
gap-preserving reductions.

Subsequent research into PCP and infeasibility produced many other techniques,
including the Long-Code [19], Raz’s parallel-repetition theorem [76], and the Fourier-analytic
framework by Håstad [43] that have all been utilized to prove numerous inapproximability
results. In certain cases, the results were optimal, in the sense that they showed that there
was no way to improve on the best known algorithm (for instance, [9,35,42,43] among many
other works).

An illuminating example. Let us consider a classical example of an NP-hard optimization
problem and its approximation version, one that captures the essence of what is known and
what is still unknown with respect to the infeasibility of approximation. Define, for a graph
G D hV; Ei, the Max-Independent-Set,

MISŒG�
def
D max

S�V W8u;v2S;hu;vi…E

jS j

jV j

and the natural gap problem

Compute 13 (Gap Max-Independent-Set). The gap-MISŒ˛; ˇ� problem is

• Input: a graph G D hV; Ei.

• Goal: distinguish between

– Accept: MISŒG� � ˛,

– Reject: MISŒG� < ˇ.

Clearly, for a fixed ˛, as ˇ decreases, the problem becomes computationally easier.
The ultimate goal is to classify the algorithmic problems gap-MISŒ˛; ˇ�, for all pairs ˛; ˇ’s,
into feasible vs. infeasible.

Using the Gavril–Yannakakis algorithm (and observing that a vertex-cover of a
graph may be defined as a set of vertices whose complement is an independent-set) one
can show that for every " > 0, the problem gap-MISŒ 1

2
C "; 2"� can be solved efficiently.
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The question of whether the problem gap-MISŒ 1
2
; "� is NP-hard epitomizes the

limits, goals, dreams, and obstacles of research in the field.

5.3. Fourier transform and analysis of Boolean functions
In his transformative paper in the 1990s [43] Håstad was the first to introduce Fourier

transform into PCP, in order to achieve optimal analysis of local tests, which in turn allowed
him to establish tight infeasibility for numerous fundamental approximation problems (such
as MAX-3SAT and Linear-equations over F2). He also managed to prove the infeasibility, to
within 7=6, of Vertex-Cover. To that end, Håstad proved that gap-MISŒ1=4; 1=8� is NP-hard.
Consequently, and quite insightfully, he proposed proving infeasibility for a ratio up to 2 for
Vertex-Cover, as the most fundamental open question, whose solution will take the field to
the next level.

The challenge proposed by Håstad eventually led to quite a complex proof [31,

32], which improves the infeasibility up to a ratio of 10
p

5 � 21 � 1:3606. This result
again, follows from an even stronger infeasibility result for the MIS problem, namely, that
gap-MISŒ1=3;1=9� is NP-hard. The proof introduces the full scope of the analysis of Boolean
functions via Friedgut’s Junta theorem [37],6 as well as several other fields of mathemat-
ics [3,34]. One crucial hidden parameter in that complex proof was consequently brought up
to the surface and under the spotlight by Khot.

5.4. The UGC revolution
Since the original PCP theorem was insufficient to establish numerous fundamental

problems as infeasible, Khot postulated in 2002 the stronger Unique-Games conjecture for
that purpose. This breaks the task into two: proving the conjecture, and using it to establish
infeasibility for the remaining problems. The latter part has been immensely successful, lead-
ing to new algorithmic methodologies, and interesting connection between a priori distinct
areas. In addition, many infeasibility results relying on the conjecture have been established.
In sharp contrast, there has been little progress with the former part, that of actually prov-
ing the conjecture—up until recently, the only debate was whether there had been very little
progress, or none whatsoever.

The Unique-Games conjecture [47] (abbreviated UGC henceforth) asserts that the
UG problem, as defined above Compute 6 is (NP-)hard. Khot showed that assuming (a
variant of) UGC, for every " > 0 the problem gap-MISŒ1� 1=

p
2; "� is NP-hard. This result

is interesting for at least two reasons:

(1) It is the first infeasibility result for the MIS problem with constant completeness
and vanishing soundness (in contrast to Håstad’s result and the Dinur–Safra
result, where the soundness is constant).

6 This is the first time Friedgut’s insightful and widely applied theorem was utilized. Friedgut
told us once that till then, he assumed that this theorem will never find application.
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(2) It implies that it is NP-hard to approximate the minimum Vertex-Cover of a
graph within factor

p
2 � o.1/ � 1:41, improving the Dinur–Safra result.

This result, however, relies on an unproven conjecture, stronger than that P ¤ NP.
Subsequently, proofs of infeasibility relied on the UGC, and little progress was

achieved otherwise with respect to the infeasibility of fundamental approximation problems.
The conjecture is very insightful in that it disconnects the basic task of proving the statement,
from the corollaries that could be established as a consequence.

The reason UGC is so fundamental has to do with the core methodology that allows
a PCP-Verifier to require only a ridiculously small number of reads, namely, the composi-
tion of PCP proofs [12]. The natural route by which to prove the UGC is to start with a
PCP1$1 with not so good parameters—say, PCP1$1Œ"a; "r � for 0 < "a � "r � 1—then
use the composition/recursion to improve those parameters while maintaining the restriction
on the constraints. The problem is that no such NP-hardness has been established to start the
process. Another route would be to try to establish the special structure of the constraints.

Postulating the conjecture proposed a two-part plan: UGC-proof —prove the conjec-
ture; and UGC-use—show infeasibility assuming that the UGC is true. Until recently, little
to no progress had been made on the UGC-proof part. On the UGC-use part of the plan, in
contrast, research has flourished, and numerous tight infeasibility results were established
based on the UGC (only a small selection of which can be mentioned here). Assuming the
UGC, Khot and Regev [55] proved that it is NP-hard to approximate Vertex-Cover to within
a ratio 2 � o.1/, that is, the trivial algorithm mentioned above is optimal.

