
Polyhedral techniques
in combinatorial
optimization:
matchings and tours
Ola Svensson

Abstract

We overview recent progress on two of the most classical problems in combinatorial opti-
mization, namely the matching problem and the traveling salesman problem. We focus on
deterministic parallel algorithms for the perfect matching problem and the first constant-
factor approximation algorithm for the asymmetric traveling salesman problem.
While these questions pose seemingly different challenges, recent progress has been
achieved using similar polyhedral techniques. In particular, for both problems, we use
linear programming formulations, even exponential-sized ones, to extract structure from
problem instances to guide the design of algorithms.

Mathematics Subject Classification 2020

Primary 68W01; Secondary 68W20, 68W25, 68Q25, 68R10, 05C85

Keywords

Approximation algorithms, combinatorial optimization, derandomization, linear
programming, matchings, traveling salesman problem

©2022 International Mathematical Union
Proc. Int. Cong.Math. 2022, Vol. 6, pp. 4970–4994
DOI 10.4171/ICM2022/127

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/

1. Introduction
1 The matching problem and the traveling salesman problem are at the heart of

combinatorial optimization. In the matching problem, the goal is to pair up the vertices using
the edges of the given graph. Work on matchings has contributed to the development of
many core concepts in modern computer science, including linear-algebraic, probabilistic,
online, streaming, and parallel algorithms. Matchings has been used to show the limitations
of several models of computation such as monotone circuits and linear programs (extension
complexity). Edmonds was the first to give a polynomial-time algorithm for it. His landmark
paper [16] from 1965 is often credited with the idea that polynomial-time is a good abstraction
of time efficiency and thus, in turn, popularizing the central complexity class P. However,
half a century later, we still do not have a full understanding of the matching problem in
many relevant settings such as parallel and space-bounded algorithms.

The traveling salesman problem—of finding the shortest tour of n given cities—is
perhaps the most famous benchmark problem for NP-hard optimization problems, similar
to what the matching problem is for efficiently solvable problems (i.e., problems in P).
Indeed, the study of the traveling salesman problem has played a key role in the development
and evaluation of heuristics, integer programming solvers, and approximation algorithms.
Already in 1954, Dantzig et al. [14] used a linear program to solve a 49-city instance. The
strength of this linear program, often referred to as the subtour elimination relaxation or
Held–Karp relaxation, is one of the most fascinating open problems in combinatorial opti-
mization.

While making progress on these questions has been notoriously difficult, there
have been recent exciting advancements that we overview in this article. In the first part
(Section 2), we survey progress on finding the efficient deterministic algorithms that we
know should exist ever since the beautiful randomized algorithms for matching problems by
Lovász [33] and Mulmuley, Vazirani, and Vazirani [36] were discovered several decades ago.
We focus on the breakthrough work by Fenner, Gurjar, and Thierauf [18, 19] that (almost)
derandomized the Isolation Lemma of [36] in the special case of perfect matchings in bipar-
tite graphs. We then explain the challenges that we needed to overcome to extend their
result to general graphs [46]. Finally, while the work of [19] has inspired much progress, it
remains elusive to completely derandomize the approach of [36]. In Section 2.4, we give
some fascinating open questions in this line of work.

In the second part (Section 3), we consider the traveling salesman problem. Recent
years have seen exciting progress on longstanding open problems: for the asymmetric ver-
sion, we achieved the first constant-factor approximation algorithm in [48]; and for the sym-
metric version, Karlin, Klein, and Oveis Gharan [28] made the first improvement on the
classic approximation algorithm by Christofides [10] and Serdyukov [43]. We note that our
focus in Section 3 is almost exclusively on approximation algorithms for the asymmetric

1 Part of the writing in this overview article is taken from a grant proposal of the author, and
some descriptions (as we point out) are taken from our works [46,48].

4971 Polyhedral techniques in combinatorial optimization: matchings and tours

traveling salesman problem. We do not discuss the recent results for the symmetric version
in detail. We do, however, point out similarities between one approach for the asymmetric
case and the breakthrough algorithm in [28]. Finally, in Section 3.5, we give some of our
favorite open problems related to the traveling salesman problem.

While the matching problem and the traveling salesman problem pose seemingly
different challenges, much of the recent progress has been achieved using similar algorithmic
ideas. Specifically, polyhedral techniques—the study of the convex hull of integer solutions
and finding/exploiting properties of it—have played a key role in both our works on the
matching problem [46] and the asymmetric traveling salesman problem [48]. In this overview,
we highlight one polyhedral property that is central in both results, the so-called laminar
structure of extreme points. We have made an effort to keep notation light and to introduce
concepts when they are used. For a comprehensive reading on polyhedral techniques for
combinatorial optimization, we recommend the excellent book by Schrijver [41].

2. The algorithms that must exist for perfect matchings

A central problem in combinatorial optimization is the (maximum weight) perfect
matching problem. Recall that a perfect matching of a graph is a subset of the edges so that
every vertex is incident to exactly one edge, i.e., all vertices are paired up using edges. The
maximum weight perfect matching problem now simply asks us to find a perfect matching
of maximum weight in a given edge-weighted graph. This problem has a long and beautiful
history.

For bipartite graphs, the Hungarian method is often taught in algorithm classes as
a prime example of the powerful primal–dual technique. It is referred to as the Hungarian
method as it relies on ideas developed by the Hungarians König and Egerváry, although
amazingly we now know that the algorithm was already discovered by Jabobi more than a
century ago [26]! One advantage of bipartite graphs over general graphs is that the polyhedral
structure, i.e., the exact linear programming formulation, of the perfect matching problem
is significantly simpler for bipartite graphs. It was in 1965 that Edmonds developed the first
polynomial-time algorithm for general graphs [16]. Alongside his algorithmic discovery, he
also formulated his famous description of the perfect matching polytope [15].

We have thus known efficient, i.e., polynomial-time, deterministic algorithms for
the maximum weight perfect matching problem in both bipartite and general graphs for over
half a century. Surprisingly, the situation is dramatically different for the following slight
changes to the objective:

• k-Extendable matching: find a perfect matching that maximizes the sum of
weights of the k heaviest edges or, equivalently, find k edges of maximum weight
that can be extended to a perfect matching.

4972 O. Svensson

• Exact matching: decide (or find if it exists) whether a given edge-weighted graph
has a perfect matching of weight equal to a target W .2

The status of both these problems is very intriguing:we have yet to discover efficient
deterministic algorithms that we have known should exist for decades! But how can we be
so sure that the above mentioned problems should admit efficient deterministic algorithms?
The answer to this question lies in the fundamental study of the power of randomization in
algorithm design. There is strong evidence (see, e.g., [25]) that any problem that admits an
efficient randomized algorithm also admits an efficient deterministic algorithm. This may at
first be surprising as there are several problems for which only efficient randomized algo-
rithms are known. However, complexity theory tells us that this discrepancy is very likely
due to a lack of algorithmic techniques and not due to a fundamental difference in the power
of randomized and deterministic polynomial-time computation.

If we allow randomization, there is an incredibly versatile algorithmic technique
developed by Mulmuley, Vazirani, and Vazirani [36], building upon earlier work by
Lovász [33]. Specifically, the algorithmic technique in [36] yields efficient randomized par-
allel algorithms for all the above-mentioned problems: maximum weight perfect matching,
k-extendable matching, and exact matching. While the obtained randomized algorithms are
relatively simple and even parallelizable, it is a notorious problem to remove the need for
randomness, i.e., to derandomize the approach. This is true even for vanilla perfect match-
ings and devising an efficient deterministic parallel algorithm for the (unweighted) perfect
matching problem is a long-standing open problem.

While it remains elusive to derandomize the algorithmic technique in [36] com-
pletely, there has been significant progress in the last few years starting with the ground-
breaking work of Fenner, Gurjar, and Thierauf [18,19]. We give an overview of this progress
with a focus on parallel algorithms for the perfect matching problem. In Section 2.1 we
briefly explain the main techniques in the mentioned randomized parallel algorithms. We
then give a more detailed description of the elegant framework of [19]which was the starting
point of much of the recent progress. In Section 2.3 we then explain the challenges and our
ideas for generalizing the result of [19] from biparite to general graphs. Finally, in Section 2.4,
we comment on open questions and why we think progress on the exact matching and the
k-extendable matching problems requires major new ideas.

