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Abstract

We discuss the recent developments of projection-based model order reduction (MOR)
techniques targeting Hamiltonian problems. Hamilton’s principle completely character-
izes many high-dimensional models in mathematical physics, resulting in rich geometric
structures, with examples in fluid dynamics, quantum mechanics, optical systems, and epi-
demiological models. MOR reduces the computational burden associated with the approx-
imation of complex systems by introducing low-dimensional surrogate models, enabling
efficient multiquery numerical simulations. However, standard reduction approaches do not
guarantee the conservation of the delicate dynamics of Hamiltonian problems, resulting
in reduced models plagued by instability or accuracy loss over time. By approaching the
reduction process from the geometric perspective of symplectic manifolds, the resulting
reduced models inherit stability and conservation properties of the high-dimensional for-
mulations. We first introduce the general principles of symplectic geometry, including
symplectic vector spaces, Darboux’ theorem, and Hamiltonian vector fields. These notions
are then used as a starting point to develop different structure-preserving reduced basis
(RB) algorithms, including SVD-based approaches, and greedy techniques. We conclude
the review by addressing the reduction of problems that are not linearly reducible or in a
noncanonical Hamiltonian form.
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1. Introduction

The discretization of partial differential equations (PDEs) by classical methods like
finite element, spectral method, or finite volume leads to dynamical models with very large
state-space dimensions, typically of the order of millions of degrees of freedom to obtain
an accurate solution. MOR [48] is an effective method for reducing the complexity of such
models while capturing the essential features of the system state. Starting from the Truncated
Balanced Realization, introduced by Moore [36] in 1981, several other reduction techniques
have been developed and flourished during the last 40 years, including the Hankel-norm
reduction [20], the proper orthogonal decomposition (POD) [50], and the Padé-via-Lanczos
(PVL) algorithm [14]. More recently, there has been a focus on the physical interpretability
of the reduced models. Failure to preserve structures, invariants, and intrinsic properties of
the approximate model, besides raising questions about the validity of the reduced models,
has been associated with instabilities and exponential error growth, independently of the the-
oretical accuracy of the reduced solution space. Stable reduced models have been recovered
by enforcing constraints on the reduced dynamics obtained using standard reduction tools.
Equality and inequality constraints have been considered to control the amplitude of the
POD modes [16], the fluid temperature in a combustor [31], and the aerodynamic coefficients
[54]. Other methods directly incorporate the quantity of interest into the reduced system, pro-
ducing inf–sup stable [5], flux-preserving [11], and skew-symmetric [3] conservative reduced
dynamics. Even though great effort has been spent developing time integrators that pre-
serve the symplectic flow underlying Hamiltonian systems, interest in geometric model order
reduction initiated more recently, with efforts to preserve the Lagrangian structures [33].

The remainder of the paper is organized as follows. In Section 2, we present the
structure characterizing the dynamics of Hamiltonian systems and the concept of symplectic
transformations. In Section 3, we show that linear symplectic maps can be used to guarantee
that the reduced models inherit the geometric formulation from the full dynamics. Different
strategies to generate such maps are investigated in Section 4, with thoughts on optimality
results and computational complexities. A novel approach deviating from the linearity of the
projection map is briefly discussed in Section 5. Finally, we discuss applications of structure-
preserving reduction techniques to two more general classes of problems in Section 6, and
some concluding remarks are offered in Section 7.

2. Symplectic geometry and Hamiltonian systems

Let us first establish some definitions and properties concerning symplectic vector
spaces.

Definition 2.1. Let M be a finite-dimensional real vector space and � W M � M 7! R a
bilinear map. � is called antisymmetric if

�.u; v/ D ��.v; u/; 8u; v 2 M:
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It is nondegenerate if
�.u; v/ D 0; 8u 2 M H) v D 0:

Definition 2.2. Let M be a finite-dimensional vector space with � an antisymmetric bilinear
form on M. The pair .M; �/ is a symplectic linear vector space if � is nondegenerate.
Moreover, M has to be 2n-dimensional.

Since we are interested in structure-preserving transformations, preserving the
structure means to preserve the antisymmetric bilinear form, as stated in the following defi-
nition.

Definition 2.3. Let .M1; �1/ and .M2; �2/ be two symplectic vector spaces with
dim.M1/ � dim.M2/. The differentiable map � W M1 7! M2 is called a symplectic trans-
formation (symplectomorphism) if

���2 D �1;

where ���2 is the pull-back of �2 with �.

One of the essential properties of Euclidean spaces is that all the Euclidean spaces
of equal dimensions are isomorphic. For the symplectic vector spaces, a similar result holds,
since two 2n-dimensional symplectic vector spaces are symplectomorphic to one another.
They therefore are fully characterized by their dimensions (as a consequence of the following
theorem).

Theorem 2.1 (Linear Darboux’ theorem [13]). For any symplectic vector space .M; �/,
there exists a basis ¹ei ; fi º

n
iD1 of M such that

�.ei ; ej / D 0 D �.fi ; fj /; �.ei ; fj / D ıij ; 8i; j D 1; : : : ; n: (2.1)

The basis is called Darboux’ chart or canonical basis.

The proof of Theorem 2.1 is based on a procedure similar to the Gram–Schmidt
process to generate the symplectic basis, known as symplectic Gram–Schmidt [4].

The canonical basis allows representing the symplectic form as

�.u; v/ D �>J2n�; (2.2)

where �; � 2 R2n are the expansion coefficients of u; v 2 M with respect to the basis
¹ei ; fi º

n
iD1 and

J2n D

"
0n In

�In 0n

#
2 R2n�2n; (2.3)

is known as the Poisson tensor, with 0n 2 Rn�n and In 2 Rn�n denoting the zero and identity
matrices, respectively. As a direct result, the matrix representation of the symplectic form �

in the canonical basis is J2n. More generally, using a noncanonical basis, the form reduces
to �.u; v/ D �>J2n�, with J2n being an invertible constant skew-symmetric matrix.

While symplectic vector spaces are helpful for the analysis of dynamical problems
in Euclidean spaces and to define geometric reduced-order models, the constraint to the
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Euclidean setting is not generally adequate. In particular, the abstraction of the phase spaces
of classical mechanics over arbitrary manifolds requires the definition of more general sym-
plectic manifolds. We refer the reader to [34] for a more comprehensive description of the
topic. In this work, we limit ourselves to introducing a significant result regarding the evo-
lution of the state of Hamiltonian systems.

Definition 2.4. Let .M; �/ be a symplectic manifold and H W M 7! R a 1-form. We refer
to the unique vector field XH , which satisfies

i.XH /� D dH;

as the Hamiltonian vector field related to H , where i.XH / denotes the contraction operator
and d is the exterior derivative. The function H is called the Hamiltonian of the vector
field XH .

