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Abstract

We survey some classical results and techniques in discrepancy theory, and the recent
developments in making these techniques algorithmic. The previous methods were typi-
cally based on non-constructive approaches such as the pigeonhole principle, and counting
arguments involving exponentially many objects and volume of convex bodies. The recent
algorithmic methods are based on an interesting interplay of methods from discrete Brow-
nian motion, convex geometry, optimization, and matrix analysis, and their study has led to
interesting new connections and progress in both discrepancy and algorithm design.
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1. Introduction

Combinatorial discrepancy deals with the following type of question. Given a set-
system .U; C / with elements U D Œn� and a collection C D ¹S1; : : : ; Smº of subsets of U ,
how well can we color the elements red and blue so that each set Si 2 C is colored as evenly
as possible. Formally, let us use ˙1 to denote the colors red and blue, so that if x.j / denotes
the color of element j , then j

P
j 2S x.j /j is the imbalance for set S . Then the discrepancy

of the set system .U; C / is defined as

disc.C / D min
xWU !¹�1;1º

max
i2Œm�

ˇ̌̌̌X
j 2Si

x.j /

ˇ̌̌̌
;

that is, the minimum imbalance that must occur in at least one of the sets in C , over all
possible bipartitions of U .

More generally, for an m � n matrix A, the discrepancy of A is defined as

disc.A/ D min
x2¹�1;1ºn

kAxk1: (1.1)

This generalizes the definition for set systems by choosing A to be the incidence matrix
for the system. Letting v1; : : : ; vn denote the columns of A, this is the same as minimiz-
ing k

P
j x.j /vj k1 over all ˙1 colorings x, and the problem is also referred to as vector

balancing. In some settings, one also considers more general norms besides `1, and more
general objects vi than just vectors.

Roughly speaking, discrepancy can be viewed as the study of how to divide a set of
objects into two (or more) parts which are as similar as possible, with respect to various crite-
ria. For this reason the problem arises in several applications, often in unexpected ways, and
is related to various topics in mathematics and theoretical computer science [22,23,26,47,53].
For example, in computer science it has several applications in areas such as computation
geometry, pseudorandomness, approximation algorithms, numerical integration, and differ-
ential privacy.

Beating random coloring. For any discrepancy problem, one option is to simply pick a
random coloring by setting each x.j / independently and uniformly to ˙1. However, for
many problems one can do substantially better, so in a sense discrepancy theory can be
viewed as the study of how to improve over the basic probabilistic method [1].

1.1. A brief history
Roughly speaking, there are three classical techniques in discrepancy. One of the

earliest techniques was linear algebraic and similar to the well-known iterated-rounding tech-
nique [17, 19,41]. Though this technique gives surprisingly good bounds for some problems
in discrepancy, in general they are quite weak and far from optimal.

A huge breakthrough was made in the 1980s with the partial-coloring method due
to Beck [18] and Spencer [63]. A similar approach based on ideas from convex geometry
was developed independently by Gluskin [33]. Roughly speaking, this method guarantees
the existence of a coloring of a constant fraction of the elements where every set in the set
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system incurs a low discrepancy. This method is then repeated O.log n/ times in order to get
a full coloring of all the n elements.

The third approach was developed by Banaszczyk [4] in the late 1990s based on
sophisticated ideas from convex geometry. His technique produced a full coloring directly,
and led to improved bounds for many fundamental discrepancy problems.

Algorithmic aspects. Interestingly, the original proofs of the partial-coloring method and
Banaszczyk’s method were based on non-constructive approaches such as counting argu-
ments, pigeonhole principle, and volume estimates of convex bodies, and did not give
efficient algorithms. It was even conjectured that these results might be inherently non-
algorithmic. This was problematic as in many applications of discrepancy one actually
needs to be able to find good colorings efficiently.

In recent years, there has been remarkable progress in obtaining algorithmic ver-
sions of both the partial-coloring method [6, 28, 36, 45, 59] and Banaszczyk’s method [8–10,

24, 35, 42]. There techniques combine ideas from linear algebra, discrete Brownian motion,
optimization, and convex geometry in interesting ways, and lead to several new results and
insights both in discrepancy and algorithm design. Another remarkable development has
been on approximating hereditary discrepancy based on the 
2-norm from functional anal-
ysis and semidefinite programming duality [49,50].

In this survey, we give a brief overview of both the classical techniques and recent
algorithmic results, and sketch the main ideas behind them. We also discuss some recent new
directions such as online discrepancy, discrepancy of random instances, matrix discrepancy
and mention several conjectures and problems that are still open. Unfortunately, we have to
leave out several interesting topics, and in particular the various exciting applications of these
results. We also leave out techniques for proving lower bounds for discrepancy problems.

1.2. Some examples
We describe some classical problems to give a flavor of the area, and we will use

these throughout as running examples to illustrate the various techniques. Most of these
problems have a long and fascinating history, that we will discuss only very briefly here.

(1) Spencer’s problem. What is the discrepancy of an arbitrary set system with n

elements and m sets?

(2) Beck–Fiala problem. What is the discrepancy of a set system where each ele-
ment lies in at most d sets, i.e., the maximum degree is at most d?

(3) Komlós problem. What is the discrepancy of a matrix where the columns have
`2-norm at most 1?

(4) Prefix Komlós. Given vectors v1; : : : ;vn 2Rm satisfying kvjk2 �1, minimize the
maximum discrepancy of prefixes, i.e., minimize maxk2Œn� k

Pk
j D1 x.j /vj k1.
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(5) Tusnady’s problem. Given a set U of n arbitrary points in Œ0; 1�d , what is the
discrepancy with respect to rectangles, i.e., sets R \ U where R ranges over all
possible rectangles

Qd
iD1Œai ; bi � � Œ0; 1�d ?

(6) Discrepancy of Arithmetic Progressions. Here U D Zn and the sets S are of the
form Sa;b D ¹a; a C b; a C 2b; : : :º. The special case of homogeneous arith-
metic progressions (with a D 0 for each set) is called the Erdős Discrepancy
Problem.

Given a coloring x and a row a, let disc.x; a/ WD j
P

j x.j /a.j /j denote the dis-
crepancy of x for a. For any set S , by standard probabilistic tail bounds

Pr
�
disc.x; S/ � cjS j

1=2
�

� exp
�
�c2=2

�
; (1.2)

and thus a random coloring has discrepancy �.n1=2/ or worse for all the problems above.
We now describe the various improved bounds known for them. We shall give the details in
later sections.

1.2.1. Spencer’s problem
For an arbitrary set system, (1.2) and a union bound over the m sets implies that a

random coloring has discrepancy O..n log m/1=2/ with high probability (whp). In an influ-
ential work, Spencer [63] and Gluskin [33] showed the following result.

Theorem 1.1. Any set system with m � n sets has discrepancy O..n log 2.m=n//1=2/. For
m � n, the discrepancy is O.m1=2/.

In particular, for m D n this gives O.n1=2/ discrepancy, which is also the best pos-
sible, answering a question of Erdős. While this O.log n/1=2 factor improvement over the
random coloring may seem relative minor, Spencer developed the partial coloring method
to prove Theorem 1.1, which has become a key tool and gives huge improvements for many
other problems.

