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Abstract

We currently witness the spectacular success of artificial intelligence in both science and
public life. However, the development of a rigorous mathematical foundation is still at an
early stage. In this survey article, which is based on an invited lecture at the International
Congress of Mathematicians 2022, we will in particular focus on the current “workhorse”
of artificial intelligence, namely deep neural networks. We will present the main theoret-
ical directions along with several exemplary results and discuss key open problems.
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1. Introduction

Artificial intelligence is currently leading to one breakthrough after another, both
in public with, for instance, autonomous driving and speech recognition, and in the sciences
in areas such as medical diagnostics or molecular dynamics. In addition, the research on
artificial intelligence and, in particular, on its theoretical foundations is progressing at an
unprecedented rate. One can envision that the corresponding methodologies will in the future
drastically change the way we live in numerous respects.

1.1. The rise of artificial intelligence
Artificial intelligence is, however, not a new phenomenon. In fact, already in 1943,

McCulloch and Pitts started to develop algorithmic approaches to learning by mimicking
the functionality of the human brain, through artificial neurons which are connected and
arranged in several layers to form artificial neural networks. Already at that time, they had a
vision for the implementation of artificial intelligence. However, the community did not fully
recognize the potential of neural networks. Therefore, this first wave of artificial intelligence
was not successful and vanished. Around 1980, machine learning became popular again, and
several highlights can be reported from that period.

The real breakthrough and with it a new wave of artificial intelligence came around
2010 with the extensive application of deep neural networks. Today, this model might be
considered the “workhorse” of artificial intelligence, and in this article we will focus pre-
dominantly on this approach. The structure of deep neural networks is precisely the structure
McCulloch and Pitts introduced, namely numerous consecutive layers of artificial neurons.
Today two main obstacles from previous years have also been eliminated; due to the drastic
improvement of computing power, the training of neural networks with hundreds of layers
in the sense of deep neural networks is feasible, and we are living in the age of data, hence
vast amounts of training data are easily available.

1.2. Impact on mathematics
The rise of artificial intelligence also had a significant impact on various fields of

mathematics. Maybe the first area which embraced these novel methods was the area of
inverse problems, in particular, imaging science, where such approaches have been used to
solve highly ill-posed problems such as denoising, inpainting, superresolution, or (limited-
angle) computed tomography, to name a few. One might note that, due to the lack of a precise
mathematical model of what an image is, this area is particularly suitable for learning meth-
ods. Thus, after a few years, a change of paradigm could be observed, and novel solvers
are typically at least to some extent based on methods from artificial intelligence. We will
discuss further details in Section 4.1.

The area of partial differential equations was much slower to embrace these new
techniques, the reason being that it was not per se evident what the advantage of methods
from artificial intelligence for this field would be. Indeed, there seems to be no need to uti-
lize learning-type methods, since a partial differential equation is a rigorous mathematical
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model. But, lately, the observation that deep neural networks are able to beat the curse of
dimensionality in high-dimensional settings led to a change of paradigm in this area as well.
Research at the intersection of numerical analysis of partial differential equations and artifi-
cial intelligence therefore accelerated since about 2017. We will delve further into this topic
in Section 4.2.

1.3. Problems of artificial intelligence
However, as promising as all these developments seem to be, a word of caution

is required. Besides the fact that the practical limitations of methods such as deep neural
networks have not been explored at all and at present neural networks are still considered a
“jack-of-all-trades,” it is even more worrisome that a comprehensive theoretical foundation
is completely lacking. This was very prominently stated during the major conference on
artificial intelligence and machine learning, which is NIPS (today called NeurIPS) in 2017,
when Ali Rahimi from Google received the Test of Time Award and during his plenary
talk stated that “Machine learning has become a form of alchemy.” This raised a heated
discussion to which extent a theoretical foundation does exist and is necessary at all. From
a mathematical viewpoint, it is crystal clear that a fundamental mathematical understanding
of artificial intelligence is inevitably necessary, and one has to admit that its development is
currently in a preliminary state at best.

This lack of mathematical foundations, for instance, in the case of deep neural
networks, results in a time-consuming search for a suitable network architecture, a highly del-
icate trial-and-error-based (training) process, and missing error bounds for the performance
of the trained neural network. One needs to stress that, in addition, such approaches also
sometimes unexpectedly fail dramatically when a small perturbation of the input data causes
a drastic change of the output leading to radically different—and often wrong—decisions.
Such adversarial examples are a well-known problem, which becomes severe in sensitive
applications such as when minor alterations of traffic signs, e.g., the placement of stickers,
cause autonomous vehicles to suddenly reach an entirely wrong decision. It is evident that
such robustness problems can only be tackled by a profound mathematical approach.