Suppose M is also compact, then XH is complete [22] and can be integrated, i.e.,
there exists an integral curve of XH , parametrized by the real variable t , that is, the solution
of

Py.t/ D XH

�
y.t/

�
: (2.4)

Equation (2.4) is referred to as Hamilton’s equation of evolution or Hamiltonian system. Dar-
boux’ theorem, as a generalization of Theorem 2.1, states that two symplectic manifolds are
only locally symplectomorphic. Using this result, the Hamiltonian vector field XH admits
the local representation

XH D

nX
iD1

@H

@fi

@

@ei

�
@H

@ei

@

@fi

; (2.5)

with ¹ei ; fi º
n
iD1 is a local basis, leading to the following representation of (2.4), expressed

directly in terms of H .

Proposition 2.1. Let .M;�/ be a 2n-dimensional symplectic vector space and let ¹qi ;pi º
n
iD1

be a canonical system of coordinates. Hamilton’s equation is defined by8<: dqi

dt
D

@H
@pi

;

dpi

dt
D �

@H
@qi

;
(2.6)

for i D 1; : : : ; n, which is a first order system in the .qi ; pi /-space, or generalized phase-
space.

Thus, if the state vector y D .q1; : : : ; qn; p1; : : : ; pn/ is introduced, (2.6) takes the
form

Py.t/ D J2nryH
�
y.t/

�
; (2.7)

where ryH is the naive gradient of H . The flow of Hamilton’s equation has some interesting
properties.

Proposition 2.2. Let �t be the flow of a Hamiltonian vector field XH . Then �t W M 7! M

is a symplectic transformation.
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We rely on a geometric perspective of linear vector spaces to highlight the impor-
tance of Proposition 2.2. Given two coefficient vectors u and v in R2n, the symplectic
form (2.2) can be interpreted as the sum of the oriented areas of the orthogonal projec-
tion of the parallelogram defined by the two vectors on the .qi ; pi / planes. Definition 2.3,
in case of 2n-dimensional symplectic vector space .M; �/ with canonical coordinates, is
equivalent to stating that a map � W R2n 7! R2n is a symplectic transformation if and only
if its Jacobian �0 satisfies everywhere

.�0/>J2n�0
D J2n: (2.8)

Property (2.8) can be used to show that a symplectic transformation preserves the bilinear
form � in the sense that [34]

�
�
�.u/; �.v/

�
D �.u; v/: (2.9)

Hence, the symplectic map � represents a volume-preserving transformation. However,
being symplectic is a more restrictive condition than being volume-preserving, as shown in
the Nonsqueezing Theorem [24].

We conclude this section by noting that if the Hamiltonian function does not depend
explicitly on time, its value is conserved along the solution trajectory.

Proposition 2.3. For Hamiltonian systems (2.7), the Hamiltonian function is a first integral.

3. Symplectic Galerkin projection

The motivation of MOR is to reduce the computational complexity of dynamical
systems in numerical simulations. In the context of structure-preserving projection-based
reduction, two key ingredients are required to define a reduced model. First, we need a low-
dimensional symplectic vector space that accurately represents the solution manifold of the
original problem. Then, we have to define a projection operator to map the symplectic flow
of the Hamiltonian system onto the reduced space, while preserving its delicate properties.

Let us assume there exists a canonical basis ¹ei ; fi º
n
iD1 such that Hamilton’s equa-

tion can be written in canonical form8<: Py.t/ D J2nryH.y.t//;

y.0/ D y0;
(3.1)

and the related symplectic vector space is denoted by .M; �/. Symplectic projection-based
model order reduction adheres to the key idea of more general projection-based techniques
[30] to approximate y in a low-dimensional symplectic subspace .A; �/ of dimension 2k.
In particular, we aim at k � n to have a clear reduction, and therefore, significant gains in
terms of computational efficiency. Let ¹ Qei ; Qfi º

k
iD1 be a reduced basis for the approximate

symplectic subspace and construct the linear map � W A 7! M given by

y � �.z/ D Az; (3.2)
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where
A D Œ Qe1; : : : ; Qek ; Qf1; : : : ; Qfk � 2 R2n�2k :

Then A belongs to the set of symplectic matrices of dimension 2n � 2k, also known as the
symplectic Stiefel manifold, defined by

Sp.2k; R2n/ WD
®
L 2 R2n�2k

W L>J2nL D J2k

¯
:

Differential maps are often used to transfer structures from well-defined spaces to unknown
manifolds. In this context, using the symplecticity of A, it is possible to show [1] that Defini-
tion 2.3 holds, with the right inverse of � represented by A, and that there exists a symplectic
form on A given by

Q� D ��� D A>J2nA D J2k : (3.3)

As a result, .A; Q�/ is a symplectic vector space. In the following, for the sake of notation,
we use A to indicate the reduced symplectic manifold paired with its bilinear form.

Given a symplectic matrix A 2 R2n�2k , its symplectic inverse is defined as

AC
D J>

2kA>J2n: (3.4)

Even though different from the pseudoinverse matrix .A>A/�1A>, the symplectic inverse
AC plays a similar role and, in the following proposition, we outline its main properties [44].

Proposition 3.1. Suppose A 2 R2n�2k is a symplectic matrix and AC is its symplectic
inverse. Then

• ACA D I2n,

• ...AC/>/C/> D A,

• .AC/> 2 Sp.2k; R2n/,

• If A is orthogonal then AC D A>.

Using (3.3), the definition of AC and the symplectic Gram–Schmidt process, it is possible to
construct a projection operator PA D AJ>

2k
A>J2n D AAC, that, differently from the POD

orthogonal projection [46], can be used to approximate (3.1) with Hamiltonian system of
reduced-dimension 2k, characterized by the Hamiltonian function

HRB.z/ D H.Az/: (3.5)

In particular, in the framework of Galerkin projection, using (3.2) in (3.1) yields

A Pz D J2nryH.Az/ C r; (3.6)

with r being the residual term. Utilizing the chain rule and the second property of AC in
Proposition 3.1, the gradient of the Hamiltonian in (3.6) can be recast as

ryH.Az/ D .AC/>
rzHRB.z/:

By assuming that the projection residual is orthogonal with respect to the symplectic bilinear
form to the space spanned by A, we recover8<: Pz.t/ D J2krzHRB.z.t//;

z.0/ D ACy0:
(3.7)
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System (3.7) is known as a symplectic Galerkin projection of (3.1) onto A. The pre-
processing stage consisting of the collection of all the computations required to assemble
the basis A is known as the offline stage. The numerical solution of the low-dimensional
problem (3.7) represents the online stage, and provides a fast approximation to the solution
of the high-fidelity model (3.1) by means of (3.2). Even though the offline stage is possibly
computationally expensive, this splitting is beneficial in a multiquery context, when multiple
instances of (3.7) have to be solved, e.g., for parametric PDEs.

Traditional projection-based reduction techniques do not guarantee stability, even
if the high-dimensional problem admits a stable solution [37], often resulting in a blowup
of system energy. On the contrary, by preserving the geometric structure of the problem,
several stability results hold for the reduced Hamiltonian equation (3.7). In [1, Proposition 15,

page A2625], the authors show that the error in the Hamiltonian jH.y.t// � HRB.z.t//j is
constant for all t . We detail two relevant results in the following, suggesting that structure
and energy preservation are key for stability.