As to the other problem mentioned above, in 2005, Khot, Kindler, Mossel, and
O’Donnell [51] proved that the ingenious algorithm of [38] for Max-Cut is optimal in that
any improvement over it would refute the UGC. That paper [51] relied on another conjecture
called “Majority is most stable,” which, gaining extra motivation, was subsequently proven
in [71]. These insights made the community realize that there may be a close connection
between UGC and SDP algorithms.

Many consequences of UGC followed (cf. [13,22,41,54,57] to name a few). Remark-
ably, assuming UGC, it was shown in [73] that a generic Semi-Definite Program gives the best
approximation algorithm for the general class of Constraint-Satisfaction problems (CSP). In
other words, Raghavendra proved that the connection between UGC and SDP algorithms is
very tight and, assuming UGC, the best approximation algorithm for any CSP is SDP based.
Studying UGC also extended to other fields, and led to interesting developments in analysis,
geometry [70,71], integrality-gaps, and metric-embedding [24,56].

UGC has also provoked a large body of work on algorithms [8,10,17,21,40,47,59,83]

designed to refute the conjecture. Despite the failure of these attempts, the ideas therein moti-
vated the study of new algorithmic techniques (such as the Lasserre Semi-Definite Programs
hierarchy) and uncovered surprising connections, between problems and among concepts
(e.g., between small-set expansion and UGC [8,74]).

The conjecture has further led to a large body of work introducing new connections
and many new ideas; for attempts at proving it, refuting it (many exciting new algorithmic
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ideas were introduced for that purpose), and showing NP-hardness assuming it to be true.
This area of the field has seen tremendous activity in the last decade and a half.

Summary. While there has been impressive progress on the UGC-use part of the plan, with
respect to the UGC-proof part, the UGC remains open despite immense efforts, leaving com-
puter science’s best researchers perplexed. We have recently managed considerable progress
on the UGC-proof part, as discussed next.

5.5. Present and future
The 2-to-1-Games conjecture, proposed by Khot (in the same paper as the UGC)

assumes a less restrictive structure regarding satisfying assignments of PCP: once the
PCP-Verifier has read the first value, it can accept 2 values for the second item read (in
contrast to the single value accepted in the Unique-Games). This makes the problem harder
to solve, and therefore the conjecture that it is infeasible is weaker. Nevertheless, the two
statements are quite related—best demonstrated by the fact that there is a trivial reduction
from 2-to-1-Games ( Compute 7) to 1-to-1-Games ( Compute 8) with value 1

2
in the accept

case.
Only quite recently, Khot, Minzer, and Safra have achieved significant progress,

establishing that the 2-to-1-Games problem, albeit with nonperfect completeness, is in fact
NP-hard. This achievement has been recognized by the community as going halfway towards
the Unique-Games conjecture. The proof is a culmination of a series of four publications [28,

29,52,53].
Some consequences of the newly established hardness of 2-to-1-Games are the

unconditional NP-hardness of gap-MISŒ1 � 1=
p

2; "� (establishing an unconditional infea-
sibility result for the gap-MIS with constant completeness and vanishing soundness), and
NP-hardness of approximating minimum Vertex-Cover of a graph within factor

p
2 � o.1/

(improving on the Dinur–Safra result).
The first paper [52] presented a new approach for proving infeasibility for the non-

standard 2-to-1-Games as well as for Vertex-Cover. The proof relies on a careful combination
of sophisticated PCP techniques (such as smooth-parallel-repetition, composition, and the
biased-long-code) and a novel component in this context, namely, the Grassmann graph—the
only construct we know that allows weak 2-to-1 tests to be shown NP-hard.

The second paper [29] extended the ideas and proposed a candidate reduction, which,
unlike the first, could work for standard 2-to-1-Games. This approach relies on a combina-
torial statement regarding the Grassmann graph of a type not explored before. The third
paper [28] initiated that investigation. It was clearly necessary to first study expansion on
the Grassmann graph (just in time, it was shown by [18] that it is also sufficient). We uti-
lized spectral analysis, which is considerably more challenging to carry out here than on the
binary hypercube. However, we still did not manage to prove the statement necessary so as to
complete the project: the more ambitious the statements we were trying to prove, the messier
the analysis got (to the point where any improvement would take weeks or even months of
case analysis). The final piece in the puzzle came in [53], where we completed the plan as
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set out by [28] and proved the necessary combinatorial statement, thus completing the grand
program as set by [52].

Border of feasibility. This theorem immediately implies tight infeasibility for several fun-
damental problems, in the sense that improving even slightly on the best known algorithm is
impossible (unless PDNP). Furthermore, it implies that given a Unique-Games instance that
is promised to be 1

2
-satisfiable, it is infeasible to efficiently come up with an assignment that

satisfies even a negligible fraction of the constraints.7 This in turn has dramatic implications,
since all known algorithms, when applied to 1

2
-satisfiable instances, are guaranteed to per-

form as well as on the standard .1� "/-satisfiable instances. Therefore, all known algorithmic
techniques can be disqualified: if they were to solve the standard Unique-Games problem
efficiently, they would also solve the nonstandard, promised to be 1

2
-satisfiable instance and

thereby the 2-to-1-Games problem. Because the known algorithms have proved to be inad-
equate, researchers who still doubt UGC are now challenged to introduce new algorithmic
methodologies. This is a win–win situation since it will either produce new algorithmic meth-
ods, or else the UGC will be positively resolved.

One of the central tools employed in these endeavors is the analysis of Boolean
function, via Fourier transform and related techniques. This facilitates proofs for optimal
local-to-global properties with regard to local-tests of binary error-correcting codes, such as
Hadamard-code or the Long-code. While of independent interest, much of the extra motiva-
tion for that research relates to applications for infeasibility.

