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Abstract

Connes’ Embedding Problem is a deep question on approximability of certain tracial von
Neumann algebras by finite-dimensional matrix algebras. We survey the connections
between operator algebras, quantum information and theoretical computer science that
enabled the recent resolution of this problem. The resolution goes through an equiva-
lent formulation, known as Tsirelson’s problem, in terms of separating convex sets whose
definition is motivated by the study of nonlocality in quantum mechanics. We construct
an explicit separating hyperplane using the theory of two-player games from complexity
theory.
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1. Introduction

In the 1930s [58] von Neumann laid the foundations for the theory of (what are
now known as) von Neumann algebras, with the explicit goal of establishing Heisenberg’s
matrix-based formulation of quantum mechanics on a rigorous footing. Following the initial
explorations of Murray and von Neumann, the new theory progressively took on a life of its
own, and von Neumann algebras now routinely make their apparition in areas as diverse as
geometry, representation theory, free probability, statistical mechanics, and many others. In
his 1976 paper completing the classification of injective von Neumann algebras [14], for
which he received the 1982 Fields medal, Alain Connes made a casual remark that has
become a central problem in the theory of operator algebras. Paraphrasing, Connes’ remark
was that any finite von Neumann algebra, i.e., one that has a finite trace, “ought to” be well
approximated by finite-dimensional matrix algebras. Thanks to the work of other mathemati-
cians, including Kirchberg and Voiculescu, the remark, now known as Connes’ Embedding
Problem (CEP), rose to prominence as one of the most important open questions in operator
algebras. Quoting Vern Paulsen, “The reason that so many operator algebraists care about
this conjecture is that it plays much the same role in operator algebras as is played by the
Riemann hypothesis in number theory. There are many problems that we would know the
answer to, if only Connes were true.” For example, Kirchberg showed that CEP is equivalent
to the QWEP conjecture about the equivalence of the minimal and maximal tensor products
on the full group C � algebra of a nonabelian free group [33]. Voiculescu gave a reformula-
tion in terms of the existence of matrix microstates in free probability [56]. Rǎdulescu showed
that a group is hyperlinear if and only if its group von Neumann algebra satisfies CEP [48].
Goldbring and Hart showed that CEP holds if and only if every type II1 tracial von Neu-
mann algebra has a computable universal theory [23]. Many more equivalent formulations
are known (see, e.g., [11] for a survey).

In these notes we give an overview of an approach to CEP that arose from the
study of the nonlocal effects of entanglement in quantum mechanics, and recently led a
negative answer to the problem [27]. In the 1980s Boris Tsirelson was placing the study
of quantum correlations, i.e., those families of distributions that can be generated from
local measurements on a bipartite physical system, on a rigorous mathematical footing. In
his work Tsirelson discovered that there was a freedom in deciding how locality should
be reflected in the mathematical formalism, and asked if that freedom had observable
consequences. Namely, Tsirelson realized that “locality” of measurements could be mod-
eled either by requiring that the Hilbert space associated with the entire system factors as
H D HA ˝ HB , with observables on either system being localized to the corresponding
subspace as A ˝ Id and Id ˝B , respectively, or by allowing the Hilbert space to remain
arbitrary but requiring that observables associated with each system mutually commute, i.e.,
ŒA; B� D 0. While the two models are clearly different from an algebraic point of view,
Tsirelson’s Problem (TP) asks whether they lead to the same families of distributions, i.e.,
whether the algebraic distinction has any observable consequence.
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Tsirelson’s problem rose to prominence due to its relevance for a purely computa-
tional task: as we will see later, were TP to have a positive answer then the “largest quantum
violation of a Bell inequality,” a quantity of much interest to experimentalists, would be com-
putable. (This “largest violation” determines how conclusive an experiment demonstrating
the nonlocal effects of quantum mechanics may be.) This realization led to a further study
of the problem and a proof of its equivalence with CEP, thus elevating it to the same status
as the multitude of other equivalent formulations already mentioned. Moreover, it also led
to a potential approach to a negative answer, by showing that the largest quantum violation
of a Bell inequality is in fact not computable.

The goal of these notes is to explain the relation between CEP and TP, describe the
approach to Tsirelson’s problem through computability theory, and sketch how that approach
eventually led to a resolution of the problem. Our main conceptual tool will be the theory of
two-player games, a construct from classical complexity theory which rose to prominence
in the 1990s through its connection with the PCP theorem, a sweeping reformulation of
the complexity class NP, and applications to hardness of approximation for constraint sat-
isfaction problems. Techniques developed in this study, entirely independent from quantum
information, play an essential role in the resolution of CEP.

We start by giving a precise formulation of the two (equivalent) problems which
we are concerned with, Connes’ Embedding Problem (CEP) and Tsirelson’s Problem (TP),
in Section 2. In Section 3 we give a first hint of our approach to resolving these prob-
lems, which proceeds by constructing hyperplanes separating two convex sets introduced
by Tsirelson. This will lead us to introduce nonlocal games as a rich class of hyperplanes
to work with. We end the section by sketching a proof of the equivalence between CEP
and TP that goes through nonlocal games and an algebra associated to them. In Section 4
we get to the heart of the matter, which is the construction of interesting two-player games
and concrete requirements on them that suffice to answer our algebraic problems. It is in
this section that complexity theory makes its apparition, as our requirements will push us
into the design of very efficient “compression” procedures that find their inspiration in the
efficient “proof checking” revolution that led to the PCP theorem in complexity theory. In
Section 5 we explain how the complexity-theoretic techniques are combined with ideas from
self-testing in quantum information and stability in group representation theory to complete
the argument. We end with a brief outlook in Section 6.

2. Problem statement(s)

We start by reviewing two equivalent, but rather distinct in flavor, formulations of the
problem that is the focus of this article. The first formulation is due to Connes [14] and known
as Connes’ Embedding Problem (CEP). The second formulation is due to Tsirelson [53], and
we will refer to it as Tsirelson’s Problem (TP).
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2.1. Connes’ embedding problem
The standard formulation of CEP states that “every separable type II1 von Neumann

algebra has an approximate embedding into the hyperfinite factorR.” Shortly we reformulate
this statement using more elementary language. Before doing so we clarify the terms used
in Connes’ formulation.

A (separable) von Neumann algebraM is a subalgebra ofB.H /, the bounded linear
operators on a (separable) Hilbert space H , that contains the identity, is closed under taking
adjoints (an operation which we denote �), and is closed in the strong operator topology.1

A state � on M is a positive linear functional such that �.1/ D 1. A state � is tracial if
�.xy/ D �.yx/ for all x; y 2 M. It is normal if the restriction of � to the unit ball of M

is continuous with respect to the strong operator topology. A tracial von Neumann algebra
.M; �/ is a von Neumann algebra M equipped with a faithful normal tracial state � .

A commutative von Neumann algebra is isomorphic to L1.X; �/ for some proba-
bility measure space .X;�/. For this reason tracial von Neumann algebras are often thought
of as noncommutative probability spaces. A von Neumann algebra is a factor if it has a trivial
center. von Neumann factors are classified in types. In their pioneering work on von Neu-
mann algebras, Murray and von Neumann showed that every tracial von Neumann algebra
decomposes as a product of type In factors, for 1 � n < 1, and a type II1 factor. While for
any 1 � n � 1, a type In factor is always isomorphic to B.H / for some separable Hilbert
space H of dimension n, type II1 factors are much harder to classify; in fact, there cannot be
a classification up to isormorphism by countable structures [49], rendering the problem all
but hopeless. (Connes received the Fields medal in 1982 for his work on the classification of
type III factors, which are not tracial.)

Murray and von Neumann introduced a specific II1 factor denotedR and referred to
as the hyperfinite factor. Here the use of “the” is justified by the fact that R is characterized
up to isomorphism as the unique separable II1 factor that satisfies a strong form of approx-
imability by matrix algebras. Namely, .M; �/ is said to be approximately finite-dimensional
(AFD) if for every finite subset F ofM and every " > 0 there is a �-subalgebraQ �M such
thatQ ' Mn.C/ for some n and for every x 2 F there is y 2 Q such that kx � yk2 � ".2

It can be shown that there is a unique AFD II1 factor, which is referred to as “the hyperfi-
nite factor R” when the specific isomorphism does not matter. Concretely, there are many
possible definitions of R. The most straightforward definition, which is also the original
one, is as the completion of the algebra

S
n�1 M2n.C/, where each M2n.C/ isometrically

embeds in M2nC1.C/ using diagonal blocks. The trace on M is the natural extension of
the (dimension-normalized) matrix trace on each M2n , which we write as tr.�/. With this
definition it is immediate that R is AFD.