Theorem 3.1 (Boundedness result [44]). Consider the Hamiltonian system (3.1), with
Hamiltonian H 2 C 1.M/ and initial condition y0 2 R2n such that y0 2 range.A/, with
A 2 R2n�2k symplectic basis. Let (3.7) be the reduced Hamiltonian system obtained as the
symplectic Galerkin projection induced by A of (3.1). If there exists a bounded neighbor-
hood Uy0 in R2n such that H.y0/ < H. Qy/, or H.y0/ > H. Qy/, for all Qy on the boundary
of Uy0 , then both the original system and the reduced system constructed by the symplectic
projection are uniformly bounded for all t .

Theorem 3.2 (Lyapunov stability [1, 44]). Consider the Hamiltonian system (3.1) with
Hamiltonian H 2 C 2.M/ and the reduced Hamiltonian system (3.7). Suppose that y� is a
strict local minimum of H . Let S be an open ball around y� such that r2H.y/ > 0 and
H.z/ < c, for all z 2 S and some c 2 R, and H. Ny/ D c for some Ny 2 @S , where @S is the
boundary of S . If there exists an open neighborhood S of y� such that S \ range.A/ ¤ ;,
then the reduced system (3.7) has a stable equilibrium point in S \ range.A/.

For the time-discretization of (3.7), the use of a symplectic integrator [26] is crucial
for preserving the symplectic structure at the discrete level. In particular, the discrete flow
obtained using a symplectic integrator satisfies a discrete version of Proposition 2.2.

In the next section, we introduce different strategies to construct symplectic bases
as results of optimization problems.

4. Proper symplectic decomposition

Let us consider the solution vectors yi D y.ti / 2 R2n (the so-called solution snap-
shots) obtained, for different time instances ti 2 Œt0; tend�, 8i D 1; : : : ; N , by time discretiza-
tion of (3.1) using a symplectic integrator. Define the snapshot matrix

My WD Œy1 : : : yN �; (4.1)
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as the matrix collecting the solution snapshots as columns. In the following, we consider
different algorithms stemming from the historical method of snapshots [50], as the base of the
proper orthogonal decomposition (POD). To preserve the geometric structure of the original
model, we focus on a similar optimization problem, the proper symplectic decomposition
(PSD), which represents a data-driven basis generation procedure to extract a symplectic
basis from My . It is based on the minimization of the projection error of My on A and
it results in the following optimization problem for the definition of the symplectic basis
A 2 R2n�2k :

minimize
A2R2n�2k

My � AACMy


F

;

subject to A 2 Sp.2k; R2n/;
(4.2)

with A D range.A/ and k � kF being the Frobenius norm. Problem (4.2) is similar to the POD
minimization, but with the feasibility set of rectangular orthogonal matrices, also known as
the Stiefel manifold

St.2k; R2n/ WD
®
L 2 R2n�2k

W L>L D I2n

¯
;

replaced by the symplectic Stiefel manifold. Recently there has been a great interest in opti-
mization on symplectic manifolds, and a vast literature is available on the minimization of
the least-squares distance from optimal symplectic Stiefel manifolds. This problem has rel-
evant implications in different physical applications, such as the study of optical systems
[18] and the optimal control of quantum symplectic gates [52]. Unfortunately, with respect
to POD minimization, problem (4.2) is significantly more challenging for different reasons.
The nonconvexity of the feasibility set and the unboundedness of the solution norm pre-
cludes standard optimization techniques. Moreover, most of the attention is focused on the
case n D k, which is not compatible with the reduction goal of MOR.

Despite the interest in the topic, an efficient optimal solution algorithm has yet to
be found for the PSD. Suboptimal solutions have been attained by focusing on the subset of
the ortho-symplectic matrices, i.e.,

S.2k; 2n/ WD St.2k; R2n/ \ Sp.2k; R2n/: (4.3)

In [44], while enforcing the additional orthogonality constraint in (4.2), the optimization
problem is further simplified by assuming a specific structure for A. An efficient greedy
method, not requiring any additional block structures to A, but only its orthogonality and
simplecticity, has been introduced in [1]. More recently, in [7], the orthogonality requirement
has been removed, and different solution methods to the PSD problem are explored. In the
following, we briefly review the above-mentioned approaches.

4.1. SVD-based methods for orthonormal symplectic basis generation
In [44], several algorithms have been proposed to directly construct ortho-symplectic

bases. Exploiting the SVD decomposition of rearranged snapshots matrices, the idea is to
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search for optimal matrices in subsets of Sp.2k; R2n/. Consider the more restrictive feasi-
bility set

S1.2k; 2n/ WD Sp.2k; R2n/ \

´"
ˆ 0

0 ˆ

# ˇ̌
ˆ 2 Rn�k

µ
:

Then A>J2nA D J2k holds if and only if ˆ>ˆ D In, i.e., ˆ 2 St.k;Rn/. Moreover, we have
that AC D diag.ˆ>; ˆ>/. The cost function in (4.2) becomesMy � AACMy


F

D
M1 � ˆˆ>M1


F

; (4.4)

with M1 D Œp1 : : : pN q1 : : : qN � 2 Rn�2N , where pi and qi are the generalized phase-
space components of yi . Thus, as a result of the Eckart–Young–Mirsky theorem, (4.4) admits
a solution in terms of the singular-value decomposition of the data matrix M1. This algo-
rithm, formally known as Cotangent Lift, owes its name to the interpretation of the solution
A to (4.4) in S1.2k; 2n/ as the cotangent lift of linear mappings, represented by ˆ and ˆ>,
between vector spaces of dimensions n and k. Moreover, this approach constitutes the nat-
ural outlet in the field of Hamiltonian systems of the preliminary work of Lall et al. [33] on
structure-preserving reduction of Lagrangian systems. However, there is no guarantee that
the Cotangent Lift basis is close to the optimal of the original PSD functional.

A different strategy, known as Complex SVD decomposition, relies on the definition
of the complex snapshot matrix M2 D Œp1 C iq1 : : : pN C iqN � 2 Cn�N , with i being
the imaginary unit. Let U D ˆ C i‰ 2 Cn�N , with ˆ; ‰ 2 Rn�k , be the unitary matrix
solution to the following accessory problem:

minimize
U 2Rn�2k

M2 � U U �M2


F

;

subject to U 2 St.2k; R2n/:
(4.5)

As for the Cotangent Lift algorithm, the solution to (4.5) is known to be the set of the 2k

left-singular vectors of M2 corresponding to its largest singular values. In terms of the real
and imaginary parts of U , the orthogonality constraint implies

ˆ>ˆ C ‰>‰ D In; ˆ>‰ D ‰>ˆ: (4.6)

Consider the ortho-symplectic matrix, introduced in [44], and given by

A D

h
E J>

2nE
i

2 R2n�2k ; E>E D Ik ; E>J2nE D 0k ; with E D

"
ˆ

‰

#
: (4.7)

Using (4.6), it can be shown that such an A is the optimal solution of the PSD problem in

S2.2k; 2n/ WD Sp.2k; R2n/ \

´"
ˆ �‰

‰ ˆ

# ˇ̌
ˆ; ‰ 2 Rn�k

µ
;

that minimizes the projection error of Mr WD ŒMy J2nMy �, also known as the rotated snap-
shot matrix, with My given in (4.1). In [7], extending the result obtained in [41] for square
matrices, it has been shown that (4.7) is a complete characterization of symplectic matrices
with orthogonal columns, meaning that all the ortho-symplectic matrices admit a represen-
tation of the form (4.7), for a given E, and hence S2.2k; 2n/ � S.2k; 2n/. In the same work,
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Haasdonk et al. showed that an ortho-symplectic matrix that minimizes the projection error
of Mr is also a minimizer of the projection error of the original snapshot matrix My , and vice
versa. This is been achieved by using an equivalence argument based on the POD applied to
the matrix Mr . Thus, combining these two results, the Complex SVD algorithm provides a
minimizer of the PSD problem for ortho-symplectic matrices.