5.6. Related open problems
Small-set expansion. Assume a graph G D .V; E/ and a set of vertices S � V : the edge
expansion of S , denoted by ˆ.S/, is the ratio of the number of edges inside S to the total
number of edges adjacent to any vertex in S .

The Small-Set Expansion problem, denoted by SSEı."; 1 � "/, asks to distinguish
between the case that a given graph has a set containing ı fraction of the vertices whose
edge expansion is at most ", and the case that any such set has edge expansion at least 1� ".
The problem was first suggested as a possible step towards tackling UGC: Raghavendra and
Steurer proved that if the Small-Set Expansion problem is NP-hard, then the UGC is true [74].
Subsequent work has shown that the hardness of SSE implies hardness of various problems
not captured by UGC (cf. [64,75])

Interestingly, as yet, the recent progress on UGC has not had any affect on our under-
standing of SSE.

Question 5.1. Is there ˇ < 1 such that for any " > 0 there is ı > 0 such that SSEı.ˇ; 1� "/

is NP-hard?

7 This is why the community refers to it as going 1
2 the distance towards the Unique-Games

conjecture.
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Extreme tests and how to prove the UGC. All PCP constructions have a tensor structure,
and eventually rely on error-correcting codes with special properties such as local-testing
and local-correcting. An important aspect by which the recent proof of the 2-to-1-Games
conjecture deviates from previous PCP techniques is with respect to list-decoding properties.
Prior to our recent work, the codes that were utilized were list-decodable, that is, any word
that passes the local-test with noticeable probability corresponds to a short list of legal-
codewords. By “corresponds” we mean that except for negligible probability, local values
that pass the test must agree with one of the codewords from the short list. Our work, in
contrast, utilizes the Grassmann code (along with the Grassmann test), which is not list-
decodable in the traditional sense. Nevertheless, a much weaker list-decodability property
does hold for the Grassmann code, one which, nonetheless, is sufficient to prove hardness for
2-to-1-Games. In the Grassmann test, any subgraph that is by itself a Grassmann graph could
potentially be assigned arbitrary values. Despite this complication, sophisticated analysis
does establish some weak notion of global consistency, fortunately, one that suffices for the
proof of the conjecture.

Going beyond “list-decodable codes” appears to be a prerequisite to prove infea-
sibility for d -to-d -Games (for constant d ). It is possible that an even weaker notion of
decodability might be necessary in order to prove the Unique-Games conjecture. For the
Unique-Games conjecture, properties similar to those of the Grassmann code must hold for
the desired code and, furthermore, its local-tester should be a 1-to-1 test. It is quite plausible
that the decodability notion of this code would have to be even weaker, while still allowing
some form of global consistency to be established. It is quite possible that the key insight
here is to extend that notion so as to make the claimed notion of global consistency even
weaker. We believe that a more sophisticated statement, similar to that regarding the Grass-
mann graph, has the potential to break the barrier and finally succeed in going below the
2-to-1 barrier.

The conjecture has been tantalizing the best researchers for almost two decades,
with little progress made until recently. Nevertheless, in light of recent progress [53] where
we proved the closely related, yet weaker, 2-to-1-Games conjecture—recognized by the com-
munity as going half the distance toward the Unique-Games8 conjecture— this project seems
to have a better potential to succeed than ever before.

6. Discussion

The purpose of this survey is to examine basic questions regarding the mathematics
of computing through the lens of computational problems over linear equations in general
and lattices in particular. The goal is to shed light on some fundamental open research ques-
tions regarding the mathematics of computing and facilitate progress on solving them. The
plan and related conjectures might turn out to be false, nevertheless, a solution whichever

8 The Unique-Games can also be referred to as 1-to-1-Games. The 2-to-1-Games problem is
another variant of the general d -to-d -Games, as detailed below.
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way could prove transformative. On the other hand, if all parts turn out to be true, this could
change our vision with regards to computation, not only theoretically but possibly also with
practical applications.

First, one may attempt at showing a lattice computational problem to be infeasible
(NP-hard) to the extreme ratio, which is assumed to be O.

p
n/.

This is likely to require PCP theorems beyond current methodology. The conse-
quences of such progress may facilitate a solution to the 2-to-1-Games problem,
PCP2!1Œ0; 1 � "�,9 proving it is reducible to weaker ratios of approximation for lattice
problems and therefore placing it in coNP for nontrivial ratios (ratios not known to be NP-
hard or computationally feasible). This would be a strong evidence for this problem not
being NP-hard. Furthermore, it may lead to worst-to-average-case reductions that would in
turn yield improved cryptography through richer infeasibility assumptions.

To that end, one should clearly pursue research on the intriguing and beautiful
mathematics of lattices and error-correcting codes, including new, improved algorithms or,
alternatively, establishing currently known algorithms (such as LLL) as optimal. One should
also pursue improved theorems of the reverse Minkowski type, to establish the weight of
points on the lattice according to Gaussian measures (of various standard deviation). Such
theorems may require further research of the Fourier transform over lattices. Lastly, one
should pursue tighter connections between hardness of computational problems over lat-
tices and codes, in the worst as well as average case.

The last piece of the plan would be to try and come up with efficient quantum algo-
rithms for approximating those lattice problems with the mentioned ratios, thereby broaden-
ing the scope of feasible computational problems to some subclass of NP \ coNP [33].
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A. The Complexity of CVP

Computational problems regarding linear equations may be solvable, NP-hard, or in-
between. The outcome is interesting regardless of the option, and could allow great insight
into complexity of classes, in particular average-case complexity, with deep and wide impli-
cations.

A.1. CVP is NP-hard
To see that CVP is NP-hard, consider the Max-Cut problem reformulated as equation

instead of graph.

Claim A.1 (Decision Max-Cut is NP-hard). The decision problem Max-CutŒ1 � "� (which
accepts if the best assignment satisfies � 1 � ") is NP-hard for small enough ".