There exist some nonhyperfinite tracial von Neumann algebras (we give an example
below). CEP is the statement that every such algebra, nevertheless, has some form of weak

1 This is the topology generated by the seminorms x 7! kxvk for v 2 H , with k � k the
operator norm on H .

2 The norm is given by kxk2 D �.x�x/1=2.
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approximation by finite-dimensional matrix algebras. The meaning of the second half of
the statement of CEP, “has an approximate embedding into the hyperfinite factor R,” can
be formalized by requiring a trace-preserving embedding into an ultrapower R! . Rather
than defining ultrapowers, we give an equivalent formulation due to Voiculescu [57]. For
.M; �/ a tracial von Neumann algebra and x1; : : : ; xn Hermitian elements of M, we say that
.x1; : : : ; xn/ has matricial microstates if for every " > 0 andN � 1, there is an integer d � 1

and A1; : : : ; An 2 Md .C/ self-adjoint such that for all p � N and i1; : : : ; ip 2 ¹1; : : : ; nº,ˇ̌
tr.Ai1 � � �Aip / � �.xi1 � � � xip /

ˇ̌
< ":

Then CEP is the statement that for any tracial von Neumann algebra .M; �/, every tuple .xi /

of self-adjoint elements in M has matricial microstates. With more work, Kirchberg [33]

(see also [16]) showed using the theory of Jordan algebras that CEP is equivalent to the state-
ment that for every tracial von Neumann algebra .M; �/, every finite sequence of unitaries
u1; : : : ; un in M and every " > 0 there are an integer d � 1 and U1; : : : ; Un unitaries in
Md .C/ such that for all i; j 2 ¹1; : : : ; nº,ˇ̌

tr.U �
i Uj / � �.u�

i uj /
ˇ̌
< ": (2.1)

This last formulation may be appealing to the computer scientist as it states that every finite
subset of the unitary group ofM approximately embeds into a finite-dimensional matrix uni-
tary group—a form of infinite-dimensional, nonquantitative Johnson–Lindenstrauss lemma
[29] for operators.

The versatility of CEP arises from the many examples of tracial von Neumann alge-
bras that are known. We give some examples coming from groups; for many more, see,
e.g., [1]. We restrict our attention to discrete, countable groups. For G a countable discrete
group, let � be the left regular representation of G in `2.G/. Then the strong operator clo-
sure of the linear span of �.G/ in B.`2.G// is a von Neumann algebra called the group von
Neumann algebra ofG and denotedL.G/. Letting .ıg/g2G be the natural orthonormal basis
of `2.G/ and e 2 G the unit, there is a natural trace ' on L.G/ given by '.x/ D hıe; xıei.
One can check that this is a normal faithful tracial state, hence .L.G/; '/ is a tracial von
Neumann algebra. Moreover,L.G/ is a factor if and only ifG has the i.c.c. property, namely
every nontrivial conjugacy class is infinite. Thus the group von Neumann algebra of an infi-
nite i.c.c. group G is a II1 factor. Some examples are L.S1/, where S1 is the group of
finitely supported permutations of the natural numbers, and L.Fn/ for n � 2, with Fn the
free group on n generators. It can be shown that L.G/ is isomorphic to R if and only if G
is an i.c.c. amenable group. Thus L.S1/ is isomorphic to R, whereas L.Fn/ for n � 2 is
not. Connes [14] showed that L.Fn/ satisfies CEP, i.e., it embeds in R! , and this discovery
prompted his remark about all type II1 factors.

A groupG is hyperlinear if and only if for every finite F � G and " > 0 there are a
d � 1 and amap � WF !Ud .C/ that is an .F;"/-almost homomorphism. Namely, if g;h2F

are such that gh 2 F then k�.g/�.h/ � �.gh/k2 < ", if e 2 F then k�.e/ � Id k2 < ", and
if x ¤ y 2 F then k�.x/ � �.y/k2 � 1=4. This formulation is due to Rădulescu [47] who
introduced the terminology “hyperlinear.” Later, Elek and Szabó [18] showed that the notion
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of soficity introduced byGromov can be characterized in an equivalentmanner, requiring � to
map to the symmetric group Sd . Radulescu showed that a countable groupG is hyperlinear if
and only ifL.G/ embeds intoR! , and he gave an example ofG, different from Fn, such that
L.G/ is not hyperfinite but embeds intoR! , thus giving another example of a nonhyperfinite
II1 factor that satisfies CEP. The conjecture whether every countable group is hyperlinear
remains open (as does the stronger conjecture whether every countable group is sofic).

2.2. Tsirelson’s problem
In the early 1980s Boris Tsirelson [53]wrote a series of papers laying out the mathe-

matical formalism for the systematic study of the nonlocal properties of quantummechanics.
In quantum mechanics, the state of a physical system is represented by a unit vector j i in
a separable Hilbert space H .3 A measurement (or PVM, for projective-valued measure) is
represented by a finite collection ¹P1; : : : ; Pkº of projections on H such that

P
i Pi D Id.

Here k is the number of outcomes that the measurement can have; according to the Born
rule, the probability that the i th outcome is obtained when a system in state j i is measured
according to ¹Pi º is given by h jPi j i.

Tsirelson was interested in modeling situations in which a physical system is com-
posed of two isolated parts that can be measured independently, by observers present in
separated locations.4 Let us imagine that each observer can make one out of n possible
measurements, each with k possible outcomes, on their share of the system. To model the
statistical behavior that such an experiment might have, Tsirelson introduced the following
subset of Œ0; 1�n2k2 :

Cqs.n; k/ D
®�˝
 
ˇ̌
Ax

a ˝ B
y

b

ˇ̌
 
˛�

x;y;a;b
W HA;HB Hilbert spaces; j i 2 HA ˝ HB ;j i

 D 1;8.x; y/ 2 ¹1; : : : ; nº
2;
®
Ax

a

¯
a2¹1;:::;kº

;®
B

y

b

¯
b2¹1;:::;kº

PVM on HA, HB resp.
¯
: (2.2)

Here the subscript qs stands for quantum spatial and refers to the presence of a tensor product
in the expression h jAx

a ˝ B
y

b
j i. This tensor product is natural if one accepts the rule

for associating a Hilbert space to composite systems in nonrelativistic quantum mechanics,
which proceeds by tensoring. Thus in the definition of Cqs it is understood that observer
A’s system is modeled using a Hilbert space HA, observer B’s using HB , and the Hilbert
space associated with them jointly is HA ˝ HB , the space in which the system state vector
j i lives. Continuing, Tsirelson observed that one could consider an a priori more general

3 We adopt Schödinger’s bra-ket notation: a ket j i is used to denote a vector j i 2 H ,
whereas a bra h j is used to denote a linear form h j W j'i 2 H 7! h j'i D h ; 'i 2 C.

4 We do not make the notion of “separated locations” precise other than through the
upcoming formalism; indeed, finding a formalization of it is the entire point of Tsirelson’s
work. For the moment, the reader can consider that we are only interested in the nonrela-
tivistic scenario.
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definition,

Cqc.n; k/ D
®�˝
 
ˇ̌
Ax

aB
y

b

ˇ̌
 
˛�

x;y;a;b
W H Hilbert space; j i 2 H ; kj ik D 1;

8.x; y/ 2 ¹1; : : : ; nº
2;
®
Ax

a

¯
a2¹1;:::;kº

;
®
B

y

b

¯
b2¹1;:::;kº

PVM on H

such that
�
Ax

a ; B
y

b

�
D 08.a; b/ 2 ¹1; : : : ; kº

2
¯
: (2.3)

Here the subscript qc stands for “quantum commuting” and refers to the fact that in this
definition spatial isolation is modeled by the constraint that measurement operators should
commute, a condition which also allows for their joint measurability. This definition is more
natural from a relativistic viewpoint, e.g., in algebraic quantum field theory, observables
associated with space-time isolated regions are required to commute, but there is no a priori
separation of the global Hilbert space into tensor products.

Each definition gives rise to a family of convex sets (convexity is easily verified
by taking direct sums of PVMs and scaled vectors). Both provide reasonable models for
the distributions, sometimes also referred to as correlations, that can be generated by an
experiment of the form that Tsirelson envisioned. Moreover, in the case all Hilbert spaces are
taken to be finite-dimensional, it is an exercise to show that the two sets coincide.5 Possibly
due to this observation, Tsirelson initially assumed that the sets coincide in general, and went
on to prove results about the setsCqs; in particular, he introduced techniques to bound certain
facets of it. When asked for a proof of the equality, however, Tsirelson realized that it eluded
him and posed the question as an open problem.6

Tsirelson’s problem has two variants. The first, referred to as Tsirelson’s strong prob-
lem, asks about strict equality between the two sets. This problem was answered in 2019 in
a beautiful work by Slofstra [51], who showed that the set Cqs.n; k/ is not closed for all
large enough n; k. Since Cqc.n; k/ is easily verified to be closed, the sets cannot always
be equal. Slofstra proved this result by introducing novel techniques relating approxima-
tion properties for groups to the suprema of linear functionals on these sets through the
language of two-player games, which we will introduce in the next section. In his formula-
tion of the problem, Tsirelson indicated that, if the sets were shown distinct, then an “even
more important” problem would arise, which is referred to as the weak Tsirelson’s problem:
does Cqs.n; k/ D Cqc.n; k/ for all n; k? Here we will refer to this formulation directly as
Tsirelson’s Problem (TP).