1.2.2. Beck–Fiala and Komlós problem
Beck and Fiala [19], in one of the first applications of the iterated rounding technique,

showed the following result.

Theorem 1.2. Any set system with maximum degree d has discrepancy at most 2d � 1.

A long-standing conjecture is the following.

Conjecture 1.2.1 ([19]). The discrepancy of any set system with degree d is O.d 1=2/.

If we allow a mild dependence on n, the partial-coloring method gives a bound of
O.d 1=2 logn/. The best known bound in this direction is O..d logn/1=2/ due to Banaszczyk
[4], based on a more general result that we shall see later.

Scaling the entries by d �1=2, notice that the Beck–Fiala problem is a special case of
the Komlós problem. For the Komlós problem, the partial-coloring method gives an O.logn/
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bound, and Banaszczyk’s method gives the best known bound of O..log n/1=2/. The follow-
ing conjecture generalizes Conjecture 1.2.1.

Conjecture 1.2.2 (Komlós). Given any v1; : : : ; vn 2 Rm satisfying kvj k2 � 1 for all j ,
there is an x 2 ¹�1; 1ºn such that k

P
j x.j /vj k1 D O.1/.

1.2.3. Prefix discrepancy
The study of discrepancy problems involving prefixes of a given sequence of vectors

also has a long history and several surprising connections to other classical ordering prob-
lems. See, e.g., [17] for a fascinating survey and also [5,20,27,47]. We restrict our focus here
to the prefix version of the Komlós problem. The best bound known here is O..log n/1=2/

due to Banaszczyk [5], where he further extended his method from [4] to handle prefixes.
Given this extension, a natural question is whether the prefix Komlós problem is

any harder than the one without prefixes.

Problem 1.3. Is the discrepancy of the prefix Komlós problem O.1/?

There is no clear consensus here, and in fact for some discrepancy problems it is
known that considering prefixes makes the problem harder [30,52].

Algorithmic aspect. As we shall see later, there are several algorithmic approaches known
by now for the partial-coloring method and for Banaszczyk’s method in [4] without prefixes.
However, the best algorithmic bound we know for the prefix version is still O.log n/, based
on partial coloring approach, and the following question is very interesting.

Problem 1.4. Find an efficient algorithm to obtain an O..log n/1=2/ discrepancy coloring
for the prefix Komlós problem.

1.2.4. Tusnady’s problem
Here one can do exponentially better than random colorings, and these ideas have

significant applications in numerical integral and quasi-Monte Carlo methods [23,47].
The case of d D 2 is already instructive to see the relative power of various tech-

niques. Moreover, we still do not know the right answer here. Linear algebraic methods give
a bound of O.log4 n/. Using partial coloring, this can be pushed to about O.log5=2 n/ [47].
The current best bound is O.log3=2 n/ due to Nikolov [54], based on Banaszczyk’s result for
prefix discrepancy [5]. On the other hand, the best known lower bound is �.log n/ [49,61].

For general d , after a long line of work, the current lower and upper bounds are
�d .logd�1 n/ [49] and Od .logd�1=2 n/ [54]. Closing this gap is an important open problem.

Conjecture 1.4.1. The discrepancy of Tusnady’s problem in d dimensions is O.logd�1 n/.

1.2.5. Arithmetic progressions
This problem has a long history, including results of Weyl [69] and Roth [58]. Using

Fourier analysis, Roth [58] proved a lower bound of �.n1=4/. Interestingly, Roth believed that
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his result might not be best possible and the right exponent might be 1=2, as suggested by
random colorings. Eventually, Matoušek and Spencer [51] gave a matching O.n1=4/ upper
bound using the partial coloring method.

For homogeneous arithmetic progressions, an O.log n/ upper bound follows from
a simple explicit construction. A famous question of Erdős was whether the discrepancy is
O.1/. This was answered negatively in a breakthrough work by Tao [67].

1.3. Hereditary discrepancy and rounding
An important application of discrepancy is in rounding a fractional solution to

an integral one without introducing much error, based on the following result of Lovász,
Spencer, and Vesztergombi [44].

Theorem 1.5 ([44]). For any x 2 Rn satisfying Ax D b, there is a Qx 2 Zn with k Qx � xk1 <

1, such that kA.x � Qx/k1 � herdisc.A/.

Here herdisc.A/ is the hereditary discrepancy of A, which is a more robust version
of discrepancy, and defined as the maximum discrepancy over all column restrictions of A,

herdisc A D max
S�Œn�

disc.AjS / D max
S�Œn�

min
x2¹�1;1ºn

kAxk1:

For most classes of set systems, any upper bound on discrepancy is also a bound
on hereditary discrepancy, as the class itself may be closed under taking subset of columns.
For example, this holds for all the problems in Section 1.2, except for the case of arithmetic
progressions, which is an example of a particular set system.

Rounding via discrepancy. To see the idea behind Theorem 1.5, suppose that x is 1=2-
integral (i.e., each x.j / has fractional part 0 or 1=2). Let S be the set of variables with
fractional part 1=2, and let y be ˙1 coloring of S with discrepancy disc.AjS /. Then
x0 D x C y=2 is integral and

Ax0

� Ax




1
D



A.y=2/




1
D disc.AjS /=2 � herdisc.A/=2:

That is, the signs of y are used to decide whether to round each x.j / up or down. For
arbitrary x, Theorem 1.5 follows by applying this to each bit after the decimal starting from
the least significant bit.

The problem of rounding arises naturally for example in designing efficient approx-
imation algorithms for discrete optimization problems. However, note that Theorem 1.5 only
shows the existence of a good rounding, and gives no clue on how to actually find one effi-
ciently. We shall see an algorithmic version of Theorem 1.5 in Section 3.1. In general, the
recent algorithmic progress on discrepancy has led to several new results in approximation
algorithms, a particularly notable result is [60].

2. Classical techniques

We now describe the classical techniques of (i) the linear algebraic method, (ii) par-
tial coloring, and (iii) Banaszczyk’s method. Interestingly, the linear algebraic idea will also
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play a key role in many of the algorithmic versions of partial coloring and Banaszczyk’s
method that we shall see later in Sections 3 and 4.

2.1. Linear algebraic method
This technique is simple but it can be surprisingly powerful. It is widely used in

combinatorial optimization and is also referred to as iterated rounding [41].
For discrepancy problems it works as follows. Let B 2 Rm�n be the input matrix.

The algorithm starts with the all-zero coloring x0 D .0; 0; : : : ; 0/, and updates the coloring
over several iterations t D 1; 2; : : : ; T , until the final coloring xT 2 ¹�1; 1ºn. The interme-
diate colorings satisfy xt 2 Œ�1; 1�n, and once some color reaches ˙1 it is never updated
again.

It remains to specify how the coloring is updated in each iteration. Call a variable j

alive at time t , if xt�1.j / 2 .�1; 1/ and let At be the set of alive variables at the beginning
of time t . The idea is to pick a suitable subset Bt of rows of B , with rank.Bt / < jAt j, and
consider some nonzero solution vt satisfying (i) Bt vt D 0 and (ii) vt .j / D 0 for j 2 Œn� n At .
Such a solution exists as there are jAt j alive variables, and rank.Bt / � jAt j.

