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ABSTRACT

Inverse scattering problems arise in diverse application areas, such as geophysical pro-
specting, submarine detection, near-field and nanooptical imaging, and medical imaging.
For a given wave incident on a medium enclosed by a bounded domain, the scattering
(direct) problem is to determine the scattered field or the energy distribution for the known
scatterer. An inverse scattering problem is to determine the scatterer from the boundary
measurements of the fields. Although significant recent progress has been made in solving
the inverse problems, many challenging mathematical and computational issues remain
unresolved. In particular, the severe ill-posedness has thus far limited the scope of inverse
problem methods in practical applications. This paper is concerned with mathematical
analysis and numerical methods for solving inverse scattering problems of broad interest.
Based on multifrequency data, effective computational and mathematical approaches are
presented for overcoming the ill-posedness of the inverse problems. A brief overview of
these approaches and results is provided. Particular attention is paid to inverse medium,
inverse obstacle, and inverse source scattering problems. Related topics and open problems
are also discussed.
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1. INTRODUCTION

Research on scattering and inverse scattering plays a critical role in the advance-
ment of exploration science, especially in medical imaging, stealth technology, oil and
gas exploration, nondestructive testing, materials characterization, optical microscopy, and
nanooptical imaging. Scattering involves studying the interaction of a medium, often inho-
mogeneous, with incident waves or particles, while inverse scattering deals with determining
the medium, such as location, geometry, or material properties, by the wave field measured
externally.

Over the last few decades, the ever-growing practical applications and scientific
developments have driven the need for more sophisticated mathematical models and numer-
ical algorithms to describe the scattering of complicated structures, to accurately compute
scattered fields and thus to predict the performance of a given structure, as well as to carry
out the optimal design of new structures. The rapid growth of computational capability and
the development of fast algorithms have also made inverse scattering a viable option for solv-
ing many identification problems. Mathematically, inverse scattering has been an emerging
and core field of modern mathematical physics. Significant progress has been made in the
mathematical studies of uniqueness and stability, as well as the development of numerical
methods for solving inverse scattering problems [66,74,78,88,94,102,1083]. However, there are
outstanding mathematical and computational challenges that remain to be resolved, espe-
cially the nonlinearity, ill-posedness, model uncertainty, and large-scale computation. In
addition, in the area of nanotechnology and biology, optical measurement techniques are
commonly used. Since the size of the measured structure is extremely small, how to over-
come the diffraction limit to obtain superresolution imaging presents another key challenge.

This paper is not intended to cover all of the broad topics in inverse scattering theory
for wave propagation. It is designed to be an introduction to the work of our research group to
overcome the above challenges for solving the inverse scattering problems. Throughout, we
are mainly concerned with multifrequency data for the following reasons. First, due to lack
of stability, the inverse scattering problems are severely ill-posed at a fixed frequency, that is,
small variations in the measured data can lead to large errors in the reconstructions. On the
other hand, the problems become well-posed with Lipschitz-type stability estimates when
all frequency data, corresponding to the time domain case, is available. Second, the nonlin-
earity of the inverse scattering problems at high wavenumber leads to many local minima
for the associated optimization method. By properly designing a numerical method, such a
highly nonlinear problem may be reduced to a set of linear problems at given frequencies.
Physically, the approach based on multifrequency data is consistent with the Heisenberg
uncertainty principle. According to the principle, one-half of the wavelength is the diffrac-
tion limit for resolving the sharpness of details that may be observed by optical microscopy
[57,67,79]. The diffraction limit provides a limit on the accuracy of the reconstruction for a
given wavelength. To improve the resolution, it is desirable to use an incident field with a
shorter wavelength or a higher frequency to illuminate the scatterer.
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The goal of this paper is two-fold. Concerning mathematical analysis, our recent
stability results for the inverse scattering problems are discussed. Regarding numerical meth-
ods, we present the stable recursive linearization method (RLM) for solving quantitatively
the inverse scattering problems with increased resolution.