While Tsirelson’s problem may at first glance look like an arcane question in the
foundations of quantum mechanics, there is a good reason why the authors of [41] asked
Tsirelson for a proof of his claim regarding equality of the two sets. To explain their moti-
vation, one should bear in mind that the problem of optimizing a linear functional over
Cqs.n; k/ is of primary importance for experiments demonstrating the nonlocality of quan-
tum mechanics, a key feature of the theory that has puzzled physicists and philosophers alike
ever since the EPR thought experiment brought it to the fore. Unfortunately, even for small,

5 A slightly more difficult exercise is to show that they always coincide when n D k D 2.
6 See “Bell inequalities and operator algebras”, available at https://www.tau.ac.il/~tsirel/

download/bellopalg.pdf.
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fixed n;k, direct optimization over Cqs.n; k/ seems intractable, as one has no a priori bound
on the dimension of the space H that will lead to an (even approximately) optimal correla-
tion. In their paper, Navascues et al. introduce a decreasing family of outer approximations of
the set Cqs.n; k/ that are each represented as a positive semidefinite set, which implies that
optimization over each set can be performed in time commensurate with its description size
using semidefinite programming, an extension of linear programming. However, Navascues
et al. were only able to show that their outer approximations converge to the set Cqc.n; k/,
instead of Cqs.n; k/. If Tsirelson’s (weak) problem had an affirmative answer, their work
would lead to an algorithm for computing the supremum of a linear function over Cqs.n; k/,
or equivalently, computing the largest quantum violation of a Bell inequality. Thus the orig-
inal motivation for solving Tsirelson’s problem is purely computational, and as we will see
later, it is surprising also how the problem was eventually resolved.

Further motivation for resolving Tsirelson’s problem arose when Fritz [20] and Junge
et al. [30] independently showed that Tsirelson’s problem follows from Kirchberg’s QWEP
conjecture, itself shown equivalent to CEP by Kirchberg. Later, Ozawa [43] established the
equivalence between the three conjectures, thus tying TP to CEP and the many equivalent
formulations of it. In Section 3.2 below we will sketch a different proof of the equivalence
between TP and CEP that does not go through the QWEP conjecture.

3. Separating hyperplanes as nonlocal games

The formulation of Tsirelson’s problem as a question about equality of two convex
sets provides a natural geometric approach to its resolution. For n; k � 1 and � 2 .Rn2k2

/�,
a linear functional on Rn2k2 , we introduce the quantities (see also Figure 1)

!qa.�/ D sup
p2Cqs.n;k/

j� � pj and !qc.�/ D sup
p2Cqc.n;k/

j� � pj: (3.1)

Here the subscript qa stands for “quantum approximate”; we write Cqa.n; k/ for the closure
Cqa.n; k/D Cqs.n; k/. We also define a quantity !loc.�/, where the supremum is taken over
“local” correlations p (this is the case where all PVMs in (2.2) mutually commute, see (3.3)
below for a precise definition and a justification of the term “local”).

To give a negative answer to Tsirelson’s problem, it suffices to find n;k and a � such
that !qa.�/ < !qc.�/. In the foundations of quantum mechanics, an inequality of the form
!loc.�/ � ˛ is called a Bell inequality, and an inequality of the form !qa.�/ � ˇ is called a
Tsirelson inequality. The best right-hand side in a Tsirelson’s inequality is referred to as the
“largest quantum violation” of the corresponding optimal Bell inequality. The design of func-
tionals � such that !loc.�/ < !qa.�/ is relevant to the design of experiments witnessing the
“nonlocality” of quantum correlations. Because of this, many functionals have been studied,
such as the famous CHSH inequality !loc.�CHSH/ < 2

p
2 where �CHSH 2 .R2222

/� is a spe-
cific functional named after its inventors, who also showed that it satisfies !qa.�CHSH/ � 4

(Tsirelson later showed that this bound is tight [52]). How does one go about finding inter-
esting �? One can use guessing and physical intuition for how special quantum phenomena
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Figure 1

Separating convex sets

such as mutual incompatibility of observables might be “detected” by some �. This, how-
ever, can be rather tedious due to the infinite search space: essentially no better algorithm
for approaching !qa from below is known other than enumerating over progressively finer
nets in increasing dimensions for the Hilbert space; for approaching it from above, slightly
better candidate algorithms are known [41] that work well in practice but, as mentioned ear-
lier, are not even known to converge to the right value—indeed, showing that they do led to
formulating Tsirelson’s problem, and it follows from the refutation of it that they do not.

In the 1990s, emerging collaborations between physicists and computer scientists
stimulated by the nascent field of quantum computation led to the study of a subclass of
functionals termed “nonlocal games” which we now introduce.

3.1. Nonlocal games
The idea for a nonlocal game is to interpret the supremum in (3.1) as the optimal

winning probability in a certain cooperative two-player game. Let us start with an example
of such a game. Fix an n-vertex graph H , as well as a target number of colors k � 1. The
“coloring game” associated with H is played as follows. In the game, two cooperating, but
noncommunicating, players (traditionally referred to as “Alice” and “Bob”) interact with
a referee as follows. The referee first selects a pair of questions by sampling two vertices
of G, x and y, independently and uniformly at random. The referee sends the label x to
Alice, and y to Bob. Each player is required to reply with a “color” represented by an integer
a; b 2 ¹1; : : : ; kº, respectively. The referee declares this run of the game as a win for the
players if and only if whenever x D y then a D b and whenever .x; y/ is an edge inH then
a ¤ b. (If x ¤ y is not an edge in H then all answers are accepted.) The players’ goal is
to maximize their winning probability, taken over the referee’s choice of questions, in the
game; they are allowed to coordinate their choice of strategy but not to communicate once
the game starts.

This last sentence is rather informal; let us make it more precise. What is a valid
strategy? For each pair of questions .x; y/, the players provide answers according to some
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distribution p.a; bjx; y/. So a strategy specifies a correlation in the sense of Section 2.2.
Physical restrictions on the players’ actions translate into restrictions on the class of correla-
tions that are allowed. The informal restriction here is that the players “cannot communicate”
with each other. The most natural formalization of this requirement is that players are con-
strained to compute their answers “locally”, using functions fA;fB W ¹1; : : : ;nº ! ¹1; : : : ;kº,
respectively. For two players determining their answers in this way, the success probability
is precisely

psucc D
1

n2

nX
x;yD1

.1xDy1fA.x/DfB .y/ C 1¹x;yº2E1fA.x/¤fB .y//;

where 1S denotes the characteristic function of a set S andE is the edge set of the graphH .
Clearly, this expression is 1 if and only if fA D fB is a proper coloring of the graph, i.e.,
adjacent vertices never get assigned the same color. Thus the game has a local strategy which
wins with probability 1 if and only if the chromatic number ofH is at most k. This relation,
between success probability in a game and a natural graph parameter, hints at rich connec-
tions between games and combinatorial optimization, with games providing a conceptual
framework in which to study specific questions about combinatorial optimization such as
hardness of approximation.7

Generalizing the preceding example, a (two-player, one-round) game is specified
by integers n; k, the number of questions and answers per player in the game, respectively,
a distribution � on ¹1; : : : ; nº2 according to which questions are chosen, and a decision
predicate V W ¹1; : : : ; nº2 � ¹1; : : : ; kº2 ! ¹0; 1º which identifies correct question–answer
tuples. With this notation the maximum success probability of a local strategy, which we
refer to as the “local value” of the game, is

!loc.G/ D sup
fA;fB

X
x;y

�.x; y/
X
a;b

V.x; y; a; b/1fA.x/Da1fB .y/Db : (3.2)

Defining �G 2 .Rn2k2
/� by .�G/x;y;a;b D �.x;y/V .x;y;a;b/ and introducing the polytope

Cloc.n; k/ D Conv
®
.1fA.x/Da1fB .y/Db/x;y;a;b W fA; fB W ¹1; : : : ; nº ! ¹1; : : : ; kº

¯
(3.3)

we have that
!loc.G/ D sup

p2Cloc.n;k/

j�G � pj D !loc.�G/;

justifying our abuse of the notation !loc.�/ in (3.2). To summarize, the maximum success
probability of local strategies in a game G with n questions and k answers per player can be
identified with the supremum of a certain linear functional derived from G over the convex
set Cloc.n; k/. This connection having been made, a natural question arises: why not con-
sider quantum strategies, in which the players would make local measurements on a shared
quantum state in order to determine their answers? Instead of a pair of functions, a strategy

7 We emphasize that the games discussed here are entirely distinct from the games considered
in the “game theory” of Nash equilibria, where there are two players playing against each
other. There is little or no connection between the two areas.
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is now modeled as a tuple S D .¹Ax
aº; ¹B

y

b
º; j i/ of measurement operators (PVM) for

each player and a shared state j i. The no-communication assumption can be implemented
by requiring that the tuple satisfies the conditions introduced in the definition of Cqs.n; k/

in (2.2) (in which case we qualify the strategy as “quantum spatial”) or of Cqc.n; k/ in (2.3)
(in which case we qualify it as “quantum commuting”).8 This leads us to define

!qa.G/ D sup
p2Cqs.n;k/

j�G � pj and !qc.G/ D sup
p2Cqc.n;k/

j�G � pj: (3.4)

Beyond a mere reformulation of the optimization problems (3.1), the framing of linear func-
tionals as two-player (also called “nonlocal” to emphasize their use as witnesses of quantum
“nonlocality”) games suggests a particular mode of thinking about them, e.g., we can now
use intuition about player strategies, questions and answers as opposed to arguably much
dryer doubly-indexed families of PVMs.