The coloring is updated as xt D xt�1 C ıvt , where ı > 0 is chosen so that xt stays
in Œ�1; 1�n and at least one more color reaches ˙1 compared to xt�1. The ingenuity lies in
choosing Bt at each time t .

Let us see how to use this template to prove the Beck–Fiala theorem.

Theorem 1.2. Any set system with maximum degree d has discrepancy at most 2d � 1.

Proof. Let B denote the incidence matrix of the set system. By our assumption, each column
of B has at most d ones. Let us apply iterated rounding, where at iteration t we choose Bt

to consist of rows Si with jAt \ Si j > d . Call such rows large. As each column of B has at
most d ones, the number of ones in B restricted to columns in At is at most d jAt j, and so
the number of large rows is strictly less than jAt j and thus rank.Bt / < jAt j.

To bound the final discrepancy, notice that as long as a row is large, its discrepancy
stays 0. But once it has at most d alive elements, then no matter how these variables get
updated in subsequent iterations, the additional discrepancy must be strictly less than 2d

(e.g., if all the d alive variables were all �0:999 but get set to 1 eventually). As the final
discrepancy of a set system is integral, this gives the bound of 2d � 1.

For more ingenious applications of this method to discrepancy, we refer to the survey
by [17] and references therein.

2.2. Partial coloring method
We now describe the partial coloring lemma of Spencer and give some applications.

We then describe the convex geometric proof of this result due to Gluskin [33] based on an
exposition of Giannopoulos [32].
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Theorem 2.1 (Partial coloring lemma). Let A be an m � n matrix with rows a1; : : : ; am.
For each i 2 Œm�, let �i D �i kai k2 be target discrepancy bound for row i . If the �i satisfyX

i2Œm�

g.�i / � n=5; (2.1)

where

g.�/ D

´
K exp.��2=9/ if � > 0:1;

K ln.��1/ if � � 0:1;

and K is some absolute constant. Then there exists x 2 ¹�1; 0; 1ºn with j¹j W jx.j /j D 1ºj �

n=10 and disc.y; ai / � �i for each i 2 Œm�.

Comparison with union bound. It is instructive to compare this with the standard union
bound argument. For a random coloring x, as PrŒdisc.ai ; x/ � �kai k2� � exp.��2

i =2/ �

g.�i /. For the union bound to work, we need to choose �i to (roughly) satisfy the conditionP
i g.�i / < 1. In contrast, Lemma 2.1 allows

P
i g.�i / D �.n/. This gives substantially

more power. For example, suppose A is a 0–1 matrix corresponding to a set system. The
union bound argument cannot ensure that �i � jSi j

1=2 for even a couple of sets, while
Theorem 2.1 allows us to set �i < 1 for O.n= log n/ sets. As x 2 ¹�1; 0; 1ºn, this in fact
gives a partial coloring with exactly zero discrepancy for those sets!

2.2.1. Applications
The partial coloring method is very general and is widely used in discrepancy theory.

We show how it directly gives Theorem 1.1 and the O.d 1=2 log n/ bound for the Beck–Fiala
problem.

Proof of Theorem 1.1 for Spencer’s problem. Let us assume that m � n. The case of
m � n follows by reducing n D m by a standard linear algebraic trick. The coloring is
constructed in phases. Let n0 D n and let nk be the number of uncolored elements in
phase k. In phase k, we apply Theorem 2.1 to the set system restricted to these nk elements
with �k D c.nk log.2m=nk//1=2 for each row, and verify that (2.1) holds for large enough
c D O.1/. This gives a partial coloring on � nk=10 elements, so nk � .0:9/kn and summing
up over the phases, total discrepancy is at most �0 C �1 C � � � D O..n log.m=n//1=2/.

O.d1=2 log n/ discrepancy for the Beck–Fiala problem. Again, the coloring is con-
structed in phases where nk � n.0:9/k elements are uncolored in phase k. In phase k, let
sk;j denote the number of sets with number of uncolored elements in the range Œ2j ; 2j C1/.
Then sk;j � min.m; nkd=2j / as the degree is at most d . A simple computation shows that
(2.1) holds for �i D cd 1=2 for each i , for large enough c D O.1/. The result then follows
directly as there are O.logn/ phases and each set incurs O.d 1=2/ discrepancy in each phase.

2.2.2. Proof of the partial coloring lemma
The original proof of Spencer was based on the pigeonhole principle and the entropy

method and has several nice expositions, e.g., [1]. We sketch here the convex geometric proof
of Gluskin [33].
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The simple observation that ties discrepancy to geometry is the following.

Observation 2.1.1. For a m � n matrix A, there is a coloring with discrepancy at most �i

for row ai iff the polytope P D ¹x W jai xj � �i ; i 2 Œm�º, contains some point in ¹�1; 1ºn.

Similarly, Theorem 2.1 is equivalent to showing that the polytope P contains some
point in ¹�1; 0; 1ºn with at least n=10 nonzero coordinates, if the �i satisfy (2.1).

Gluskin relates this property to the Gaussian volume of P . Call a convex body K

symmetric if x 2 K implies �x 2 K. Let 
n.x/ D .2�/�n=2 exp.�kxk2
2=2/ denote the stan-

dard n-dimensional Gaussian measure. For ease of exposition, we ignore the constants in
Theorem 2.1.

Theorem 2.2 (Gluskin). There is a small constant ı > 0, such that any symmetric convex
body K 2 Rn with 
n.K/ � 2�ın contains y 2 ¹�1; 0; 1ºn with at least ın coordinates ˙1.

The proof is based on a nice counting argument.

Proof. For x 2 Rn, let Kx WD K C x denote K shifted by x. As K is symmetric, we have
that 
n.Kx/ � exp.�kxk2=2/
n.K/, as the densities of any two symmetric points y and �y

upon shifting by x satisfy,


n.y C x/ C 
n.x � y/ � 2
�

n.x � y/
n.y C x/

�1=2
D 2 exp

�
�kxk

2=2
�

n.y/:

Consider the 2n copies Kx for all x 2 ¹�1; 1ºn. As the total Gaussian volume of these copies
is at least 2n exp.�n=2/
n.K/ D 2cn, for some c > 0, there exists some point z contained in
at least 2cn copies. So there must exist some x; x0 2 ¹�1; 1ºn differing in �.n/ coordinates
such that z lies in both Kx and Kx0 . Suppose z D k1 C x D k2 C x0 for some k1; k2 2 K.
Then y WD .x � x0/=2 D .k2 � k1/=2 2 K as K is symmetric and convex, and, moreover,
y 2 ¹�1; 0; 1ºn with �.n/ coordinates ˙1.

Theorem 2.1 follows by relating the condition (2.1) on �i to the volume 
n.P /.

Gaussian measure of polytopes. For a vector a 2 Rn and scalar b > 0, define the slab
S.a; b/ D ¹x W jhx; aij � bº. Then S.a; �kak2/ is symmetric and convex, with measure

n.S.a; b// D 
1.Œ��; ��/, and P D

Tm
iD1 S.ai ; �i kai k2/ is an intersection of slabs.

By the Sidak–Khatri lemma (see, e.g., [33]), for any symmetric convex body K and
slab S , we have that 
n.K \ S/ � 
n.K/
n.S/, and hence 
n.P / �

Q
i 
n.S.ai ; �i kai k2/.