1.4. A need for mathematics
These considerations show that there is a tremendous need for mathematics in the

area of artificial intelligence. And, in fact, one can currently witness that numerous mathe-
maticians move to this field, bringing in their own expertise. Indeed, as we will discuss in
Section 2.4, basically all areas of mathematics are required to tackle the various difficult, but
exciting challenges in the area of artificial intelligence.

One can identify two different research directions at the intersection of mathematics
and artificial intelligence:

• Mathematical Foundations for Artificial Intelligence. This direction aims for
deriving a deep mathematical understanding. Based on this, it strives to over-
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come current obstacles such as the lack of robustness or places the entire training
process on a solid theoretical foundation.

• Artificial Intelligence for Mathematical Problems. This direction focuses on math-
ematical problem settings such as inverse problems and partial differential equa-
tions with the goal of employing methodologies from artificial intelligence to
develop superior solvers.

1.5. Outline
Both research directions will be discussed in this survey paper, showcasing some

novel results and pointing out key future challenges for mathematics. We start with an intro-
duction into the mathematical setting, stating the main definitions and notations (see Sec-
tion 2). Next, in Section 3, we delve into the first main direction, namely mathematical
foundations for artificial intelligence, and discuss the research threads of expressivity, opti-
mization, generalization, and explainability. Section 4 is then devoted to the second main
direction, which is artificial intelligence for mathematical problems, and we highlight some
exemplary results. Finally, Section 5 states the seven main mathematical problems and con-
cludes this article.

2. The mathematical setting of artificial intelligence

We now get into more details on the precise definition of a deep neural network,
which is after all a purely mathematical object. We will also touch upon the typical applica-
tion setting and training process, as well as on the current key mathematical directions.

2.1. Definition of deep neural networks
The core building blocks are, as said, artificial neurons. For their definition, let us

recall the structure and functionality of a neuron in the human brain. The basic elements of
such a neuron are dendrites, through which signals are transmitted to its soma while being
scaled/amplified due to the structural properties of the respective dendrites. In the soma of
the neuron, those incoming signals are accumulated, and a decision is reached whether to
fire to other neurons or not, and also with which strength.

This forms the basis for a mathematical definition of an artificial neuron.

Definition 2.1. An artificial neuron with weightsw1; : : : ;wn 2 R, bias b 2 R, and activation
function � W R ! R is defined as the function f W Rn ! R given by

f .x1; : : : ; xn/ D �

 
nX

iD1

xiwi � b

!
D �

�
hx;wi � b

�
;

where w D .w1; : : : ; wn/ and x D .x1; : : : ; xn/.

By now, there exists a zoo of activation functions with the most well-known ones
being as follows:
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(1) Heaviside function

�.x/ D

8<: 1; x > 0;

0; x � 0I

(2) Sigmoid function �.x/ D
1

1Ce�x ;

(3) Rectifiable Linear Unit (ReLU) �.x/ D max¹0; xº.

We remark that of these examples, by far the most extensively used activation function is
the ReLU due to its simple piecewise-linear structure, which is advantageous in the training
process and still allows superior performance.

Similar to the structure of a human brain, these artificial neurons are now being
concatenated and arranged in layers, leading to an (artificial feed-forward) neural network.
Due to the particular structure of artificial neurons, such a neural network consists of com-
positions of affine linear maps and activation functions. Traditionally, a deep neural network
is then defined as the resulting function. From a mathematical standpoint, this bears the
difficulty that different arrangements lead to the same function. Therefore, sometimes a
distinction is made between the architecture of a neural network and the corresponding
realization function (see, e.g., [6]). For this article, we will, however, avoid such technical
delicacies and present the most standard definition.

Definition 2.2. Let d 2 N be the dimension of the input layer, L the number of layers,
N0 WD d , N`, ` D 1; : : : ; L, the dimensions of the hidden and last layer, � W R ! R a (non-
linear) activation function, and, for ` D 1; : : : ; L, let T` be the affine functions

T` W RN`�1 ! RN` ; T`x D W .`/x C b.`/;

withW .`/ 2 RN`�N`�1 being the weight matrices and b.`/ 2 RN` the bias vectors of the `th
layer. Then ˆ W Rd ! RNL , given by

ˆ.x/ D TL�
�
TL�1�

�
� � � �

�
T1.x/

���
; x 2 Rd ;

is called a (deep) neural network of depth L.

Let us already mention at this point that the weights and biases are the free param-
eters which will be learned during the training process. An illustration of the multilayered
structure of a deep neural network can be found in Figure 1.

2.2. Application of a deep neural network
Aiming to identify the main mathematical research threads, we first have to under-

stand how a deep neural network is used for a given application setting.
Step 1 (Train-test split of the dataset). We assume that we are given samples

.x.i/; y.i// Qm
iD1 of inputs and outputs. The task of the deep neural network is then to iden-

tify the relation between those. For instance, in a classification problem, each output y.i/

is considered to be the label of the respective class to which the input x.i/ belongs. One
can also take the viewpoint that .x.i/; y.i// Qm

iD1 arise as samples from a function such as
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Figure 1

Deep neural network ˆ W R4 ! R with depth 5.

g W M ! ¹1; 2; : : : ; Kº, where M might be a lower-dimensional manifold of Rd , in the
sense of y.i/ D g.x.i// for all i D 1; : : : ; Qm.

The set .x.i/; y.i// Qm
iD1 is then split into a training data set .x.i/; y.i//miD1 and a test

data set .x.i/; y.i// Qm
iDmC1. The training data set is—as the name indicates—used for training,

whereas the test data set will later on be solely exploited for testing the performance of the
trained network. We emphasize that the neural network is not exposed to the test data set
during the entire training process.

Step 2 (Choice of architecture). For preparation of the learning algorithm, the archi-
tecture of the neural network needs to be decided upon, which means the number of layersL,
the number of neurons in each layer .N`/

L
`D1

, and the activation function � have to be
selected. It is known that a fully connected neural network is often difficult to train, hence, in
addition, one typically preselects certain entries of the weight matrices .W .`//L

`D1
to already

be set to zero at this point.
For later purposes, we define the selected class of deep neural networks by N N �

with � encoding this chosen architecture.
Step 3 (Training). The next step is the actual training process, which consists of

learning the affine functions .T`/
L
`D1

D .W .`/ � Cb.`//L
`D1

. This is accomplished by mini-
mizing the empirical risk

OR.ˆ.W .`/;b.`//`
/ WD

1

m

mX
iD1

�
ˆ.W .`/;b.`//`

.x.i// � y.i/
�2
: (2.1)

A more general form of the optimization problem is

min
.W .`/;b.`//`

mX
iD1

L.ˆ.W .`/;b.`//`
.xi /; y

.i//C �P
�
.W .`/; b.`//`

�
; (2.2)

where L is a loss function to determine a measure of closeness between the network evalu-
ated in the training samples and the (known) values y.i/, with P being a penalty/regulariza-
tion term to impose additional constraints on the weight matrices and bias vectors.
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One common algorithmic approach is gradient descent. Since, however, m is typi-
cally very large, this is computationally not feasible. This problem is circumvented by ran-
domly selecting only a few gradients in each iteration, assuming that they constitute a rea-
sonable average, which is coined stochastic gradient descent.

Solving the optimization problem then yields a network ˆ.W .`/;b.`//`
W Rd ! RNL ,

where
ˆ.W .`/;b.`//`

.x/ D TL�
�
TL�1�

�
� � � �

�
T1.x/

���
:

Step 4 (Testing). Finally, the performance (often also called generalization ability)
of the trained neural network is tested using the test data set .x.i/; y.i// Qm

iDmC1 by analyzing
whether

ˆ.W .`/;b.`//`
.x.i// � y.i/; for all i D mC 1; : : : ; Qm:

2.3. Relation to a statistical learning problem
From the procedure above, we can already identify the selection of architecture, the

optimization problem, and the generalization ability as the key research directions for math-
ematical foundations of deep neural networks. Considering the entire learning process of a
deep neural network as a statistical learning problem reveals those three research directions
as indeed the natural ones for analyzing the overall error.

For this, let us assume that there exists a function g W Rd ! R such that the training
data .x.i/; y.i//miD1 is of the form .x.i/; g.x.i///miD1 and x.i/ 2 Œ0; 1�d for all i D 1; : : : ; m.
A typical continuum viewpoint to measure success of the training is to consider the risk of
a function f W Rd ! R given by

R.f / WD

Z
Œ0;1�d

�
f .x/ � g.x/

�2
dx; (2.3)

where we used the L2-norm to measure the distance between f and g. The error between
the trained deep neural network ˆ0.WD ˆ.W .`/;b.`//`

/ 2 N N � and the optimal function g
can then be estimated by

R.ˆ0/ �

h
OR.ˆ0/ � inf

ˆ2N N �

OR.ˆ/
i

„ ƒ‚ …
Optimization error

C 2 sup
ˆ2N N �

ˇ̌
R.ˆ/ � OR.ˆ/

ˇ̌
„ ƒ‚ …

Generalization error

C inf
ˆ2N N �

R.ˆ/:„ ƒ‚ …
Approximation error

(2.4)

These considerations lead to the main research threads described in the following subsection.

2.4. Main research threads
We can identify two conceptually different research threads, the first being focused

on developing mathematical foundations of artificial intelligence and the second aiming to
use methodologies from artificial intelligence to solve mathematical problems. It is intrigu-
ing to see how both have already led to some extent to a paradigm shift in some mathematical
research areas, most prominently the area of numerical analysis.
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2.4.1. Mathematical foundations for artificial intelligence
Following up on the discussion in Section 2.3, we can identify three research direc-

tions which are related to the three types of errors which one needs to control in order to
estimate the overall error of the entire training process:

• Expressivity. This direction aims to derive a general understanding whether and
to which extent aspects of a neural network architecture affect the best case per-
formance of deep neural networks. More precisely, the goal is to analyze the
approximation error infˆ2N N �

R.ˆ/ from (2.4), which estimates the approxi-
mation accuracy when approximating g by the hypothesis class N N � of deep
neural networks of a particular architecture. Typical methods for approaching this
problem are from applied harmonic analysis and approximation theory.

• Learning/Optimization. The main goal of this direction is the analysis of the
training algorithm such as stochastic gradient descent, in particular, asking why
it usually converges to suitable local minima even though the problem itself is
highly nonconvex. This requires the analysis of the optimization error, which is
OR.ˆ0/ � infˆ2N N �

OR.ˆ/ (cf. (2.4)) and which measures the accuracy with
which the learnt neural networkˆ0 minimizes the empirical risk (2.1), (2.2). Key
methodologies for attacking such problems come from the areas of algebraic/dif-
ferential geometry, optimal control, and optimization.

• Generalization. This direction aims to derive an understanding of the out-of-
sample error, namely, supˆ2N N �

jR.ˆ/� OR.ˆ/j from (2.4), which measures the
distance of the empirical risk (2.1), (2.2) and the actual risk (2.3). Predominantly,
learning theory, probability theory, and statistics provide the required methods for
this research thread.

A very exciting and highly relevant new research direction has recently emerged,
coined explainability. At present, it is from the standpoint of mathematical foundations still
a wide open field.

• Explainability. This direction considers deep neural networks, which are already
trained, but no knowledge about the training is available; a situation one encoun-
ters numerous times in practice. The goal is then to derive a deep understanding
of how a given trained deep neural network reaches decisions in the sense of
which features of the input data are crucial for a decision. The range of required
approaches is quite broad, including areas such as information theory or uncer-
tainty quantification.

2.4.2. Artificial intelligence for mathematical problems
Methods of artificial intelligence have also turned out to be extremely effective for

mathematical problem settings. In fact, the area of inverse problems, in particular, in imag-
ing sciences, has already undergone a profound paradigm shift. And the area of numerical
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analysis of partial differential equations seems to soon follow the same path, at least in the
very high dimensional regime.

Let us briefly characterize those two research threads similar to the previous sub-
section on mathematical foundations of artificial intelligence.

• Inverse Problems. Research in this direction aims to improve classical model-
based approaches to solve inverse problems by exploiting methods of artificial
intelligence. In order to not neglect domain knowledge such as the physics of the
problem, current approaches aim to take the best out of both worlds in the sense of
optimally combining model- and data-driven approaches. This research direction
requires a variety of techniques, foremost from areas such as imaging science,
inverse problems, and microlocal analysis, to name a few.

• Partial Differential Equations. Similar to the area of inverse problems, here the
goal is to improve classical solvers of partial differential equations by using ideas
from artificial intelligence. A particular focus is on high-dimensional problems
in the sense of aiming to beat the curse of dimensionality. This direction obvi-
ously requires methods from areas such as numerical mathematics and partial
differential equations.

3. Mathematical foundations for artificial intelligence

This section shall serve as an introduction into the main research threads aiming to
develop a mathematical foundation for artificial intelligence. We will introduce the problem
settings, showcase some exemplary results, and discuss open problems.

3.1. Expressivity
Expressivity is maybe the richest area at present in terms of mathematical results.

The general question can be phrased as follows: Given a function class/space C and a class
of deep neural networks N N � , how does the approximation accuracy when approximating
elements of C by networks ˆ 2 N N � relate to the complexity of such ˆ? Making this
precise thus requires the introduction of a complexity measure for deep neural networks. In
the sequel, we will choose the canonical one, which is the complexity in terms of memory
requirements. Notice though that certainly various other complexity measures exist. Further,
recall that the k � k0-“norm” counts the number of nonzero components.

Definition 3.1. Retaining the same notation for deep neural networks as in Definition 2.2,
the complexity C.ˆ/ of a deep neural network ˆ is defined by

C.ˆ/ WD

LX
`D1

�W .`/


0
C
b.`/


0

�
:

The most well-known—and maybe even the first—result on expressivity is the uni-
versal approximation theorem [8, 13]. It states that each continuous function on a compact
domain can be approximated up to an arbitrary accuracy by a shallow neural network.
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Theorem 3.2. Let d 2 N,K � Rd compact, f WK ! R continuous, � W R ! R continuous
and not a polynomial. Then, for each " > 0, there exist N 2 N and ak ; bk 2 R, wk 2 Rd ,
1 � k � N , such that f �

NX
kD1

ak�
�
hwk ; �i � bk

�
1

� ":

While this is certainly an interesting result, it is not satisfactory in several regards:
It does not give bounds on the complexity of the approximating neural network and also
does not explain why depth is so important. A particularly intriguing example for a result,
which considers complexity and also targets a more sophisticated function space, was derived
in [31].

Theorem 3.3. For all f 2 C s.Œ0; 1�d / and �.x/ D max¹0; xº, i.e., the ReLU, there exist
neural networks .ˆn/n2N with the number of layers of ˆn being approximately of the order
of log.n/ such that

kf �ˆnk1 . C.ˆn/
� s

d ! 0 as n ! 1:

This result provides a beautiful connection between approximation accuracy and
complexity of the approximating neural network, and also to some extent takes the depth
of the network into account. However, to derive a result on optimal approximations, we first
require a lower bound. The so-called VC-dimension (Vapnik–Chervonenkis-dimension) (see
also (3.2)) was for a long time the main method for achieving such lower bounds. We will
recall here a newer result from [7] in terms of the optimal exponent �.C/ from information
theory to measure the complexity of C � L2.Rd /. Notice that we will only state the essence
of this result without all technicalities.

Theorem 3.4. Let d 2 N, � W R ! R, and let C � L2.Rd /. Further, let

Learn W .0; 1/ � C ! N N �

satisfy that, for each f 2 C and 0 < " < 1,

sup
f 2C

f � Learn."; f /


2
� ":

Then, for all  < �.C/,

" sup
f 2C

C
�
Learn."; f /

�
! 1; as " ! 0:

This conceptual lower bound, which is independent of any learning algorithm, now
allows deriving results on approximations with neural networks, which have optimally small
complexity in the sense of being memory-optimal. We will next provide an example of such a
result, which at the same time answers another question as well. The universal approximation
theorem already indicates that deep neural networks seem to have a universality property in
the sense of performing at least as good as polynomial approximation. One can now ask
whether neural networks also perform as well as other existing approximation schemes such
as wavelets, or the more sophisticated system of shearlets [16].
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For this, let us briefly recall this system and its approximation properties. Shearlets
are based on parabolic scaling, i.e.,

A2j D

 
2j 0

0 2j=2

!
; j 2 Z

and QA2j D diag.2j=2; 2j /, as well as changing the orientation via shearing defined by

Sk D

 
1 k

0 1

!
; k 2 Z:

(Cone-adapted) discrete shearlet systems can then be defined as follows, cf. [17]. A faithful
implementation of the shearlet transform as a 2D and 3D (parallelized) fast shearlet transform
can be found at www.ShearLab.org.

Definition 3.5. The (cone-adapted) discrete shearlet system �H .�;  ; Q / generated by
� 2 L2.R2/ and  ; Q 2 L2.R2/ is the union of®

�.� �m/ W m 2 Z2
¯
;®

23j=4 .SkA2j � �m/ W j � 0; jkj �
˙
2j=2

�
; m 2 Z2

¯
;®

23j=4 Q 
�
ST

k
QA2j � �m

�
W j � 0; jkj �

˙
2j=2

�
; m 2 Z2

¯
:

Since multivariate problems are typically governed by anisotropic features such as
edges in images or shock fronts in the solution of transport-dominated equations, the follow-
ing suitable model class of functions was introduced in [9].

Definition 3.6. The set of cartoon-like functions E2.R2/ is defined by

E2
�
R2
�

D
®
f 2 L2

�
R2
�

W f D f0 C f1 � �B

¯
;

where ; ¤ B � Œ0; 1�2 is simply connected with a C 2-curve with bounded curvature as its
boundary, and fi 2 C 2.R2/ with suppfi � Œ0; 1�2 and kfi kC 2 � 1, i D 0; 1.

While wavelets are deficient in optimally approximating cartoon-like functions due
to their isotropic structure, shearlets provide an optimal (sparse) approximation rate up to a
log-factor. The following statement is taken from [17], where also the precise hypotheses can
be found. Notice that the justification for optimality is a benchmark result from [9].

Theorem 3.7. Let �;  ; Q 2 L2.R2/ be compactly supported, and let O , OQ satisfy cer-
tain decay conditions. Then �H .�;  ; Q / provides an optimally sparse approximation of
f 2 E2.R2/, i.e.,

�N .f / . N�1.logN/
3
2 as N ! 1;

where �N .f / denotes the L2-error of best N -term approximation of f .

One can now use Theorem 3.4 to show that indeed deep neural networks are as good
approximators as shearlets and, in fact, as all affine systems. Even more, the construction in
the proof of suitable neural networks, which mimics bestN -term approximations, also leads
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to memory-optimal neural networks. The resulting statement from [7] in addition proves that
the bound in Theorem 3.4 is sharp.

Theorem 3.8. Let � be a suitably chosen activation function, and let " > 0. Then, for all
f 2 E2.R2/ and N 2 N, there exist a neural networkˆ with complexityO.N/ and activa-
tion function � with

kf �ˆk2 . N�1C"
! 0 as N ! 1:

Summarizing, one can conclude that deep neural networks achieve optimal approx-
imation properties of all affine systems combined.

Let us finally mention that lately a very different viewpoint of expressivity was intro-
duced in [21] according to so-called trajectory lengths. The standpoint taken in this work is
to measure expressivity in terms of changes of the expected length of a (nonconstant) curve
in the input space as it propagates through layers of a neural network.

3.2. Optimization
This area aims to analyze optimization algorithms, which solve the (learning) prob-

lem in (2.1), or, more generally, (2.2). A common approach is gradient descent, since the
gradient of the loss function (or optimized functional) with respect to the weight matrices
and biases, i.e., the parameters of the network, can be computed exactly. This is done via
backpropagation [27], which is in a certain sense merely an efficient application of the chain
rule. However, since the number of training samples is typically in the millions, it is compu-
tationally infeasible to compute the gradient on each sample. Therefore, in each iteration only
one or several (a batch) randomly selected gradients are computed, leading to the algorithm
of stochastic gradient descent [25].

In convex settings, guarantees for convergence of stochastic gradient descent do
exist. However, in the neural network setting, the optimization problem is nonconvex, which
makes it—even when using a nonrandom version of gradient descent—very hard to analyze.
Including randomness adds another level of difficulty as is depicted in Figure 2, where the
two algorithms reach different (local) minima.

This area is by far less explored than expressivity. Most current results focus on
shallow neural networks, and for a survey, we refer to [6].

3.3. Generalization
This research direction is perhaps the least explored and maybe also the most diffi-

cult one, sometimes called the “holy grail” of understanding deep neural networks. It targets
the out-of-sample error

sup
ˆ2N N �

ˇ̌
R.ˆ/ � OR.ˆ/

ˇ̌
(3.1)

as described in Section 2.4.1.
One of the mysteries of deep neural networks is the observation that highly over-

parameterized deep neural networks in the sense of high complexity of the network do not
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Figure 2

Gradient descent versus stochastic gradient descent. Taken from [6]. © Cambridge University Press. Reprinted
with permission.

overfit, with overfitting referring to the problem of fitting the training data too tightly and con-
sequently endangering correct classification of new data. An illustration of the phenomenon
of overfitting can be found in Figure 3.

Let us now analyze the generalization error in (3.1) in a bit more depth. For a large
number m of training samples, the law of large numbers tells us that with high probabil-
ity OR.ˆ/ � R.ˆ/ for each neural network ˆ 2 N N � . Bounding the complexity of the
hypothesis class N N � by the VC-dimension, the generalization error can be bounded with
probability 1 � ı by r

VCdim.N N � /C log.1=ı/
m

: (3.2)

For classes of highly over-parametrized neural networks, i.e., where VCdim.N N � / is very
large, we need an enormous amount of training data to keep the generalization error under
control. It is thus more than surprising that numerical experiments show the phenomenon of
a so-called double descent curve [5]. More precisely, the test error was found to decrease after
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Figure 3

Phenomenon of overfitting for the task of classification with two classes.

Figure 4

Double descent curve.

passing the interpolation point, which follows an increase consistent with statistical learning
theory (see Figure 4).

3.4. Explainability
The area of explainability aims to “open the black box” of deep neural networks

in the sense as to explain decisions of trained neural networks. These explanations typically
consist of providing relevance scores for features of the input data. Most approaches focus on
the task of image classification and provide relevance scores for each pixel of the input image.
One can roughly categorize the different types of approaches into gradient-based methods
[28], propagation of activations in neurons [4], surrogate models [24], and game-theoretic
approaches [19].

We would now like to describe in more detail an approach which is based on infor-
mation theory and also allows an extension to different modalities such as audio data as well
as analyzing the relevance of higher-level features; for a survey paper, we refer to [15]. This
rate-distortion explanation (RDE) framework was introduced in 2019 and later extended by
applying RDE to noncanonical input representations.

Let now ˆ W Rd ! Rn be a trained neural network, and x 2 Rd . The goal of RDE
is to provide an explanation for the decision ˆ.x/ in terms of a sparse mask s 2 ¹0; 1ºd
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which highlights the crucial input features of x. This mask is determined by the following
optimization problem:

min
s2¹0;1ºd

E
v�V

d
�
ˆ.x/;ˆ

�
x ˇ s C .1 � s/ˇ v

��
subject to ksk0 � `;

where ˇ denotes the Hadamard product, d is a measure of distortion such as the `2-distance,
V is a distribution over input perturbations v 2 Rd , and ` 2 ¹1; : : : ; dº is a given sparsity
level for the explanation mask s. The key idea is that a solution s� is a mask marking few
components of the input x which are sufficient to approximately retain the decision ˆ.x/.
This viewpoint reveals the relation to rate-distortion theory, which normally focusses on
lossy compression of data.

Since it is computationally infeasible to compute such a minimizer (see [30]),
a relaxed optimization problem providing continuous masks s 2 Œ0; 1�d is used in prac-
tice:

min
s2Œ0;1�d

E
v�V

d
�
ˆ.x/;ˆ

�
x ˇ s C .1 � s/ˇ v

��
C �ksk1;

where � > 0 determines the sparsity level of the mask. The minimizer now assigns each
component xi of the input—in case of images each pixel—a relevance score si 2 Œ0; 1�. This
is typically referred to as Pixel RDE.

Extensions of the RDE-framework allow the incorporation of different distribu-
tions V better adapted to data distributions. Another recent improvement was the assignment
of relevance scores to higher-level features such as arising from a wavelet decomposition,
which ultimately led to the approach CartoonX. An example of Pixel RDE versus CartoonX,
which also shows the ability of the higher-level explanations of CartoonX to give insights
into what the neural network saw when misclassifying an image, is depicted in Figure 5.

4. Artificial intelligence for mathematical problems

We now turn to the research direction of artificial intelligence for mathematical
problems, with the two most prominent problems being inverse problems and partial dif-
ferential equations. As before, we will introduce the problem settings, showcase some exem-
plary results, and also discuss open problems.

4.1. Inverse problems
Methods of artificial intelligence, in particular, deep neural networks, have a tremen-

dous impact on the area of inverse problems, as already indicated before. One current major
trend is to optimally combine classical solvers with deep learning in the sense of taking the
best out of the model- and data-world.

To introduce such results, we start by recalling some basics about solvers of inverse
problems. For this, assume that we are given an (ill-posed) inverse problem

Kf D g; (4.1)
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Figure 5

Pixel RDE versus CartoonX for analyzing misclassifications of deep neural networks, where the first image is
misclassified as ”Diaper”, the second as ”Egyptian Cat”, and the third as ”Screw”.

whereK WX ! Y is an operator andX and Y are, for instance, Hilbert spaces. Drawing from
the area of imaging science, examples include denoising, deblurring, or inpainting (recov-
ery of missing parts of an image). Most classical solvers are of the form (which includes
Tikhonov regularization)

f ˛
WD argmin

f

�
kKf � gk

2„ ƒ‚ …
Data fidelity term

C˛ � P .f /„ƒ‚…
Penalty/Regularization term

�
;

where P WX ! R and f ˛ 2X , ˛ >0 is an approximate solution of the inverse problem (4.1).
One very popular and widely applicable special case is sparse regularization, where P is
chosen by

P .f / WD
�hf; 'i i

�
i2I


1

and .'i /i2I is a suitably selected orthonormal basis or a frame for X .
We now turn to deep learning approaches to solve inverse problems, which might

be categorized into three classes:
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• Supervised approaches. An ad hoc approach in this regime is given in [14], which
first applies a classical solver followed by a neural network to remove recon-
struction artifacts. More sophisticated approaches typically replace parts of the
classical solver by a custom-built neural network [26] or a network specifically
trained for this task [1].

• Semisupervised approaches. These approaches encode the regularization as a
neural network with an example being adversarial regularizers [20].

• Unsupervised approaches. A representative of this type of approaches is the tech-
nique of deep image prior [29]. This method interestingly shows that the structure
of a generator network is sufficient to capture necessary statistics of the data prior
to any type of learning.

Aiming to illustrate the superiority of approaches from artificial intelligence for
inverse problems, we will now focus on the inverse problem of computed tomography (CT)
from medical imaging. The forward operatorK in this setting is the Radon transform, defined
by

Rf .s; #/ D

Z 1

�1

f
�
s!.#/C t!.#/?

�
dt; for .s; #/ 2 R � .0; �/.

Here !.#/ WD .cos #; sin #/ is the unitary vector with orientation described by the angle
# with respect to the x1-axis and !.#/? WD .� sin #; cos #/. Often, only parts of the so-
called sinogram Rf can be acquired due to physical constraints as in, for instance, electron
tomography. The resulting, more difficult problem is termed limited-angle CT. One should
notice that this problem is even harder than the problem of low-dose CT, where not an entire
block of measurements is missing, but the angular component is “only” undersampled.

The most prominent features in images f are edge structures. This is also due to
the fact that the human visual system reacts most strongly to those. These structures in turn
can be accurately modeled by microlocal analysis, in particular, by the notion of wavefront
sets WF.f / � R2 � S, which—coarsely speaking—consist of singularities together with
their direction. Basing in this sense the application of a deep neural network on microlocal
considerations, in particular, also using a deep learning-based wavefront set detector [2] in
the regularization term, the reconstruction performance significantly outperforms classical
solvers such as sparse regularization with shearlets (see Figure 6, we also refer to [3] for
details). Notice that this approach is of a hybrid type and takes the best out of both worlds in
the sense of combining model- and artificial intelligence-based approaches.

Finally, the deep learning-based wavefront set extraction itself is yet another evi-
dence of the improvements on the state-of-the-art now possible by artificial intelligence.
Figure 7 shows a classical result from [23], whereas [2] uses the shearlet transform as a coarse
edge detector, which is subsequently combined with a deep neural network.

4.2. Partial differential equations
The second main range of mathematical problem settings, where methods from arti-

ficial intelligence are very successfully applied to, are partial differential equations. Although

5134 G. Kutyniok



Figure 6

CT reconstruction from Radon measurements with a missing angle of 40ı.

Figure 7

Wavefront set detection by a model-based and a hybrid approach.

the benefit of such approaches was not initially clear, both theoretical and numerical results
show their superiority in high-dimensional regimes.

The most common approach aims to approximate the solution of a partial differential
equation by a deep neural network, which is trained according to this task by incorporating
the partial differential equation into the loss function. More precisely, given a partial differ-
ential equation L.u/ D f , we train a neural network ˆ such that

L.ˆ/ � f:

Since 2017, research in this general direction has significantly accelerated. Some of the high-
lights are the Deep Ritz Method [10] and Physics Informed Neural Networks [22], or a very
general approach for high-dimensional parabolic partial differential equations [12].

One should note that most theoretical results in this regime are of an expressivity
type and also study the phenomenon whether and to which extent deep neural networks are
able to beat the curse of dimensionality. In the sequel, we briefly discuss one such result as an
example. In addition, notice that there already exist contributions—though very few—which
analyze learning and generalization aspects.
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Let L.uy ; y/ D fy denote a parametric partial differential equation with y being
a parameter from a high-dimensional parameter space Y � Rp and uy the associated solu-
tion in a Hilbert space H . After a high-fidelity discretization, let by.u

h
y ; v/ D fy.v/ be the

associated variational form with uh
y now belonging to the associated high-dimensional space

U h, where we set D WD dim.U h/. We, moreover, denote the coefficient vector of uh
y with

respect to a suitable basis of U h by uh
y . Of key importance in this area is the parametric map

given by

Rp
� Y 3 y 7! uh

y 2 RD such that by

�
uh

y ; v
�

D fy.v/ for all v;

which in multiquery situations such as complex design problems needs to be solved several
times. If p is very large, the curse of dimensionality could lead to an exponential computa-
tional cost.

We now aim to analyze whether the parametric map can be solved by a deep neural
network, which would provide a very efficient and flexible method, hopefully also circum-
venting the curse of dimensionality in an automatic manner. From an expressivity viewpoint,
one might ask whether, for each " > 0, there exists a neural network ˆ such thatˆ.y/ � uh

y

 � " for all y 2 Y: (4.2)

The ability of this approach to tackle the curse of dimensionality can then be studied by
analyzing how the complexity ofˆ depends on p andD. A result of this type was proven in
[18], the essence of which we now recall.

Theorem 4.1. There exists a neural network ˆ which approximates the parametric map,
i.e., which satisfies (4.2), and the dependence of C.ˆ/ on p and D can be (polynomially)
controlled.

Analyzing the learning procedure and the generalization ability of the neural net-
work in this setting is currently out of reach. Aiming to still determine whether a trained
neural networks does not suffer from the curse of dimensionality as well, in [11] extensive
numerical experiments were performed, which indicate that, indeed, the curse of dimension-
ality is also beaten in practice.

5. Conclusion: seven mathematical key problems

Let us conclude with seven mathematical key problems of artificial intelligence as
they were stated in [6]. Those constitute the main obstacles in Mathematical Foundations for
Artificial Intelligence with its subfields being expressivity, optimization, generalization, and
explainability, as well as in Artificial Intelligence for Mathematical Problems, which focus
on the application to inverse problems and partial differential equations:

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of deep
learning?
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(3) Why does stochastic gradient descent converge to good local minima despite
the nonconvexity of the problem?

(4) Why do large neural networks not overfit?

(5) Why do neural networks perform well in very high-dimensional environments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences?
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