2.1. Randomized parallel algorithms for the perfect matching problem
The description in this section of randomized parallel algorithms for the perfect

matching problem is mainly taken from [46]. For those algorithms, linear-algebraic tech-
niques have been a very powerful approach. They rely on the Tutte matrix of a graph

2 We remark that for the exact matching problem to be tractable, we assume that the edge-
weights are polynomially bounded; otherwise, NP-completeness follows immediately from
subset sum. In fact, the problem can be reduced to the case when edge-weights only take
values 0 and 1, which is referred to as the exact red–blue matching problem.

4973 Polyhedral techniques in combinatorial optimization: matchings and tours

G D .V; E/, which is the jV j � jV j matrix defined as follows:

T .G/u;v D

8̂̂<̂
:̂

X.u;v/ if .u; v/ 2 E and u < v;

�X.v;u/ if .u; v/ 2 E and u > v;

0 if .u; v/ 62 E;

where we ordered the vertices arbitrarily and X.u;v/ for .u; v/ 2 E are variables. Tutte’s
theorem [52] says that detT .G/ ¤ 0 if and only if G has a perfect matching.

A natural algorithm based on the Tutte matrix, replaces each indeterminate by a
random value from a large field and then computes the determinant. If the graph has a perfect
matching, the Schwartz–Zippel lemma ensures that the value of the computed determinant
is nonzero with high probability. Furthermore, as computing determinants can be done effi-
ciently in parallel [7, 13], this yields an efficient randomized parallel algorithm for deciding
whether a graph has a perfect matching [33].

A second approach that will bemore amenable to derandomization, adopted byMul-
muley, Vazirani, and Vazirani [36] for the search version (see also [29] for another randomized
parallel algorithm for the search version, i.e., for finding a perfect matching if it exists), is to
replace the indeterminates by randomly chosen powers of two. Namely, for each edge .u; v/,
a random weight w.u; v/ 2 ¹1; 2; : : : ; 2jEjº is selected, and we substitute X.u;v/ WD 2w.u;v/.
Now, let us make the crucial assumption that one perfect matchingM is isolated, in the sense
that it is the unique minimum-weight perfect matching (minimizing w.M/ D

P
e2M w.e/).

Then det T .G/ remains nonzero after the substitution: one can show that M contributes a
term˙22w.M/ to detT .G/, whereas all other terms are multiples of 22w.M/C1 and thus they
cannot cancel 22w.M/ out. The determinant can still be computed efficiently in parallel as all
entries 2w.u;v/ of the matrix are of polynomial bit-length, and so we have a parallel algorithm
for the decision version. An algorithm for the search version also follows: for every edge in
parallel, test whether removing it causes this least-significant digit 22w.M/ in the determinant
to disappear; output those edges for which it does. The final ingredient of the randomized
approach of [36] is that assigning random weights to edges does indeed isolate one matching
with constant probability. This is known as the Isolation Lemma and is a powerful concept
that turns out to be true in the much more general setting of arbitrary set families.

2.2. Fenner, Gurjar, and Thierauf’s approach for bipartite graphs
The elegant framework introduced by Fenner, Gurjar, and Thierauf [19] has been

the basis for many subsequent developments including our result on general graphs that we
describe in the next section. Their starting point is the randomized algorithm of Mulmuley,
Vazirani, and Vazirani [36]. It forms an attractive starting point for derandomization because
the only randomized ingredient is the selection of the weight functionw and there is a simple
condition that guarantees its correctness: the algorithm succeeds if the weight function w is
isolating, i.e., there is a unique minimum weight perfect matching with respect to w. Thus
to find a deterministic parallel algorithm for the perfect matching it is sufficient to find (in
parallel) an isolating weight function with polynomial values. In other words, we would like
to derandomize the Isolation Lemma.

4974 O. Svensson

Fenner, Gurjar, and Thierauf’s construction of isolating weight functions is actually
oblivious to the considered graph. Specifically, for any n 2 N, they construct a family Fn

of simple weight functions such that for any bipartite n-vertex graph there is an isolating
weight function w 2 Fn. To completely derandomize [36], the weight functions in Fn should
be simple (efficiently computable in parallel) and satisfy the following three conditions:

(1) For every n-vertex graph G, there is an isolating weight function w 2 Fn.

(2) The number of weight functions in Fn is at most a polynomial in n.

(3) Each weight function in Fn assigns integer weights that are bounded by a poly-
nomial in n.

The last condition ensures that we can calculate the determinant of the Tutte matrix where
we replaced Xe by 2w.e/ efficiently for every w 2 Fn. The first condition ensures that we are
guaranteed to succeed if we try all weight functions in our family and the second condition
says that we can afford to try all of them (polynomially many) in parallel.

We remark that the construction of Fn becomes trivial if we drop the second or last
condition. Indeed, the family that contains all 0; 1-weight functions guarantees .1/ and .3/;
and the family consisting of the single weight function w defined by w.ei / D 2i (where
pairs of vertices/edges are ordered in an arbitrary fixed order) guarantees .1/ and .2/. Prior
to the work [19], no nontrivial bounds were known, and they almost managed to satisfy all
criteria when restricted to bipartite graphs. Specifically, they construct such a family Fn for
bipartite graphs where the polynomial bound on the size ofFn (the second condition) and the
range of the weights (the third condition) were relaxed from polynomial to quasi-polynomial
2lognO.1/ .

To construct Fn, order the set ¹e1; e2; : : : ; e�
n
2

�º of potential edges in an n-vertex
graph arbitrarily. It is not hard to see that the weight function w defined by w.ei / D 2i is
isolating. However, w does not have (quasi)polynomial values and it turns out that it is hard
to find such a weight-function immediately. A key idea of [19] is to build the weight function
in rounds, and at each step consider a much easier problem. In each round, a weight function
is selected from a family W of O.n6/ many weight functions defined by

W D
®
w.`/

j ` D 1; : : : ; 2n6
¯
; where w.`/.ei / D 2i mod `:

Theorem 2.1 ([19]). For every n-vertex bipartite graph with at least one perfect match-
ing, there is a selection of weight functions w1; w2; : : : ; wk 2 W with k D O.log n/

such that there is a unique perfect matching M minimizing the lexicographic order of
.w1.M/; : : : ; wk.M//.

Note that the above theorem implies the promised family of weight functions.
Indeed, putting enough weight on the first weight function compared to the second and
so on reduces lexicographic minimization to that of minimizing the total weight of a match-
ing. So the family Fn D ¹

Pk
iD1 n2.k�i/wi j w1; : : : ; wk 2 Wº satisfies the three criteria

(1)–(3) where the polynomial bounds are replaced by the quasipolynomial bound nO.logn/.

4975 Polyhedral techniques in combinatorial optimization: matchings and tours

Now, to prove Theorem 2.1, we first give a sufficient condition for a weight function to be
isolating. We then explain how [19] ingeniously selects the weights wi in rounds using girth
(the length of the shortest cycle) as a progress measure.

Circulations: a sufficient condition for a weight function to be isolating. If a weight
function w is not isolating, then there exist two minimum-weight perfect matchings, and
their symmetric difference consists of alternating cycles. In each such cycle, the total weight
of edges from the first matching must be equal to the total weight of edges from the second
matching (as otherwise we could obtain another matching of lower weight). The difference
between these two total weights is called the circulation of the cycle. Formally, the circulation
of an even cycle C with respect to weight function w is defined by

circulation.C; w/ D

ˇ̌̌̌ X
e2M1

w.e/ �

X
e2M2

w.e/

ˇ̌̌̌
;

whereM1 is the matching obtained by taking every second edge ofC andM2 is the matching
C n M1. By the above, we can observe the following.

Observation 2.2. If all cycles have nonzero circulation, then w is isolating.

Weight function in W doubles the girth. As aforementioned, a key idea of [19] for proving
Theorem 2.1 is to select theweight function in rounds, and at each step consider amuch easier
problem. Specifically, instead of trying to show that there is a weight function w 2 W that
assigns a nonzero circulation to all cycles (potentially exponentially many), let us start by
finding a weight function w 2 W that assigns a nonzero circulation to “short” cycles.