As 
1.Œ��; ��/ � 1 � O.exp.��2=2// for � � 1 and O.�/ for � < 1, we have that
log.
1Œ��; ��/ � �g.�/, and thus condition (2.1) implies that 
n.P / � 2�ın.

2.3. Banaszczyk method
A problem with the partial coloring method is that it requires O.log n/ rounds to

obtain a full coloring, which can result in an extra O.log n/ factor loss in the discrepancy
bound, as we saw for the Beck–Fiala problem. The following result of Banaszczyk [4] gives
a way to find a full coloring directly and can give better results. The form of the result also
makes it broadly applicable in other settings.
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Theorem 2.3 ([4]). Given any convex body K � Rm of Gaussian measure 
m.K/ � 1=2,
and vectors v1; : : : ; vn 2 Rm of `2 norm at most 1=5, there exists a coloring x W Œn� ! ¹�1;1º

such that
Pn

j D1 x.j /vj 2 K.

While this statement looks similar to Theorem 2.1, a crucial difference is that the
Gaussian measure and convex body K here are in the output space and are m-dimensional,
while K in Theorem 2.1 is in the input space and n-dimensional.

The proof of Theorem 2.3 involves some delicate computation and a non-trivial idea
of Ehrhard symmetrization. However, the main idea is very clean that we sketch below.

Proof. The key step is to show that for any convex body K with 
m.K/ � 1=2 and u 2 Rm

with kuk2 � 1=5, there is a convex body K � u contained in .K � u/ [ .K C u/ such that

m.K � u/ � 1=2.

Given this fact, Theorem 2.3 follows by induction on the number of vectors n. It
trivially holds for n D 0 as 0 2 K as 
m.K/ � 1=2. Suppose inductively that it holds for some
n � 1. Consider the convex body K 0 D K � vn. As 
m.K 0/ � 
m.K/ � 1=2, by induction
there exist x.1/; : : : ; x.n � 1/ 2 ¹�1; 1º such that u D x.1/v1 C � � � C x.n � 1/vn�1 2 K 0.
But as K 0 � .K � vn/ [ .K [ vn/, at least one of u C vn or u � vn must lie in K, giving
the sign x.n/ such that u C x.n/vn D

Pn
iD1 x.i/vi 2 K.

Bound for the Komlós problem. Theorem 2.3 directly gives the O..log n/1=2/ bound for
the Komlós problem. This follows as Ekgk1 D O..logm/1=2/ for a random Gaussian vector
g in Rm, and so choosing K to be 2Ekgk1 times the unit `1-ball in Rm, by Markov’s
inequality we have that 
m.K/ � 1=2. As Theorem 2.3 requires kvk2 � 1=5, we can further
scale K by a factor of 5. Finally, we can assume m � n2, as kvj k2 � 1 for each j implies
that at most n2 rows ai can have kai k1 � 1.

Banaszczyk’s theorem for prefix discrepancy. In a subsequent work, Banaszczyk [5] fur-
ther extended this result to handle prefixes, using a clever inductive argument.

Theorem 2.4 ([5]). Given vectors v1; : : : ; vn 2 Rm of `2 norm at most 1=5 and any convex
body K � Rm with 
m.K/ � 1 � 1=.2n/, there exists a coloring x W Œn� ! ¹�1; 1º such that
each for k D 1; : : : ; n, the prefix sum satisfies

Pk
j D1 x.j /vj 2 K.

Proof. Consider the sequence of symmetric convex bodies Kj defined iteratively as Kn D K

and Kj D .Kj C1 � vj C1/ \ K, for j D n � 1; : : : ; 1. We first show that 
m.Kj / � 1 � .n �

j C 1/=2n for j 2 Œn� by backwards induction. Indeed, 
m.Kn/ D 
m.K/ � 1 � 1=.2n/ in
the base case. If this it holds for some j � n, then


m.Kj �1/ D 
m.Kj � vj / \ 
m.K/ � 
m.Kj � vj / �
�
1 � 
m.K/

�
� 
m.Kj / �

�
1 � 
m.K/

�
� 1 �

n � j C 1

2n
�

1

2n
D 1 �

n � j

2n
;

where we use that 
m.Kj � vj / � 
m.Kj / as 
m.Kj / � 1=2.
So 
m.K1/ � 1=2 and K1 is convex, and a simple calculation shows that either v1

or �v1 lies in K1. We now apply induction in the forward direction. Suppose there is some
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j � 1 such that there are signs x.1/; : : : ; x.j / satisfying (i) u WD
Pj

iD1 x.i/vi 2 Kj and (ii)Pk
iD1 x.i/vi 2 K for all k � j . To continue the induction, we need to show that (i) u 2 K

and (ii) that there is a sign x.j C 1/ such that u C x.j C 1/vj C1 2 Kj C1. Now, u 2 K

clearly holds as by (i) we have u 2 Kj � K. Now, for the sake of contradiction suppose
that both u C vj C1 and u � vj C1 … Kj C1. Then u … Kj C1 C vj C1 [ Kj C1 � vj C1 and
hence u … Kj C1 � vj C1. By definition, as Kj D K \ .Kj C1 � vj C1/ � Kj C1 � vj C1, this
contradicts our inductive assumption that u 2 Kj .

Bound for prefix Komlós. Theorem 2.4 directly implies an O..log n/1=2/ discrepancy
for the prefix version of the Komlós problem. In particular, the condition that

m.K/ � 1 � 1=.2n/ instead of � 1=2 in Theorem 2.3 make no difference beyond a constant
factor as PrŒkgk1 � Ekgk1 C t � � exp.�t2=2/ by concentration for Lipschitz functions
of Gaussians, and choosing t D O..log n/1=2/.

3. Algorithms for partial coloring

In the next few sections we describe the progress on making these results algorith-
mic. We first describe several different algorithmic proofs for partial coloring. In Section 4
we describe the algorithmic approaches for Banaszczyk’s method as stated in Theorem 2.3.
In Section 5, we describe an algorithm to approximate the hereditary discrepancy of any
arbitrary matrix.

The algorithms for partial coloring can be divided into two types: either based on a
random walk approach, or a direct optimization based approach.

Random-walk based approaches. Bansal [6] gave the first algorithm for various applica-
tions of partial coloring such as the O.n1=2/ bound for Spencer’s problem with m D O.n/

sets and the O.d 1=2 log n/ bound for the Beck–Fiala problem. Subsequently, Lovett and
Meka [45] designed an elegant and substantially simpler algorithm that gave an algorithmic
version of the full partial coloring lemma as stated in Theorem 2.1.

These algorithms can be viewed as a randomized version of the iterated rounding
method, where one starts with the all zero-coloring, and updates the variables gradually
using a correlated Brownian motion with small discrete steps. The variables are fixed once
they reach ˙1, and correlations between the variables are chosen to ensure that each row has
low discrepancy. Bansal’s algorithm was based on solving a suitable semidefinite program
(SDP) at each time step to generate the covariance matrix for the random walk. Lovett and
Meka showed that one can simply do a standard discrete Brownian motion in the subspace
orthgonal to tight discrepancy constraints, without the need to solve any SDPs.