Proof. Reduce from 3SAT, assuming p clauses over n variables, each occurring 5 times in
distinct clauses (which one can easily translate into an instance satisfying this assumption).

Variables.

• 5 variables for each clause: yi;j for i 2 Œp� and j 2 Œ5�—one for each occurrence of
a literal in each clause, corresponding to j D 1; 2; 3, plus two auxiliary variables
for every clause, where j D 4; 5, altogether 5p.

• Extra (ghost) variables, so that every original variable xi has exactly 5 positive
and 5 negative variables associated with it. Name them xi;j;b for i 2 Œn� and j 2 Œ5�

and b 2 ¹0; 1º with the caveat that some of the x’s already appear as y’s.

• 1 global variable yF .

Equations.

• Between all opposing occurrences of same variable, namely, for any xi;j;0 and
xi;j 0;1 for j; j 0 2 Œ5� (that is, 5 by 5 combinations), have an equation

xi;j;0 C xi;j 0;1 D 1:

• For any clause Ci , we have an equation for every pair .yi;j ; yi;j 0/ where j ¤ j 0,

yi;j C yi;j 0 D 1:

• Between yF and all variables except the ghosts (5m of the clauses variable—5 yi;j

for each clause)—satisfied only if those variable have a different value than yF ,

yi;j C yF D 1;

so the global variable yF forms a clique of size 6 with any 5 variables yi;j for a
clause j 2 Œp�.

The total number of equations is 25nC 15p.
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Completeness. A satisfying assignment to the original 3CNF can be translated to an assign-
ment satisfying 25nC 9p of new equations (out of 25nC 15p):

• Assign yF D 0.

• Satisfy all 5 by 5 for each original variable, assigning those 0/1 in accordance to
the value the satisfying assignment to the 3CNF gives it.

• Assign the auxiliary variables for each clause 0/1 values that ensure that exactly
3 of the 5 are assigned 1 (for each clause, at least one of the literals is 1, so the
auxiliary two can always guarantee 3 that are 1).

Altogether 9p out of the 15p are satisfied, 3C 3 � 2.

Soundness. First, observe that the maximum is achieved when all 25n variable equations
are satisfied (the number of equations satisfied, if not split according to sign, is � 20 of
the 25). Then, notice that out of the 15 for every clause, at most 9 can be satisfied: 3 by 3
split of the clique of size 6 formed with yF .

So to complete the proof, observe that in each clause, to ensure that 9 of the equa-
tions are satisfied, at least one of the original literals must be 1, to satisfy 3 of the equations
against yF .

Now, as to the approximation:

ClaimA.2 (Gap Max-Cut is NP-hard). The gap problem Max-CutŒ1� ".1C‹/;1� "� (which
accepts if the maximal assignment satisfies � 1� " and rejects if it is < 1� .1C‹/") is NP-
hard.

Proof. Reduce from gap-E3SATŒ7=8C "; 1�, which is NP-hard.

B. Foundations of lattices

Let us formally define a lattice and, for clarity, discuss for now only full-rank lattices,
where the dimension and the column-rank are equal. Accordingly, we will assume from now
on that the columns of a basis/matrix M 2 Fn�n are linearly independent.

The fact that the columns of the matrix are linearly independent implies that they
form a basis for the vector space Fn. Denote the i th column of a matrix M by Mi , so one
can write M D ¹M1; : : : ; Mnº to specify the vectors of the basis, and Mx denotes the linear
combination of the basis’ column vectors.

In the early (code) versions of the computational problems above, the sets of vectors
¹Mx j x 2 Fnº formed a sparse subspace of Fm. This sparseness is due to the number of
variables being smaller than the dimension m of the entire space (n�m). In our case, since
the matrix is square and n D m, how can we expect the set to be sparse and not to span
all Fn? It is indeed a crucial aspect of lattices that the domain F of the variables Exi ’s is
sparse within F . The set of vectors of a lattice form a sparse vector space within the entire
space Fn. The target vector could be any vector in Fn, and one looks for a vector close to it
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of the form Mx, where x 2 F n is a vector in the lattice. Throughout, we denote the domain
of all Exi by F � F , and assume it to be a ring with respect to the same operations as F .

Definition B.1 (Lattice). Given a field F and its restriction F � F , a lattice is defined by a
matrix M 2 Fn�n as

LF jF ŒM �
def
D

®
Mx j x 2 F n

¯
:

Note that we assume F forms a discrete ring within F , assuming a natural metric over F .

Our primary focus herein is the case where the domain of the matrix is F D R, and
thus M 2 Rn�n, while the domain of the ring comprises the integers, Z, and thus x 2 Zn,

LŒM �
def
D

®
Mx j x 2 Zn

¯
;

nevertheless, some of the statements below are true for more general settings.
A more intuitive perspective of such a formalism is a sparse vector space within Rn,

determined by a basis (the columns of the matrix M ) while allowing only integral linear
combinations of the basis’ vectors

LŒM �
def
D

°X
ai Mi j ai 2 Z

±
:

Observe that, because the domain F of the variables Ex being sparse, different bases
for the same vector space Fn do not necessarily span the same lattice.

Here is an examples of a 2-dimensional lattice:

Figure 2

The lattice spanned by .1; 0:3/ and .0:8; 1/
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B.1. Elementary, my dear
The same lattice can be generated by an infinite number of bases. A natural question

is how one can determinate whether two bases generate the same lattice.

Claim B.1. Let M1;M2 2Rn�n be full-rank matrices. Then LŒM1�DLŒM2� iff there exists
a unimodular matrix U 2 GLn.Z/ such that M2 D UM1.

Invariance. In fact, any lattice basis can be transformed to a different basis of the same
lattice by a sequence of elementary column operations: swapping columns, multiplying a
column by �1, or adding an integer multiple of a column to another column.

Duality is quite an important concept in general, and here in particular: every lattice
has a unique dual lattice.