4.2. SVD-based methods for nonorthonormal symplectic basis generation
In the previous section, we showed that the basis provided by the Complex SVD

method is not only near-optimal in S2, but is optimal for the cost functionals in the space
of ortho-symplectic matrices. The orthogonality of the resulting basis is beneficial [32],
among others, for reducing the condition number associated with the fully discrete formu-
lation of (3.7). A suboptimal solution to the PSD problem not requiring the orthogonality
of the feasibility set is proposed in [44], as an improvement of the SVD-based generators of
ortho-symplectic bases using the Gappy POD [19], under the name of nonlinear program-
ming approach (NLP). Let A� 2 S2.2r; 2n/ be a basis of dimension 2r generated using the
Complex SVD method. The idea of the NLP is to construct a target basis A 2 Sp.2k; R2n/,
with k < r � n, via the linear mapping

A D A�C; (4.8)

with C 2 R2r�2k . Using (4.8) in (4.2) results in a PSD optimization problem for the coef-
ficient matrix C , of significantly smaller dimension (4kr parameters) as compared to the
original PSD problem (4kn parameters) with A unknown. However, no optimality results
are available for the NLP method.

A different direction has been pursued in [7], based on the connection between tradi-
tional SVD and Schur forms and the matrix decompositions, related to symplectic matrices,
as proposed in the following theorem.

Theorem 4.1 (SVD-like decomposition [53, Theorem 1, p. 6]). If B 2 R2n�ns , then there exist
S 2 Sp.2n; R2n/, Q 2 St.ns; Rns /, and D 2 R2n�ns of the form

D D

b q b n � 2b � q266666664

377777775

† 0 0 0 b

0 I 0 0 q

0 0 0 0 m � b � q

0 0 † 0 b

0 0 0 0 q

0 0 0 0 m � b � q

; (4.9)

with † D diag.�1; : : : ; �b/, �i > 0 8i D 1; : : : ; b, such that

B D SDQ: (4.10)

Moreover, rank.B/ D 2b C q and �i are known as symplectical singular values.
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Let us apply the SVD-like decomposition to the snapshot matrix My (4.1), where ns repre-
sents the number of snapshots, and define its weighted symplectic singular values as

wi D

8<: �i

q
kSi k

2
2 C kSnCi k

2
2; 1 � i � b;

kSi k2; b C 1 � i � b C q;

with Si 2 R2n being the i th column of S and k � k2 the Euclidean norm. The physical inter-
pretation of the classical POD approach characterizes the POD reduced basis as the set of a
given cardinality that captures most of the energy of the system. The energy retained in the
reduced approximation is quantified as the sum of the squared singular values correspond-
ing to the left singular vectors of the snapshot matrix representing the columns of the basis.
A similar guiding principle is used in [7], where the energy of the system, i.e., the Frobenius
norm of the snapshot matrix, is connected to the weighted symplectic singular values as

kMyk
2
F D

bCqX
iD1

w2
i : (4.11)

Let IPSD be the set of indices corresponding to the k largest energy contributors in (4.11),

IPSD D ¹ij º
k
j D1 D argmax

I�¹1;:::;bCqº

�X
i2I

w2
i

�
: (4.12)

Then, the PSD SVD-like decomposition defines a symplectic reduced basis A 2 Sp.2k;R2n/

by selecting the pairs of columns from the symplectic matrix S corresponding to the indices
set IPSD

A D Œsi1 : : : sik snCi1 : : : snCik �: (4.13)

Similarly to the POD, the reconstruction error of the snapshot matrix depends on the mag-
nitude of the discarded weighted symplectic singular values asMy � AACMy

2

F
D

X
i2¹1;:::;bCqºnIPSD

w2
i : (4.14)

Even though there are no proofs that the PSD SVD-like algorithm reaches the global opti-
mum in the sense of (4.2), some analysis and numerical investigations suggest that it provides
superior results as compared to orthonormal techniques [7].

4.3. Greedy approach to symplectic basis generation
The reduced basis methodology is motivated and applied within the context of real-

time and multiqueries simulations of parametrized PDEs. In the framework of Hamiltonian
systems, we consider the following parametric form of (3.1):8<: Py.t; �/ D J2nryH.y.t; �/I �/;

y.0; �/ D y0.�/;
(4.15)

with � 2 P � Rd being a d -dimensional parameter space. Let ZP be the set of solutions
to (4.15) defined as

ZP
D

®
y.t; �/ W t 2 Œt0; tend�; � 2 P

¯
� R2n:
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For the sake of simplicity, in the previous sections we have only considered the nonparametric
case. The extension of SVD-based methods for basis generations to (4.15) is straightforward
on paper, but it is often computationally problematic in practice as the number of snapshots
increases. Similar to other SVD-based algorithms, the methods described in the previous sec-
tions require the computation of the solution to (4.15) corresponding to a properly chosen
discrete set of parameters S� D ¹�j º

p
j D1 � P and time instances S t D ¹ti º

N
iD1, defined a

priori, and constituting the sampling set S�;t WD S� � S t . Random or structured strategies
exist to define the set S�, such as the Monte Carlo sampling, Latin hypercube sampling, and
sparse grids [12], while S t is a subset of the time-discretization, usually dictated by the inte-
grator of choice. The set of snapshots corresponding to the sampling set S�;t must provide
a “good” approximation of the solution manifold and should not miss relevant parts of the
time-parameter domain. Once the sampling set S�;t has been fixed, the matrix My , M1, or
M2, depending on the method of choice, is assembled, and its singular value decomposi-
tion is computed. Even though a certain amount of computational complexity is tolerated
in the offline stage to obtain a significant speed-up in the online stage, the evaluation of the
high-fidelity solution for a large sampling set and the SVD of the corresponding snapshot
matrix are often impractical or not even feasible. Hence, an efficient approach is an incremen-
tal procedure. The reduced basis, in which the column space represents the approximating
manifold, is improved iteratively by adding basis vectors as columns. The candidate basis
vector is chosen as the maximizer of a much cheaper optimization problem. This summa-
rizes the philosophy of the greedy strategy applied to RB methods [6,9], which requires two
main ingredients: the definition of an error indicator and a process to add a candidate column
vector to the basis.