Direct methods. Later, Rothvoss [59] further extended the result of Lovett and Meka from
polytopes to general symmetric convex bodies and gave an algorithmic version of Theo-
rem 2.2. His algorithm is extremely elegant and simple to describe. A related algorithm was
given by Eldan and Singh [28]. Both these algorithms are based on solving a very simple
optimization problem.
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We now describe these algorithms and sketch the main ideas behind their analysis.

3.1. The SDP-based approach
We start with the SDP-based approach. Even though the latter algorithms are more

general and simpler, this approach is very natural and motivates why the Brownian motion
is needed. It is also the only approach we know for some problems such as the algorithmic
version of Theorem 1.5, that we describe below in Theorem 3.1. More importantly, it is quite
flexible and can be extended in various ways by adding new SDP constraints, as we shall see
later in Section 4.

A relaxation for discrepancy. Given an input matrix A, a natural approach to find a low
discrepancy coloring for it is to first solve some convex programming relaxation and then try
to round the solution suitably to ˙1. Let us first consider linear programming relaxations.

Recall that a linear program (LP) consists of variables x1; : : : ; xn 2 R, and the goal
is to optimize some linear objective cT x subject to linear constraints aT

i x � bi for i 2 Œm�.
LPs can be solved optimally in time polynomial in n; m, and the bit length of the input.

Let ai denote the i th row of A, then the natural LP relaxation for discrepancy is,

min t s.t. � t � ai x � t; 8i 2 Œm� and � 1 � xj � 1; 8j 2 Œn�:

However, this always has the trivial solution x D 0 with objective t D 0, which is useless.
So let us consider a more general class of optimization problems called semidefi-

nite programs (SDPs). An SDP can be viewed as an LP with variables of the form xij for
1 � i; j � n, arranged as entries of an n � n matrix X , where we require that X be symmetric
and positive semidefinite, denoted by X � 0. For matrices A; B , let hA; Bi D Tr.AT B/ DP

ij Aij Bij denote the trace inner product. An SDP is an optimization problem of the form

maxhC; Xi s.t. hAk ; Xi � bk ; 1 � k � m; X � 0;

where C; A1; : : : ; Am 2 Rn�n.
SDPs can be solved to any desired level of accuracy in polynomial time. As X � 0

iff it is the Gram matrix of some vectors w1; : : : ; wn 2 Rn, i.e., Xij D hwi ; wj i, SDPs can
be viewed as vector programs where the variables are the vectors wi and we can impose any
linear constraints on their inner products (but not on the wi themselves).

SDP relaxation for discrepancy. Let � be some upper bound on the discrepancy disc.A/,
and consider the following SDP:



X

j

aij wj





2

2

� �2 for i 2 Œm�; kwj k
2
2 D 1; i 2 Œn�;

Let us call a feasible solution to this SDP a vector-coloring for A, and the smallest � for
which it is feasible as the vector discrepancy, vecdisc.A/. Clearly, vecdisc.A/ � disc.A/.

At first glance, this SDP also does not seem useful. For example, for Spencer’s
problem, the solution wi D ei , where wi is the i th standard basis vector, is always feasi-
ble with � D n1=2, irrespective of the matrix A. However, this SDP becomes quite useful
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when � � n1=2 as it gives nontrivial correlations between the vectors wi that we can exploit.
Below, we describe a very simple algorithm that gives the following algorithmic version of
Theorem 1.5.

Theorem 3.1 ([6]). Given any A 2 Rm�n, there is an efficient algorithm that, with high
probability, finds a coloring with discrepancy O..log m log n/1=2 herdisc.A//.

Later, we will also describe a simple O..n log log log n/1=2/ bound for Spencer’s
problem with m D O.n/ using this SDP. This is perhaps surprising, as apriori the naive
solution wi D ei does not give any meaningful correlations between the elements and cor-
responds to random coloring.

3.1.1. Algorithm for Theorem 3.1
Before describing the algorithm, it is instructive to see why a direct approach for

rounding the SDP does not work.

Problem with direct rounding. For simplicity, let us suppose that � D 0 for some matrix A.
Then the vectors w1; : : : ; wn produced by the SDP solution are nicely correlated so thatP

j aij wj D 0 for each row i .
To convert the wj into scalars while preserving the correlations, let us pick a random

Gaussian vector g 2 Rn, with each coordinate gk � N.0; 1/ independently and project the
vectors wj on g to obtain yj D hwj ; gi. Then as the gk are iid N.0;1/, we have that hg;wi DP

k gkw.k/ � N.0; kwk2
2/ for any vector w 2 Rn, and hence (i) yj � N.0; 1/ for each j

as kwj k2
2 D 1 and (ii)

P
j aij yj D 0 for each row i . This seems very close to what we want

except that yj � N.0; 1/ instead of ˙1.
However, the following hardness result of Charikar, Newman, and Nikolov [21] rules

out any reasonable way of rounding these yj to ˙1.

Theorem 3.2 ([21]). Given a set system on n elements and m D O.n/ sets, it is NP-hard to
distinguish whether it has discrepancy 0 or �.

p
n/.

In particular, this implies that there must exist set systems with discrepancy �.
p

n/

but vector-discrepancy 0 (otherwise solving the SDP would give an efficient way to distin-
guish between set systems with discrepancy 0 and �.

p
n/).

Discrete Brownian motion. So instead of trying to round the yj ’s directly to ˙1, the algo-
rithm will gradually obtain a ˙1 coloring by combining solutions of various SDPs over time.
We first give a overview of the algorithm.

More precisely, at time 0, we start with the coloring x0 D .0; : : : ; 0/ and
modify it over time as follows. Let xt�1 denote the fractional coloring at time t � 1. Then
xt D xt�1 C �xt is obtained by adding a small update vector �xt to xt�1. As the pertur-
bations are added, the colors evolve over time, and once a color reaches ˙1 it is frozen and
no longer updated. The updates �xt are obtained by solving the SDP with � D herdisc.A/,
restricted to the alive elements and setting �xt .j / D 
hg;wj i, where g is a random gaussian
and 
 is a small multiplier.
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Formal description. Let 
 D maxi;j jAij j=n and ` D 8 log n=
2. Let xt and At denote the
coloring and the set of alive (unfrozen) variables at the end of time t . Let � D herdisc.A/.

(1) Initialize x0.j / D 0 for j 2 Œn� and A0 D ;.

(2) At each time step t D 1; 2; : : : ; `, do the following.
Solve the following SDP:



X

j

aij wt
j





2

2

� �2
8i 2 Œm�;



wt
j



2

2
D 1 if j 2 At�1; else



wt
j



2

2
D 0:

Pick a random Gaussian gt 2 Rn, and set xt .j / D xt�1.j / C 
hgt ; wt
j i.

Set At D ¹j W jxt .j /j < 1º.

(3) Set x`.j / D �1 if x`.j / < �1 and x`.j / D 1 otherwise. Output x`.

Analysis. We now sketch the ideas behind Theorem 3.1. First, notice that as � D herdisc.A/,
the SDP above is always feasible no matter which variables are alive.

Let us now see how the colors of the elements and the discrepancies of the rows
evolve over time. Fix some element j . Its color xt .j / starts at 0 at t D 0 and evolves as
a martingale with updates �xt .j / D 
hwt

j ; gt i until it is frozen. As kwt
j k D 1, we have

�xt .j / � N.0;
2/ and thus xt .j / will reach ˙1 in O.1=
2/ steps with constant probability.
As there are ` D O.log n=
2/ steps, whp all elements will reach ˙1, by the end of the
algorithm.