Definition B.2 (Dual lattice). For a lattice L, the lattice

L_ def
D

®
u 2 Rn

j 8v 2 L W hu; vi 2 Z
¯

is referred to as the dual lattice of L.

Definition B.3 (Dual matrix). Given a full-rank matrix M 2 Rn�n, its dual matrix is

M _ def
D M >�1

:

Fact B.2. The dual of the basis is a basis for the dual lattice, L_ŒM � D LŒM _�.

Trivially note that any lattice is a dual of its dual:

Fact B.3. L__
D L; M __

DM .

The following definition deals with the stretch of a lattice by some factor

Definition B.4. Given a lattice L, for q 2 RC, let LŒM �’s q-scaled lattice be

q �L
def
D ¹q � v j v 2 Lº:

Fact B.4. q �LŒM � D LŒq �M�.

Another interesting fact regrading the relation between the stretched dual of the
lattice and the dual of the dual is the following

Fact B.5. .q �L/_ D q�1 �L_.

The definitions so far relate to an abstract lattice, with no particular basis. Let us
now examine some notions that are specific to a particular basis for a lattice.

Fundamentals. The fundamental parallelepiped of a lattice basis is the body defined by
letting all xi coefficients be between 0 and 1:

Definition B.5 (Fundamental parallelepiped). For a matrix M , define the fundamental par-
allelepiped as

P ŒM �
def
D ¹Mx j 8i; 0 � xi < 1º:
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Note that the fundamental parallelepiped tiles space when we shift it by a lattice
vector, as it is half open.

Definition B.6. Given a matrix M and a vector v 2 Rn, the rounding of v according to the
fundamental parallelepiped, denoted as bvcP ŒM�, is defined by

bvcP ŒM�
def
D

X
i

baicMi ;

where the coefficients ai are the unique representation of v according to the basis given by
the columns of M , namely v D

P
i ai Mi .

The mapping v! bvcP ŒM� can be thought of as a rounding function, mapping v to
some lattice point in LŒM � that is “closest to it” in terms of the coefficients.10 Looking at the
difference then, one gets a point from the fundamental parallelepiped P ŒM � (which could
be thought of as the “fractional part” of v). We refer to this operation as modulo P ŒM �,
formally defined as

v
�
mod P ŒM �

� def
D v � bvcP ŒM� 2 P ŒM �:

Clearly, different bases (for the same lattice) result in different fundamental parallelepipeds
and consequently have different rounding values. This could affect the distance of the mod-
ulus vector.

Let us now use this notion of the fundamental parallelepiped to establish a method
by which to figure out whether two matrices span the same lattice:

LemmaB.6. Let M;M 0 2Rn�n be full-rank matrices so that LŒM 0��LŒM � (equivalently,
every column M 0

i is a vector in LŒM �); then

L
�
M 0

�
D LŒM �” P

�
M 0

�
\LŒM � D ¹E0º:

Proof. Observe that any vector v 2 Rn can be written as v D
P

i ai M
0
i for ai 2 R.

.H)/. By definition, P ŒM 0� includes only vectors v where all coefficients are 0 � ai < 1

while any nonzero vector in LŒM 0� D LŒM � has at least one coefficients jai j � 1.

.(H). To show that LŒM � � LŒM 0�, consider a vector v 2 LŒM �; by definition, the
vector bvcP ŒM 0� 2 LŒM 0� � LŒM �, and since a lattice is closed under vector addition
and negation, the difference between those two, v .mod P ŒM 0�/, is in LŒM �. On the
other hand, v .mod P ŒM 0�/ 2 P ŒM 0� and, by the premise, it must then be the case that
v .mod P ŒM 0�/ D E0 and thus v D bvcP ŒM 0� 2 LŒM 0�.

Determinant. What is the volume of the fundamental parallelepiped?
Recall that the volume of the parallelepiped volŒP ŒM �� D jdetŒM �j.

Fact B.7. Given two matrices M;M 0 2Rn�n, if LŒM �DLŒM 0� then jdetŒM 0�j D jdetŒM �j.

10 Observe that v could be very far from bvcP ŒM�.
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This implies that the volume of the fundamental parallelepiped of a given lattice
is independent of the choice of basis. This parameter is referred to as the determinant of a
lattice.

Definition B.7 (Determinant). The determinant of a lattice LŒM � is defined as

det
�
LŒM �

� def
D vol

�
P ŒM �

�
D

ˇ̌
detŒM �

ˇ̌
:

The determinant of a lattice is inversely proportional to its density: the larger the
determinant, the sparser the lattice. Consider a ball of some (large) radius r around the origin
and count how many points of the lattice are in that ball; it follows that the smaller the
determinant, the more lattice points are in the ball,

lim
r!1

jL \BŒE0; r�j

volŒBŒr��
D

1

detŒL�
:

One of the most fundamental questions regarding lattices is when r becomes large enough for
the value to become negligibly different from the limit. For a basis/matrix M that is close—
in some reasonable sense—to an orthonormal basis, and the value converges quickly; in
general, there is a nontrivial upper bound (established below) which is central to this theory.

The denser the L, the less dense the L_, which can be summarized by the following:

Claim B.8. For a lattice L, detŒL�detŒL_� D 1.

Successive minima. Consider the `2-ball of radius r around the origin

BŒE0; r�
def
D

®
v j kvk2 � r

¯
and the smallest r such that BŒE0; r� contains a set of vectors of L which spans an i -
dimensional space:

Definition B.8. �i ŒL�
def
D inf ¹r j dimŒspanŒL \BŒE0; r��� � iº.

Orthonormalization. Orthonormlization11 is the process of taking a sequence of linearly-
independent vectors and replacing it with an orthonormal basis, so that any prefix of the
sequence spans the same space as the original prefix. The orthonormal basis is unique.

Definition B.9. Let u1; : : : ; un 2 Rn be a sequence of linearly-independent vectors. The
orthonormalization of u1; : : : ; un is the sequence u?