Going back to the example of the coloring game, each of the quantities in (3.4) leads
us to a variant of the chromatic number: forH a graph andGH the coloring game associated
to it, we define the quantum spatial (resp. quantum commuting) chromatic number ofH as
the smallest k such that !qa.GH / D 1 (resp. !qc.GH / D 1). Examples of graphs whose
quantum spatial chromatic number is strictly smaller than their chromatic number have long
been known [10,21]. The possible relevance of the study of the new chromatic numbers to TP
and CEP is pointed out in [45], who formulate some related quantities in terms of operator
systems; multiple works have since explored further variants of the chromatic number [44,50]
and introduced other classes of games that are connected to combinatorial parameters. For
example, the coloring game was generalized in [42] to a graph homomorphism game whose
study led the authors to associate a C �-algebra with a game; we describe this algebra in
the next section. In [4] the authors introduced a quantum isomorphism game and a related
notion of “quantum isomorphism” of two graphs, and showed that there exist graphs that are
quantum isomorphic, but not isomorphic. Further study of this notion led to connections with
quantum groups [38] and a surprising characterization of quantum isomorphism in terms of
homomorphism counts from planar graphs [34] (in contrast, Lovász characterized “classical”
graph isomorphism in terms of homomorphism counts from any graph). To summarize, we
find that the study of quantum strategies in two-player games has provided a rich framework
in which to connect combinatorics and functional analysis, leading to valuable insights in
both areas.

3.2. The game algebra
The connection between TP and CEP made in [20,30,43] goes through Kirchberg’s

QWEP conjecture. An arguably more direct route has more recently been found using nonlo-
cal games. Rather informally, the idea is that a quantum strategy for the players in a gameG,
i.e., a collection of PVM operators, can be thought of as a certain kind of representation for

8 To show formally that both types of strategies do not imply communication, we compute
the marginal distribution on one player’s answers and observe that it is independent of the
question to the other player.

5006 T. Vidick



an abstract algebra A D A.G/ associated with the game, whose generators are labeled by
(question, answer) pairs and whose relations express the game constraints. The (non)exis-
tence of different types of successful strategies (quantum spatial, quantum commuting) in the
game corresponds to the (non)existence of different kinds of representations for the algebra,
thus tying a statement such as !qa.G/ < 1 D !qc.G/ to representability properties of A.

To introduce the game algebra more formally, we first describe the class of syn-
chronous games to which the construction applies. A game is synchronous ifX D Y ,ADB ,
and for all x and a ¤ b, V.x; x; a; b/ D 0, i.e., identical questions always require identical
answers. Informally, the synchronicity condition enables to “factor out” the bipartite struc-
ture of a game and focus on representing the strategy for a single player.

Definition 3.1. Let G D .X; A; �; V / be a synchronous game. The game algebra A.G/ is
the abstract unital �-algebra generated by elements ¹ex;aºx;a2X�A such that for all x; y 2 X

and a; b 2 A,

e�
x;a D ex;a; e2

x;a D ex;a;
X

a

ex;a D 1; and V.x; y; a; b/ D 0 H) ex;aey;b D 0:9

Note that the game algebra may be trivial; for example, if V.x; y; a; b/ D 0 always
then the constraints cannot be satisfied. To see the connection between representations of
the game algebra and perfect strategies in G (we call a strategy perfect for a certain game
if it leads to a winning probability of 1 in the game), as a first exercise one may verify
that !loc.G/ D 1 (i.e., there exists a perfect local strategy for G) if and only if there is a
unital �-homomorphism from A.G/ into C. (The “if” direction is easier; the synchronicity
condition on the game is used for the “only if” direction.) This observation can be generalized
as follows.

Theorem 3.2. Let G be a synchronous game. Then

(i) [32, Corollary 3.7] !qa.G/ D 1 if and only if there is a unital �-representation
of A.G/ into R!;

(ii) [44, Corollary 5.6]!qc.G/D 1 if and only if there is a �-representation of A.G/

into a C �-algebra with a tracial state.

Similarly to Voiculescu’s reformulation of CEP in terms of microstates or Rad-
ulescu’s definition of hyperlinearity the condition (i) is equivalent to the existence of approx-
imate representations of A.G/ in finite-dimensional matrix algebras. The theorem implies
that the existence of a synchronous game G such that !qa.G/ < 1 D !qc.G/ is equivalent
to the existence of a tracial C �-algebra that does not embed into R! ; the latter statement is
easily seen to be equivalent to the negation of CEP.

We say a few words about the proof of Theorem 3.2. To show the “only if” direc-
tion for the second claim, given a commuting strategy .¹Ax

aº; ¹B
y

b
º; j i/ there is a natural

state on A.G/ given by �.W / D h j'.W /j i where W is a polynomial in the ex;a and

9 The algebra does not depend on the question distribution � .
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'.W / replaces ex;a by Ax
a in W . It is immediate that this is a state; that it is tracial follows

(with some work) from the synchronicity condition. For the first claim, a priori the condition
!qa.G/ D 1 only gives a sequence of finite-dimensional strategies whose success probabil-
ity approaches 1. One can turn each such strategy in an approximate representation of A.G/

into finite matrix algebras, eventually leading to a representation into some ultrapower of R.
To show the “if” direction for the second claim, applying the GNS construction,

we get PVMs for the first player from any tracial state on A.G/. Constructing appropriate
PVMs for the second player requires a little more work; essentially, one uses the trace to
construct commuting left and right representations of the game algebra. For the first claim,
our starting point is a sequence of approximate representations in finite dimensions. From
this we immediately get a sequence of families of PVM for the first player. There is a natu-
ral definition for PVM elements for the second player which guarantees that PVM elements
associated with different players commute. To conclude, the player’s PVMs can be put into
the required tensor-product form by appealing to the equivalence between spatial and com-
muting strategies in finite dimensions.

4. Constructing nonlocal games

To build intuition about nonlocal games and the associated game algebra, we first
review a fundamental example, the “Mermin–Peres Magic Square game.” In Section 4.2 we
build on this example to construct a family of games whose game algebra has approximate
representations into matrix algebras of increasing minimal dimension. In Section 4.3 we
outline our approach for turning this family of games into a counterexample to TP. This
forces us into complexity-theoretic considerations which we explore in Section 4.4.

4.1. The Magic Square game
We start with a classic example, the Magic Square game GMS due to Mermin and

Peres [36,46]. This game is a synchronous game with n D 6 questions, which are best visu-
alized as the three rows and three columns of a 3 � 3 square that can be pictured as follows:

y1 y2 y3 C1

y4 y5 y6 C1

y7 y8 y9 C1

�1 �1 �1

In the game, each of the 6 questions has k D 4 possible answers, which are identified with
the four possible ¹˙1º assignments to the entries of the three squares in the row or column
indicated by the question such that the product of the entries is as labeled on the picture,
C1 for a row and �1 for a column. For example, possible answers to the question associated
with the first row are ¹.1; 1; 1/; .1;�1;�1/; .�1; 1;�1/; .�1;�1; 1/º, which are identified
with the answer set ¹1; : : : ; 4º in some arbitrary way. The game decision predicate VMS

enforces the constraint that, whenever the players are asked a row and column that inter-
sect, the values that their respective answers assign to the intersection square(s) should be
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identical. For example, if x is associated with the first row and y with the first column then
VMS.x;y; .1; 1; 1/; .1; 1;�1//D 1whereas VMS.x;y; .1; 1; 1/; .�1; 1; 1//D 0. Note that this
constraint implies that whenever the players are asked the same question then their answers
should be identical, hence GMS is a synchronous game.

A local strategy for this game is a pair of functions fA; fB W ¹1; : : : ; 6º ! ¹1; : : : ; 4º;
its success probability is the probability over x; y 2 ¹1; : : : ; 6º chosen uniformly at random
that VMS.x; y; fA.x/; fB.y// D 1. As an exercise, the reader may use the fact that not all
constraints in the square can be simultaneously satisfied to show that !loc.GMS/ D 34=36.
This example illustrates the connection between games and constraint satisfaction problems
that has proved so fruitful in complexity theory.