Now fix some row i . Its discrepancy xt .ai / WD
P

j aij xt .j / is 0 at t D 0, and
evolves as

P
j aij �xt .j / D

P
j 
hgt ;

P
j aij wt

j i at step t . As k
P

j aij wt
j k2 � �2, the

sequence xt .ai / forms a martingale with Gaussian increments with variance at most 
2�2.
As ` D O.log n=
2/, by standard martingale concentration and union bound over the m

constraints, each row has final discrepancy O.`1=2 � 
� � .logm/1=2/ D O.�.logm logn/1=2/

whp.
Finally, whp truncating x`.j / to ˙1 introduces negligible error for any row. This

follows as �xt .j / � N.0; 
2/ we have that whp jxt .j /j < 1 C 
 � O..log n/1=2/ when it
freezes. As herdisc.A/ � maxij jAij j and 
 D maxij jAij j=n � herdisc.A/=n, the rounding
error is negligible.

3.1.2. Algorithmic version of Spencer’s result
The above approach is quite flexible, e.g., the discrepancy bounds �t

i for each row
i and be chosen adaptively at time t . We describe a simple version of this idea that already
gives a ˇn1=2 for ˇ D c.log log log n/1=2 bound for Spencer’s problem with m D n sets, and
thus beats random coloring.

As in Section 2.2.1, it suffices to obtain a partial coloring with O.ˇn1=2/ discrep-
ancy. Let us run the algorithmic template above for ` D 100=
2 steps, using the following
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SDP relaxation for partial coloring at each time t :



X
j 2Si

wj





2

2

� �2
i for i 2 Œm�; (3.1)X

j 2At�1

kwj k
2
2 � jAt�1j=10; (3.2)

kwj k
2
2 � 1 8j 2 At�1; else kwj k

2
D 0:

Notice that the �i on the right hand side in (3.1) can be different for each rows. The constraint
(3.2) says that at least jAt�1j=10 elements must be colored.

The bounds �i are set as follows. Initially, �i D cn1=2 for each Si where c is a large
enough constant. If the discrepancy jxt .Si /j for Si exceeds ˇn1=2 at any time, we label Si

dangerous and set �2
i D n= log n at all future time steps.

The result follows from the following two observations.

Lemma 3.3. If the SDPs are feasible at all time steps, then whp each set has discrepancy
O.ˇn1=2/, and at least �.n/ elements are colored ˙1 at the end of the algorithm.

Proof. (Sketch) By the choice of the �i , once a set becomes dangerous, its discrepancy
evolves as a martingale with Gaussian increments with variance at most 
2n= logn. As there
at most ` D O.
�2/ time steps, whp each set incurs an additional discrepancy of at most
O.n1=2/.

Next, the variance EŒ�xt .j /2� increases by at least 
2=10 on average for the alive
variables at each step t by the constraint (3.2). As ` D 100
�2, a simple Markov argument
shows that a constant fraction of the elements will reach ˙1 with at least constant probability.

Lemma 3.4. With probability 1 � o.1/, all the SDPs are feasible.

Proof. (Sketch) As �i � O.n1=2/ at each time and ` D O.
�2/, each set Si has discrep-
ancy O.n1=2/ in expectation. So by standard martingale concentration, with probability
1 � o.1/, the fraction of sets that ever become dangerous 2 exp.��.ˇ2// � .log log n/�2

for c large enough. Let us condition on this event. We will show that the SDP is feasible at
each step using Theorem 2.1. Indeed, as each dangerous set Si contributes g.�i =jSi j

1=2/ �

g.1= log n/ � K log log n to (2.1), the dangerous sets contribute

O
�
n=.log log n/2

�
� K log log n D o.n/

in total. As �i D cn1=2 for the other sets and m D n, their total contribution is also at most
n=10 for c large enough.

3.2. The Lovett–Meka algorithm
Lovett and Mekka [45] substantially simplified the random-walk approach and

extended it to give the following algorithmic version of the general partial coloring lemma.
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Theorem 3.5. Given an input matrix A 2 Rm�n and some fractional coloring x0 2 Œ�1; 1�n

with k alive elements, for i 2 Œm� let �i be such thatX
i

exp
�
��2

i =16
�

� k=16: (3.3)

Then there is a randomized polynomial time algorithm to find a coloring x with at most k=2

alive variables such that jx.ai / � x0.ai /j � �i kai k2 for each row i 2 Œm�.

We remark that the colors produced by Theorem 3.5 lie in Œ�1; 1�, in contrast to
¹�1;0; 1º in Theorem 2.1, but this does not make any difference. Theorem 3.5 is also slightly
stronger than Theorem 2.1 for �i � 1.

The key idea of the algorithm is that whenever a discrepancy constraint becomes
tight or some variable reaches ˙1, one can simply do a random walk orthogonal to it. We
now describe it formally. Without loss of generality, we assume that all variables are initially
alive, i.e., k D n.

3.2.1. The algorithm
Let At�1 be the set of alive variables at the beginning of time t . The algorithm

maintains a linear subspace Vt�1 � Rn. Initially at t D 1, the coloring is x0, A0 D Œn� and
V0 D Rn. The following is repeated for ` D O.
�2/ steps.

At time t , the algorithm chooses a random gaussian vector gt in the subspace Vt�1

and updates xt D xt�1 C 
gt , where 
 is a small step size as usual.

(1) If jxt .j /j � 1, set Vt D Vt�1 \ e?
j , so that x.j / will not be updated anymore.

(2) If jxt .ai /j � �i kai k2, set Vt D Vt�1 \ a?
i , so that row i incurs no further dis-

crepancy.

Analysis. We assume that 
 is small enough so that we can ignore the rounding error in
the sketch below. By design, the algorithm ensures that xt .j / 2 Œ�1; 1� for all j and that
xt .ai / � �i kai k2 for all i . We now show that, with constant probability, at least half the
variables reach ˙1.

For a linear subspace V , let N.V / denote the standard multidimensional Gaussian
distribution supported on V . By rotational invariance, a random vector g � N.V / can be
written as g D g.1/v1 C � � � C g.d/vd for some orthonormal basis ¹v1; : : : ; vd º for V and
g.1/; : : : ; g.d/ iid N.0; 1/. We note the following fact.

Lemma 3.6. Let V be a d -dimensional subspace of Rn and g � N.V /. Then for all u 2

Rn, hg; ui � N.0; �2/ where �2 � kuk2. Moreover, for i D 1; : : : ; n let �i be such that
hg; ei i � N.0; �2

i /. Then
Pn

iD1 �2
i D d .