1 ; : : : ; u?
n so that

• u?
1 ; : : : ; u?

n is an orthonormal basis.

• For 1 � i � n W u?
i 2 spanŒu1; : : : ; ui � n spanŒu1; : : : ; ui�1�.

Fact B.9. u?
1 ; : : : ; u?

n is unique (up to signs).

Observe that the resulting basis, u?
1 ; : : : ; u?

n , is not necessarily a basis for the same
lattice.

Denote by M ? the matrix whose columns are u?
1 ; : : : ; u?

n .

11 This is the orthonormal version of the Gram–Schmidt orthogonalization: all vectors are of
norm 1.
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Regarding �1. One can immediately bound from below the first �1ŒLŒM �� successive
minimum—the length of the shortest vector—according to M ?:

Theorem B.10. Let M be a basis for a lattice L, and M ? be its orthonormalization. Then

�1

�
LŒM �

�
� min

i

ˇ̌˝
Mi ; M ?

i

˛ˇ̌
> 0:

Proof. To bound the norm of any nonzero lattice vector from below, let us show a stronger
claim: for any coefficient vector z 2 Zn, it is the case that kMzk � jhMk ; M ?

k
ij, where k is

the maximal index so that zk ¤ 0. Note that the inner product hMz; M ?
k
i is independent of

all indices other than k (larger indices are 0 and M ?
k

is orthogonal to spanŒM1; : : : ; Mk�1�):

kMzk D kMzk
M ?

k

 � ˇ̌˝
Mz; M ?

k

˛ˇ̌
D

ˇ̌̌̌
ˇ
*

kX
iD1

zi Mi ; M ?
k

+ˇ̌̌̌
ˇ D ˇ̌˝

zkMk ; M ?
k

˛ˇ̌
D jzkj

ˇ̌˝
Mk ; M ?

k

˛ˇ̌
;

where the inequality is due to the Cauchy–Schwarz inequality; now, observe that zk is a
nonzero integer to complete the proof.

Hence, we have just shown that the inner product of the kth vector with its orthonor-
mal basis vector is a lower bound on the shortest nonzero vector in L.

Stretch and inclusion.

ClaimB.11. For an n-dimensional lattice L, there exists a sequence of linearly-independent
vectors u1; : : : ; un 2 L so that 8i; kuik D �i ŒL�.

Furthermore, for any such sequence it holds that

B
�
E0; �iC1ŒL�

�
\L � spanŒu1; : : : ; ui �;

that is, the intersection of the open ball of radius �iC1 with L is spanned by the first i vectors.

Banaszczyk. Let us mention here the transference theorem by Banaszczyk, which is a far
less obvious statement regarding the successive minima of a lattice and its dual:

Theorem B.1 (Banaszczyk). 1 � �1ŒL��nŒL_� � n.

Proof. For the first inequality, let s be the shortest in L, and u1; : : : ; un 2 L_ be a linearly-
independent set of vectors so that kuik D �i ŒL

_� (which exists due to Claim B.11). Then ui

is a basis of Rn. Therefore, there must be an i for which hs; ui i ¤ 0, and due to duality, 1 �

jhs; ui ij � kskkuik D �1ŒL��i ŒL
_�� �1ŒL��nŒL_�. For the proof of the second inequality,

see [84].

B.2. Minkowski
Theorem B.12 (Blichfeldt). For any lattice L � Rn and a measurable set S � Rn of
volŒS� > detŒL�, there must be u ¤ v 2 S with u � v 2 L.
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Proof. Let M be a basis for L. Note that we can break S according to the shift of the fun-
damental parallelepiped S D P

S
w2LSw where

Sw
def
D

®
v 2 S j bvcP ŒM� D w

¯
and volŒS� D

X
w2L

volŒSw �:

As shifting by a vector is measure-preserving and volŒS� > volŒP ŒM ��, there must be two
distinct points in S that are the same modulo the parallelepiped, that is, a pair u ¤ v 2 S so
that u 2 Sw ; v 2 Sw 0 for w ¤ w0 2 LŒM � and

u
�
mod P ŒM �

�
D v

�
mod P ŒM �

�
;

and thus
u � v D bucP ŒM� � bvcP ŒM� D w � w0

2 LŒM �:

Theorem B.13 (Minkowski’s convex-body theorem). For any lattice L � Rn and a cen-
trally symmetric convex body S � Rn with volŒS� > 2ndetŒL� there must be u ¤ E0 so that
u 2 L \ S , in other words, L \ S ¤ ¹E0º.

Proof. Let S 1
2

def
D ¹v j 2v 2 Sº and observe that

volŒS 1
2
� D 2�nvolŒS� > detŒL�;

and thus, by Theorem B.12, there must be u¤ v 2 S 1
2

with u� v 2 L� ¹E0º. By definition,
2u; 2v 2 S and since S is centrally-symmetric, so is �2v 2 S and by convexity

u � v D
1

2
.2u � 2v/ 2 S;

therefore, u � v 2 L \ S n ¹0º.

Theorem B.14 (Minkowski’s second theorem). For any L � Rn,
nY

iD1

�i ŒL� � 2n detŒL�

volŒBŒE0; 1��
:

Proof. Consider a set of linearly-independent vectors u1; : : : ; un 2 L so that kuik D �i ŒL�

(which exists due to claim B.11 above) and let u?
1 ; : : : ; u?

n be their orthonormalization. Let
us define the convex symmetric body (in fact, an ellipsoid)

E
def
D

´
v 2 Rn

j

nX
iD1

hv; u?
i i

2

�i ŒL�2
< 1

µ
:

Now, show

Claim B.15. E \L D ¹E0º.