What is the game algebra AMS D A.GMS/? Generators for AMS are six PVM with
four elements each, ¹ex;aºa2¹1;:::;4º such that

P
a ex;a D 1 for all x 2 ¹1; : : : ; 6º. An equiv-

alent presentation in terms of self-adjoint operators that square to identity can be found as
follows. Let ¹ex;aºa be the four orthogonal projections associated with the first row. Let
y1 D ex;.1;1;1/ C ex;.1;�1;�1/ � ex;.�1;1;�1/ � ex;.�1;�1;1/ and similarly define y2 and y3.
Then y1; y2; y3 square to 1, pairwise commute, and satisfy y1y2y3 D 1. Conversely, to any
such triple, it is straightforward to associate a four-outcome PVM ¹ex;aºa. A similar con-
struction can be employed for each row and column, a priori leading to 18 yi operators.
However, using the condition that V.a; b; x; y/ D 0 H) ex;aey;b D 0 and the consistency
condition enforced inGMS, we get that yi defined in this way from the PVM associated with
the corresponding row must equal to yi defined from the PVM associated with the column
that yi appears in.

To summarize,AMS is generated by elements y1; : : : ; y9 such that y�
i D yi , y2

i D 1,
any two yi appearing in the same row or column of themagic square commute, and the yi sat-
isfy the magic square row and column constraints, e.g., y1y4y7 D �1. Our observation that
GMS does not have a local strategy that succeeds with probability 1 implies that A� has no
unital �-homomorphism into C. What about homomorphisms in higher-dimensional alge-
bras? With a little work, it is possible to show that there is no such (unital) homomorphism
intoM2.C/ orM3.C/, but there is one intoM4.C/ given by the following operators:

I ˝ �Z ; �Z ˝ I; �Z ˝ �Z ;

�X ˝ I; I ˝ �X ; �X ˝ �X

��X ˝ �Z ; ��Z ˝ �X ; �Y ˝ �Y ;

; (4.1)

where

�X D

 
0 1

1 0

!
; �Z D

 
1 0

0 �1

!
; and �Y D i�X�Z

are the Pauli matrices. Moreover, homomorphisms from AMS intoMd .C/ for some d obey
an interesting “rigidity” phenomenon. Let Y1; : : : ; Y9 be the image of the generators under
any such homomorphism. Then it is easy to verify that the row and column constraints imply
that

¹Y1; Y5º D ¹Y2; Y4º D 0; and ŒY1; Y2� D ŒY1; Y4� D ŒY5; Y2� D ŒY5; Y4� D 0; (4.2)
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where ¹A;Bº D AB C BA is the anticommutator. Conversely, any four self-adjoint matri-
ces that square to identity and satisfy (4.2) can be extended to a �-homomorphism of AMS.
The rigidity phenomenon referred to above is that the algebra generated by any such (finite-
dimensional) Y1; Y2; Y4; Y5 is isomorphic to M4.C/ ˝ Md 0.C/ for some d 0, with
Y1 7! I ˝ �Z , etc. (The other operators, Y3; Y6; Y7; Y8; Y9 are uniquely defined from those
four by the row & column constraints.) Thus any finite-dimensional unital �-representation
ofAMS is isomorphic to the representation given in (4.1), possibly tensored with the identity.
This very special property allows us to use the fact that a correlation achieves a high success
probability in a game, �MS � p D 1, to conclude that any realization of this correlation using
PVMs acting on a Hilbert space must satisfy specific algebraic relations; this fact will be
crucial to the eventual resolution of TP.

To summarize, the example of the Magic Square helps us demonstrate two impor-
tant points. Firstly, it is possible to design a game such that !qa.G/ D 1 and, moreover, any
strategy that witnesses this is of a certain minimal dimension—here, 4. Secondly, it is pos-
sible to force such strategies to have a certain rigid structure—here, the operators used as
part of the strategy must contain two pairs of mutually anticommuting operators, such that
operators from different pairs commute.

4.2. The Pauli braiding game
To bound!qa.G/ for some gameG it is useful to understand the structure of approx-

imately optimal strategies in G. This is because, due to the nonclosure of Cqs.n; k/, we can
have !qa.G/ D 1 without there being any perfect quantum spatial strategy for G, and so it
will be convenient to develop techniques that are able to rule out the existence of not only
perfect but also near-perfect strategies.

To get us started we state an important tool in the study of approximate group rep-
resentations.

Theorem 4.1 ([24]). Let G be a finite group and f W G ! Ud .C/ such that

E
x;y2G

tr
�
f .y/�f .x/f .x�1y/

�
� 1 � ";

for some " � 0 and where the expectation is taken over the choice of a uniformly random
pair of elements from G. Then there is a representation g W G ! Ud 0.C/ and an isometry
V W Cd ! Cd 0 such that

E
x2G

f .x/ � V �g.x/V
2

2
� 2":

A map f as in the theorem is called an approximate representation of the groupG;
indeed, the condition with " D 0 is equivalent to that of being a representation. The the-
orem is an example of a stability result, stating that approximate representations are close
to exact representations. Here, the measure of “approximate representation” is rather loose,
since group relations are only required to hold on average and under the `2-norm kXk2 D

tr.X�X/1=2 (as opposed to, say, for all relations and under the operator norm). The use of
the `2-norm requires us to allow d 0 > d in the conclusion of the theorem; that this is nec-
essary is easy to see by “cutting off a corner” from a high-dimensional representation. We
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remark that Theorem 4.1 has been extended to the case of amenable groups, with appropriate
modifications to allow for infinite-dimensional representations, in [15].

In some cases, such as the Magic Square game studied in the previous section,
we can observe that the game algebra is “almost” a group algebra—in fact, it is isomor-
phic to a quotient of a group C �-algebra. Namely, if we let P2 be the group generated by
X1;Z1;X2;Z2;J satisfyingX2

1 DZ2
1 DX2

2 DZ2
2 D J 2 D 1, ŒJ;X1�D ŒJ;Z1�D ŒJ;X2�D

ŒJ;Z2� D 1, and ŒX1; X2�D ŒX1; Z2�D ŒZ1; X2�D ŒZ1; Z2�D 1, ŒX1; Z1�D ŒX2; Z2�D J

(where now Œa; b� D aba�1b�1 denotes the group commutator) then it can be verified
that A.G/ ' C.P2/=hJ C 1i.10 In particular, any (approximate) representation of A.G/

“descends” to an (approximate) representation of P2 that (approximately) sends J to �1.
Since P2 has a single (exact) representation that sends J to �1, Theorem 4.1 can be applied
to deduce that near-perfect strategies in GMS, i.e., strategies whose winning probability is
close but not necessarily equal to 1, must be proportionately close to optimal strategies.
In particular, it implies the existence of a constant "0 > 0 such that any quantum spatial
strategy that succeeds with probability larger than 1 � "0 in GMS makes use of a Hilbert
space for each player that has dimension at least 4; moreover, the algebra generated by the
strategy’s PVMs contains operators that are close, in the norm k � k2, to a representation of
the group P2.

The connection between game algebra and quotient of a group C �-algebra is quite
general and extends to a large class of synchronous games introduced in [12,32] and referred
to as linear constraint system games; this was shown in [22]. The tools introduced so far
suggest the possibility of designing games whose game algebra is isomorphic to quotients of
larger groups, such as, for example, the group PN which is defined as P2 but with N pairs
of anticommuting generators; this group has a unique irreducible representation sending J
to �1, of dimension 2N . Working out the rules for such a game leads to the following.

Theorem 4.2 ([39]). There is an "0 > 0 and for everyN � 2 a synchronous gameG.N /
PBT with

2O.N / questions and O.1/ answers such that any quantum (spatial or commuting) strategy
which succeeds in G.N /

PBT with probability at least 1 � "0 induces an approximate represen-
tation of PN sending J to �1 and must have dimension at least 2N .11

The game fromTheorem 4.2 is called the “Pauli braiding game,” referring to how the
defining (anti)commutation relations “braid” the group generators together. For succinctness,
we do not describe this game in its entirety here. To design it, it suffices to find an appropriate
decision predicate function that will enforce the group relations. The simpler case of Zn

2 is
known in complexity theory as the “linearity test” of Blum, Luby, and Rubinfeld [8]. This
test amounts to verifying that the players’ answers a; b, and c to questions x; y 2 Zn

2 and

10 The algebraic relations obtained from the stated relations by sending J 7! �1 are known as
the Weyl–Heisenberg relations.

11 One might worry that Theorem 4.1 only guarantees closeness to a representation up to an
isometry, which can change the dimension of the underlying space. This is true, and a little
extra work which we skip here is needed to obtain the strict dimension bound mentioned in
the theorem.
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x C y, respectively, are related as c D a C b.12 Blum et al. show that near-perfect local
strategies are close to homomorphisms from Zn

2 to ¹�1; 1º, and this is extended to finite-
dimensional matrix representations in [54]. For the case of PN , we combine the linearity test
for testing the product rule between commuting elements in PN and the Magic Square game
for testing anticommuting elements. The stated number of questions, 2O.N /, follows from
the number of group elements, which is 2 � 4N , and is about quadratically larger due to the
use of auxiliary questions that are associated with, e.g., a pair of group elements.