Let Uk be an orthonormal reduced basis produced after k steps of the algorithm. In
its idealized form, introduced in [51], the greedy algorithm uses the projection error

.t�; ��/ WD argmax
.ti ;�j /2S�;t

u.ti ; �j / � UkU >
k u.ti ; �j /


2
; (4.16)

to identify the snapshot u� WD u.t�; ��/ that is worst approximated by the column space of
Uk over the entire sampling set S�;t . Let ukC1 be the vector obtained by orthonormalizing
u� with respect to Uk . Then the basis Uk is updated as UkC1 D ŒUk ukC1�. To avoid the
accumulation of rounding errors, it is preferable to utilize backward stable orthogonalization
processes, such as the modified Gram–Schmidt orthogonalization. The algorithm terminates
when the basis reaches the desired dimension, or the error (4.16) is below a certain toler-
ance. In this sense, the basis UkC1 is hierarchical because its column space contains the
column space of its previous iterations. This process is referred to as strong greedy method.
Even though introduced as a heuristic procedure, interesting results regarding algebraic and
exponential convergence have been formulated in [6, 9], requiring the orthogonality of the
basis in the corresponding proofs. However, in this form, the scheme cannot be efficiently
implemented: the error indicator (4.16) is expensive to calculate because it requires all the
snapshots of the training set S�;t to be accessible, relieving the computation only of the cost
required for the SVD.
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An adjustment of the strong greedy algorithm, known as weak greedy algorithm,
assembles the snapshot matrix corresponding to S�;t iteratively while expanding the approx-
imating basis. The idea is to replace (4.16) with a surrogate indicator � W S�;t 7! R that
does not demand the computation of the high-fidelity solution for the entire time-parameter
domain.

In the case of elliptic PDEs, an a-posteriori residual-based error indicator requiring
a polynomial computational cost in the approximation space dimension has been introduced
in [49]. The substantial computational savings allow the choice of a more refined, and there-
fore representative, sampling set S�;t . One might also use a goal-oriented indicator as the
driving selection in the greedy process to obtain similar computational benefits. In this
direction, in the framework of structure-preserving model order reduction, [1] suggests the
Hamiltonian as a proxy error indicator. Suppose A2k D ŒEk J>

2nEk �, with Ek D Œe1 : : : ek �,
is a given ortho-symplectic basis and consider

.t�; ��/ WD argmax
.ti ;�j /2S�;t

ˇ̌
H

�
y.ti ; �j /

�
� H

�
A2kAC

2k
y.ti ; �j /

�ˇ̌
: (4.17)

By [1, Proposition 15], the error in the Hamiltonian depends only on the initial condition and
the symplectic reduced basis. Hence, the indicator (4.17) does not require integrating in time
the full system (4.15) over the entire set S�, but only over a small fraction of the parameter
set, making the procedure fast. Hence, the parameter space can be explored first,

��
WD argmax

�j 2S�

ˇ̌
H

�
y0.�j /

�
� H

�
A2kAC

2k
y0.�j /

�ˇ̌
; (4.18)

to identify the value of the parameter that maximizes the error in the Hamiltonian as a func-
tion of the initial condition. This step may fail if y0.�j / 2 range.A2k/, 8j D 1; : : : ; p.
Then (4.15) is temporally integrated to collect the snapshot matrix

Mg D
�
y.t1; ��/ : : : y.tN ; ��/

�
:

Finally, the candidate basis vector y� D y.��; t�/ is selected as the snapshot that maximizes
the projection error

t�
WD argmax

ti 2S t

y.ti ; ��/ � A2kAC

2k
y.ti ; ��/


2
: (4.19)

Standard orthogonalization techniques, such as QR methods, fail to preserve the symplectic
structure [10]. In [1], the SR method [47], based on the symplectic Gram–Schmidt, is employed
to compute the additional basis vector ekC1 that conforms to the geometric structure of the
problem. To conclude the .k C 1/th iteration of the algorithm, the basis A2k is expanded in

A2.kC1/ D
�
Ek ekC1 J>

2nEk J>
2nekC1

�
:

We stress that, with this method, known as symplectic greedy RB, two vectors, ekC1 and
J>

2nekC1, are added to the symplectic basis at each iteration, because of the structure of ortho-
symplectic matrices. A different strategy, known as PSD-Greedy algorithm and partially
based on the PSD SVD-like decomposition, has been introduced in [8], with the feature of
not using orthogonal techniques to compress the matrix Mg . In [1], following the results
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given in [9], the exponential convergence of the symplectic strong greedy method has been
proved.

Theorem 4.2 ([9, Theorem 20, p. A2632]). Let ZP be a compact subset of R2n. Assume that
the Kolmogorov m-width of ZP defined as

dm.ZP / D inf
Z��R2n

dim.Z�/Dmv2ZP

sup
w2Z�

minkv � wk2;

decays exponentially fast, namely dm.ZP / � c exp.�˛m/ with ˛ > log 3. Then there exists
ˇ > 0 such that the symplectic basis A2k generated by the symplectic strong greedy algorithm
provides exponential approximation properties,s � A2kAC

2k
s


2
� C exp.�ˇk/; (4.20)

for all s 2 ZP and some C > 0.

Theorem 4.2 holds only when the projection error is used as the error indicator
instead of the error in the Hamiltonian. However, it has been observed for different sym-
plectic parametric problems [1] that the symplectic method using the loss in the Hamiltonian
converges with the same rate of (4.20). The orthogonality of the basis is used to prove the
convergence of the greedy procedure. In the case of a nonorthonormal symplectic basis,
supplementary assumptions are required to ensure the convergence of the algorithm.

5. Dynamical low-rank reduced basis methods for

Hamiltonian systems

The Kolmogorov m-width of a compact set describes how well this can be approx-
imated by a linear subspace of a fixed dimension m. A problem (4.15) is informally defined
reducible if dm decays sharply with m, implying the existence of a low-dimensional repre-
sentation of ZP . A slow decay limits the accuracy of any efficient projection-based reduction
on linear subspaces, including all the methods discussed so far. For Hamiltonian problems,
often characterized by the absence of physical dissipation due to the conservation of the
Hamiltonian, we may have dm.ZP / D O.m� 1

2 / in case of discontinuous initial condition
[23] for wave-like problems. Several techniques, either based on nonlinear transformations
of the solution manifold to a reducible framework [39] or presented as online adaptive meth-
ods to target solution manifolds at fixed time [42], have been introduced to overcome the
limitations of the linear approximating spaces. In different ways, they all abandon the frame-
work of symplectic vector spaces. Therefore, none of them guarantees conservation of the
symplectic structure in the reduction process. Musharbash et al. [38] proposed a dynamically
orthogonal (DO) discretization of stochastic wave PDEs with a symplectic structure. In the
following, we outline the structure-preserving dynamic RB method for parametric Hamilto-
nian systems, proposed by Pagliantini [40] in the spirit of the geometric reduction introduced
in [15]. In contrast with traditional methods that provide a global basis, which is fixed in
time, the gist of a dynamic approach is to evolve a local-in-time basis to provide an accurate
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approximation of the solution to the parametric problem (4.15). The idea is to exploit the
local low-rank nature of Hamiltonian dynamics in the parameter space. From a geometric
perspective, the approximate solution evolves according to naturally constrained dynamics,
rather than weakly enforcing the required properties, such as orthogonality or symplecticity
of the RB representation, via Lagrange multipliers. This result is achieved by viewing the
flow of the reduced model as prescribed by a vector field that is everywhere tangent to the
desired manifold.