Proof. The differences between the open balls of radius �kC1 and �k for kD 0; : : : ;n (where
�0

def
D 0 and �nC1

def
D1) partition Rn, thus, for u 2 L n ¹E0º there must be a unique k > 0 so

that
u 2 L \

�
B.E0; �kC1/ nB.E0; �k/

�
:
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By Claim B.11, u 2 spanŒu1; : : : ; uk � and thus

�k ŒL�2 � kuk2 D

kX
iD1

˝
u; u?

i

˛2
� �k ŒL�2

kX
iD1

hu; u?
i i

2

�i ŒL�2
< �k ŒL�2;

and it must be the case that the only lattice point in E is E0.

This, in turn, implies, by Minkowski’s Theorem B.13 above, an upper bound on T ’s
volume

2ndetŒL� � volŒE� D vol
�
B.E0; 1/

� nY
iD1

�i ŒL�;

which completes the proof.

The volume of a ball can be found here.

Corollary B.16 (Minkowski’s first theorem). For any L � Rn, �1ŒL� � .detŒL�/
1
n
p

n.

Dual lattice. The latter inequality implies some meaningful statements regarding the rela-
tion between a lattice and its dual:

Claim B.17. For any (full-rank) lattice L, �1ŒL� � �1ŒL_� � n.

Proof. By Minkowski’s bound, Corollary B.16,

�1ŒL� � �1

�
L_

�
�
p

n � detŒL�
1
n �
p

n � det
�
L_

� 1
n D n �

�
detŒL� � det

�
L_

�� 1
n :

B.3. Fourier transform over lattices, etc.
Fourier transform. It is defined (see [82]) as follows:

Definition B.10. The Fourier transform of a function f 2L1.Rn/ is a function Of WRn!R

defined as
Of .w/

def
D

Z
Rn

f .x/e�2�ihx;wi dx:

Claim B.18. Some basic properties of Fourier transform:

(1) 1f C g.w/ D Of .w/C Og.w/; b� � f D � � Of .w/.

(2) If h.x/ D f .x C z/ then Oh.w/ D e2�ihw;zi Of .w/.

(3) If h.x/ D f .�x/ then Oh.w/ D 1
�n
Of . w

�
/.

(4) If f .x/ D f1.x1/ � � � fn.xn/ then Of .y/ D bf1.y1/ � � � bfn.yn/.

Definition B.11 (Gaussian). Denote by NnŒ�� the Gaussian (normal) n-dimensional
(namely, over Rn) distribution centered at E0 and of “width” (standard-deviation) � .

NnŒ��.x/ D
1

.2�/
n
2 �n

e
� 1

2�2 kxk2

:

Fact B.19. The Fourier transform of the Gaussian distribution NnŒ�� is the Gaussian dis-
tribution .

p
2�
�

/
n
NnŒ1=��.
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The Poisson summation formula. It asserts the following:

Fact B.20. For any “nice” f W Rn ! R and for any full-rank n-dimensional lattice L,X
v2L

f .v/ D
1

det.L/

X
v2L_

Of .v/:

Altogether this gives

Theorem B.21. For any full-rank n-dimensional lattice L and any " > 0, there is r."/ so
that

Pr
v�NnŒ�nŒL��r."/�

�
v … B.�n/ j v 2 L_

�
� ":

B.4. The Korkin–Zolotarev basis
Let us consider the projection of a lattice L according to a given vector u 2 L.

Definition B.12. For a vector u 2 L of a lattice L, denote by

�?u.v/
def
D v �

hu; vi

kuk2
u;

which altogether gives the .n � 1/-dimensional lattice, the result of projecting L on the
hyperplane perpendicular to u, thus

L?u
def
D

®
�?u.v/ j v 2 L

¯
:

Definition B.13. A matrix M is a Korkin–Zolotarev basis [60] for LŒM � if

• M1 is shortest, kM1k D �1ŒLŒM ��;

• �?M1.M2/; : : : ; �?M1.Mn/ is a Korkin–Zolotarev basis for L?M1 ;

• For any 1 � j < i � n, hM ?
i ; Mj i �

1
2
hM ?

j ; Mj i.

Fact B.22. The Korkin–Zolotarev basis always exists (constructively).

B.5. The LLL algorithm
Recall the orthonormalization process described above (the orthonormal version of

Gram–Schmidt) of Definition B.9.
Obviously, applying the orthonormalization process to a given lattice basis does not

necessarily result in another basis for the lattice. This is the most fundamental problem with
applying the orthonormalization process as is to a lattice basis.

Let us therefore try a similar process that preserves the lattice spanned by the basis,
in exchange for a weaker notion of orthogonality. In other words, the inner product between
any two vectors must not be too large and the angle between the vector and the span of
previous vectors is within Œ�=3; 2�=3�, instead of being �=2.

There is also the issue of the order in which the process is carried out, that is, the
order of the columns of M :12 the algorithm and the outcome of the orthonormalization

12 Recall that order does not change at all the lattice spanned by the basis.
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process depend strongly on the order of the columns in M . Ideally, one would be fantas-
tically able to find an order according to which the projection hMi ; M ?

i i is monotonically
nondecreasing, in which case it follows from Theorem B.10 that M1 is the shortest vector.
Unfortunately, the requirements of quasiorthogonality and nondecreasing projection are gen-
erally mutually exclusive.

The condition below is a relaxation of the nondecreasing order and represents a
compromise, an order in which the next vector projection is at least a constant times the
current. Unfortunately, this constant turns the algorithm into an approximation algorithm
and, moreover, one with only an exponential ratio of approximation!

Let us therefore define an LLL-reduced basis [61]:

Definition B.14. A basis/matrix M is ı-LLL-reduced (think of ı 2 . 1
4
; 1/) if the following

two properties hold:

• (Close to orthogonal)

81 � j < i � n;
ˇ̌˝

Mj ; M ?
j

˛ˇ̌
� 2

ˇ̌˝
Mi ; M ?

j

˛ˇ̌
;

that is, there is no way to add or subtract Mj from Mi to make them more per-
pendicular.