4.3. A fixed-point argument
At this point we have designed an infinite family of games .G.N /

PBT /N �1 such that
for all N � 1, !qa.G

.N /
PBT / D !qc.G

.N /
PBT / D 1. While this clearly does not provide a separa-

tion, there is more that we may hope to use. In particular, thanks to the rigidity (stability)
arguments exposed in the previous section, we know that there is an "0 > 0 such that, for
anyN � 2 and any quantum spatial strategy forG.N /

PBT that succeeds with probability at least
1 � "0, the Hilbert space underlying the strategy must have dimension at least the dimen-
sion of the smallest representation of PN that sends J to �1, i.e., 2N . For a game G and
p 2 Œ0; 1�, we let E.GIp/ be the smallest dimension of a strategy that succeeds in G with
probability at least p; then, according to Theorem 4.2, we have that

8N � 1; E.G
.N /
PBT I 1 � "0/ � 2N : (4.3)

Equation (4.3) shows that any quantum strategy of dimension < 2N has success probability
bounded away from 1 in G.N /

PBT . To complete our goal, it would suffice to create a single
game G that satisfies this property for every N � 1. Indeed, if E.GI 1 � "0/ � 2N for all
N then it follows that !qa.G/ < 1, because the optimal success probability of a quantum
spatial strategy in G can be arbitrarily well approximated by finite-dimensional strategies.
If, in addition, we are able to guarantee that !qc.G/ D 1 then we will have completed our
negative resolution of TP, separatingCqa.n;k/ fromCqc.n;k/ for n and k being the number
of questions and answers in G, respectively.

The key idea is to define the gameG as the fixed point of a certain compression pro-
cedure that transforms families of games such as .G.N /

PBT /N �1 into other families with com-
parable size but increased requirements in terms of the minimal dimension of near-optimal
strategies. To make this precise, we first need a means of representing infinite families of
games. Recall that a computable function is f W N ! N [ ¹?º such that, informally, there is
an algorithm that on input n 2 N returns f .n/ if f .n/ 2 N; if f .n/ D? the algorithm does
not terminate. A computable function is total if f .n/ 2 N for all n.13 Computable functions
are enumerable and can thus themselves be encoded as integers in a natural way (e.g., via
some unambiguous encoding of a Turing machine that computes the function).

12 Here it seems like there are three players; a small variant of the test works with two players.
13 We wrote “roughly speaking” because we are not making the notion of algorithm precise.

It is a major success of computability theory that essentially any reasonable notion of com-
putability that has been formalized has been shown equivalent to the other notions. For
concreteness, one can replace “algorithm” by “Turing machine.”
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Fix a canonical encoding of games as natural numbers; since the collection of all
games (with, say, question distribution that has rational coefficients) is countable, this can be
done in a straightforwardmanner.We say that a functionG W N ! N succinctly represents the
family .GN /N �1 if G is computable and for everyN � 1, G .N / is the representation ofGN .
Now suppose that there exists a total computable function Compress that, given as input a
succinct representation G for a family of games .GN /N �1, returns a succinct representation
G 0 for a family of games .G0

N /N �1 such that the following conditions hold for all N � 1:

(C.1) If !qa.GN C1/ D 1 then !qa.G
0
N / D 1;

(C.2) E.G0
N I

1
2
/ � min¹E.GN C1I

1
2
/; N º.14

In the next section we argue that the existence of such a “compression” procedure is fairly
natural once one is familiar with the use of nonlocal games in complexity and cryptogra-
phy, and in particular with the design of delegated computation protocols using the PCP
theorem—buzzwords that will be explained later.15 For the time being, let us assume that
the map Compress exists. We will make use of an additional ingredient in the form of a refu-
tation procedure NPA for the quantum commuting value. NPA is an algorithm that takes as
input the integer representation of a (single) game G and halts if and only if !qc.G/ < 1.
(If !qc.G/ D 1, then NPA.G/ runs forever.) The existence of such a procedure follows from
the results of Navascues et al. [41] that were already mentioned in Section 2.2, and we take
it for granted.

Using these two procedures, Compress and NPA, let us define another function,
call it F, that takes as input (the integer representation of) a succinct representation G for
a family of games .GN /N �1 and returns a succinct representation G 0 that is defined as fol-
lows. (We specify G 0 as an algorithm expressed in high-level language, which can ultimately
be implemented by some computable function.) On input N , G 0 does the following:

(1) It computes the description of G1 D G .1/.

(2) It runs NPA on G1 for N steps. If NPA halts, then it returns the description of a
trivial game that always accepts.

(3) It computes T D Compress.G /.

(4) It returns a description of the game G0
N D T .N /.

We observe that, provided G and Compress are total computable functions, and Compress
returns a total computable function when given one as input, F is also a total computable
function. Applying a fundamental result in the theory of computable functions, Rogers’ fixed
point theorem, the map F has a fixed point, call it G1, that is a computable function. Let

14 Here the last “N ” can be replaced by any unbounded function of N for the ensuing argu-
ment to work.

15 This is not to say that it is straightforward—indeed, the two conditions together already
imply that executing Compress once on a trivial family of games that always accept yields
an infinite family of games with increasing dimension requirement.
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G1 D G1.1/ (more precisely, the game whose integer representation is G1.1/). We claim
that !qa.G1/ < !qc.G1/ D 1, thus providing us with the desired separation. To show
this, suppose first that !qc.G1/ < 1. Then since F.G1/ D G1, and since NPA must halt
on G1 after some number N1 of steps, for N � N1 the game G1.N / is a trivial game
that always accepts. By a straightforward induction using property (C.1) of Compress, it
follows that !qa.G1/ D 1, hence !qc.G1/ D 1 as well, a contradiction. So !qc.G1/ D 1

and at step 2 NPA never halts. We then get by induction using property (C.2) of Compress
that E.G1I

1
2
/ � N for all N . This implies that !qa.G1/ �

1
2
, because no sequence of

finite-dimensional strategies can ever get a success probability larger than 1
2
.

The preceding argument shows that to refute TP it “only” remains to design the
Compress procedure. This, of course, is the hard part. Before we tackle this task, we discuss
a subtle point about the preceding argument.

4.4. Enter complexity
In the analysis of the fixed point G1 of the map F, we implicitly assumed that the

game G1 D G1.1/ is well defined. What if G1 never halts on input 1? Rogers’ fixed point
theorem does not guarantee that the fixed point itself is a total function, and it need not
be defined on all inputs. Even if it were a total function, there would not be an a priori
guarantee that G1 returns well-formed outputs on every input—in general, it will return inte-
gers which, depending on our encoding procedure, may not all correspond to well-defined
games. Indeed, we should detect that there is something suspicious in the entire setup. A func-
tion Compress satisfying all the requirements we have listed is easy to design; for example,
G 0 D Compress.G / could on input N return a game that is a mixture of GN C1 and G.N /

PBT ,16

and this would easily satisfy both (C.1) and (C.2) (indeed, with a stronger bound of 2N

instead of N in (C.2)).
Observe that by virtue of being a fixed point of F, G1, as a family of games, has

a size (as a function of N ) that is at least that of Compress.G1/, which has a size that is
at least that of Compress.Compress.G1//, etc. Therefore, for F to have a fixed point that is
a well-defined family of games, it is necessary that the procedure Compress lives up to its
name, i.e., satisfies the following additional requirement:

(C.3) The size of the game G0
N is smaller than the size of the game GN .

Here, by “size” we mean the size of an explicit representation of the game, which we can
approximate by the total number of questions and answers. In the next section we will see
that a more refined notion of size, in terms of the running time of an algorithm computing
the referee’s questions and its decision, is needed.

While it may not be immediately clear at the level of the discussion, a proper for-
malization of (C.3), together with small modifications to the description of F (e.g., the intro-

16 What we mean is that the referee would flip a coin to decide which game is played, and
inform the players of their decision; for both conditions to hold we’d place a higher proba-
bility on G.N /

PBT being played.
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duction of a “time-out” condition that ensures that the output of F is always a well-defined
family of games, whatever its input), leads to a procedure such that we are able to guarantee
that any fixed point is a valid description of a family of games. Thus complexity-theoretic
requirements on Compress arise naturally from our strategy based on identifying G1 as a
fixed point, and this beyond the most elementary requirement that the map be computable.
In the next section we give some of the main ideas that go in the design of Compress; as we
do so, we will discover that more refined complexity-theoretic requirements are required for
us to proceed with the construction.

5. Compression

So how do we implement a “compression” procedure such that (C.1), (C.2), and
(C.3) hold? Although it has well-established parallels in classical complexity and cryptogra-
phy, this is a relatively new question in the study of nonlocal games and comparatively few
techniques are known for it [19,26,37]. Two main ideas have been used. The first is the idea of
efficient verification of computations, which takes its origin in classical complexity theory
in the 1980s (where it was studied under the name of “program checking” [7]) and received a
huge boost when probabilistically checkable proofs (PCP) were discovered in the 1990s [2,3].
The second is the idea of rigidity, which we already encountered when analyzing the Magic
Square game in Section 4.1 and whose relevance to quantum information and cryptography
was first made explicit in work by Mayers and Yao who coined the term “self-testing” for
it [35].