Proof. Let u0 denote the projection of u onto V . Clearly, ku0k � kuk. As g 2 V , hg; ui D

hg; u0i and hence hg; ui � N.0; ku0k2/. For the second part, if v1; : : : ; vd is an orthog-
onal basis for V , then �2

i D
Pd

j D1hei ; vj i2. Thus
Pn

iD1 �2
i D

Pn
iD1

Pd
j D1hei ; vj i2 DPd

j D1

Pn
iD1hvj ; ei i

2 D
Pd

j D1 kvj k2 D d .
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Proof of Theorem 3.5. (Sketch) First we claim that in expectation, not many discrepancy
constraints become tight in step (2) of the algorithm. This follows as for any time t , by
Lemma 3.6 the discrepancy increment for each row ai is distributed as N.0; � 
2kai k

2/.
As ` D O.
�2/, by standard tail bounds PrŒjx`.aj / � x0.aj /j � �i kai k2� D exp.��.�2

i //.
As the �i satisfy (3.3), choosing the constants appropriately, the probability that more than
n=8 discrepancy constraints becomes tight is at most 1=8.

Let us condition on the above event. The proof now follows from a win–win argu-
ment. If more than n=2 elements reach ˙1, we are already done. If this does not happen, then
at any time during the algorithm the subspace Vt has dimension at least n � n=2 � n=8 �

3n=8. By Lemma 3.6, as
P

j EŒ�xt .j /2� � .3n=8/
2 and ` D O.
�2/ steps, the energyP
j .x`.j /2 � x0.j /2/ must increase by �.n/ in expectation. But as x`.j /2 � x0.j /2 2

Œ�1; 1� for all j , a simple argument can be used to show that at least �.n/ variables reach
˙1 in expectation.

3.3. Direct approaches
The Lovett–Meka algorithm crucially uses the face structure of the polytope and

does not seem to generalize to general convex bodies in the sense of Theorem 2.2. In partic-
ular, even if 
n.K/ � 2�ın, condition (2.1) may not hold as it might require exponentially
many facets to obtain any reasonable approximation of a general convex body K.

We now describe an extremely elegant and simple to state the algorithm due to
Rothvoss [59], that finds a partial coloring in general convex bodies. We then describe a
related algorithm by Eldan and Singh [28].

3.3.1. Rothvoss’ algorithm
Let K be a symmetric convex body with 
.K/ � 2�ın. Take a random Gaussian

g 2 Rn, and output the point closet to g in the body K \ Œ�1; 1�n, i.e., output

x�
D argmin

®
kg � xk2 W x 2 K \ Œ�1; 1�n

¯
:

That’s it! The point x� can be computed by a convex program, using a membership oracle
for K.

Theorem 3.7 ([59]). Let " > 0 be a sufficiently small constant and ı WD .3=2/" log2.1="/,
and let K be a symmetric convex body with 
n.K/ � exp.�ın/. Then whp, x� has at least
"n many coordinates ˙1.

Analysis. The proof is also very elegant and uses Gaussian concentration for Lipschitz func-
tions and the Sidak–Khatri lemma in a clever way.

The starting observation is that the distance d.g; x�/ is at least n1=2=5 with prob-
ability 1 � exp.��.n//. This follows as x� 2 Œ�1; 1�n and as g.j / � N.0; 1/ for each
coordinate j , we have PrŒjg.j /j � 2� � 1=25. On the other hand, d.g; K/ � 3.ın/1=2

with probability 1 � exp.��.n// by Gaussian concentration for Lipschitz functions as

n.K/ � exp.�ın/.
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Now, suppose for the sake of contradiction that fewer than "n coordinates of x� are
˙1 for some g. Let I be the set of these coordinates. A key observation is that if x� is an
optimum solution to some convex program, and some constraint is not tight at x�, then x�

remains optimum even when this constraint is removed. So x� would still be the optimum
solution, if replace K \ Œ�1; 1�n in the convex program by K \ S.I /, where S.I / D ¹x W

jx.j /j � 1; j 2 I º is the intersection of the slabs corresponding to coordinates in I .
By the Sidak–Khatri lemma, 
n.K \ S.I // � 
n.K/
n.S.I // � exp.�.� C 2ı/n/,

and hence by Gaussian concentration the distance d.g; x�/ D d.g; K \ S.I // �

6." C ı/n1=2 with probability 1 � exp.��.n//. So even if after a union bound over the �

exp.ı ln.1=ı/n/ possible choices for I , one has d.x�; g/ D

O.." C ı/n1=2/ whp. This contradicts the first observation that d.x�; g/ � n1=2=5 whp.

3.3.2. Eldan–Singh algorithm
This algorithm is as simple to state and only requires linear optimization: Pick a

random direction c 2 Rn and optimize over K \ Œ�1; 1�n, i.e., output

x�
D argmax

®
cT x W x 2 K \ Œ�1; 1�n

¯
:

Eldan and Singh [28] showed a result similar to Theorem 3.7. That is, for any � > 0 small
enough, there is a ı > 0 such that if 
n.K/ � 2�ın then whp x� has at least "n coordinates
˙1 with constant probability.

4. Algorithmic version of Banaszczyks’s result

We now consider the algorithmic approaches for Banaszczyk’s method. The first
progress was by Bansal, Dadush, and Garg [8], who gave an efficient SDP-based algorithm
to find an O..logn/1=2/ discrepancy coloring for the Komlós problem. A deterministic algo-
rithm for the problem was subsequently obtained by Levy, Ramadas, and Rothvoss [42].

Later, Bansal, Dadush, Garg, and Lovett [9] gave an algorithm for the general case
of Banaszczyk’s theorem with arbitrary convex body K. Their algorithm, called the Gram–
Schmidt walk, combines linear algebra and random walks. Recently, Harshaw et al. [35] gave
an optimal analysis of this walk.

We describe both these approaches below. We mention that finding an efficient algo-
rithm for the prefix version of Banaszczyk’s problem in Theorem 2.4 is still open.

Problem 4.1. Find an efficient algorithm for the prefix version of Banaszczyk’s theorem.
The case of prefix Komlós (Problem 1.4) would already be very interesting.

4.1. The Komlós problem
We describe the following result of Bansal, Dadush, and Garg [8].

Theorem 4.2 ([8]). Given vectors v1; : : : ; vn 2 Rm with kvj k2 � 1 for j 2 Œn�, there is a
polynomial time algorithm that finds an O..log n/1=2/ discrepancy coloring whp.
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The algorithm is based on SDPs and is similar to that in Section 3.1, but it adds
some extra constraints to the SDP so that the resulting solution has some additional desirable
properties. To understand these properties, it is instructive to see what can go wrong with
the partial coloring approach. To focus on the main ideas we consider the special case of
Beck–Fiala problem, with the goal of finding an O..d log n/1=2/ discrepancy coloring.

Recall that the O.d 1=2 logn/ bound using partial coloring was obtained by requiring
zero discrepancy for large sets S , say of size > 10d . For small sets of size s � 10d , we can set
the bound roughly O.s1=2/ (in Section 2.2.1 we used the bound d 1=2, but O.s1=2 ln.20d=s//

also works). So as long as a set is large, it incurs zero discrepancy, and once it is small it
incurs at most O.d 1=2/ discrepancy in each partial coloring step.

The ideal process. Ideally, one would expect that once a set S becomes small, then when-
ever a constant fraction of the elements get colored colored globally in a partial coloring step,
the size of S should also decrease geometrically. If so, this would actually give an O.d 1=2/

discrepancy. However, the problem is that partial coloring does not give much control on
which elements get colored, e.g., sets can incur discrepancy O.d 1=2/ even if only O.d 1=2/

of their elements get colored. This imbalance between the discrepancy and the progress a
set makes in getting colored is the main barrier to improving the O.d 1=2 log n/ bound.