Suppose we are interested in solving (4.15) for a set of p vector-valued parameters
�h D ¹�i º

p
iD1, sampled from P . Then the Hamiltonian system, evaluated at �h, can be recast

as a set of ODEs in the matrix unknown R 2 R2n�p ,8<: PR.t/ D XH .R.t/; �h/ D J2nrRH.R.t/; �h/;

R.t0/ D R0.�h/;
(5.1)

where H is a vector-valued Hamiltonian function, the j th column of R.t/ is such that
Rj .t/ D y.t;�j /, and .rRH/i;j WD @Hj =@Ri;j . We consider an approximation of the solu-
tion to (5.1) of the form

R.t/ � R.t/ D A.t/Z.t/; (5.2)

where A.t/ 2 S.2k; 2n/, and Z.t/ 2 R2k�p is such that its j th column Zj .t/ collects coef-
ficients, with respect to the basis A.t/, of the approximation of y.t; �j /. Despite being cast
in the same framework of an RB approach, a stark difference between (5.2) and (3.2) lies in
the time-dependency of the basis in (5.2).

Consider the manifold of 2n � p matrices having at most rank 2k, and defined as

ZP
2n WD

®
R 2 R2n�p

W R D AZ with A 2 S.2k; 2n/; Z 2 Z
¯
; (5.3)

with the technical requirement

Z WD
®
Z 2 R2k�p

W rank.ZZ>
C J>

2kZZ>J2k/ D 2k
¯
: (5.4)

This represents a full-rank condition on Z to ensure uniqueness of the representation (5.2) for
a fixed basis. The tangent vector at R.t/ D A.t/Z.t/ 2 ZP

2n is given by X D XAZ C AXZ ,
where XA and XZ correspond to the tangent directions for the time-dependent matrices A

and Z, respectively. Applying the orthogonality and symplecticity condition on A.t/, for all
times t , results in

X>
A A C A>XA D 0 and X>

A J2nA C A>J2nXA D 0; (5.5)

respectively. Using (5.5) and an additional gauge constraint to uniquely parametrize the tan-
gent vectors X by the displacements XA and XZ , the tangent space of ZP

2n at R D AZ can
be characterized as

TRMP
2n D

®
X 2 R2n�p

W X D XAZ C AXZ ;

with XZ 2 R2k�p; XA 2 R2n�2k ; X>
A A D 0; XAJ2k D J2nXA

¯
:
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The reduced flow describing the evolution of the approximation R.t/ is derived in [40] by
projecting the full velocity field XH in (5.1) onto the tangent space TR.t/Z

P
2n of ZP

2n at R.t/,
i.e., 8<: PR.t/ D …

TR.t/Z
P
2n

XH .R.t/; �h/;

R.t0/ D U0Z0:
(5.6)

To preserve the geometric structure of the problem, the projection operator …
TR.t/Z

P
2n

is a
symplectomorphism (see Definition 2.3) for each realization of the parameter �j 2 �h, in
the sense given in the following proposition.

Proposition 5.1 ([40, Proposition 4.3, p. 420]). Let S WD ZZ> C J2kZZ>J2k 2 R2k�2k .
Then, the map

…
TR.t/Z

P
2n

W R2n�p
! TR.t/Z

P
2n;

w 7! .I2n � AA>/.wZ>
C J2nwZ>J>

2k/S�1Z C AA>w;
(5.7)

is a symplectic projection, in the sense that
pX

j D1

��j .w � …
TR.t/Z

P
2n

w; y/ D 0; 8y 2 …
TR.t/Z

P
2n

;

where ��j is the symplectic form associated with the parameter �j .

The optimality of the reduced dynamics, in the Frobenius norm, follows from (5.6),
where the flow of R is prescribed by the best low-rank approximation of the Hamiltonian
velocity field vector XH into the tangent space of the reduced manifold ZP

2n. Using (5.7)
and (5.6), it is straightforward to derive the evolution equations for A.t/ and Z.t/:8̂̂<̂

:̂
PZj .t/ D J2nrZj

H.AZj ; �j /;

PA.t/ D .I2n � AA>/.J2nYZ � YZJ>
2n/S�1;

A.t0/Z.t0/ D A0Z0;

(5.8)

with Y WD ŒJ2nrH.UZ1; �1/ : : : J2nrH.UZp; �p/�.
The coefficients Z evolve according to a system of p independent Hamiltonian

equations, each in 2n unknowns, corresponding to the symplectic Galerkin projection
onto range.A/ for each parameter instance in �h, similarly to the global symplectic RB
method (3.7). In (5.8), however, the basis A evolves in time according to a matrix equation
in 2n � 2k unknowns, affecting the projection. A crucial property of the structure of A.t/ is
given in the following proposition.

Proposition 5.2 ([40, Proposition 4.5, p. 423]). If A0 2 S.2k;2n/ then A.t/ 2 R2n�2k solution
of (5.8) satisfies A.t/ 2 S.2k; 2n/ for all t > t0.

Standard numerical integrators, applied to (5.8), do not preserve, at the time-discrete
level, the property in Proposition 5.2 and the ortho-symplectic structure is compromised
after a single time step. In [40], two different intrinsic integrators have been investigated to
preserve the ortho-symplecticity of the basis, based on Lie groups and tangent techniques.
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Both methods require the introduction of a local chart defined on the tangent space TA.t/S

of the manifold S.2k; 2n/ at A.t/, with

TA.t/S WD
®
V 2 R2n�2k

W A>V 2 g.2k/
¯

and g.2k/ being the vector space of skew-symmetric and Hamiltonian 2k � 2k real square
matrices. In terms of differential manifolds, g.2k/ represents, together with the Lie bracket
Œ�; �� W g.2k/ � g.2k/ 7! g.2k/ defined as the matrix commutator ŒM; L� WD ML � LM ,
with M; L 2 g.2k/, the Lie algebra corresponding to the Lie group S.2k; 2k/. The idea is to
recast the basis equation in (5.8) in an evolution equation in the corresponding Lie algebra.
The linearity of Lie algebras allows to compute, via explicit Runge–Kutta methods, numer-
ical solutions that remain on the Lie algebra. Finally, the Cayley transform cay W g.2k/ 7!

S.2k; 2k/ is exploited to generate local coordinate charts and retraction/inverse retraction
maps, used to recover the solution in the manifold of rectangular ortho-symplectic matrices.
In [29], the structure-preserving dynamical RB-method has been paired with a rank-adaptive
procedure, based on a residual error estimator, to dynamically update also the dimension of
the basis.