• (Lovász condition)

81 � i < n; ı
˝
Mi ; M ?

i

˛2
�

˝
MiC1; M ?

i

˛2
C

˝
MiC1; M ?

iC1

˛2
:

To motivate the extra term in Lovász condition, take, for example, two vectors of
length 1, so that the angle between them is �=3. The orthogonality condition holds, but
jhM2; M ?

2 ij D

q
3
4
. Due to symmetry, however, changing the order of columns changes

nothing. Therefore, the extra term guarantees that, if Mi is switched with MiC1 and Mi is
adjusted to be as orthogonal as possible, there would be no reason to switch back (preferring
the vector with smaller norm).

Fact B.23. For a ı-LLL-reduced basis M , for any 1 � i < n,˝
MiC1; M ?

iC1

˛
�

r
ı �

1

4

˝
Mi ; M ?

i

˛
:

Claim B.24. Let M be a ı-LLL-reduced basis, then

�1

�
LŒM �

�
� kM1k

�p
4ı � 1

2

�n�1

:

Proof. First, note that, for any 1 � i � n, applying Fact B.23 .i � 1/-times (and observing
that kM1k D hM1; M ?

1 i) implies˝
Mi ; M ?

i

˛
�

�
ı �

1

4

� i�1
2

kM1k;

which achieves its minimum when i D n, thus, by Theorem B.10 above,

�1

�
LŒM �

�
� min

i

ˇ̌˝
Mi ; M ?

i

˛ˇ̌
�

�
ı �

1

4

� n�1
2

kM1k:
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B.5.1. The algorithm

Algorithm 1: The LLL algorithm
Input: full-rank matrix M and ı 2 . 1

4
; 1/

Output: ı-LLL-reduced basis for LŒM �

repeat
Compute orthonormalized M ?

for i  2 to n; j  i � 1 to 1 do

Mi  Mi � b
hMi ;M ?

j i

hMj ;M ?
j i
eMj // Round

end
if 9i W ıhMi ; M ?

i i
2 > hMiC1; M ?

i i
2 C hMiC1; M ?

iC1i
2 then

Mi $MiC1 // Swap

end
else return M // Done

Observe that the “Round” and “Swap” steps do not change the lattice. Next we show
that the algorithm terminates within polynomial time, and, furthermore, that once it does,
the basis is reduced.

Running time. The correctness of the algorithm, as well as the fact that it runs in polyno-
mial time, are proved simultaneously by introducing a parameter. This parameter is at most
exponential in the dimension n at the start of the execution, and at each step is reduced by
a constant factor < 1, while never going below the determinant multiplied by the minimal
quanta (precision) of the vectors.

Fact B.25. Given an integer basis M , consider

DD ŒM �
def
D

nY
iD1

ˇ̌˝
Mi ; M ?

i

˛ˇ̌n�iC1

which satisfies the following properties:

• DD ŒM � � .max1�i�n kMik/
n.nC1/

2 ;

• DD ŒM � � 1;

• DD ŒM � is reduced by a factor
p

ı in each swap step of the LLL algorithm, and
does not increase by an orthogonalization step.

B.6. Extension
This algorithm can be improved to approximate CVP to within same ratio, and SVP

to within 2
n

log log n
log n .
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B.7. CVP algorithm
Covering radius. Let us define yet another interesting parameter of a lattice. How far can a
vector be from the lattice L (that is, the distance from its closest lattice vector)?

Definition B.15 (Covering tadius).

�.L/
def
D max

t2Rn
dist.t; L/ D inf

²
r > 0 j Rn

�

[
v2L

B.v; r/

³
:

Claim B.26.
1

2
�nŒL� � �.L/ �

1

2

p
n�nŒL�:

B.7.1. Babai’s nearest plane algorithm
Let us now present an algorithm for approximating CVP à la LLL [16]. Let

M1; : : : ; Mn be the LLL-reduced basis for L. Every vector v 2 L can be represented as
Mz for z 2 Zn. Let Hk

def
D ¹Mz j zn D kº for k 2 Z which altogether partition all lattice

vectors in L, each belonging to some hyperplane Hk . Note that, to find an approximately
closest lattice vector to t , one could find the closest hyperplane Hk to t ; then, move t so it
is at the same relation with H0 as it was with Hk and continue recursively on the .n � 1/-
dimensional sublattice.

Algorithm 2: Babai’s algorithm
Input: full-rank LLL-reduced matrix M , t 2 Rn

Output: A lattice vector v relatively close to t

v D E0; t 0 D t

for n0 D n to 1 do
k D bht 0; M ?

n0 ie // Find nearest hyperplane

v D v C kMn0 // Remember to add kMn0 back

t 0 D t 0 � kMn0 // Continue w/ sublattice where

coefficient of Mn0 is 0

end
return v

Analysis. First, observe that the algorithm runs in a polynomial time and returns a lattice
vector v. One observes that

(1) t 0 C v D t always.

(2) After the stage in the loop when n0 D j , it holds thatˇ̌˝
t 0; M ?

j

˛ˇ̌
�

1

2

ˇ̌˝
Mj ; M ?

j

˛ˇ̌
;

and that continues to be true throughout (as both sides never change).
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Therefore, at the end of the run

t 0
 � 1

2

vuut nX
iD1

˝
Mi ; M ?

i

˛2
:

Corollary B.27.

�
�
LŒM �

�
�

1

2

vuut nX
iD1

˝
Mi ; M ?

i

˛2
:

Claim B.28. Running Babai’s algorithm on 3
4
-LLL (where ı D 3

4
) gives an error oft 0

 � 2
n
2 �1

ˇ̌˝
Mn; M ?

n

˛ˇ̌
:

Corollary B.29. Running Babai’s algorithm on 3
4
-LLL is 2

n
2 -approximation algorithm for

CVP.
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