The underlying physical model is usually a wave propagation system decided by
means of measuring data. In this work, our primary focus is on acoustic and electromagnetic
wave propagation governed by the Helmholtz equation and Maxwell’s equations, respec-
tively. Many of the approaches and methods may be extended to study inverse scattering
problems in other wave propagation models, especially elastic waves. The inverse scattering
problems for wave propagation can be broadly divided into three classes: the inverse medium
problem (IMP), the inverse obstacle problem (IOP), and the inverse source problem (ISP),
depending on the nature of reconstructions. To emphasize the significance of the spectral
information for solving the inverse scattering problems, particular attention is paid to the
frequency domain models or the time-harmonic cases. To further limit the scope, the numer-
ical methods discussed here are nonlinear optimization-based iterative methods for solving
inverse scattering problems. We refer the reader to [55, 62, 65,76,80,87] and references therein
for noniterative, particularly direct imaging methods for solving inverse scattering problems.

The outline of this paper is as follows. In Section 2, the IMP is introduced. Stabil-
ity results for the multiple frequency models are presented. Section 3 is devoted to the ISP.
Stability for the multifrequency ISP of Maxwell’s equations is discussed. The recent devel-
opment of stochastic inverse source problems is provided. The IOP is addressed in Section 4.
Of particular interest is the inverse diffraction problem. The paper is concluded with some
general remarks and discussions on related problems. Some significant open problems are
also presented in Section 5.

2. INVERSE MEDIUM PROBLEM

In this section, we consider the IMP, which is to reconstruct the inhomogeneous
medium from boundary measurements of the scattered field surrounding the medium. The
main difficulties are the ill-posedness, especially lack of stability, and the nonlinearity. In the
static case (zero frequency), the problem is related to the celebrated Calderén problem [56],
which is known to be severely unstable, in general [2,1e1]. In fact, such severe ill-posedness
carries over to the inverse medium problems for acoustic and electromagnetic waves at a
fixed frequency [4,81]. Our remedy to overcome the difficulties is to consider multifrequency
boundary data. For the Maxwell equations model, we present a stable reconstruction method
based on recursive linearization. The stability of the model IMP is also investigated.

2.1. Model problem
Consider the time harmonic Maxwell equation in three dimensions, namely

Vx(VxEY—=k?>(14+¢g)E' =0 inR3, (2.1
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FIGURE 1
The inverse medium problem geometry. A plane wave E ? is incident on the scatterer ¢ with a compact support
contained in 2.

where E! is the total electric field, ¥ > 0 is the wavenumber or frequency, and ¢ is a real
function known as the scatterer representing the inhomogeneous medium. The scatterer is
assumed to have a compact support contained in a bounded domain  C R3 with bound-
ary I', and satisfies —1 < ¢ < gmax < 00 Where gmax is a positive constant. The problem
geometry is shown in Figure 1.

The scatterer is illuminated by a plane wave

Ei (X) — ﬁeixxﬁ’

where 71 € S? is the propagating direction and p € S? is the polarization vector satisfying
p -7 = 0. Evidently, the incident wave satisfies the homogeneous Maxwell equation

Vx(VxE)—k?E' =0 inR3. (2.2)

Since the total field E? consists of the incident field E* and the scattered field E, it
follows from (2.1)—(2.2) that the scattered field satisfies

Vx(VxE)—«*(1+q)E =«*>qE" inR>. (2.3)
In addition, the scattered field is required to satisfy the Silver—Miiller radiation condition
lim (Vx E)xx —ikrE) =0, r=|x]|.
r—>0o0

Denote by v the unit outward normal to I'. Computationally, it is convenient to
reduce the problem to a bounded domain by imposing a suitable (artificial) boundary con-
dition on I'. For simplicity, we employ the first-order absorbing boundary condition

VX(VXE)+ikvx (vx E)=0 onT. 24

Given the incident field E?, the direct problem is to determine the scattered field E
for the known scatterer ¢g. This work is devoted to the solution of the IMP, i.e., determining
the scatterer ¢ from the tangential trace of the electric field, v x E|r at multiple frequencies.
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Although this is a classical problem in inverse scattering theory, progress has been difficult
to make on reconstruction methods, due to the nonlinearity and ill-posedness associated
with the inverse scattering problem. We refer to [5,58, 64,71, 85, 86,93, 189] for related results
on the IMP.