Suppose the considered bipartite graphG D .V;E/ has no cycle of length at most k.
We will assign nonzero circulation to all cycles of length at most 2k. To this end, we start by
bounding the number of such cycles. For ease of notation, we bound the number of 8-cycles
when G has no cycles of length 4. It will then be clear how to adapt the argument to the
general case. The bound on the number of 8-cycles follows from a nice encoding argument.
We associate a signature .a; b; c; d/ with each 8-cycle, where a is the first vertex, b is the
third vertex, c is the fifth vertex, and d is the seventh vertex when we traverse the cycle
starting from one of the vertices. Now, if two 8-cycles have the same signature then it is easy
to see that would yield a cycle of length 4. Hence, if G has no cycles of length 4, the number
of 8-cycles is at most the number of signatures which is at most n4. We can generalize this
argument to get the following:

Lemma 2.3. A graph with no cycles of length at most k has at most 2n4 cycles of length at
most 2k.

We have thus bounded the number of cycles that we consider in this round by a
polynomial in n. An easy argument shows that we can always find a weight function w 2 W

that assigns nonzero circulation to such a relatively small set of cycles.

Lemma 2.4. Let C be a set of at most 2n4 even cycles, then there is a weight function in W

that assigns nonzero circulation for every cycle in C .

4976 O. Svensson

Proof. Let w be the weight function defined by w.ei / D 2i . As already observed, w assigns
nonzero circulation to all cycles. In particular, we have circulation.C; w/ ¤ 0 for every
C 2 C . Furthermore, using that the w-weight of any edge is at most 2#edges � 2

�
n
2

�
, we also

have circulation.C; w/ � 2n2 . We thus haveY
C 2C

circulation.C; w/ ¤ 0 and
Y

C 2C

circulation.C; w/ � .2n2

/jC j
� 22n6

:

That there is a weight function in W that assigns nonzero circulation to all cycles in C , i.e.,
that there is an ` 2 ¹1; 2; : : : ; 2n4º such thatY

C 2C

circulation.C; w/ ¤ 0 mod `

now follows from the fact that the least common multiple of 1; 2; : : : ; 2n6 is greater than
22n6 , so not all these numbers can divide

Q
C 2C circulation.C; w/.

Given a bipartite graph G D .V; E/ with no cycles of length at most k, we can
thus find a weight function w 2 W such that all cycles for length at most 2k has nonzero
circulation. The following lemma ensures that the girth is a good progress measure for bipar-
tite graphs. It shows that the subgraph H D .V; E 0/, where E 0 � E is the union of perfect
matchings minimizing w, has no cycle of length at most 2k.

Lemma 2.5. Consider the subgraph H D .V;E 0/ of G where E 0 � E is the union of perfect
matchings that minimize a weight function w. Then H does not contain any cycle C with
circulation.C; w/ ¤ 0.

Before giving the proof of this lemma, let us explain how it implies Theorem 2.1.
Consider any n-vertex bipartite graph G D .V; E/. There are at most n4 � 2n4 cycles of
length at most 4. So there is a weight function w1 2 W that assigns nonzero circulation to
these cycles by Lemma 2.4. Let G1 D .V; E1/ be the subgraph where E1 � E is the union
of perfect matchings that minimize w1. Then the above lemma says G1 that has no cycles of
length at most 4. Lemma 2.3 then says thatG1 has at most 2n4 cycles of length at most 8. This
allows us to repeat the same argument to show that there is a weight function w2 2 W such
that the graph G2 D .V; E2/, where E2 � E1 is the union of perfect matchings of G1 that
minimize w2, has no cycles of length 8. Note that G2 contains those perfect matchings M

that minimize the lexicographic order of .w1.M/; w2.M//. By repeating this k D dlog2 ne

steps, we select weight functions w1; : : : ; wk such that the graph Gk that contains those
perfect matchings M that minimize the lexicographic order of .w1.M/; : : : ;wk.M// has no
cycles of length at most n. In other words, Gk has no cycles and there is therefore a unique
perfect matching in Gk .

Proof of Lemma 2.5. The argument uses that the bipartite perfect matching polytope has the
following simple characterization:

x.ı.v// D 1 for v 2 V ,
xe � 0 for e 2 E.

4977 Polyhedral techniques in combinatorial optimization: matchings and tours

Here, we used ı.v/ to denote the set of edges incident to vertex v and x.F / D
P

e2F xe for
a subset F � E of edges. Let x� be the convex combination of all perfect matchings that
minimize w. By definition, x� is in the perfect matching polytope, and its support equals E 0,
i.e., x�

e > 0 for every e 2 E 0.
Now suppose toward contradiction that E 0 contains a cycle C with circulation.C;

w/ ¤ 0. In other words, if we let M1 and M2 be the unique partitioning of C ’s edges into
two matchings, then X

e2M1

w.e/ ¤

X
e2M2

w.e/:

Suppose
P

e2M1
w.e/ <

P
e2M2

w.e/ (the other case is symmetric). Then

ye D

8̂̂<̂
:̂

x�
e C " if e 2 M1,

x�
e � " if e 2 M2,

0 otherwise

is a feasible solution to the bipartite perfect matching polytope for a small enough " > 0.
Indeed, every vertex in C is incident to exactly one edge in M1 and one edge in M2 and
so the degree constraints are maintained; we also have y � 0 by selecting " > 0 small
enough since x�

e > 0 for every e 2 E 0. We further have that y has lower cost than x� becauseP
e2M1

w.e/ <
P

e2M2
w.e/. A contradiction since x� is a convex combination of perfect

matchings minimizing w.

The proof of the above lemma completes the proof of Theorem 2.1 and the overview
of the framework of Fenner, Gurjar, and Thierauf. A careful reader may have noted that the
only place where we used that the graph was bipartite was in the proof of Lemma 2.5. In that
proof, we used the simple structure of the bipartite perfect matching polytope. In the next
subsection, we explain why replacing this lemma for general graphs is nontrivial and give a
brief outline of the approach in [46].

2.3. Polyhedral techniques for general graphs
Parts of this section is adapted from [46]. To extend the argument to general graphs,

it will be useful to look at the method explained in the previous section from a polyhedral
perspective. We begin from the set of all perfect matchings, of which we take the convex
hull: the perfect matching polytope. After applying the first weight function w1 2 W , we
want to consider only those perfect matchings which minimize the weight; this is exactly
the definition of a face of the polytope (e.g., face F Œ1� in Figure 1). Recall that the goal is to
show that for a small k, there existsw1;w2; : : : ;wk 2 W so that the lexicographic minimizer
of .w1; w2; : : : ; wk/ is unique. Now we need to have a smart progress measure to show that
there is such a choice of w1; : : : ; wk for a small k. It is in this part that a good polyhedral
understanding plays a key role. Specifically, if we consider the set of solutions that minimize
w1 then that defines a faceF1 of the polytope (convex hull of solutions) and, thenminimizing
w2 defines a subface F2 of F1, and so on. The goal is to show that there is a selection of

4978 O. Svensson

F Œ1�
w1

w2

F Œ2�

w3F Œ3�

Figure 1

Polyhedral perspective on the construction of isolating weight function.

.w1; : : : ; wk/ so that the final face is of dimension 0, i.e., has a unique solution. In Figure 1,
this happens after the choice of three weight functions.

In the bipartite case, any face is characterized by just taking a subset of edges (i.e.,
making certain constraints xe � 0 tight). This simple structure of the bipartite perfect match-
ing polytope was crucial in the proof of Lemma 2.5 and allowed [19] to have the girth as a
simple progress measure as we described in the previous subsection.

In the nonbipartite case, the description of the perfect matching polytope is more
involved. Namely, in addition to the degree constraints, Edmonds characterization [15] of the
perfect matching polytope of a general graph G D .V; E/ also involves exponentially many
odd-set constraints:

x.ı.v// D 1 for v 2 V ;

x.ı.S// � 1 for S � V with jS j odd,
xe � 0 for e 2 E.

Recall that ı.v/ denotes the set of edges incident to v and x.F / D
P

e2F xe for a subset
F � E of edges. Moreover, for a subset S � V of vertices, we use ı.S/ to denote the edges
that cross the cut defined by S , i.e., the edges with exactly one endpoint in S .

Thus for general graphs, a face is not only defined by making certain constraints
xe � 0 tight but may also include tight odd-set constraints x.ı.S// � 1. This complicates
our task, as depicted in Figure 2 (the same example was first given by [19] and then by [46] to
demonstrate the difficulty of the general-graph case). Now a face is described by not only a
subset of edges, but also a family of tight odd-set constraints. Thus we can no longer guaran-
tee that any cycle whose circulation has been made nonzero will disappear from the support
of the new face, i.e., the set of edges that appear in at least one perfect matching in this face
(as, e.g., illustrated in Figure 2). Our idea of what it means to remove a cycle thus needs to be
refined as well as the measure of progress we use to prove that a single matching is isolated
after a few rounds.

Unfortunately, the current progress measure for general graphs is significantly more
complex than for bipartite graphs and beyond the scope of this overview. Instead, wemention
two crucial properties that allow us to deal with these odd-set constraints.

Decomposition into two sub-instances. The first property is easy to see: once we fix the
single edge e in the matching which crosses a tight set S , the instance breaks up into two
independent subinstances. That is, every perfect matching which contains e is the union of:

4979 Polyhedral techniques in combinatorial optimization: matchings and tours

select w

H)

1

1

1

0

0

0

0

0

0

Figure 2

An illustration of the difficulty for general graphs. In trying to remove the bold cycle, we select a weight
function w such that the circulation of the bold cycle is j1 � 0 C 1 � 0j ¤ 0. By minimizing over w, we obtain a
new, smaller subface—the convex hull of perfect matchings of weight 1—but every edge of the cycle is still
present in one of these matchings. The vertex sets drawn in gray represent the new tight odd-set constraints that
describe the new face (indeed, for a matching to have weight 1, it must take only one edge from the boundary of a
gray set).

the edge e, a perfect matching on the vertex set S (ignoring the S -endpoint of e), and a
perfect matching on the vertex set V n S (ignoring the other endpoint of e). Intuitively, this
allows us to employ a divide-and-conquer strategy: to isolate a matching in the entire graph,
we will take care of both subinstances and of the cut separating them.

One can see that the divide-and-conquer strategywould lead to a low depth recursion
(and the selection of few weight functions), assuming that we could always find a balanced
tight odd-set constraint. That is a tight odd-set constraint x.ı.S// D 1 with jS j D �.n/ and
jV n S j D �.n/. However, in general there is no reason to expect that we would always
be able to find such a balanced cut and we combine the above strategy with a well-known
structural property of the perfect matching polytope called laminarity.

Laminarity. The second crucial property that we utilize is that the family of odd-set con-
straints tight for a face exhibits good structural properties. Namely, it is known that at most
2n � 1 odd-set constraints are enough to describe any face and they have a very nice struc-
tural property called laminarity. A family of sets is laminar if any two sets in the family
are either disjoint or one is a subset of the other. While this structural property is not very
hard to prove, we omit it here as we will prove and exploit a very similar polyhedral fact
in Section 3.4, where we discuss the asymmetric traveling salesman problem. The structure
enables a scheme where we use the laminar family to define our progress measure and make
progress in a bottom-up fashion. Combining this bottom-up approach with the techniques
of [19] allows us to extend Theorem 2.1 to general graphs (albeit by increasing the number
of weight functions by a logarithmic factor).

Theorem 2.6 ([46]). For every n-vertex graph with at least one perfect matching, there is a
selection of weight functions w1; w2; : : : ; wk 2 W with k D O.log2 n/ such that there is a
unique perfect matching M minimizing the lexicographic order of .w1.M/; : : : ; wk.M//.

4980 O. Svensson

2.4. Future directions
The results described almost (instead of completely) derandomize [36] because of

the quasipolynomial (n.logn/O.1/) instead of polynomial bounds. To further develop these
techniques to show that the perfect matching problem (even for bipartite graphs) has an effi-
cient deterministic parallel algorithm remains a prominent question (see [3, 40] for recent
progress in the special case of planar graphs where the decision and counting versions were
previously known). This would most likely require an alternative approach as selecting log-
arithmically many weight functions in rounds naturally lead to quasipolynomial bounds.

The randomized algorithm in [36] is very versatile, and it can be used to solve
several natural variants of the perfect matching problem, including the aforementioned k-
extendable matching problem and the exact matching problem. Any progress on efficient
(even sequential) deterministic algorithms for these problems would be very interesting.
Indeed, no nontrivial results are known for general graphs, and there has only been progress
on the exact matching problem in very special cases [21,30,54].

To make further progress on these questions, we believe that it is important to
develop a good polyhedral understanding of the exact matching and the k-extendable match-
ing problems. Indeed, all the work following the approach of [19] relied on our excellent
polyhedral understanding of those problems [22, 23,46]. A concrete step is to determine the
extension complexity3 of the exact matching problem and the k-extendable matching prob-
lem on bipartite graphs. We remark that it is important that we restrict ourselves to bipartite
graphs as already the perfect matching problem for general graphs has exponential exten-
sion complexity [39]. This is in contrast to the perfect matching polytope for bipartite graphs,
which has linear (in the number of edges) extension complexity. We therefore believe that
the resolution of the above question would make significant progress towards understanding
the additional difficulty posed by these variants.

3. The (asymmetric) traveling salesman problem

The traveling salesman problem, of finding the shortest tour that visits n given cities,
is one of the best-known optimization problems. It is a cornerstone NP-hard optimization
problem that has played a central role in devising and evaluating techniques for overcom-
ing NP-hardness (see, e.g., the books [4, 11,32]). The difference compared to problems in P
is that we do not expect NP-hard optimization problems to admit efficient algorithms that
are guaranteed to find optimal solutions (unless P D NP). Therefore, when confronted with
such an optimization problem, we need to relax our requirements on, e.g., optimality or reli-
ability (that the algorithm is guaranteed to work on every input). If we relax reliability, we
obtain heuristics where our goal is to devise algorithms with good performance on typical
instances. If we relax optimality, we obtain approximation algorithms. Approximation algo-

3 An extension of a polyhedron P is a polyhedron Q such that P is the image of Q under a
linear map. The extension complexity of P is the minimum number of facets (inequalities)
of any extension of P .

4981 Polyhedral techniques in combinatorial optimization: matchings and tours

rithms are efficient (i.e., polynomial-time) algorithms that are guaranteed to find a solution
that is close—within a factor called the approximation guarantee—in value to an optimal
solution. The study of approximation algorithms gives a mathematically rigorous way for
(i) having a more fine-grained understanding of NP-hard optimization problems (some are
easier to approximate than others) and (ii) in evaluating different algorithmic techniques. It
is also a very intuitive notion as, in many situations, it is sufficient to find a solution that is
close to optimal but not necessarily optimal.

As for the matching problem, polyhedral techniques have been central in the devel-
opment of good algorithms for the traveling salesman problem. The most studied linear
programming relaxation, which is often referred to as the Held–Karp relaxation (because
of the seminal paper [24])4 or the subtour elimination relaxation (because of the structure
of the formulation), has puzzled researcher for decades. Indeed, a longstanding conjecture
states that the Held–Karp relaxation approximates the value of any metric traveling salesman
problem instance within a factor 4=3 when distances are symmetric (the distance dist.i; j /

of going from city i to city j equals the distance dist.j; i/). Experimental evidence for the
conjecture is given in [6]. A similar situation also holds in the asymmetric setting (when
dist.i; j / does not necessarily equal dist.j; i/) albeit with a much larger gap. Closing these
gaps are considered major open problems in theoretical computer science.

Recently there have been significant advances on these questions. For the asymmet-
ric traveling salesman problem, we obtained the first constant-factor approximation algo-
rithm in [48]; see also the work by Traub and Vygen [50] who simplified the approach and
obtained a better approximation guarantee. For the symmetric version, Karlin, Klein, and
Oveis Gharan [28] obtained the first improvements on the classic 3=2-approximation algo-
rithm by Christofides [10] and Serdyukov [43]. We focus here on algorithmic approaches
for the asymmetric traveling salesman problem. However, we briefly comment on the break-
through work by [28] in Section 3.3, where we discuss a similar algorithm for the asymmetric
problem.

3.1. Designing approximation algorithms for ATSP
An instance of the asymmetric traveling salesman problem (ATSP) is a tuple .V;dist/

where V is the set of vertices/cities and dist gives the distances between vertices. In other
words, an instance is a complete directed graph with edge-weights given by dist. A tour is
a cycle that visits every vertex exactly once, i.e., a Hamiltonian cycle. The goal is to find a
tour F � E of minimum total distance dist.F / D

P
e2F dist.e/.

Without any assumptions on the distances, a simple reduction from the problem of
deciding whether a graph is Hamiltonian shows that it is NP-hard to approximate the shortest
tour to within any factor. Therefore it is common to assume that the distances satisfy the
triangle inequality: the distance dist.i; k/ from i to k is no longer than the distance dist.i; j /

from i to j plus the distance dist.j; k/ from j to k. All results that we mention refer to this

4 The relaxation in fact dates back to the earlier paper by Dantzig et al. [14] who solved a
special 49-instance of the problem.

4982 O. Svensson

setting and we will assume that the distances satisfy the triangle inequality from now on
(without explicitly stating it). One can see that this assumption is equivalent to allowing the
tour to visit cities more than once; see the remark after Theorem 3.2. This viewpoint is very
convenient when designing and analyzing algorithms for ATSP.

When designing an approximation algorithm, the task is to devise a polynomial-time
algorithm that, for any instance .V; dist/, outputs a tour whose length is guaranteed to be at
most a factor c worse than the length of an optimal tour. The factor c � 1 is often referred to
as the approximation ratio or the approximation guarantee. In the analysis, we thus face the
problem of upper bounding our cost with the cost of a complex optimal solution that is even
NP-hard to compute. A common technique to overcome this difficulty is to analyze the algo-
rithm compared to a “simpler” lower bound that we can compute in polynomial time. Such a
good lower bound then often also helps in the design of the approximation algorithms. In Sec-
tions 3.2 and 3.3, we see two complementary approaches that are based on two natural lower
bounds: minimum cost cycle cover and minimum spanning tree, respectively. In Section 3.4,
we then give an overview of the approach for achieving a constant-factor approximation
algorithm and explain how the polyhedral structure of the Held–Karp relaxation allows us
to reduce the general problem to very structured distances.

3.2. The repeated cycle cover approach
In this section, we explain the elegant “repeated cycle cover” approach by Frieze,

Galbiati, and Maffioli [20]. A cycle cover of a directed graph is a subset C of the edges so
that each vertex has in-degree and out-degree equal to one. In other words, C consists of a
collection of cycles so that each vertex is in exactly one. A minimum cost cycle cover C in
an edge-weighted graph is a cycle cover of minimum total distance dist.C / D

P
e2C dist.e/.

It is not hard to see that we can compute a minimum cost cycle cover in polynomial time:
it reduces to that of calculating a minimum cost perfect matching in a bipartite graph. Fur-
thermore, we have the following observation, which follows by noting that an optimal tour
is a cycle cover consisting of a single cycle, so the minimum cost cycle cover can only have
a smaller cost.

Observation 3.1. A minimum cost cycle cover costs at most the length of an optimal tour.

The algorithm in [20] now ensures connectivity by the following procedure that
repeatedly finds cycle covers:

(1) Find a minimum cost cycle cover.

(2) Select an arbitrarily proxy node for each cycle.

(3) Recursively solve the problem on proxies.

An illustration of the algorithm is given in the left part of Figure 3. First we find a cycle cover
consisting of three cycles (depicted by solid edges). In each of these cycles, we select a proxy
vertex (depicted in gray); and then in the next cycle cover instance, we find a minimum cost
cycle cover on those proxy vertices a; c, and f (depicted by dashed edges). In this example,

4983 Polyhedral techniques in combinatorial optimization: matchings and tours

e

c

d

f g

hib

a

Figure 3

(Left) An illustration of the repeated cycle cover algorithm; (Right) Short-cutting does not increase the length of
the tour by the triangle inequality.

wemanaged to connect the graph after only two iterations. In general, we have that each cycle
cover at least halves the number of proxy vertices (they are exactly halved if each cycle in the
cycle cover has length two). Thus, the algorithm selects at most log2.n/ cycle covers. We can
furthermore upper bound the cost of each of these cycle covers by the length of an optimal
tour. Indeed, let Vi be the set of proxy nodes when the i th cycle cover is found. Then, by
Observation 3.1, the cost of the minimum cost cycle cover is at most the length of an optimal
tour of Vi , which in turn is at most the length of an optimal tour that visits all vertices by the
triangle inequality (see right part of Figure 3). The cost of the i th cycle cover is thus at most
the length of an optimal tour. Combining the facts that we select at most log2.n/ cycle covers
and each of them has cost at most the length of an optimal tour yields that the repeated cycle
cover algorithm always finds a tour that is at most a factor log2 n longer than an optimal tour.

Theorem 3.2 ([20]). The repeated cycle cover algorithm is a log2.n/-approximation algo-
rithm for ATSP.

We remark that here we used the observation that finding a connected Eulerian (the
in-degree of each vertex equals its out-degree) edge set is equivalent to finding a tour when
distances satisfy the triangle inequality. Indeed, if the graph is connected and the in-degree of
every vertex equals its out-degree, then we can efficiently find a so-called Eulerian tour that
walks each edge exactly once. In the solution found in the left part of Figure 3, an Eulerian
tour is a � b � a � c � d � e � c � f � g � h � i � f � a. Now any such tour can be
short cut into a tour that visits each vertex exactly once by simply traversing the vertices
in the same order as the Eulerian tour but not revisiting vertices (in the example this gives
a � b � c � d � e � f � g � h � i). By the triangle inequality, this does not increase the
length of the tour. Therefore, in the subsequent we will slightly abuse notation and refer to a
connected Eulerian edge set as a tour.

The factor log2.n/ appears at first sight rather pessimistic. For the repeated cycle
cover algorithm to return a tour with that approximation guarantee, basically all the found
cycles must have length two and all cycle covers have a cost that equals the length of an opti-

4984 O. Svensson

mal tour. However, it turns out that such worst-case instances do exist, and it is nontrivial to
obtain improved guarantees. The papers [8,17,27] refine the approach to improve the constant
in front of log2.n/ but the first asymptotic improvement on the logarithmic approximation
guarantee was obtained by using another natural lower bound that we describe next.

3.3. The spanning tree approach
Another lower bound on the length of an optimal tour is the cost of a minimum cost

spanning tree (where we forget the orientation of the edges). This is a lower bound since if
we take a tour and remove a single edge, we get a tree whose cost is upper bounded by the
length of the tour (minus the length of the dropped edge).

Using the spanning tree as a lower bound naturally leads to a complementary algo-
rithm to the repeated cycle cover approach. Instead of ensuring that the graph is Eulerian
and iteratively making it connected, we first connect the graph and then add edges to make
it Eulerian:

(1) Find a minimum cost spanning tree T .

(2) Find a min-weight set of edges F so that T [F is Eulerian.

For the symmetric case, this is the famous algorithm of Christofides [10] and Serdyukov [43].
As aforementioned, the cost of the tree T is at most the length of an optimal tour. Further-
more, for the symmetric case, one can show that the cost of the second step is at most half
the optimum no matter the selected tree T . This yields the classic approximation guarantee
of 3=2 for the symmetric traveling salesman problem. In contrast, there is no hope to get
a good upper bound on the cost of the second step in the asymmetric case if we start with
an arbitrary spanning tree. Figure 4 depicts such an example. A minimum spanning tree is
depicted by solid edges on the left. Extending that tree to an Eulerian graph must add four
dotted edges of large cost as depicted in the middle. However, an optimal tour (depicted on
the right) only uses one of these expensive (dotted) edges. By selecting the cost of the dotted
edges to be large enough and increasing the number of vertices in the middle layer, we obtain
an instance in which the tour obtained by extending a minimum spanning tree is a linear (in
the number of vertices) factor more expensive than the optimal tour.

To overcome this difficulty, we use the Held–Karp relaxation which provides a
stronger lower bound that can be seen to generalize both the minimum cost cycle cover and
minimum weight spanning tree lower bounds.