6. Extensions to more general Hamiltonian problems

6.1. Dissipative Hamiltonian systems
Many areas of engineering require a more general framework than the one offered

by classical Hamiltonian systems, requiring the inclusion of energy-dissipating elements.
While the principle of energy conservation is still used to describe the state dynamics, dissi-
pative perturbations must be modeled and introduced in the Hamiltonian formulation (3.1).
Dissipative Hamiltonian systems, with so-called Rayleigh type dissipation, are considered a
special case of forced Hamiltonian systems, with the state y D .q;p/ 2 R2n, with q;p 2 Rn,
following the time evolution given by8<: Py.t/ D J2nrH.y.t// C XF .y.t//;

y.0/ D y0;
(6.1)

where XF 2 R2n is a velocity field, introducing dissipation, of the form

XF WD

"
0n

fH .y.t//

#
: (6.2)

We require XF to satisfy .ryH/>XF � 0, 8y 2 R2n, to represent a dissipative term, and
therefore

.rpH/>fH � 0: (6.3)

In terms of Rayleigh dissipation theory, there exists a symmetric positive semidefinite matrix
R.q/ 2 Rn�n such that fH D �R.q/ Pq.p; q/ and (6.3) reads

.rpH/>fH D Pq>fH D � Pq>R.q/ Pq � 0:
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Several strategies have been proposed to generate stable reduced approximations of (6.1),
based on Krylov subspaces or POD [27, 45]. In [25], without requiring the symplecticity of
the reduced basis, the gradient of the Hamiltonian vector field is approximated using a projec-
tion matrix W , i.e., ryH.Uz/ � W rzHRB.z/, which results in a noncanonical symplectic
reduced form. The stability of the reduced model is then achieved by preserving the passivity
of the original formulation. A drawback of such an approach is that, while viable for nondis-
sipative formulations, it does not guarantee the same energy distribution of (6.1) between
dissipative and null energy contributors. In the following, we show that the techniques based
on symplectic geometry introduced in the previous sections can still be used in the dissipative
framework described in (6.1) with limited modifications to obtain consistent and structured
reduced models. Let us consider an ortho-symplectic basis A 2 S.2k; 2n/ and the reduced
basis representation y � Az, with z D .r; s/ 2 R2k being the reduced coefficients of the
representation and r; s 2 Rk being the generalized phase coordinates of the reduced model.
The basis A can be represented as

A D

"
Aqr Aqs

Apr Aps

#
; (6.4)

with Aqr ; Aqs; Apr ; Aps 2 Rn�k being the blocks, the indices of which are chosen to repre-
sent the interactions between the generalized phase coordinates of the two models, such that
q D Aqrr C Aqss and p D Aprr C Apss. Following [43], the symplectic Galerkin projection
of (6.1) reads

Pz D AC
�
XH .Az/ C XF .Az/

�
D J2krzHRB.z/ C ACXF .Az/ D XHRB C ACXF ; (6.5)

with

ACXF D

"
A>

ps �A>
qs

�A>
pr A>

qr

# "
0n

fH

#
D

"
�A>

qsfH

A>
qrfH

#
: (6.6)

We note that, in (6.5), the reduced dynamics is described as the sum of a Hamiltonian vector
field and a term that, for a general choice of the symplectic basis A and hence of A>

qs , does
not represent a dissipative term in the form of a vertical velocity field. The Cotangent Lift
method, described in Section 4.1, enforces by construction the structure of vertical velocity
field because Aqs D 0. It can be shown [43] that dissipativity is also preserved since the rate
of energy variation of the reduced system is non-positive, i.e.,

rsHRB.Az/.A>
qrfH / D Pr>.A>

qrfH / D �.Aqr Pr/>R.Aqrs/.Aqr Pr/ � 0: (6.7)

However, time discretization of the reduced dissipative model is not trivial. Even though the
dissipative Hamiltonian structure is preserved by the reduction process, standard numerical
integrators do not preserve the same structure at the fully discrete level.

A completely different approach is proposed in [2], where (6.1) is paired with a
canonical heat bath, absorbing the energy leakage and expanding the system to the canonical
Hamiltonian structure. Consider a dissipative system characterized by the quadratic Hamil-
tonian H.y/ D

1
2
y>K>Ky. Following [17], such a system admits a time dispersive and
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dissipative (TDD) formulation 8<: Py D J2nK>f .t/;

y.0/ D y0;
(6.8)

with f .t/ being the solution to the integral equation

f .t/ C

Z t

0

�.t � s/f .s/ds D Ky; (6.9)

also known as a generalized material relation. The square time-dependent matrix
� 2 R2n�2n is the generalized susceptibility of the system, and it is bounded with respect to
the Frobenius norm. Physically, it encodes the accumulation of the dissipation effect in time,
starting from the initial condition. When � D 02n, (6.8) is equivalent to (3.1). Under phys-
ically natural assumptions on � (see [17, Theorem 1.1, p. 975] for more details), system (6.8)
admits a quadratic Hamiltonian extension (QHE) to a canonical Hamiltonian system. This
extension is obtained by defining an isometric injection I W R2n 7! R2n � H 2n, where H 2n

is a suitable Hilbert space, and reads8̂̂<̂
:̂

Py D J2nK>f .t/;

@t � D �.t; x/;

@t � D @2
x�.t; x/ C

p
2ı0.x/ �

p
�f .t/;

(6.10)

where � and � are vector-valued functions in H 2n, ı0 is the Dirac-delta function, and f

solves
f .t/ C

p
2 �

p
��.t; 0/ D Ky.t/:

It can be shown that system (6.10) has the form of a conserved Hamiltonian system with the
extended Hamiltonian

Hex.y; �; �/ D
1

2

�Ky � �.t; 0/
2

2
C

�.t/
2

H2n C
@x�.t/

2

H2n

�
;

and can be reduced, while preserving its geometric structure, using any of the standard sym-
plectic techniques. We refer the reader to [2] for a formal derivation of the reduced model
obtained by projecting (6.10) on a symplectic subspace and for its efficient time integra-
tion. The method extends trivially to more general Hamiltonian functions, as long as the
dissipation is linear in (6.9).