In this section we aim to give a flavor of both techniques and how they come together
to implement compression. In the process we will see that more refined arguments about
complexity make their apparition. As observed in Section 4.4, the design of a procedure
which satisfies both (C.1) and (C.2) is relatively straightforward if one does not impose any
requirement on how the size of family of games G 0 D Compress.G / depends on that of G .
This leads us to reframe the question of implementing compression into one of reducing
the size of a game given as input—given a game G (which we think of as G .N C 1/), how
do we design G0 (which we think of as G 0.N /) that has similar properties (same !qa.G/,
same dimension requirements) but a smaller number of questions and answers—since we are
now talking about the N th game in the family, and not the .N C 1/th? We first discuss the
problem of reducing the number of answers in a game, and then that of reducing the number
of questions.

5.1. The PCP theorem and answer reduction
The colloquial formulation of the PCP theorem is that mathematical proofs can be

written in a format such that the validity of the entire proof can be verified by looking only at
a few randomly chosen locations of it. It will be useful to express this slightly more formally.
First, we fix a language, which in general is a subset L � ¹0; 1º� of strings of bits of any
length, and for the example could be the set of all valid statements in, say, Peano arithmetic.
Second, we fix a proof verification procedureD that takes as input a statement x and a proof
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… 2 ¹0; 1º� and returns a bit D.x; …/ 2 ¹0; 1º, with 1 indicating that the proof is valid.
In the example, D would check that all the claimed steps in … follow from an axiom and
that the proof indeed establishes the statement x.17 The PCP theorem states that fromD it is
possible to compute aD0 such thatD0 takes inputs x and…0, is allowed to toss some random
coins, but can only look at 10 bits of …0 and then returns a decision in ¹0; 1º. It should be
that (i) for any .x;…/ that D accepts there is a …0, which can be computed from …, such
that D0 accepts .x;…0/ (this is usually referred to as the “completeness” property) and (ii)
for any x such that there is no… such thatD accepts .x;…/ there is also no…0 such thatD0

accepts .x;…0/with probability larger than 1=3 (this is referred to as “soundness”—note the
apparition of a small probability of error, which can be made arbitrarily small by allowing
D0 to make more queries to…0, but cannot in general be driven to zero).

There is a crucial requirement for the PCP theorem to apply that is worth emphasiz-
ing: the transformation described above is only possible in the case where D is efficient, in
the sense that the time it takes to evaluate an input .x;…/ is a fixed polynomial in the length
of x (in particular, it can only ever access polynomially many bits of …, which can thus be
truncated without loss of generality). This efficiency requirement is crucial to the proof of
the PCP theorem, which first represents the entire computation done by D as a “tableau”
with intermediate variables associated to each computation step, before finding an encod-
ing of it that can be checked very efficiently; this last step uses techniques from the theory
of error-correcting codes. The PCP theorem thus states that proofs that can be verified effi-
ciently, in a number of computation steps polynomial in their length, can be encoded in such
a way that verification can also be sparse—only a few bits need to be accessed in order to
make a high-confidence decision.18

Why is this relevant to our task? Recall that, given a game G, our goal is to find a
game G0 that is smaller than G and such that (C.1) and (C.2) hold. Here we are concerned
with reducing the size of answers in G0; we will address the size of questions in the next
section. Fix a pair of questions .x; y/ forG. We can think of the referee’s task in the game as
verifying the claim that “there exists a pair of answers .a; b/, that can be locally produced
from .x; y/, such that V.x; y; a; b/ D 1.” Setting aside the italicized part, the referee’s task
amounts to verifying the existence of a proof, the pair .a; b/, that passes some verification
procedure, V.x; y; �; �/. The PCP theorem indicates that there is some “encoding” of .a; b/,
call it .…a;…b/, that can be verified by only examining a few locations of it. We could then
devise another verification procedure V 0, for the game G0, that samples a pair of questions
.x; y/ as in G, as well as a few locations .i1; : : : ; i5/ that it needs to see in…a, .j1; : : : ; j5/

that it needs to see in…b , and would send x0 D .x; i1; : : : ; i5/ and y0 D .y; j1; : : : ; j5/ as its
questions. The players would locally compute …a and …B , respectively, and respond with
the requested locations. The PCP theorem would guarantee that this verification procedure

17 Note that hereD should accept statements and proofs of any length. Formally, it could be
modeled as a Turing machine with two input tapes.

18 “Sparse” is often called “local” in the literature. We use a different word to make the distinc-
tion with the notion of “locality” associated with the players in a two-player game, which in
our context is distinct.
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is essentially equivalent to the original one; however, now the length of answers has been
reduced down to a constant.

While this is a plausible sketch for how answer reduction may be achieved, there are
a number of major caveats that need to be addressed. Firstly, we implicitly assumed that the
PCP encoding of the “proof” .a; b/ would naturally take the form .…a; …b/. However, in
general a PCP encoding is calculated globally, and such a nice bipartitioning may not (in fact,
cannot) hold. Secondly, it is essential for the soundness of the argument that we certify that
.a; b/ not only exist but can be produced locally from .x; y/. Thirdly, again for soundness
…a should not be allowed to depend on the queries .i1; : : : ; i5/ that are being made to it: we
need to find a mechanism that forces the player to fix it independently of them, even though
the referee will never see the entirety of it. Finally and crucially, as already mentioned the
PCP theorem only applies to efficient verification procedures. To make use of it here, it is
therefore essential that the verification predicate V used in G can be implemented by an
algorithm that runs in time polynomial in the length of .x; y/.

The last point forces us to rethink our approach. While we initially thought of games
as somemildly restrictive formulation of linear forms, the desire to “compress” games puts us
face to face with a new algorithmic requirement: we now have to keep track of the complexity
of the verification predicate. As long as we do so, however, we have a plan for reducing the
size of answers. While this plan raises specific challenges, all of them can be addressed
using variations of techniques that have been developed in the decades-long history of using
the PCP theorem to implement efficient proof verification in a variety of settings. In the
next section we will see how reducing the size of questions prompts us to impose similar
efficiency requirements on the procedure used to sample questions .x; y/ � � in G.

5.2. Rigidity and question reduction
In the previous section we saw how techniques developed for the study of PCPs

could be leveraged to implement savings in the length of answers in a nonlocal game (at the
cost of a small increase in the question length). The idea for reducing the length of questions
appears in [40], where it is referred to as “introspection.” While the PCP theorem takes its
full meaning in a classical context, the idea of introspection makes essential use of quantum-
mechanical features, and in particular the possibility to test that incompatible measurements
have been made on a shared quantum state.

To explain the idea suppose first that the distribution � on questions in the game G
is uniform over ¹.x; x/ W x 2 ¹0; 1ºN º. Suppose that G is modified into a game G0 such that
with probability 1=2 the players are asked to play the game G.N /

PBT introduced in Section 4.2
(and with probability 1=2 they play the original G). Let us see how introducing the Pauli
braiding game can be used to force the players to locally generate their own questions in
exactly the same way as the referee would have.

For simplicity, let us assume that the players’ strategy succeeds with probability 1
in G.N /

PBT , when it is played. Again for simplicity let us assume that the state j i 2 H ˝

H used as part of the players’ strategy is a “maximally entangled” state, i.e., it satisfies
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h jA ˝ Bj i D tr.ABT / for any A; B 2 B.H /.19 In the game G.N /
PBT , there is a question

associated with each element of PN , to which the answer is a single bit.20 For each such
question, in the strategy there is a two-outcome PVM ¹Ax

0 ; A
x
1º that the player applies when

receiving the question.We canwrite each such PVMas an observableAx DAx
0 �Ax

1 . Adapt-
ing our notation to the present situation, we conclude that as part of the strategy for every
a;b 2 ¹0;1ºN there is an observableA.a;b/ that corresponds to the player’s measurement on
the question associated with the group element Xa1

1 � � �X
aN

N Z
a1
1 � � �Z

aN

N 2 PN . Moreover,
whenever the strategy has a success probability sufficiently close to 1 in the game, there is
an isometry V such that A.a; b/ ' V ��X .a/�Z.b/V , where the approximation is meant in
the sense of Theorem 4.1 and we introduced the shorthand �X .a/ D �

a1

X ˝ � � � ˝ �
an

X and
similarly for �Z.b/.

Consider the following modification to G.N /
PBT . Introduce a pair of additional ques-

tions, labeled X resp. Z, on which the player is expected to perform the 2N -outcome PVM
that corresponds to a joint measurement of all observables ¹A.a;0N ; 0/º resp. ¹A.0N ; b; 0/º,
which is possible since they commute (in a perfect strategy).21 These two questions have
much longer answers which can be used for “randomness generation,” in the following
sense. Using that A.0N ; b; 0/ ' V ��Z.b/V , it follows that the PVM applied on question
Z is isometric to a rank-1 measurement in the joint eigenbasis of all �Z.b/ (possibly ten-
sored with an irrelevant identity). Since all rank-1 projections have the same trace (recall
that here we are working in a finite-dimensional matrix algebras, whose trace is unique) it
follows that each answer is obtained with the same probability, 1=2N . Furthermore, using
that the joint eigenbases of ¹�X .a/º and of ¹�Z.b/º are mutually unbiased, it follows that if
both players are sent the same question .Z; Z/ then they must provide the same uniformly
distributed answer, while if the question is .X;Z/ they must each provide uncorrelated uni-
formly random answers. Geometrically this observation corresponds to the statement that
any p such that �

G
.N /
PBT

� p D 1 has a certain projection (e.g., to x D Z, y D X ) that is
proportional to the all-1 vector.