To overcome the difficulties, an RLM was proposed in [59-61] for solving the IMP
of the two-dimensional Helmholtz equation. Based on the Riccati equations for the scatter-
ing matrices, the method requires full aperture data and needs to solve a sensitivity matrix
equation at each iteration. Due to the high computational cost, it is numerically difficult to
extend the method to three-dimensional problems. Recently, new and more efficient RLMs
have been developed for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell equations for both full and limited aperture data by directly using the
differential equation formulations [13,2e,21,23,24,28,29,31,32,37,51]. In the case of a fixed fre-
quency, a novel RLM has also been developed by making use of the evanescent waves [22,25].
Direct imaging techniques have been explored to replace the weak scattering for generating
the initial guesses in [19,33]. More recently, the RLM has been extended to solve the inverse
medium scattering problem in elasticity [44].

Next, we present an RLM that solves the IMP of Maxwell’s equations in three
dimensions, which first appeared in our work [2e,25]. The algorithm requires multifrequency
scattering data, and the recursive linearization is obtained by a continuation method on the
wavenumber. The algorithm first solves a linear equation under the Born approximation at the
lowest wavenumber. Updates are made by using the data at higher wavenumbers sequentially.
Following the idea of the Kaczmarz method, we use partial data and solve an underdeter-
mined minimal norm solution at each step. For each iteration, one forward and one adjoint
state of the Maxwell equations are solved, which may be implemented by using the symmet-
ric second-order edge elements.

2.2. Born approximation
Rewrite (2.3) as

Vx(VxE)—«?E =«*q(E' + E), (2.5)

where the incident wave is taken as a plane wave E! = pje'*~ 71 Consider a test function
F = pre®*M2 where p,,7i, € S? satisfy p, - ii, = 0. Clearly, the plane wave F satis-
fies (2.2).

Multiplying equation (2.5) by F and integrating over 2 on both sides, we have, by
integrating by parts and noting (2.2) for F', that

/[Ex(VxF)—Fx(VXE)]-vds=/c2/ gF - (E'+ E)dx.
r Q
A simple calculation yields
J 00 P ax = [ 0 B () ¢ B s
Q K Jr

B f q(x)(Pa - E)e**2dx.
Q
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For the weak scattering, either the wavenumber « is small, or the domain of support
Q2 is small, or ||¢|| L (g) is small, we may drop the second (nonlinear) term on the right-hand
side of the above equation to obtain the linear integral equation

/ g(x)eicx itingy — f(v x E) - ((ii2 + v) x p2)e**2ds,
Q P p2)k Jr

(
which is the Born approximation.
Since the scatterer g has a compact support, we use the notation

Q(s) — / q(x)eiKX'(;l'l-‘rr_iz)dx,
Q
where §(§) is the Fourier transform of ¢(x) with § = k(7i; + 7i»). Choose
i; = (sin 6; cos ¢;, sin 6; sin¢;, cos 6;), i =1,2,

where 6;, ¢; are the latitudinal and longitudinal angles, respectively. It is clear to note that the
domain [0, 7] x [0,27] of (6;,¢;),i = 1,2, corresponds to the ball By, = {£ € R?: |£| <2«}.
Thus, the Fourier modes of ¢ in the ball By, can be determined. The scattering data with
higher wavenumber k must be used in order to recover more modes of the scatterer q.

2.3. Recursive linearization

As discussed in the previous subsection, when the wavenumber « is small, the Born
approximation allows the reconstruction of those Fourier modes less than or equal to 2« for
the function ¢ (x). We now describe a procedure that recursively determines ¢, , an approxi-
mation of g(x) atk = k; for j = 1,2, ..., with the increasing wavenumber.

Suppose now that the scatterer gy has been recovered at some i, and that « is slightly
larger than k. We wish to determine g, or to determine equivalently the perturbation

84 = g — qr.
Let E and E be solutions of the scattering problem (2.3)—(2.4) corresponding to g, and gz,
respectively. Taking the difference of the scattering problem (2.3)—(2.4) corresponding to g,
and g, omitting the second-order smallness in §¢ and in §E = E — E , we obtain
V x (Vx8E) —k2(1 + gz)SE = k28q(E' + E) inQ,
VX (VXSE)+ikvx (vx38E)=0 onT.

(2.6)

For the scatterer g, and the incident wave E', we define the scattering map
Mg, E") = v x E|r,

where E is the solution of (2.3)—(2.4) with the scatterer g,. For simplicity, we denote
M(q., E) by M(q,) since the scattering map M(q,, E') is linear with respect to E'.

Next, we examine the boundary data v x E(x; 0y, ¢1; «). Here, the variable x is the
observation point which has two degrees of freedom on the artificial boundary T", 8; and
¢y are latitudinal and longitudinal angles of the incident wave E', respectively. At each fre-
quency, we have four degrees of freedom, and thus data redundancy, which may be addressed
by fixing one of the incident angles, say 0.
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Let (¢1); =2n(j —1)/m, j = 1,...,m, and define the residual operator
Rj(qr) = v x E(x:01.(¢1)j:k)|p — v x E(x: 01, ($1);:6) |

where E (x; 01, (¢1) j; k) is the solution of (2.3)—(2.4) with the incident longitudinal angle
(¢1); and the scatterer gz. For each j, the linearized problem (2.6) can be written as the

operator equation
DM;(qz)dq; = R;(qz), (2.7)

where DM (gz) is the Fréchet derivative of the scattering map M; (¢, ) corresponding to the
incident angle (¢1);. Applying the Landweber—Kaczmarz iteration [9e] to (2.7) yields

8q; = B« DM (qz) R} (qz),

where f, > 0 is a relaxation parameter and DM j* (g%) is the adjoint operator of DM (qz).

An adjoint state method is adopted to compute the correction §q; efficiently [25].
For each incident wave with the longitudinal angle (¢1);, it is necessary to solve one direct
and one adjoint problem for Maxwell’s equations. Since the adjoint problem takes a similar
variational form to the direct problem, we need to compute essentially two direct problems
at each step. Once §q; is determined, gz is updated by gz + §q;. After the mth sweep is
completed, we get the reconstructed scatterer g, at the wavenumber k. Assume that the scat-
tering data is for k € [Kmin, Kmax] and let kpin = ko < k1 < -+ < K = Kmax. The algorithm
of the RLM can be illustrated in Table 1.

Start with the Born approximation g, .

Do the outer loop on the wavenumber k;,i = 1,2,...,n.
Let q,?i =Gk,
Do the inner loop on the incident direction ¢;, j =1,2,...,m,

8q; = B DM} (q] R (g ).
qii = qli,-il + 4g;.
End

End

TABLE 1
The algorithm beyond Born approximation
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2.4. Numerical experiments
We present an example to illustrate the performance of the method. Let
G(x1, X2, x3) = 2x%e_(x% +x3+x3) and reconstruct the scatterer defined by

q(x1,x2,x3) = G(3x1,3.5x2, 3x3).

Figure 2 shows the surface plot of the true scatterer at slices x; = 0.3, x, = 0, and x3 = 0,
respectively. Six equally-spaced wavenumbers are used in the construction, starting from the
lowest wavenumber ki, = 0.57 and ending at the highest wavenumber kp.x = 2.57. The
incident fields are taken at 20 randomly chosen directions, which accounts for 20 Landweber
iterations at each wavenumber. The relaxation parameter is 0.01 and the noise level of the
data is 5%. Figure 3 shows the reconstructed scatterer at the Born approximation with the
wavenumber k = 0.57. Figures 4-5 illustrate the reconstructed scatterers at the different
wavenumbers. It can be observed from the numerical results that the Born approximation
generates a poor reconstruction, but the result can be improved as the wavenumber increases.

FIGURE 2
The true scatterer: (left) the slice x; = 0.3; (middle) the slice xo = 0; (right) the slice x3 = 0.

1 1 1
0.5 0.5 0.5
0 0 0
0.5 0.5 05
1 1 Y 1
0 1 0 1 0 1
0 0 0
X X X
3 x2 3 )(1 2 x1

-1 1 -1 1 -1 1

FIGURE 3
The Born approximation at the wavenumber k = 0.57: (left) the slice x; = 0.3; (middle) the slice x, = 0; (right)
the slice x3 = 0.
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FIGURE 4

The reconstructed scatterer at the wavenumber k = 1.37: (left) the slice x; = 0.3; (middle) the slice x, = 0;

(right) the slice x3 = 0.
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FIGURE 5

The reconstructed scatterer at the wavenumber k = 2.5 (left) the slice x; = 0.3; (middle) the slice xo = 0;

(right) the slice x3 = 0.

2.5. Stability analysis

It is well known that when the data is given for all frequencies and under cer-
tain geometrical assumptions, the IMP is well-posed with Lipschitz type stability estimates
[45,46,96,108]. However, in practice, the boundary measurements are often taken only at a
finite number of frequencies. Our numerical method based on recursive linearization takes
advantage of the regularity of the problem at high frequencies without being undermined by
local minima. Numerical tests have shown that the method is very stable with data driven
accuracy. Some preliminary convergence results of the RLM for solving the IMP with mul-
tifrequency are available in [27,41].

Next, we present stability estimates for the multifrequency IMP in one-dimension.
Stability in several dimensions is still open due to the difficulties of strong nonlinearity for
high frequencies and trapped rays of the frequency-dependent scattering relation.

Consider the one-dimensional Helmholtz equation

¢"(x, k) +k*(1 + q(x))p(x.k) =0, x€R,

where the scatterer ¢ is assumed to be supported in (0, 1). Denote by ¥4+ and ¥_ the scat-

tering waves corresponding to the left and right excitation e*<*

¢ (x, k) = Y + €5,

which satisfy
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Assume ¢(x) € C(;”H ([0, 1]) and define the reflection coefficients by

Y (0, 0) = (e Yo (k) = p-(k)e™™

and their associated measurements
1— + (K
ds(k) = M—()
1+ px(c)
Given the measurement data d 4 (k), « € (0, k), the IMP is to reconstruct the scatterer g(x).

In the following, we present two stability results obtained recently in [42].

Theorem 2.1. Assume that q,q are two scatterer functions. Let d i, dz be their boundary
measurements in (0, k). Then there exist a positive constant C and a function n such that
the following estimate holds:

lg — =@ < Cllds — d= 29 ..

Remark 2.2. We refer to [42] for the complete statement. The proof is based on a combi-
nation of the trace formula, Hitrik’s pole-free strip for the Schrodinger operator, the mero-
morphic extension, and the Two Constant Theorem. The Holder exponent 1 € (0, 1) in the
estimate is an explicit increasing function of k. It tends to zero when k¢ tends to zero
which shows as expected that the ill-posedness of the inversion increases when the band
of frequency shrinks. We conclude from the stability estimate that the reconstruction of
the scatterer function is accurate when the band of frequency is large enough and deteri-
orates when this later shrinks toward zero. These theoretical results confirm the numerical
observations and the physical expectations for the increasing stability phenomena by taking
multifrequency data.

By taking into account the uncertainty principle, it is reasonable to consider the
observable part of the scatterer. In the one-dimensional setting, the observable part of the
scatterer ¢ over the frequency band (0, ko) may be well-defined by using the truncated trace
formula [42].

The next theorem gives the stability estimate on the observable part of the scatterer,
which shows that the reconstruction of the observable part of the scatterer is stable for «¢
sufficiently large.

Theorem 2.3. Assume that q,q are two scatterer functions and gy, , G, are their correspond-
ing observable parts. Let d+, d+ be the boundary measurements in (0, k¢). There exist two
constants pg and kg such that the following estimate holds for all ko > kg

g0 = Gicolloe @) < PO [|dK) = d (K| 1000y

3. INVERSE SOURCE PROBLEM

In this section, we consider the ISP that determines the unknown current density
function from boundary measurements of the radiated fields at multiple wavenumbers. The
ISP has many significant applications in biomedical engineering and antenna synthesis [7, 88].
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In medical applications, it is often desirable to use the measurement of the radiated electro-
magnetic field on the surface of the human brain to infer abnormalities inside the brain [68].

3.1. Model problem
Consider the time-harmonic Maxwell equation in a homogeneous medium

Vx(VxE)—k?E =ikJ inR3, 3.1)

where « > 0 is the wavenumber, E is the electric field, J is the electric current density which
is assumed to have a compact support 2. The Silver—Miiller radiation condition is required
to ensure the well-posedness of the direct problem

lim ((VxE)xx—iKrE) =0, r=|x|. (3.2)
r—00

Given J € L2(R2)3, it is known that the scattering problem (3.1)—(3.2) has a unique
solution

B = [ Gxyin - J00ay.
where G(x, y; k) is Green’s tensor for the Maxwell system (3.1). Explicitly, we have

i
G(x,y;k) = ikg(x,yin)l3 + ;va;rg(x,y;/c),

where g is the fundamental solution of the three-dimensional Helmholtz equation and /3 is
the 3 x 3 identity matrix.

Let B = {x € R3:|x| < R}, where R is a positive constant such that @ CC Bg.
Denote by I'g the boundary of Bg. In the domain R3 \ Bg, the solution of (3.1) has a series
expansion in the spherical coordinates which may be used to derive the capacity operator
T. In addition, it can be verified that the solution of (3.1) satisfies the transparent boundary
condition

(VX E)xv=ikT(E xv) onlQg,

where v is the unit outward normal to I'.
Define the boundary measurement in terms of the tangential trace of the electric
field

JEcrr %o, = [ (B0 0 + B x o)ayco.

Let J be the electric current density with the compact support €2. The ISP of electromagnetic
waves is to determine J from the tangential trace of the electric field E (x, k) x v for x € T'g.

The ISP for the fixed frequency case has been studied extensively. It is now well
known that the problem is ill-posed with nonuniqueness and instability [1,58, 69,77,82]. Due
to the existence of infinitely many nonradiating fields, a source with extended support cannot
be uniquely determined from surface measurements at a fixed frequency. Therefore, addi-
tional constraints need to be imposed in order to obtain a unique solution to the inverse
problem. A usual choice is to find the source with a minimum energy norm. However, the
difference between the minimum energy solution and the original source function could be
significant. Another difficulty of the ISP at fixed frequency is the inherited instability due
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to exponential decay of the singular eigenvalues of the forward operator [34, 35,72]. For the
special cases of reconstruction for point sources, we refer to [6,9,38,39,107] for studies of the
unique identifiability and stability of the problem.

The use of the multiple frequency data for the ISP provides an approach to circum-
vent the difficulties of nonuniqueness and instability presented at a fixed frequency. For the
ISP of the Helmholtz equation, uniqueness and stability were established in [34] by mul-
tiple frequency measurements. The results indicate that the multifrequency ISP is not only
uniquely solvable but also is Lipschitz stable when the highest wavenumber exceeds a certain
real number.

In the rest of the section, we present our recent results on uniqueness and stability
for the ISP of Maxwell’s equations [3e], and discuss the recent development on the inverse
random source problems, where the current density is a random function.

3.2. Uniqueness and stability
Denote by X(Bpg) the closure of the following set in the L?(Bg)3 norm:

{E € H(curl, BR) : / (VXE)-(Vxy)—k?E-y)dx =0, Vy € C(;’°(BR)3}.
Bgr
We have the following orthogonal decomposition of L?(Bg)3 [11:
L*(BRr)’ = X(Br) ® Y(Br),

where Y (BR) is an infinite-dimensional subspace of L?(Bg)> and the electric current den-
sities in the subspace Y (BR) are called nonradiating sources. It corresponds to finding a
minimum norm solution when computing the component of the source in X(BR).

The following two results characterize clearly the uniqueness and nonuniqueness of
the ISP. The proofs can be found in [3e].

Theorem 3.1. Suppose J € Y (BR). Then J does not produce any tangential trace of electric
fields on I'r and thus cannot be identified.

Theorem 3.2. Suppose J € X(BR), then J can be uniquely determined by the data E x v
on Tg.

Define a functional space
Im(Br) ={J € X(BR) N H™(BRr)* : |/ | gm(g)y» <M},

where m > d is an integer and M > 1 is a constant. The following theorem concerns the
stability for the multifrequency ISP (3.1).

Theorem 3.3. Let E be the solution of the source problem (3.1)—(3.2) corresponding to
J € Iy (BR). Then

K3|Ingl4 )5‘2’"
,

J 2 < o2 M2
12202 = &+ M R om = 152
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where
1/2

K
&= (/0 K2||E(-,K) X v||§RdK)

The stability result shows that as the highest frequency increases, the stability con-
tinues to improve and approaches the Lipschitz type.

3.3. Inverse random source problems

Stochastic inverse problems refer to inverse problems that involve uncertainties due
to the unpredictability of the model and incomplete knowledge of the system and measure-
ments. Compared to deterministic counterparts, stochastic inverse problems have substan-
tially more difficulties from randomness and uncertainties. New models and methodologies
must be developed for solving stochastic inverse problems.

When the random source is modeled as the white noise, the stochastic ISP is con-
sidered for the Helmholtz equation [12, 15, 68, 98]. The goal is to reconstruct the statistical
properties of the random source, such as the mean and variance, from boundary measure-
ments of the radiated random wave field. Since the white noise has independent increments,
Itd’s calculus can be utilized to derive explicit formulas between the statistics of the wave
field and the random source. Recently, the model of the microlocally isotropic Gaussian field
is developed to handle stochastic processes with correlated increments [95,97]. The stochas-
tic inverse problem is to determine the microcorrelation strength in the principal symbol
from some statistics of the random wave fields. More recently, a new model of the inverse
random source problem has been proposed for the stochastic Helmholtz and Maxwell equa-
tions [99,10e], where the source is assumed to be driven by a fractional Gaussian field. The
new model covers various stochastic processes and allows to deal with rougher sources.

4. INVERSE DIFFRACTION GRATING PROBLEM

For an IOP, the scattering object is a homogeneous obstacle with a given boundary
condition. The inverse problem is to determine the obstacle from knowledge of the scattered
field away from the obstacle. In this section, we consider the scattering of a time-harmonic
electromagnetic plane wave by a (infinite) periodic structure (Figure 6), also known as a
grating in diffractive optics, which may be regarded as a special class of the obstacle problem.
The scattering problem in this setting is often referred to as the diffraction problem in the
literature.

Due to important applications, especially in the design and fabrication of optical
elements such as corrective lenses, antireflective interfaces, beam splitters, and sensors, the
diffraction problems in periodic structures have been studied extensively. We refer to [17,26]
and references therein for the mathematical studies of the existence and uniqueness ques-
tions of the model problems. Numerical methods can be found in [14,54, 63, 104] for either
an integral equation approach or a variational approach. A comprehensive review can be
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FIGURE 6
The inverse diffraction problem geometry. A plane wave E’ is incident on the surface with period A.

found in [16,1e5] on diffractive optics technology and its mathematical modeling, as well as
computational methods.

This section is concerned with the inverse diffraction problem, which is to determine
the periodic structure from a reflected field measured at a constant distance away from the
structure corresponding to a given incident field. The inverse problem arises naturally in
the study of optimal design problems in diffractive optics. The goal is to design a grating
structure that gives rise to some specified far-field patterns [11,7e].

The mathematical questions on uniqueness and stability for the inverse diffrac-
tion problem of both the two-dimensional Helmholtz equation and the three-dimensional
Maxwell equations have been studied extensively in [3, 10, 18, 47, 49, 52, 84, 92, 118]. However,
all of the above mentioned results are under fairly restrictive assumptions, or local in nature.
A complete answer to the uniqueness question has been given in [47,48] for the determination
of a three-dimensional polyhedral periodic diffraction structure by the scattered electromag-
netic fields measured above the structure. The result indicates that the uniqueness by any
given incident field fails for seven simple classes of regular polyhedral structures. Moreover,
if aregular periodic polyhedral structure is not uniquely identifiable by a given incident field,
then it belongs to a nonempty class of the seven classes whose elements generate the same
total field as the original structure when impinged upon by the same incident field. Problems
on global uniqueness or stability for the inverse diffraction problem are still open.

A number of numerical methods have been developed to solve these inverse prob-
lems [8,53,73,83,89]. Using a single-layer potential representation, we have presented in [29]
an efficient RLM for solving the nonlinear inverse diffraction grating problem in a one-
dimensional perfectly reflecting structure. The algorithm requires multifrequency data and
the iterative steps are obtained by recursive linearization with respect to the wavenumber:
at each step a nonlinear Landweber iteration is applied, with the starting point given by the
output from the previous step at a lower wavenumber. Thus, at each stage an approximation to
the grating surface filtered at a higher frequency is created. Starting from a reasonable initial
guess, the RLM is shown to converge for a larger class of surfaces than the usual Newton’s
method using the same initial guess.

An extension of the numerical method has been done in [28] for solving the inverse
diffraction problem with phaseless data. By using multifrequency data, our algorithm is
based on the RLM marching with respect to the wavenumber. With the starting point given
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by the output from the previous step at a lower wavenumber, a new approximation to the grat-
ing surface filtered at a higher frequency is updated by a Landweber iteration. The numerical
results show that the continuation method cannot determine the location of the grating struc-
ture, but it can effectively reconstruct the grating shape from the phaseless data.

Another important extension of the method is to solve the inverse diffraction prob-
lem by arandom periodic structure. Existing studies mostly assume that the periodic structure
is deterministic and only the noise level of the measured data is considered for the inverse
problem. In practice, however, there is a level of uncertainty of the scattering surface, e.g.,
the grating structure may have manufacturing defects or it may suffer other possible damages
from regular usage. Therefore, in addition to the noise level of measurements, the random
surface itself also influences the measured scattered fields. Surface roughness measurements
are of great significance for the functional performance evaluation of machined parts and
design of microoptical elements. Little is known in mathematics or computation about solv-
ing inverse problems of determining random surfaces. One challenge lies in the fact that the
scattered fields depend nonlinearly on the surface, which makes the random surface recon-
struction problem extremely difficult. Another challenge is to understand to what extend the
reconstruction could be made. In other words, what statistical quantities of the profile could
be recovered from the measured data? We have recently proposed an efficient numerical
method in [36] to reconstruct the random periodic structure from multifrequency scattered
fields measured at a constant height above the structure. We demonstrate that three critical
statistical properties, namely the expectation, root mean square, and correlation length of
the random structure may be reconstructed. Our method is based on a novel combination of
the Monte Carlo technique for sampling the probability space, an RLM with respect to the
wavenumber, and the Karhunen—Log¢ve expansion of the random structure.

5. DISCUSSIONS AND FUTURE DIRECTIONS

This work is devoted to mathematical analysis and numerical methods for solving
inverse scattering problems. On mathematical analysis, we have focused mainly on the stabil-
ity analysis of the inverse problems. Numerically, we have discussed the recursive lineariza-
tion approach. These results confirm that the spectral information is vital in stable solution
of inverse scattering problems and whenever possible multiple frequency data should be
taken and employed for reconstructions. There are tremendous research opportunities for
mathematical analysis and numerical methods of inverse scattering problems to meet the
continuous growing needs in science and engineering to explore the complex world, from
the universe to the new materials, and to the cell. As the computing powers continue to
increase and new fast algorithms are developed, inverse scattering problems will continue to
contribute to the advancements of the relevant science and engineering.

In the following, we point out some future research directions in line of the research
discussed in this work.

For inverse medium scattering problems, we present the stability estimates for the
one-dimensional model. In the extreme case when all frequency data is attainable, the esti-
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mates have also been obtained in [45,46]. However, no stability estimate is available for the
IMP in several dimensions. By taking into account the uncertainty principle, we conjecture
that the reconstruction of the observable part of the scatterer is Lipschitz stable.

For the inverse diffraction problem, global uniqueness remains open. In the polyhe-
dral structure cases, the problem was solved in [47, 48] by using group symmetry properties
of the structures and unique continuation properties. For the obstacle scattering problem
including the diffraction problem, another interesting problem is to derive the stability esti-
mate with explicit dependence on the wavenumber. The estimate will be particularly useful
for convergence analysis of the numerical methods.

In computation, the multifrequency data-based RLM is shown to be stable and effec-
tive for solving inverse scattering problems. However, only limited progress has been made
on convergence analysis [27,40,41,186]. It is expected that complete analysis should be done
by combining the stability estimates and the uncertainty principle. Another difficulty is the
incomplete data, including phaseless, limited aperture, or incomplete model. It is interesting
to investigate how to employ computational inverse scattering problems to break the diffrac-
tion limit. In other words, how to balance the accuracy and resolution. Initial efforts were
made on combining the RLM with near-field imaging techniques [31, 32].

Another interesting direction is to study the stochastic inverse scattering problems.
As discussed in Section 3.3, initial efforts have been made for solving inverse random source
problems. However, little progress is made for inverse medium problems and inverse obstacle
problems, where the scatterer and obstacle are respective random functions. It is of interest
to consider the more challenging inverse random medium scattering problem. The medium
is no longer deterministic and its randomness and uncertainty have to be modeled as well.
Since the scattered field depends on the medium or the obstacle nonlinearly, as opposed to
the linear dependence on the source, the scattering and inverse scattering problems become
much more challenging. In particular, new mathematical and computational frameworks are
in demand for solving these problems.

Finally, although the scope of this work is limited to inverse scattering problems
in acoustic and electromagnetic waves, we believe many of the methods and techniques dis-
cussed here could apply to inverse scattering problems in other wave models. Other emerging
topics which beyond the scope of this work but could change the future landscape of solving
inverse scattering problems include deep learning type methods [43,91] and optimal transport
methods [75].
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