6.2. Noncanonical Hamiltonian systems
The canonical Hamiltonian problem (3.1) has been defined under the assumption

that a canonical system of coordinates for the symplectic solution manifold is given, and the
Hamiltonian vector can be represented as (2.5). However, many Hamiltonian systems, such
as the KdV and Burgers equations, are naturally formulated in terms of a noncanonical basis,
resulting in the following description of their dynamics:8<: Py.t/ D J2nryH.y.t//;

y.0/ D y0;
(6.11)
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with J2n 2 R2n�2n being invertible and skew-symmetric. A reduction strategy, involving
the noncanonical formulation (6.11) and based on POD, has been proposed in [21]. Consider
the RB ansatz y � Uz, with U 2 R2n�k as an orthonormal basis obtained by applying the
POD algorithm to the matrix of snapshots collected by solving the full model. The Galerkin
projection of (6.11) reads

Pz D U >J2nryH.Uz/; (6.12)

with the time derivate of the Hamiltonian function, evaluated at the reduced state, given by

PH.Uz/ D Pz>
�
rzH.Uz/

�
D

�
ryH.Uz/

�>
J >

2nU U >
ryH.Uz/: (6.13)

As expected, the Hamiltonian structure is lost in (6.12) and the energy of the system, rep-
resented by the Hamiltonian, is no longer preserved in time because J2nU U > is not skew-
symmetric. Both issues are solved in [21] by considering a matrix W , with the same properties
of J2n, such that the relation

U >J2n D W U > (6.14)

is satisfied. We stress that a condition similar to (6.14) naturally holds in the canonical Hamil-
tonian setting for a symplectic basis and has been used to derive Hamiltonian reduced models
using the symplectic Galerkin projection. A candidate W is identified in [21] by solving
the normal equation related to (6.14), i.e., W D U >J2nU . For invertible skew-symmetric
operators J2n that might depend on the state variables y, Miyatake has introduced in [35] a
hyperreduction technique that preserves the skew-symmetric structure of the J2n operator.

Formulation (6.11) is further generalized with the characterization of the phase-
space as a Poisson manifold, defined as a 2nP -dimensional differentiable manifold MP

equipped with a Poisson bracket ¹�; �º W C 1.Mp/ � C 1.Mp/ 7! C 1.Mp/ satisfying the
conditions of bilinearity, skew-symmetry, the Jacobi identity, and the Leibniz’ rule. Since
derivations on C 1.MP / are represented by smooth vector fields, for each Hamiltonian func-
tion H 2 C 1.MP /, there exists a vector XH that determines the following dynamics:8<: Py.t/ D XH .y/ D J2nP

.y/ryH.y.t//;

y.0/ D y0;
(6.15)

with the Poisson tensor J2np being skew-symmetric, state-dependent, and generally not
invertible. The flow of the Hamiltonian vector field XH .y/, which is a Poisson map and
therefore preserves the Poisson bracket structure via its pullback, also preserves the rank
2n of the Poisson tensor J2nP

.y/. Moreover, r D 2nP � 2n represents the number of inde-
pendent nonconstant functions on MP that ¹�; �º commutes with all the other functions in
C 1.MP /. These functions are known as Casimirs of the Poisson bracket and their gradi-
ents belong to the kernel of J2nP

.y/, making them independent of the dynamics of (6.15)
and only representing geometric constraints on configurations of the generalized phase-state
space.

An interesting relation between symplectic and Poisson manifolds is offered by the
Lie–Weinstein splitting theorem, stating that locally, in the neighborhood Uy� of any point
y� 2 MP , a Poisson manifold can be split into a 2n-dimensional symplectic manifold M and
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an r-dimensional Poisson manifold M . Following on this result, Darboux’ theorem guaran-
tees the existence of local coordinates .q1; : : : ; qn;p1; : : : ;pn; c1; : : : ; cr /, where ¹qi ;pi º

2
iD1

corresponds to canonical symplectic coordinates and ¹ci º
r
iD1 are the Casimirs, such that the

Poisson tensor J2np .y/ is recast, via Darboux’ map, in the canonical form J C
2np

, i.e.,

J C
2np

D

2n r� �
J2n 0 2n

0 0 r
;

with J2n 2 R2n�2n being the canonical Poisson tensor defined in (2.3).
In [28], a quasistructure-preserving algorithm for problems of the form (6.15) has

been proposed, leveraging the Lie–Weinstein splitting, an approximation of the Darboux’
map and traditional symplectic RB techniques. Let8<: yj C1 D yj C �tJ2np . Qyj /ryH. Qyj /;

y0 D y0;
(6.16)

be the fully-discrete formulation of (6.15), where j is the integration index, and Qyj represents
intermediate state/states dictated by the temporal integrator of choice. Given MP;j , an open
subset of MP comprising the discrete states yj , Qyj , and yj C1, the authors of [28] introduce
an approximation 'j C 1

2
W MP;j 7! Ms � Nj of the Darboux’ map at Qyj , with Ms being a

2N -dimensional canonical symplectic manifold and Nj approximating the null space of the
Poisson structure. The proposed approximation exploits a Cholesky-like decomposition (see
[28, Proposition 2.11, p. 1708]) of the noncanonical rank-deficient J2np . Qyj / and exactly pre-
serves the dimension of Nj , hence the number of independent Casimirs. By introducing the
natural transition map Tj WD 'j C 1

2
� '�1

j � 1
2

between the neighboring and overlapping subsets
Mj �1 and Mj , problem (6.16) is locally recast in the canonical form8<: Nyj C1 D Tj Nyj C �tJ C

2np
r NyH j . NQyj /;

Ny0 D y0;
(6.17)

where Nyj C1 WD 'j C 1
2
yj C1, Nyj WD 'j C 1

2
yj , NQyj C1 WD 'j C 1

2
Qyj , and H j . NQyj / WD

H.'�1

j C 1
2

. NQyj //. Even though the flow of (6.17) is not a global J C
2np

-Poisson map because
the splitting is not exact, the approximation is locally structure-preserving for each neigh-
borhood MP;j . By exploiting a similar splitting principle, the canonical Poisson manifold
Ms � Nj is projected on a reduced Poisson manifold A � Nj , with the reduction acting
only on the symplectic component of the splitting and dim.A/ D 2k � 2n. The corre-
sponding reduced model is obtained via Galerkin projection of (6.17) using an orthogonal
J C

2k
-symplectic basis of dimension 2k, generated via a greedy iterative process inspired by

the symplectic greedy method described in Section 4.3. Different theoretical estimates and
numerical investigations show the proposed technique’s accuracy, robustness, and conserva-
tion properties, up to errors in the Poisson tensor approximation.
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7. Conclusion

We provided an overview of model reduction methods for Hamiltonian problems.
The symplectic Galerkin projection has been discussed as a tool to generate a reduced Hamil-
tonian approximation of the original dynamics. PSD algorithms used to compute low-order
projection on symplectic spaces have been introduced and compared. Such strategies have
been classified in ortho-symplectic and symplectic procedures, depending on the structure
of the computed RB. A greedy alternative for the generation of ortho-symplectic basis,
characterized by an exponentially fast convergence, has been illustrated as an efficient iter-
ative approach to overcome the computational cost associated with SVD-based techniques
that require a fine sampling of the solution manifold of the high-dimensional problem. The
potential local low-rank nature of Hamiltonian dynamics has been addressed by a symplectic
dynamical RB method. The innovative idea of the dynamical approach consists in evolving
the approximating symplectic reduced space in time along a trajectory locally constrained
on the tangent space of the high-dimensional dynamics. For problems where the Hamilto-
nian dynamics is coupled with a dissipative term, structure-preserving reduced models can
be constructed with the symplectic reduction process by resorting to an extended nondissi-
pative Hamiltonian reformulation of the system. Finally, we have described RB strategies to
reduce problems having a noncanonical Hamiltonian structure that either enforce properties
typical of a symplectic basis or use canonical symplectic reductions as an intermediate step
to preserve the structure of the original model.
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