Thus using G.N /
PBT , suitably modified by the introduction of additional questions

as described above, we can guarantee that any strategy which succeeds with sufficiently
high probability in this part of the game must return uniformly random identical answers
.a; a/ 2 .¹0; 1ºN /2 to the question .Z;Z/. In this way it is possible to enforce that the play-
ers locally generate a pair .a; a/ that is distributed exactly as the questions that the referee
would send them in the game G. Moreover, the “effort” in doing so is virtually trivial: each
player was sent a single question that essentially reads “generate the same random value as
your partner!”

19 This can be shown to hold without loss of generality whenever the game is a synchronous
game, which is the case for all games considered here.

20 There are more questions, which are used to test the group relations; this explains the
“2O.N /” in Theorem 4.2.

21 The game should enforce that such a measurement is being made in any (near)-optimal
strategy; this is not hard to achieve.
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While this constitutes the main idea—using rigidity to force players to locally gen-
erate their own questions—there are many issues to address. Firstly, we need the player not
to report the question that they generated, but use it in order to compute an answer that it then
sends to the referee. For this there is a simple workaround applying ideas from the previous
section: we can in a first step ask the player to report the generated question, as well as its
answer, and in a second step to perform answer reduction. Secondly, the distribution of ques-
tions in the game need not be uniform over identical .a; a/ or independent .a; b/ answers.
This requires extending the method described above. In particular, “complicated” distribu-
tions are likely to be harder to enforce, requiring more questions to a point where no question
reduction is achieved—thus another complexity requirement creeps in, that the families of
games we consider should have question distributions of bounded complexity, a requirement
that should of course be formalized in an appropriate manner. Finally and most importantly,
while the “useful” question .Z; Z/ in the game is short, ensuring that the player performs
the right action on it requires the referee to implement the entire game G.N /

PBT . As mentioned
in Theorem 4.2, this game has 2O.N / questions, which in general will be far larger than the
number of questions in G! In the next section we address this issue by discussing a game
that has similar guarantees in terms of testing but much smaller question size.

5.3. The quantum low-degree test
In the previous section we sketched how the task of question reduction can be com-

pleted, provided there is an analogue of the game G.N /
PBT for testing the group PN but with a

reduced number of questions. Such a result is shown in [27], building on [39].

Theorem 5.1 ([28]). There are an "1 > 0 and for every N � 2 a synchronous game G.N /
LDT

with 2poly log.N / questions and answers such that any quantum (spatial or commuting) strat-
egy which succeeds with probability at least 1 � "0 in GLDT.N / induces an approximate
representation of PN that sends J to �1 and must have dimension at least 2N .

The only differencewith Theorem 4.2 is the number of questions and answers, which
is now quasipolynomial instead of exponential. This difference hides a deeper difference in
terms of how the game is structured. Recall that the Pauli braiding test is built on the linearity
test of [8], interpreting the latter as a test for the group ZN

2 and extending it to a test for PN

whose analysis could be performed based on Theorem 4.1. With a much smaller number
of questions it is no longer possible to have a question associated with each element of the
group. Since PN can be generated by 2N elements it is still possible to have a question
per generator, and plausible to show that in optimal strategies the observables associated
with each of these questions generate a group isomorphic to PN . This task, however, will
clearly be rather arduous in the case of near-perfect strategies. This is because near-perfect
strategies provide a presentation (observables associated to the generators) which satisfy,
at best, a certain set of relations on the average to some small constant error (in the norm
k � k2). Extending the generators to the entire group by taking products will quickly build up
the error in a way that, if the only available tool is the triangle inequality, is likely to become
unmanageable.
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What is needed for Theorem 5.1 is an efficient stability result: a small (quasipolyno-
mially many generators and relations) presentation of the group PN such that any collection
of operators that approximately satisfies the defining relations (in a similar sense as Theo-
rem 4.1) is close to an exact representation—where crucially the closeness should depend
on the initial approximation quality but not, or only very mildly, on the size of the group.

Theorem 5.1 is obtained as a quantum extension of the PCP theorem. The generating
set it is based on is defined using the Reed–Muller error-correcting code, in a way that we do
not have space to detail here. As far as we are aware, it is the only “efficient” (small number
of generators) and “robust” (approximate representations are close to exact ones) stability
result of its kind and may be a tool of independent interest in other areas.22 Interestingly,
a pared-down version of the result for the group ZN

2 is used in the analysis of the answer
reduction procedure from Section 5.1. Indeed, while the use of the PCP theorem made in
that section is a priori entirely classical the analysis needs to take into account quantum
strategies for the players, and the classical soundness analysis is not sufficient.

5.4. MIP�
D RE

The previous sections complete our sketch of the design of the compression pro-
cedure, and following the argument from Section 4.3 of the construction of a correlation
separating Cqc from Cqs . While we started off without making considerations of complex-
ity, we were led to introduce such considerations due to (1) the requirements for applying the
fixed-point argument, and, more crucially, (2) the necessity of using tools such as the PCP
theorem to implement the game compression procedure.

A small modification of the definition of the fixed-point G1 leads to an interesting
consequence in complexity theory itself. In the definition of F, replace the algorithm NPA
used at step 2 by the execution of an arbitrary Turing machine M , i.e., replace the step by
“Run M for N steps. If M halts then return the description of a trivial game that always
halts.” We claim that with this modification the game G1 D G1.1/ satisfies !qa.G1/ D 1

if and only ifM halts (in some finite number of steps), and !qa.G1/ < 1 otherwise. This
can be shown using very similar reasoning to that employed in Section 4.3. Suppose first
thatM halts. Then step 2 detects this for some large enough N , and, as in Section 4.3, we
conclude that !qa.G1/ D 1. If, however,M never halts then step 2 never completes, and,
again as in Section 4.3, we quickly see that !qa.G1/ �

1
2
.

Furthermore, it can be verified that the procedure which toM associates the corre-
sponding game G1 D G1.M/ can be implemented in time polynomial in the description
ofM . That is, to any Turing machineM we are able to associate a game G1.M/ that has
a perfect quantum spatial strategy ifM halts, and no near-perfect quantum spatial strategy
in caseM does not halt. In complexity-theoretic terms this establishes a reduction from the
halting problem to the problem of deciding between !qa.G/D 1 and !qa.G/�

1
2
(here 1

2
is

an arbitrary positive quantity < 1). The halting problem is a complete problem for the class
of recursively enumerable languages RE, while the latter problem is (once properly formu-

22 See, e.g., [6] for a discussion of some group stability results.

5020 T. Vidick



lated) complete for the class MIP� of languages that have “quantum multiprover interactive
proof systems.” Thus the argument establishes the equality MIP� D RE, which gives its title
to [27]. From a purely complexity-theoretic standpoint, this equality is interesting because
it relates two classes that are a priori defined in very different terms, and it is surprising
because the class RE is very large and makes no reference to time complexity at all (the
definition of the halting problem does not refer to how much time is allowed for the Turing
machine to halt) while the class MIP� does impose efficiency requirements on the verifica-
tion time, i.e., the time it takes for the referee in the game to generate questions and verify
answers to them. It is notable that the equality parallels a celebrated result MIP D NEXP [5],
a major stepping stone on the way to the proof of the PCP theoremwhich is now given a form
of “quantum” or “noncommutative” extension. On a more philosophical note, the equality
MIP� D RE vindicates the long-witnessed hardness of designing and analyzing interesting
Bell inequalities, showing that the optimal quantum bound is in general an uncomputable
function of the coefficients of the Bell functional.

6. Outlook

We end with some brief remarks on future work. While in this document we have
insisted on the role played by complexity theory in the design of a separating correlation,
and hence indirectly in the design of an algebra that refutes Connes’ Embedding Problem,
we are not aware of a metaargument that would require this. In particular, while it can be for-
mally shown that the complexity-theoretic equality MIP� D RE directly implies a refutation
of Tsirelson’s problem, the converse is not known to hold. It would be very interesting if a
more direct argument, without making any reference to even computability theory, could be
found. This has previously been the case, when Slofstra’s proof that Cqs is not closed [51]

(which was closely tied to a proof of undecidability) was later greatly simplified [13, 17],
removing all references to computability.

The particular proof technique described here leads to some interesting follow-up
questions. In the realm of complexity theory, it is interesting to study variants of complexity
classes associated with quantum correlations and characterize their complexity; see [37] for
recent work in this direction. In terms of group theory, we believe that the notion of efficient
stability put forward in Section 5.3 deserves further study, as stability questions already have
a rich history [9,24,25,31]. Of course, an important open question is that of proving the exis-
tence of a nonhyperlinear or even nonsofic group; the work outlined in Section 3.2 provides
a promising avenue towards this.
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