A concrete bad example. To see this more explicitly, let us consider the Lovett–Meka
algorithm. Suppose the subspace Vt�1 at time t is spanned by the orthonormal basis b;

edC1; : : : ; en where b D d �1=2.e1 C � � � C ed /. Then any update �xt 2 Vt�1 has �xt .1/ D

� � � D �xt .d/, and for the set S D ¹1; : : : ; dº, all variables get updated by the same amount,
so if it incurs discrepancy d 1=2, the coloring progress is only d 1=2. In contrast, if the
�xt .1/; : : : ; �xt .d/ were independent, �.d/ elements would get colored in expectation
while incurring a discrepancy of d 1=2.

The key idea behind the algorithm of [8] is to ensure that even though the update
�xt lies in some subspace that we cannot control, the coordinates �xt .j / behave roughly
independently in the sense that

E

��X
j

b.j /�xt .j /

�2�
� �

�X
j

b.j /2E
�
�xt .j /2

��
8b 2 Rn; (4.1)

where � � 1 is some fixed constant. Notice that if the �xt .j / were independent or even
pairwise independent, then (4.1) would be an equality with � D 1.

The algorithm will add an additional SDP constraint to ensure property (4.1). We
describe this below and then give a sketch of the analysis.

4.1.1. Algorithm
Let .U; C / be the input set system. As usual, the algorithm starts with the coloring

x0 D 0n. Let xt�1; At�1 denote the coloring and the set of alive variables at the beginning
of t . Call a set S 2 C large if jS \ At�1j � 10d .

Repeat the following for t D 1; 2; : : : ; ` until A` D ;.
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(1) Solve the following SDP:



X
j 2S

wj





2

D 0 for all large S; (4.2)



X
j

b.j /wj





2

� 2
X

j

b.j /2
kwj k

2
8b 2 Rn; (4.3)

kwj k
2

� 1 for j 2 At�1; and else kwj k
2

D 0; (4.4)X
j

kwj k
2

� jAt�1j=4: (4.5)

(2) Let �xt .j / D 
hg; vi i where g is a random Gaussian vector. Set
xt D xt�1 C �xt , and update At accordingly.

The infinitely many constraints (4.3) can be written compactly as X � 2 diag.X/, where X

is the Gram matrix with Xij D hwi ; wj i.

4.1.2. Analysis
The constraints (4.2) ensures that �xt .S/ D 0 for large sets, which are at most

jAt�1j=10 in number. The constraints (4.3) imply the property (4.1). The feasibility of the
SDP follows from the following geometric result.

Theorem 4.3 ([10]). Let G � Rn be an arbitrary subspace with dimension dim.G/ D ın.
For any � > 0 and � > 1 with 1=� C � � ı, there is a n � n PSD matrix X satisfying:

(i) hhhT ; Xi D 0 for all h 2 G?, where G? is the subspace orthogonal to G.

(ii) Xi i � 1 for all i 2 Œn�.

(iii) The trace tr.X/ � �n.

(iv) X � � diag.X/.

In particular, choosing G to be the subspace orthogonal to all large rows and setting
ı D 0:9, � D 2, and � D 0:1, Theorem 4.3 implies that the SDP is always feasible.

This algorithm can be viewed as an interesting extension of iterated-rounding, where
the update lies in a subspace, and yet has interesting random-like properties.

Let us see why this helps. At any time t , the discrepancy for set S has Gaussian incre-
ments with variance EŒ.

P
j 2S �xt .j //2�, which by (4.1) is at most 2

P
j 2S EŒ�xt .j /2�,

i.e., twice the variance injected into the elements of S . We will show thatX
t

�X
j 2S

�xt .j /2

�
D O.d/

whp, and hence the discrepancy of S will be a Gaussian with standard deviation O.d 1=2/.
A union bound over the sets then gives the desired O..d log n/1=2/ bound.

To this end, let us define
P

j 2S xt .j /2 as the energy of S at time t . By (4.2), any S

incurs discrepancy only after it becomes small, and so from that time onward its energy
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can increase by at most O.d/. A priori there is no reason why the total increase in energy
of S should be related to

P
t

P
j 2S EŒ�xt .j /2� (the total variance injected into the ele-

ments of S ). For example, even for a single variable j if xt .j / fluctuates a lot over time,P
t �xt .j /2 could be arbitrarily large, while the final energy is � 1. More precisely, the

change in energy of S at time t isX
j 2S

�
xt .j /2

� xt�1.j /2
�

D 2
X
j 2S

xt�1.j /�xt .j /„ ƒ‚ …
I

C

X
j 2S

�xt .j /2

„ ƒ‚ …
II

:

Summing up over t , the left-hand side telescopes and equals the total increase in energy
of S . But

P
t �xt .j /2 can be much larger than this if the sum of term I over time is very

negative. However, constraint (4.1) turns out to be very useful again. In particular, term I is
a mean-zero update, and by (4.1) its variance can be bounded as

E

��X
j 2S

xt�1.j /�xt .j /

�2�
� 2

X
j 2S

xt�1.j /2�xt .j /2
� 2

X
j 2S

�xt .j /2:

This implies that the contribution of I is quite small compared to
P

t

P
j 2S EŒ�xt .j /2�.

A clean exposition based on supermartingale concentration is in [7].

4.2. The general setting
We now describe the algorithmic version of Theorem 2.3. For simplicity, we will

assume that K is symmetric. This is almost without loss of generality, because if K is asym-
metric with 
m.K/ � 3=4, then K \ �K is symmetric and 
m.K \ �K/ � 1=2.

An immediate issue with making Theorem 2.3 algorithmic is that any explicit
description of K to a reasonable accuracy could already require exponential space. A cru-
cial first step was by Dadush, Garg, Nikolov, and Lovett [24] who reformulated Theorem 2.3
without any reference to K. To state this result, recall that a random vector Y 2 Rm is
� -sub-Gaussian if for all test directions � 2 Rm,

E
�
eh�;Y i

�
� e�2k�k2

2=2:

Roughly, this means that hY; �i looks like a Gaussian random variable with variance at most
�2 for every unit vector � . Simplifying slightly to symmetric K, [24] showed the following.

Theorem 4.4 ([24]). For any symmetric convex body K, Theorem 2.3 (up to the exact value
of c) is equivalent to the following: Let v1; : : : ; vn 2 Rm be vectors with jvj k2 � 1. Then
there exists a distribution D on colorings ¹�1; 1ºn, such that for x sampled from D, the
random vector

Pn
j D1 x.j /vj is � -sub-Gaussian for some � D O.1/.

Moreover, to get a constructive version of Theorem 2.3 for any K, it suffices to give
an algorithm that can efficiently sample a coloring from D.

The idea behind Theorem 4.4 is that as 
m.K/ � 1=2, a random Gaussian g 2 Rm

satisfies PrŒg 2 K� � 1=2, or equivalently, PrŒkgkK � 1� � 1=2 where k � kK is the norm
with K as its unit ball. By standard tail bounds, this gives EŒkgkK � D O.1/. The following
result of Talagrand [66], together with Markov’s inequality, directly gives Theorem 4.4.
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Theorem 4.5 ([66]). Let K � