STOCHASTIC GRADIENT
DESCENT: WHERE
OPTIMIZATION MEETS
MACHINE LEARNING

RACHEL WARD

ABSTRACT

Stochastic gradient descent (SGD) is the de facto optimization algorithm for training
neural networks in modern machine learning, thanks to its unique scalability to problem
sizes where the data points, the number of data points, and the number of free parame-
ters to optimize are on the scale of billions. On the one hand, many of the mathematical
foundations for stochastic gradient descent were developed decades before the advent

of modern deep learning, from stochastic approximation to the randomized Kaczmarz
algorithm for solving linear systems. On the other hand, the omnipresence of stochastic
gradient descent in modern machine learning and the resulting importance of optimizing
performance of SGD in practical settings have motivated new algorithmic designs and
mathematical breakthroughs. In this note, we recall some history and state-of-the-art con-
vergence theory for SGD which is most useful in modern applications where it is used. We
discuss recent breakthroughs in adaptive gradient variants of stochastic gradient descent,
which go a long way towards addressing one of the weakest points of SGD: its sensitivity
and reliance on hyperparameters, most notably, the choice of step-sizes.

MATHEMATICS SUBJECT CLASSIFICATION 2020
Primary 74P99; Secondary 93E35, 46N30, 46N40

KEYWORDS
Adaptive gradient methods, machine learning, smoothness, stepsize, stochastic
approximation

INTERNATIONAL CONGRESS ©2022 International Mathematical Union Published by EMS Press
M:| OF MATHEMATICIANS Proc. Int. Cong. Math. 2022, Vol. 7, pp. 5140-5153 and licensed under

2022 JULY 6—14 DOI 10.4171/ICM2022/171 a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

In the past several decades, randomized algorithms have slowly gained popularity
and established legitimacy as scalable extensions of classical deterministic algorithms to
large scales. Perhaps the most widely used randomized algorithm today is stochastic gradient
descent, which has established itself in the past decade as the de facto optimization method
for training artificial neural networks.

A common optimization problem in large-scale machine learning involves a training
set {(x1,¥1), ..., (Xn, ¥n)} (we suppose that the labels y; € R for simplicity), a parameter-
ized family of prediction functions /4, and a least squares minimization problem of the form

n

1
min (i w) — i) (L.1)

i=1

In linear least squares regression, the prediction function is linear with respect to the weights
w;, for example, the prediction function is 2(x; w) = Z;’:l wjx]’-’_1
mial regression. By contrast, in “neural network” regression, the prediction function /4 is a

in univariate polyno-

parameterized class of highly nonlinear functions inspired by models of how the human brain
processes information. The neural network’s compositional structure allows for the predic-
tion function i (x;; w) to be computed at given values of x; and w by recursively applying
successive transformations to the input vector x; € R in layers. For example, a canonical
fully-connected layer corresponds to the computation

XD = oWixUV 4 b)) e RY (1.2)
©
14
and o is a simple componentwise nonlinear activation function such as the ReLU func-

where x;7 = x;, W; € R¥*4j-1, the vector b; € R% contains the jth layer parameters,
tion o(x) = max{0, x}; the total number of parameters w € R? in (1.1) is the sum of
the parameters at each of L layers, w = (Wy, by, Wa, by, ..., W, by). “Neural network
training” refers to solving the optimization problem (1.1), either exactly or approximately.
A particular vector of parameters w* € R? corresponding to an approximate solution of
the optimization problem (1.1) is considered to be a “good” solution if the corresponding
neural network function A(-; w*) has good generalization properties, meaning that when
applied to fresh data {(X1, y1),..., (Xm, Ym)} from the same distribution from which the
training data was drawn, the distortion % S (h(Xi; w*) — ¥;)? is small. Thus, optimiza-
tion and generalization must both be taken into account when discussing the performance
of a particular algorithm for neural network training. In this note, we will only discuss the
optimization component of the stochastic gradient descent algorithm. The generalization of
solutions w* € R? found by SGD tends to be remarkably strong, but this is not as well
understood mathematically and represents an important ongoing area of research.

To motivate the stochastic gradient descent algorithm, let us first recall the basic
gradient descent procedure for minimizing a differentiable function F : R? — R: starting
from an initial point wy € R?, iterate until convergence

Wj41 < W; — njVF(wj), (1.3)

5141 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

where 1; > 0 is the step-size prescribed for the jth step. Gradient descent with fixed step-
size n; = n is guaranteed to converge to a minimizer of F under general conditions, such
as if F is smooth (in the sense that F' has Lipschitz gradient), convex, and has a finite lower
bound. Gradient descent is a first-order iterative algorithm, where first-order means that it
only requires computing gradients and not higher-order derivatives. A contributing reason
to the feasibility of large-scale neural network training is that neural network optimization is
particularly well suited for first-order optimization methods: for neural network prediction
functions composed of layers as in (1.2), the gradient of the corresponding objective function
F(w)= % i (h(x;;w) — y;)?* with respect to the parameter vector w can be computed by
the chain rule using algorithmic differentiation—a technique referred to as back propagation
in the machine learning community. However, even a single gradient computation of the
form VF(w) = % >r_1 V(h(xi;w) — y;)? becomes prohibitively expensive as the size of
the training set n reaches multiple millions. More generally, when optimizing functions with
“finite sum” form, F(w) = % i1 fi(w)," a single gradient evaluation V F(w) requires
the computation of all n component function gradients V f; (w). In such settings, it is natural
to consider drawing a random subset of component functions and using the gradient of the
random batch of components as a computationally efficient surrogate for the full gradient.
This is the template for stochastic gradient descent, which is described in detail blow.

Algorithm 1 Stochastic Gradient Descent

1: // Return: W, an intended approximation to

* : _ 1 n g
2: // w*€argmin F(w), where F =3/, fi
weR?
procedure STocHASTIC GRADIENT DESCENT

3:
4: Initialize point w®. Prescribed step-size schedule {1 192,

5 fort:=1toT —1do

6: Draw an index i; uniformly at random from {1, 2, ...,n}
7 Iterate w1 <« w® — 5,V f; (w®).

8 end for

9 return v = w@

10: end procedure

It is important that the index i; is chosen uniformly at random, in which case the
random vector V f;, (w®) is an unbiased estimate for the full gradient VF(w®), mean-
ing that E;, V f;, (w®) = V F(w). In practice, one often implements minibatch stochastic
gradient descent, which is a compromise between full gradient descent and stochastic gra-
dient descent where a batch of component gradient directions are averaged at each step, to

1 We assume n € N is a finite number for simplicity and because it is most relevant for
applications, but all results can be extended in theory to continuous parameterizations

F(w) = [; fs(w)dp(s).

5142 R. WARD

reduce the variance of the stochastic gradient estimate. For a comprehensive overview of
stochastic gradient descent methods in large-scale optimization, we refer the reader to the
comprehensive article [4].

1.1. Stochastic gradient descent: Background

1.1.1. Stochastic approximation

The idea for stochastic gradient descent appeared almost 70 years ago in a paper
by Robbins and Monro [25]. Suppose that M : R — R is a function with a unique root we
wish to identify. We do not have access to exact exact evaluations M (w), but rather we can
access at a given point w a random variable N(w) such that E[N(w)] = M(w). Within
this framework of stochastic approximation, Robbins and Monro proposed the following
root-finding algorithm: fix wo and a decreasing step-size schedule {a, }52,, then iterate

Wpt1 = Wy — dnN(Wp). (1.4)

Blum [3] subsequently extended the algorithm to the multivariate setting. One recognizes
the SGD Algorithm 1 as a special case of the Robbins—Monro root-finding algorithm via the
correspondence M(w) = VF(w) and N(w®) = V fi, (w®). Under certain assumptions
akin to strong convexity, smoothness, and bounded noise, Robbins, Monro, and Blum showed
that algorithm (1.4) converges with probability 1, provided the step-size schedule {a,}52
is chosen to decrease at a rate such that

o0 o0
Zan =o00 and Zaﬁ < o0. (1.5)
n=0 n=0

An important gap between the setting considered by Robbins and Monro and the applica-
tion of stochastic gradient descent in large scale machine learning is in the model assump-
tions for the stochastic noise: Robbins—Monro convergence theory and the implied choice of
step-sizes (1.5) assume that the stochastic noise on the observations is uniformly bounded,
supg [N(0)] < N < oo. More realistic in the setting of large-scale machine learning is an
affine-variance noise model, where the stochastic noise level is proportional to the size of the
full gradient at any given point. Specifically, the affine-variance noise model is as follows:
for parameters 0y, 01 > 0,

Vw e R? B |V fiw) |3 < 0 + o |[VFw)|”. (1.6)

We will come back to the discussion about the stochastic noise later on.

Stochastic gradient descent was recognized as a powerful algorithm for training arti-
ficial neural networks in 1960, when it was used to train one of the earliest neural networks—
the Adaline network (Adaline stands for “adaptive linear unit”) [29]. The proposal of Adaline
came shortly after Rosenblatt invented the perceptron, widely considered the first artificial
neural network. Following Adaline, (stochastic) gradient descent persisted as the de facto
algorithm for training artificial neural networks due to its simplicity and ability to extend
(using back propagation) to multilayered neural network architectures. The full power of arti-
ficial neural networks was not realized until around 2010, when increased computing power

5143 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

from GPUs and distributed computing allowed the use of larger networks, which became
known as “deep learning,” and neural networks began winning prizes in image recogni-
tion contests, approaching human level performance on various tasks. Just in time for the
advent of modern deep learning, researchers began to formalize the nonasymptotic theory
for stochastic gradient descent—convergence to global minimizers in the convex setting [2,23]
and to stationary points the nonconvex setting [9].

1.1.2. The Kaczmarz method for solving linear systems

Independent of Robbins and Monro’s work in stochastic approximation, Stefan
Kaczmarz proposed an iterative method (now called the Kaczmarz method) for solving
linear equations [15]. Consider an overdetermined system of consistent linear equations,
Aw = b. Denote the i th row (out of a total of n rows) of A by a;, and let w(® be an arbitrary
initial approximation to the solution of Aw = b. Kaczmarz observed that w*, the unique
solution to the overdetermined consistent system, corresponds to the unique point in the
intersection of the hyperplanes S; = {w : {a;, w) = b; }. He proposed an iterative projection
algorithm for finding the point w* whereby one cycles through the hyperplanes in their nat-
ural ordering, and projects the current estimate for w* onto the subsequent subspace, until
convergence. That is, starting from an initial guess w®andfort = 1,2, ..., iterate

bi — (a;. w®)
llaill?

The Kaczmarz method can be viewed as an instance of what is now referred to as the method

wth = 1 ® a;; [=t modn. (L7

of successive projections onto convex sets (POCS). In 1933, John von Neumann proved con-
vergence of POCS in the case of two (n = 2) hyperplanes [27]; Halperin later extended von
Neumann’s convergence result to arbitrarily many hyperplanes [11]. Aronszajn [1] later pro-
vided an explicit rate of convergence for the case of two hyperplanes—the convergence rate
is linear and depends explicitly on the angle between the two hyperplanes. Kayalar and Wein-
ert [17] proved that Aronszajn’s rate of convergence is sharp. This sharp analysis has proved
difficult to extend beyond the case of two hyperplanes, as it is related to the difficulty of ana-
lyzing the product of more than two orthogonal projection operators, see, for example, [5].
The Kaczmarz method was rediscovered in image reconstruction in 1970, where (along with
additional positivity constraints) it is called the algebraic reconstruction technique (ART)
[16]. ART is used extensively in computed tomography and, in fact, was used in the first
medical scanner [13].

Later, in the 1990s, several works, including [8,12], observed that the Kaczmarz algo-
rithm (1.7) tended to converge more quickly and consistently if the algorithm was changed so
that the rows are selected in a random, rather than cyclic order. In a seminal paper, Strohmer
and Vershynin proved in 2007 that if the rows are drawn from a particular weighted random
distribution, the Kaczmarz algorithm converges in expectation with a sharp linear conver-
gence rate [26] depending on a condition number of the matrix A. Precisely, the randomized
Kaczmarz method proposed by Strohmer and Vershynin is as follows (Algorithm 2):

5144 R. WARD

Algorithm 2 Randomized Kaczmarz method

1: // Return: W, an intended solution to Aw =25

2: procedure RANDOMIZED KACZMARZ ALGORITHM

3: Initialize point w®). Denote rows of A by {a; o
4: fort:=1toT —1do
5: Draw arow a;,, where i, is chosen from the set {1,2, . ..,n} at random according

to a weighted probability distribution such that Prob(i; = j) o |a;||3.

PR Do ()
Tterate w1 « 1 ® 4 %ai,.
it

6

7: end for
8 return ¥ = w?
9

: end procedure

Subsequently, the paper [22] recognized the randomized Kaczmarz method as a spe-
cial case of stochastic gradient descent Algorithm 1 applied in the setting of linear regression,
where the objective function is F(w) = ||Aw —b||3 = ,ll Y n({ai,w) — b;)?, and imple-
mented with importance sampling so that Prob(i; = j) o« ||a; |3 and n;, = m to maintain
unbiasedness of the stochastic gradient estimator for the full gradient. Extending Strohmer
and Vershynin’s analysis beyond the linear regression setting improves on a previous linear
convergence rate of Bach and Moulines [2] to show that stochastic gradient descent Algo-
rithm 1 enjoys a linear convergence rate under a general set of conditions including convexity
and smoothness. Moreover, the convergence rate can be improved when component functions
are allowed to be drawn from an importance sampling weighted distribution, as extended to

neural networks in [16,20].

1.2. Stochastic gradient descent: convergence theory
In this section, we will lay out the convergence theory for stochastic gradient
descent precisely. Enforce the following conditions on a loss function of the form F(w) =

% Z?=1 fi(w):
(a) each f; is L-smooth: Yw, z, |V fi(w) — V fi (2)||2 < L||lw — z||2;
(b) each f; is convex;
(c) F is u-strongly convex.

Under these assumptions, the loss function F has a unique minimizer w*, and SGD con-
verges to this minimizer as follows [22].

Theorem 1. Consider constant step-size < ﬁ Draw w©® either as a random initial point
or deterministically. Denote 0% = % S IV fi(w*)||3. Under the stated assumptions, the
expected error of the SGD Algorithm 1 satisfies

no>

(t)_ %12 _ _ t (0)_ * |2 -
Efw® —wr < [1=2n(t =L EJw® — w4 s

5145 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

The error expression has two terms, highlighting that the algorithm enjoys a linear
2
convergence rate up to a so-called “region of confusion” of radius ﬁ Optimizing the
step-size 7 to balance the two error terms results in the following sharp convergence rate.

Corollary 1.1. Enforce the assumptions of Theorem 1. Fix the constant step-size
2

Denote by €0 = By [w® — w*||3. After T = 2log(o/e)(§; +)

_ we
n= 2eul+202" n2e

iterations, the expected error satisfies
2
IEHw(T) —w*|] <e
While this convergence rate cannot really be improved in the setting where the step-
size is fixed, we can improve on this rate slightly by considering a carefully chosen piecewise

constant decreasing step-size schedule and applying Corollary (1.1) recursively. We could
not find the following result stated explicitly in the literature, so we provide the short proof.

Proposition 1.1. Enforce the assumptions on smoothness and convexity from Theorem 1.

For error function h(s) = M‘# and times
T—2(L+ 2o?) J=12
T T RO —wrig) T T

consider the SGD Algorithm 1 with piecewise constant decreasing step-size schedule

ne=mn:=h(e-27", 1<t=<T,

J—1 J
ne=nsi=hle-277), 1+ T, <t=<> T,
j=1 j=1

2

After Ty = 2K(ﬁ + % . W")—W*II%ZK) iterations,

B0 —u[} < 2B ® - u[}
Comparing the error bounds in Proposition 1.1 and Corollary 1.1, we see that to

achieve error E|jwT®) — y* 12 < 27 KR || w©® — w* ||, the piecewise constant decreasing
2
step-size schedule requires a number of iterations 7' = 2K (% + % . ﬁZK) while the con-

2
stant step-size schedule requires a larger number of iterations 7/ = 2K (ﬁ + Mgfo 2K, This
suggests that to get the best possible convergence rate of SGD when the region of confu-
sion dominates the condition number, piecewise constant decreasing step-size schedules can

outperform constant step-size schedules.

Proof of Proposition 1.1. Theorem 1.1 is proved by induction on the bound in Corollary 1.1
with the number of levels K. For the base case K = 1, we get the result by applying
Corollary 1.1 with €; = €¢/2 and fixed step-size n; = h(ep/2). For the induction, sup-
pose the result holds at K — 1, that is, suppose that IE||w(T<K—1)) — w*||§ < €g_1, where
ex 1= 27KE|w® — w*|2. Apply Corollary 1.1 with €y = ex—; and € = €o/2 and with
nk = h(eg - 27K) to arrive at the stated bound at K. |

We draw the reader’s attention to the fact that we have focused on stochastic gradi-
ent descent convergence theory under assumptions such as smoothness and convexity which

5146 R. WARD

are not satisfied in the setting of training neural networks. However, increasingly, neural net-
works are implemented to be highly overparameterized, or configured so that the number of
parameters p (length of the parameter vector w) is set to be larger than the size of the training
data. In this regime, recent works have shown that in a certain “neural tangent kernel regime,”
the loss function associated to training overparameterized neural networks is locally strongly
convex around a random initialization w(® [6,14]. While it is an active area of research to
try and understand the extent to which overparameterized neural networks remain similar
to linear systems in regimes where neural networks are most powerful in practice, there is
evidence that points to a strong connection. One important piece of evidence is the fact that
SGD is typically trained using piecewise constant decreasing step-sizes to optimize conver-
gence speed, just as suggested by Proposition 1.1. Thus, the convergence theory for SGD in
the strongly convex setting (and the corresponding step-size schedule which results for opti-
mizing convergence) is surprisingly relevant in the application of training large-scale neural
networks.

1.3. Adaptive step-size rules in stochastic gradient descent

Proposition 1.1 suggests that in training neural networks using stochastic gradient
descent, piecewise constant decreasing step-sizes should be effective. In practice, neural net-
works are indeed trained using piecewise constant decreasing step-size schedules; however,
the particular choice of step-size schedule in Proposition 1.1 is not so useful in practice
as it is a function of several parameters of the optimization problem: the strong convexity
parameter i > 0, the Lipschitz smoothness constant L associated to the loss function, the
stochastic noise level 2 > 0, and the error at initialization ||w® — w* || In practice, none
of these quantities is known to the user in advance. Indeed, this represents a serious dis-
connect between the theory for SGD and the practical implementation, as the convergence
behavior of the basic SGD Algorithm 1 is quite sensitive to the choice of step-size schedule.
Fortunately, simple modifications to the basic SGD algorithm have been developed, such as
Adagrad [7,21], RMSprop, and Adam [18], which are significantly more robust to the step-size
schedule. A convergence theory for these algorithms as adaptive step-size learners in the set-
ting of stochastic gradient descent was initiated independently in [19,28]. We will focus on the
results from [28], which focuses on guarantees for the AdaGrad adaptive gradient algorithm.

As a precursor to discussing adaptive gradient methods in the context of stochastic
gradient descent, let us first understand their behavior in the setting of batch (full) gradient
descent (where where the gradients V F (w) are measured exactly).” In the batch setting, the
AdaGrad algorithm is as follows.

2 We note that in the batch setting, line search methods are efficient black-box plugins for
adaptively updating the step-size. However, such methods lose effectiveness in the presence
of stochastic noise, and have a tendency to overfit the noisy gradient directions.

5147 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

Algorithm 3 Gradient Descent with AdaGrad

1: // Return: W, an intended approximation to

2: // w* € argmin F(w)
weRP
procedure GRADIENT DESCENT WITH ADAGRAD

3:

4 Initialize point w(®, initial step-size parameters by, 7 > 0. Tolerance € > 0.
5 repeat

6: t+1<«t.

7 Update step-size b2 = b2 | + |VF(w=V)|?

8

9 Iterate w® « w1 — l:’—tVF(w(tfl)).

10: until [VFw®)|? <e

11 return 0 = w @

12: end procedure

To put our main result in context, let us first review the following classical result
(see, for example, [24, (1.2.13)]) on the convergence rate for gradient descent with fixed step-
size.

Lemma 1.1. Suppose that F is L-smooth, and suppose that F* = inf, F(x) > —oo. Fix n
and b, consider gradient descent, w1 = w® — %VF(w(’)). Ifb > nL, then
in |[VFw®)|® <
i [VE@M)]" <

after at most a number of steps

T 2b(F(w®) — F*)
= ” .
Alternatively, if b < % then convergence is not guaranteed at all—gradient descent can
oscillate or diverge.

The following result on the convergence of AdaGrad Algorithm 3 from [28] shows
that in contrast to fixed step-size gradient descent, AdaGrad always converges, and its con-
vergence rate as a function of the parameters bg, 7 > 0 can be understood in a sharp sense. It
suggests that in practice, one should simply initialize AdaGrad with a large step-size 1/by,
and the algorithm will adapt on its own by decreasing the step-size to an appropriate limiting
value.

Theorem 2 (AdaGrad—convergence). Consider the AdaGrad Algorithm 3. Suppose that F
is L-smooth and suppose that F* = infy,, F(w) > —o0. Then

s O
S [T < e

5148 R. WARD

2(F (w©)—F*)(bo+2(F (w)—F*)/n)
ne

2_p2 A(FO)—F*)/n+(3+log 2)nL)?
(WL)S L - /Z 0 Steps if

after Case I: T =1+ | 1 steps if % > L, and

Case 2: T =1+
bo <.
n

In either case, max; % < % where by /1 = 2L(1 + log(nL/bg)) + ”2—2(F(w(°)) — F*).

Comparing the convergence rate of AdaGrad with the convergence rate of gradient
descent with fixed step-size, we see that in case b = by > nL, the rates are essentially the
same. But in case b = by < nL, gradient descent can fail to converge as soonas b < nL/2,
while AdaGrad converges for any by > 0, and is extremely robust to the choice of by < nL
in the sense that the resulting convergence rate remains close to the optimal rate of gradient
descent with fixed step-size n/b = 1/L, paying only a factor of log(%) in the constant.

The convergence rate in Theorem 2 represents a worst-case analysis of AdaGrad
over the class of L-smooth functions. In practice, the limiting step-size will obtain very
quickly, and at a value much larger than 1/L. This is not surprising since the smoothness

parameter L represents only the globally worst-case bound on the magnitude of the ratio

IVF(w)=VF ()|
lw—z]|

AdaGrad can converge significantly faster than gradient descent with fixed step-size 1/L,

over all w, z € R”. In other words, even if one has a priori bound on L,

and is thus advantageous to use even with such knowledge.

Now let us turn to the convergence analysis of AdaGrad in the stochastic setting,
also from [28]. Recall that in the stochastic setting, instead of observing a full gradient at
each iteration, we observe a stochastic gradient g; € R? which is an unbiased estimator for
the true gradient V F(w®).

We now state Adagrad in the stochastic setting (Algorithm 4):

Algorithm 4 Stochastic Gradient Descent with AdaGrad

1: //Return w*, an approximation to a stationary point of a
smooth function F(-) over R?.

2: procedure ADAGRAD IN STOCHASTIC SETTING

3 Initial point w(® e RP?. step-size parameters 7, bg.

4: fort :=1to7T —1do

5 step-size update:

n
N = —————— where b> = b?_, + |g|?

by + lg:?

Iterate w1 «— w® —p, g;.

6

7: end for
8 return b = w?)
9

: end procedure

5149 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

More formally, denote
Fr=oafw', g' ... w® g0 T (1.8)

to be the sigma algebra generated by the observations of the algorithm after observing the
first ¢ stochastic gradients. We will assume that the stochastic gradients satisfy the following:

Assumptions 2.1 (Unbiased gradients). For each time t, the stochastic gradient, g;, is an
unbiased estimate of VF(w®), i.e.,

Elg:|Fi—1] = VF(w®). (1.9)

For the theory in this section, we will assume that the stochastic noise is uniformly
bounded, as in the setting of Robbins and Monro.?

Assumptions 2.2 (Uniformly bounded gradient and uniformly bounded variance). We as-
sume sup,,crp |VF(W)|| < y. Moreover, for each time t, the variance satisfies

E[|g — VF@®)|*|Fi-1] < 0. (1.11)

The AdaGrad step-sizes % in the stochastic setting exhibit quite different behavior
than in the deterministic setting. Rather than converging to a fixed value proportional to
the Lipschitz smoothness constant as in the batch setting, the step-size decreases to zero in
the stochastic setting, roughly at the rate of % ~ # This rate is optimal in ¢ in terms of
the resulting convergence theorems in the setting of smooth but not necessarily convex F,
or convex but not necessarily strongly convex or smooth F'. Still, one must be careful with
convergence theorems for AdaGrad because the step-size is a random variable and dependent
on all previous points visited along the way.

Theorem 3. Suppose F is L-smooth and F* = infy, F(w) > —oo. Suppose that the random
variables g;,t > 0, satisfy the above assumptions. Then with probability 1 — 6,

® 2by 2«/_()/+0")) 0
terr}mI]”VF(w)” (T ﬁ §3/2

where Q = F(w“’);)fF* + 40;@ lo (20T(y +0%) 4 10).

This result implies that AdaGrad converges starting from any value of by for a
given . To put this result in context, we can compare to Corollary 2.2 of [9], which implies
that under similar assumptions, if the Lipschitz constant L and the variance o are known a
priori, and the step-size is

1 1
= 1 = min t=0,1,....,T —1,
o= { U\/—}

3 These assumptions can be weakened to a single affine-variance assumption: For each time ¢,
the variance only needs to satisfy

E[|g: — VF@®)|*|Fi=1] < 0§ + 02 |IVFw® 2. (1.10)

5150 R. WARD

then with probability 1 — 4,

2L(Fw®) — F*) (L +2(F(w©®) - F*))o

TS * ST '
Thus, essentially, AdaGrad convergence achieves the rate of [9], but without requiring a priori
knowledge of L and o to set the step-sizes. The constant in the O(1/+/T) rate of AdaGrad
scales according to o2 (up to a logarithmic factors in o) while the results with well-tuned

. 2
(i [VFEOI <

step-size scales linearly with o.

The main technical difficulty in the proof of Theorem 3 is in dealing with the Ada-
Grad step-sizes which are random variables which depend on the current and all previous
stochastic gradients. See [28] for details of the proof.

1.4. Outlook

Stochastic gradient descent is the de facto algorithm used for minimizing functions
which arise in deep learning and neural network training. While there are many mysteries
surrounding the behavior of stochastic gradient descent in applications, there are also sev-
eral regimes in which we have a rich and sharp mathematical understanding. Remarkably,
the strong linear convergence guarantees for stochastic gradient descent which are guaran-
teed in the setting of strongly convex finite sums (and the piecewise constant decreasing
step-size rules they imply) are empirically verified in practice in training overparameterized
neural networks. That is, in many practical settings, seemingly highly nonconvex and highly
nonlinear neural network-based regression functions of interest are in reality perturbations
of linear regression problems. In this sense, practice caught up with theory. A theoretical
understanding of practical methods for making stochastic gradient descent more robust to
hyperparameter specifications such as the step-size schedule has begun to emerge in recent
years. In this sense, stochastic gradient enhancements developed in practice to meet the needs
of large-scale machine learning inspired new theoretical directions in the study of stochastic
gradient descent.

FUNDING
This work was partially supported by AFOSR MURI FA9550-19-1-0005, NSF DMS
1952735, NSF HDR-1934932, and NSF 2019844.

REFERENCES

[1] L. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950),
337-404.

[2] F. Bach and E. Moulines, Non-asymptotic analysis of stochastic approximation

algorithms for machine learning. In Advances in neural information processing
systems. Vol. 24, 2011.

[3] J. R. Blum, Approximation methods which converge with probability one. Ann.
Math. Stat. (1954), 382-386.

5151 STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

[4]

(5]

[6]

(8]

[9]

[1e]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2e]

5152

L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale
machine learning. SIAM Rev. 60 (2018), no. 2, 223-311.

F. Deutsch, The rate of convergence for the method of alternating projections, II.
J. Math. Anal. Appl. 205 (1997), 381-405.

S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes
over-parameterized neural networks. In International conference on learning rep-
resentations, 2018.

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121-2159.
H. G. Feichtinger, C. Cenker, M. Mayer, H. Steier, and T. Strohmer, New variants
of the POCS method using affine subspaces of finite codimension with applica-
tions to irregular sampling. In Visual Communications and Image Processing’92,
pp. 299-310, Proc. SPIE 1818, International Society for Optics and Photonics,
1992.

S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. STAM J. Optim. 23 (2013), no. 4, 2341-2368.

R. Gordon, R. Bender, and G. T. Herman, Algebraic reconstruction techniques
(art) for three-dimensional electron microscopy and X-ray photography. J. The-
oret. Biol. 29 (1970), no. 3, 471-481.

I. Halperin, The product of projection operators. Acta Sci. Math. (Szeged) 23
(1962), 96-99.

G. T. Herman and L. B. Meyer, Algebraic reconstruction techniques can be made
computationally efficient (positron emission tomography application). IEEE
Trans. Med. Imag. 12 (1993), no. 3, 600-609.

G. N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1.
description of system. Br. J. Radiol. 46 (1973), no. 552, 1016-1022.

A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: convergence and gen-
eralization in neural networks. In Proceedings of the 53rd annual ACM SIGACT
symposium on theory of computing, p. 6, ACM, 2021.

S. Karczmarz, Angenaherte Auflosung von Systemen linearer Gleichungen. Bull.
Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat. (1937), 355-357.

A. Katharopoulos and F. Fleuret, Not all samples are created equal: Deep learning
with importance sampling. In International conference on machine learning,

pp. 2525-2534, PMLR, 2018.

S. Kayalar and H. Weinert, Error bounds for the method of alternating projections.
Math. Control Signals Systems 1 (1988), 43-59.

D. Kingma and J. Ba. Adam, A method for stochastic optimization. 2014,
arXiv:1412.6980.

X. Li and F. Orabona, On the convergence of stochastic gradient descent with
adaptive stepsizes. 2018, arXiv:1805.08114.

L. Loshchilov and F. Hutter, Online batch selection for faster training of neural
networks. 2015, arXiv:1511.06343.

R. WARD

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1805.08114
https://arxiv.org/abs/1511.06343

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. B. McMahan and M. Streeter, Adaptive bound optimization for online convex
optimization. In COLT 2010, p. 244, 2010.

D. Needell, R. Ward, and N. Srebro, Stochastic gradient descent, weighted sam-
pling, and the randomized Kaczmarz algorithm. In Advances in neural informa-
tion processing systems, 2014.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approx-
imation approach to stochastic programming. SIAM J. Optim. 19 (2009), no. 4,
1574-1609.

Y. Nesterov, Introductory lectures on convex programming volume I: Basic
course. 1998.

H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat.
22 (1951), 400-407.

T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponen-
tial convergence. J. Fourier Anal. Appl. 15 (2009), no. 2, 262-278.

J. von Neumann, Functional operators. vol. II. The geometry of orthogonal spaces.
Ann. of Math. Stud. 22 (1950). This is a reprint of mimeographed lecture notes
first distributed in 1933.

R. Ward, X. Wu, and L. Bottou, AdaGrad stepsizes: sharp convergence over non-
convex landscapes. In International conference on machine learning,

pp- 6677-6686, PMLR, 2019.

B. Widrow, An adaptive “Adaline” neuron using chemical “memistors”. Technical
report No. 1553-2, 1960.

RACHEL WARD

2515 Speedway, Austin, TX 78712, USA, rward @math.utexas.edu

5153

STOCHASTIC GRADIENT DESCENT: WHERE OPTIMIZATION MEETS MACHINE LEARNING

mailto:rward@math.utexas.edu

	1. Introduction
	1.1. Stochastic gradient descent: Background
	1.1.1. Stochastic approximation
	1.1.2. The Kaczmarz method for solving linear systems

	1.2. Stochastic gradient descent: convergence theory
	1.3. Adaptive step-size rules in stochastic gradient descent
	1.4. Outlook

	References