Held–Karp relaxation. The Held–Karp relaxation has a variable x.u;v/ � 0 for every
ordered pair of vertices .u; v/. The intended solution is that x.u;v/ should indicate whether
the tour goes from u to v. We let E be the set of all such ordered pairs/edges.
For a subset S � V of vertices, we use ıC.S/ D ¹.u; v/ 2 E j u 2 S; v 62 Sº and
ı�.S/ D ¹.u; v/ 2 E j u 62 S; v 2 Sº to denote the outgoing and incoming edges to S ,
respectively. We also let ı.S/ D ıC.S/ [ı�.S/ be the “undirected” cut and for a subset

4985 Polyhedral techniques in combinatorial optimization: matchings and tours

4�

Figure 4

An example where correcting the degrees of a minimum spanning tree is expensive. Solid, dashed, and dotted
edges have distances 1,2 and M � 2, respectively. The distances of the remaining pairs is the shortest path
distance in this graph. The tour obtained by correcting a minimum spanning tree is depicted in center (using four
expensive dotted edges) and an optimal tour is depicted on the right (using one expensive edge).

F � E we let x.F / D
P

e2F xe . With this notation, the relaxation is now defined as follows:

minimize
X
e2E

xe � dist.e/

subject to x.ıC.v// D x.ı�.v// D 1 v 2 V;

x.ı.S// � 2 ; ¤ S � V;

x � 0:

The first set of constraints says that each vertex should be visited once, so the in-degree
and the out-degree should equal one for each vertex. The second set of constraints enforces
that the solution is connected and they are sometimes referred to as subtour elimination
constraints. We remark that although the Held–Karp relaxation has exponentially many con-
straints, it is well known that we can solve it in polynomial time either by using the ellipsoid
method with a separation oracle or by formulating an equivalent compact (polynomial size)
linear program.

Thin spanning trees. Consider a solution x to the Held–Karp relaxation and let
z¹u;vº D x.u;v/ C x.v;u/ be the solution where we dropped the orientation of edges. It is
well known that .n � 1/=n � z can be written as a convex combination of spanning trees (this
can be seen by a simple calculation using Edmonds’ characterization of the spanning tree
polytope). In other words, there is a distribution � over spanning trees satisfying

Pr
T ��

Œe 2 T � D
n � 1

n
� ze for every e 2 E.

The selection of � satisfying the above equality for every edge is not unique, and among
all such distributions, [5] proposed to select the one of maximum entropy. In other words,
instead of selecting a minimum spanning tree in the first step of the algorithm, we sample a
tree T from �. This randomized version of Christofides/Serdyukov algorithm has been very
influential both for the symmetric and the asymmetric version. Although we focus on ATSP,

4986 O. Svensson

let us mention that the recent major breakthrough [28] that presents the first improvement
in more than four decades is a deep analysis of this algorithm. Their analysis heavily relies
on properties of the maximum entropy distribution of spanning trees; specifically, that this
distribution has very strong negative correlation properties (called strongly Rayleigh).

To analyze the randomized algorithm for ATSP, another influential contribution
of [5] is the formulation of thinness: a clean sufficient condition for a tree T to have a low
correction cost. A spanning tree T is ˛-thin with respect to a solution x to the Held–Karp
relaxation ifˇ̌

¹e 2 T j e has exactly one endpoint in Sº
ˇ̌

� ˛ � x
�
ı.S/

�
for every ; ¤ S ¨ V :

In words, the number of times the tree T crosses each cut is bounded by the (fractional)
crossings of the linear program solution. Now using Hoffman’s circulation theorem, they
bound the correction cost of a thin tree leading to the following theorem:

Theorem 3.3 ([5]). Given a spanning tree T that is ˛-thin with respect to an optimal solution
to the Held–Karp relaxation, we can in polynomial time find a tour whose length is at most
a factor O.˛/ longer than an optimal tour.

Asadpour, Goemans, Madry, Oveis Gharan, and Saberi [5] then obtained their
O.logn= log logn/-approximation algorithm by showing that a tree sampled from the max-
imum entropy distribution is with high probability O.log n= log log n/-thin (with respect
to the Held–Karp solution). This analysis is tight in the following sense: it is known that
there are instances so that, if we sample a tree from the maximum entropy distribution, the
obtained tree is likely to be �.logn= log logn/-thin. However, it is conjectured that a O.1/-
thin tree always exist. This has been proven for special graph classes, such as planar graphs
and more generally bounded-genus graphs [37]. Major progress was achieved by Anari and
Oveis Gharan [2], who showed that there always exists a O.log log.n/O.1//-thin tree. The
proof is highly nontrivial and it is not known to imply a polynomial-time algorithm. One
key component in the proof is, e.g., a generalization of the celebrated proof of the Kadison–
Singer problem. As we further discuss in Section 3.5, it remains an intriguing open question
whether there always exists a O.1/-thin tree.

3.4. General distances are not that general: a constant factor approximation
In this section, we give a brief overview of the recent constant-factor approximation

algorithm for ATSP that was given by [48] and then simplified and improved to an approxi-
mation guarantee of 22 by [50]. The algorithm is based on a series of reductions that harness
strong structural properties from the Held–Karp relaxation. These reductions reduce the task
to solving ATSP on highly specialized instances. For those instances, one can then adopt
the techniques in [45] that solved similar special cases. Specifically, a key component is the
constant-factor approximation algorithm for so-called node-weighted ATSP instances. We
say that an ATSP is node-weighted if the distances dist is the shortest pathmetric of a directed
graph G D .V; E/ with non-negative node-weights ¹yvºv2V . That is, the weight of an edge

4987 Polyhedral techniques in combinatorial optimization: matchings and tours

.u; v/ 2 E in G is yu C yv , and the distance dist between a pair .a; b/ of vertices is the
shortest path from a to b in this graph. See the left part of Figure 5 for an example.

Theorem 3.4 ([45]). Given a node-weighted ATSP instance, there is a polynomial-time algo-
rithm that returns a tour whose length is at most a constant factor longer than the optimal
value of the Held–Karp relaxation.

The algorithm in [45] is an extension of the repeated cycle cover approach: it main-
tains an Eulerian subset of edges and iteratively adds new Eulerian sets of edges to connect
the graph. However, the algorithm in [45] is more complex because the selection of new edges
is done in a very careful and nontrivial manner as to not lose more than a constant-factor in
the approximation guarantee.

The approach of [48] for general distances now performs a series of reductions to
apply the techniques of [45]. While [50] made excellent progress in improving the simplicity
and the guarantee of the algorithm, the complete algorithm remains rather complex and
we refer the reader to conference version [47] for a longer overview of the approach. Here
we focus on one key insight that allows us to focus on laminarly-weighted ATSP instances
which generalizes node-weighted instances but still keep a similar structure. Interestingly,
the techniques we use here are similar to what was used in Section 2.3 for the matching
problem. Specifically, we will use that the optimal solution to the dual linear program can
be selected to be a laminar family. Recall that a laminar family L of subsets is such that any
two sets A; B 2 L are either subsets of each other or disjoint (see right part of Figure 5).
In order to simplify the dual, we use the fact that it is equivalent to finding a tour that visits
every vertex at least once and to find a tour that visits every vertex exactly once (since we
assume the triangle inequality). This allows us to drop the constraint that the in-degree and
out-degree of a vertex are equal to 1. That is, we obtain an equivalent formulation of the
Held–Karp relaxation by replacing x.ıC.v// D x.ı�.v// D 1 by x.ıC.v// D x.ı�.v//

for every vertex v 2 V . By associating variables .˛v/v2V and .yS /;¤S�V with the degree
constraints and the subtour elimination constraints, respectively, we obtain the dual linear
program:

max
X

;¤S�V

2 � yS

subject to
X

S W.u;v/2ı.S/

yS C ˛u � ˛v � dist.u; v/ for u ¤ v 2 V;

y � 0:

Now a key property of the dual is the laminarity of optimal solutions, which is similar to the
structure that we used for the perfect matching problem in Section 2.3.

Lemma 3.5. There exists an optimal solution .˛; y/ to the dual such that the support of y

is a laminar family of vertex subsets.

4988 O. Svensson

Proof. This proof is taken from [48]. We show the existence of a optimal laminar solution
using a standard uncrossing argument (see, e.g., [12] for an early application of this technique
to the Held–Karp relaxation of the symmetric traveling salesman problem). Select .˛; y/ to
be an optimal solution to the dual minimizing

P
S jS jyS . That is, among all dual solutions

that maximize the dual objective 2
P

S yS , we select one that minimizes
P

S jS jyS . We
claim that the support L D ¹S W yS > 0º is a laminar family. Suppose not, i.e., that there are
sets A; B 2 L such that A \ B , A n B; B n A ¤ ;. Then we can obtain a new dual solution
.˛; Oy/, where Oy is defined, for " D min.yA; yB/ > 0, as

OyS D

8̂̂<̂
:̂

yS � " if S D A or S D B ,

yS C " if S D A n B or S D B n A,

yS otherwise.

That .˛; Oy/ remains a feasible solution follows since Oy remains nonnegative (by the selection
of ") and since for any edge e we have 1e2ı.A/ C 1e2ı.B/ � 1e2ı.AnB/ C 1e2ı.BnA/. There-
fore

P
S We2ı.S/ OyS �

P
S We2ı.S/ yS and so the constraint corresponding to edge e remains

satisfied. Further, we clearly have 2
P

S OyS D 2
P

S yS . In other words, .˛; Oy/ is an optimal
dual solution. However,X

S

jS j.yS � OyS / D
�
jAj C jBj � jA n Bj � jB n Aj

�
" > 0;

which contradicts that .˛; y/ was selected to be an optimal dual solution minimizingP
S jS jyS . Therefore, there can be no such sets A and B in L, hence it is a laminar

family.

We now use the laminar structure to argue that we can assume that our distances
are very structured. Let x be an optimal primal solution and let .y; ˛/ be an optimal dual
solution with laminar support L D ¹S j yS > 0º. Consider the graph G D .V; E/ where the
edge-set is the support of x: E D ¹e j xe > 0º. Then by complementarity slackness, we have
dist.e/ D

P
S W.u;v/2ı.S/ yS C ˛u � ˛v for every edge e 2 E. Now note that for any cycle

v0 ! v1 ! � � � ! vk�1 ! vk D v0 (and thus Eulerian subset of edges), we have that its
distance is given by y:

kX
iD0

dist.vi ; viC1/ D

k�1X
iD0

� X
S W.vi ;viC1/2ı.S/

yS C ˛vi
� ˛viC1

�
D

k�1X
iD0

� X
S W.vi ;viC1/2ı.S/

yS

�
:

Hence, if we let the weight of an edge e 2 E inG be dist0.e/ D
P

S We2ı.S/ yS , then a tour has
the same length in the shortest path metric of G obtained by using edge-weights dist.e/ as in
that obtained by using edge-weights dist0.e/. This allows one to argue that we can replace the
original distances with the shortest path metric of G D .V; E/ where each edge e 2 E has
weight dist0.e/ without loss of generality when designing approximation algorithms with
respect to the Held–Karp relaxation. In other words, the distance from a vertex u to v is
given by the shortest path inG D .V;E/where the weight of each edge e is given by the total
weight

P
S2LWe2ı.S/ yS of the sets it crosses in a laminar family.We refer to such instances as

4989 Polyhedral techniques in combinatorial optimization: matchings and tours

3

5

2

1
e

1 3

12

Figure 5

(Left) A node-weighted ATSP instance. The node-weights are depicted next to the vertices. The length of an edge
is the sum of incident node weights and the length between two vertices is the shortest path distance in this graph.
So the distance from the top-left vertex to the bottom-right vertex is 1 C 2 C 2 C 1 D 6. (Right) An example of a
laminarly-weighted ATSP instance. The sets of the laminar family are shown in gray, with their y-values written
on their borders. We depict a single edge e that crosses three sets in the laminar family and has distance
1 C 3 C 5 D 9.

laminarly-weighted (see right side of Figure 5).We remark that laminarly-weighted instances
have some additional structure in [48] that we have simplified here.

Theorem 3.6. Assume we have a polynomial-time algorithm that provides an ˛-approxima-
tion with respect to the Held–Karp relaxation for laminarly-weighted ATSP instances. Then
there is a polynomial-time ˛-approximation algorithm with respect to the Held–Karp relax-
ation for the general ATSP problem.

While laminarly-weighted instances have a similar structure to node-weighted in-
stances, the approach in [48] performs several additional steps in order to use the techniques
in [45]. In spite of the simplifications in [50], the overall algorithm remains complex and it is
an interesting open problem to find a simple constant-factor approximation algorithm even
for node-weighted instances. We discuss this and other open problems next.

3.5. Future directions
To give a tight analysis of the Held–Karp relaxation is a longstanding open problem

(see, e.g., the two first open problems in the book [53] on approximation algorithms). We
believe that the approximation guarantees given by this relaxation are 4=3 and 2 for the
symmetric and asymmetric traveling salesman problems, respectively. This would match
the best known lower bounds [9].

The recent breakthrough in [28] opens up several promising directions for the sym-
metric version. Indeed, for the special case of unweighted shortest path metrics, the small
improvement in [38] (using the same approach as in [28]) was quickly followed by more sub-
stantial improvements using different techniques [34,35,42]. It is interesting to know whether
one can combine those techniques with the ones in [28]. Another exciting possibility is to
exploit the laminar structure of the cost functions in the symmetric case as we did for ATSP.

4990 O. Svensson

The known constant-factor approximation algorithms for the asymmetric traveling
salesman problem remain complex even in the case of node-weighted instances [45]. An
important step for further progress is therefore to obtain a simpler constant-factor approx-
imation algorithm. An intriguing possibility is to use the repeated-cycle cover approach.
Instead of selecting a minimum cycle cover in each step, we would select one at random
using the Held–Karp relaxation (similar to the randomized modification of the algorithm by
Christofides/Serdyukov used in [28]). While the log2.n/ approximation guarantee is tight for
the deterministic version, the approximation guarantee of the randomized version remains
open.

In Section 3.3, we mentioned that the thin-tree conjecture implies a constant-factor
approximation algorithm for ATSP. While we now know other methods for achieving a
constant-factor approximation guarantee, the thin-tree conjecture is interesting in itself and
it remains relevant for the asymmetric traveling salesman problem. In particular, it would
imply a constant-factor approximation algorithm for the bottleneck version, where we wish
to find a tour (Hamiltonian cycle) that minimizes the longest edge [1]. Finding a constant-
factor approximation algorithm for bottleneck ATSP remains a challenging open problem
and we believe that further progress is also likely to shed light on the thin-tree conjecture.

Finally, much of the work on the traveling salesman problem has been on analyzing
the Held–Karp relaxation. But there are no real reasons to believe that we cannot achieve
better algorithms using other lower bounds. In fact, the recent progress on the path traveling
salesman problem is not with respect to a relaxation [49,51,55]. Moreover, we do not have any
strong lower bounds on the relaxations obtained by using so called lift-and-project methods
or hierarchies of relaxations [31,44].

Acknowledgments

The author is very grateful to Jakub Tarnawski and László A. Végh. Jakub coauthored
both [46] and [47] and László coauthored [47]. I also wish to thank my excellent mentors
who have been central for my career, including my PhD advisor Monaldo Mastrolilli,
postdoc advisor Johan Håstad, and my colleagues at EPFL.

Funding

This work was partially supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
335288–OptApprox) and the Swiss National Science Foundation project 200021-184656
“Randomness in Problem Instances and Randomized Algorithms.”

References

[1] H. An, R. D. Kleinberg, and D. B. Shmoys, Improving Christofides’ algorithm for
the s-t path TSP. J. ACM 62 (2015), 34:1–34:28.

[2] N. Anari and S. Oveis Gharan, Effective-resistance-reducing flows, spectrally thin
trees, and asymmetric TSP. In FOCS, pp. 20–39, IEEE Computer Society, 2015.

4991 Polyhedral techniques in combinatorial optimization: matchings and tours

[3] N. Anari and V. V. Vazirani, Planar graph perfect matching is in NC. J. ACM 67
(2020), 21:1–21:34.

[4] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook, The traveling salesman
problem: a computational study. Princeton University Press, 2006.

[5] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi, An
O.log n= log log n)-approximation algorithm for the asymmetric traveling
salesman problem. Oper. Res. 65 (2017), no. 4, 1043–1061.

[6] G. Benoit and S. Boyd, Finding the exact integrality gap for small traveling
salesman problems. Math. Oper. Res. 33 (2008), no. 4, 921–931.

[7] S. J. Berkowitz, On computing the determinant in small parallel time using a
small number of processors. Inform. Process. Lett. 18 (1984), no. 3, 147–150.

[8] M. Bläser, A new approximation algorithm for the asymmetric TSP with triangle
inequality. ACM Trans. Algorithms 4 (2008), no. 4.

[9] M. Charikar, M. X. Goemans, and H. J. Karloff, On the integrality ratio for the
asymmetric traveling salesman problem. Math. Oper. Res. 31 (2006), no. 2,
245–252.

[10] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman
problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, 1976.

[11] W. J. Cook, In pursuit of the traveling salesman: mathematics at the limits of com-
putation, Princeton University Press, 2014.

[12] G. Cornuéjols, J. Fonlupt, and D. Naddef, The traveling salesman problem on a
graph and some related integer polyhedra. Math. Program. 33 (1985), no. 1, 1–27.

[13] L. Csanky, Fast parallel inversion algorithm. SIAM J. Comput. 5 (1976), 618–623.
[14] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-

salesman problem. Oper. Res. 2 (1954), 393–410.
[15] J. Edmonds, Maximum matching and a polyhedron with 0; 1 vertices. J. Res. Natl.

Bur. Stand. 69 (1965), 125–130.
[16] J. Edmonds, Paths, trees, and flowers. Canad. J. Math. 17 (1965), 449–467.
[17] U. Feige and M. Singh, Improved approximation ratios for traveling salesperson

tours and paths in directed graphs. In APPROX, pp. 104–118, Springer, 2007.
[18] S. A. Fenner, R. Gurjar, and T. Thierauf, Bipartite perfect matching is in quasi-

NC. In STOC, pp. 754–763, ACM, 2016.
[19] S. A. Fenner, R. Gurjar, and T. Thierauf, Bipartite perfect matching is in quasi-

NC. SIAM J. Comput. 50 (2021), no. 3.
[20] A. M. Frieze, G. Galbiati, and F. Maffioli, On the worst-case performance of some

algorithms for the asymmetric traveling salesman problem. Networks 12 (1982),
no. 1, 23–39.

[21] R. Gurjar, A. Korwar, J. Messner, and T. Thierauf, Exact perfect matching in com-
plete graphs. ACM Trans. Comput. Theory 9 (2017), 8:1–8:20.

[22] R. Gurjar and T. Thierauf, Linear matroid intersection is in quasi-NC. Comput.
Complexity 29 (2020), no. 2, 9.

4992 O. Svensson

[23] R. Gurjar, T. Thierauf, and N. K. Vishnoi, Isolating a vertex via lattices: Polytopes
with totally unimodular faces. SIAM J. Comput. 50 (2021), no. 2, 636–661.

[24] M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18 (1970), 1138–1162.

[25] R. Impagliazzo and A. Wigderson, P D BPP if E requires exponential circuits:
derandomizing the XOR lemma. In STOC, pp. 220–229, ACM, 1997.

[26] Jacobi’s bound. https://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.
htm, accessed: 2021-10-25.

[27] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, Approximation algo-
rithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM
52 (2005), no. 4, 602–626.

[28] A. R. Karlin, N. Klein, and S. Oveis Gharan, A (slightly) improved approximation
algorithm for metric TSP. In STOC, pp. 32–45, ACM, 2021.

[29] R. M. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching is in
random NC. Combinatorica 6 (1986), no. 1, 35–48.

[30] A. V. Karzanov, Maximum matching of given weight in complete and complete
bipartite graphs. Cybernetics 23 (1987), no. 1, 8–13.

[31] J. B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear
0-1 programs. SIAM J. Control Optim. 12 (2002), no. 3, 756–769.

[32] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The traveling
salesman problem: a guided tour of combinatorial optimization, Wiley, 1991.

[33] L. Lovász, On determinants, matchings, and random algorithms. In FCT,
pp. 565–574, Akademie-Verlag, Berlin, 1979.

[34] T. Mömke and O. Svensson, Removing and adding edges for the traveling
salesman problem. J. ACM 63 (2016), 2:1–2:28.

[35] M. Mucha, 13/9-approximation for graphic TSP. Theory Comput. Syst. 55 (2014),
no. 4, 640–657.

[36] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix
inversion. Combinatorica 7 (1987), no. 1, 105–113.

[37] S. Oveis Gharan and A. Saberi, The asymmetric traveling salesman problem on
graphs with bounded genus. In SODA, pp. 967–975, 2011.

[38] S. Oveis Gharan, A. Saberi, and M. Singh, A randomized rounding approach to
the traveling salesman problem. In FOCS, pp. 550–559, IEEE Computer Society,
2011.

[39] T. Rothvoss, The matching polytope has exponential extension complexity.
J. ACM 64 (2017), 41:1–41:19.

[40] P. Sankowski, NC algorithms for weighted planar perfect matching and related
problems. In ICALP, pp. 97:1–97:16, LIPIcs. Leibniz Int. Proc. Inform. 107,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[41] A. Schrijver, Combinatorial optimization – polyhedra and efficiency. Springer,
2003.

4993 Polyhedral techniques in combinatorial optimization: matchings and tours

https://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm
https://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm

[42] A. Sebö and J. Vygen, Shorter tours by nicer ears: 7/5-approximation for the
graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica 34 (2014), no. 5, 597–629.

[43] A. I. Serdyukov, O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upr. Sist. 19
(1978), 76–79.

[44] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J.
Discrete Math. 3 (1990), no. 3, 411–430.

[45] O. Svensson, Approximating ATSP by relaxing connectivity. In FOCS, pp. 1–19,
IEEE Computer Society, 2015.

[46] O. Svensson and J. Tarnawski, The matching problem in general graphs is in
quasi-NC. In FOCS, pp. 696–707, IEEE Computer Society, 2017.

[47] O. Svensson, J. Tarnawski, and L. A. Végh, A constant-factor approximation algo-
rithm for the asymmetric traveling salesman problem. In STOC, pp. 204–213,
ACM, 2018.

[48] O. Svensson, J. Tarnawski, and L. A. Végh, A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. J. ACM 67 (2020),
37:1–37:53.

[49] V. Traub and J. Vygen, Approaching 3/2 for the s-t-path TSP. J. ACM 66 (2019),
14:1–14:17.

[50] V. Traub and J. Vygen, An improved approximation algorithm for ATSP. In STOC,
pp. 1–13, ACM, 2020.

[51] V. Traub, J. Vygen, and R. Zenklusen, Reducing path TSP to TSP. In STOC,
pp. 14–27, ACM, 2020.

[52] W. T. Tutte, The factorization of linear graphs. J. Lond. Math. Soc. 22 (1947),
107–111.

[53] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms.
Cambridge University Press, 2011.

[54] R. Yuster, Almost exact matchings. Algorithmica 63 (2012), no. 1–2, 39–50.
[55] R. Zenklusen, A 1.5-approximation for path TSP. In SODA, pp. 1539–1549,

SIAM, 2019.

Ola Svensson

Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communica-
tion Sciences, CH-1015 Lausanne, Switzerland, ola.svensson@epfl.ch

4994 O. Svensson

mailto:ola.svensson@epfl.ch

	1. Introduction
	2. The algorithms that must exist for perfect matchings
	2.1. Randomized parallel algorithms for the perfect matching problem
	2.2. Fenner, Gurjar, and Thierauf's approach for bipartite graphs
	2.3. Polyhedral techniques for general graphs
	2.4. Future directions

	3. The (asymmetric) traveling salesman problem
	3.1. Designing approximation algorithms for ATSP
	3.2. The repeated cycle cover approach
	3.3. The spanning tree approach
	3.4. General distances are not that general: a constant factor approximation
	3.5. Future directions

	References

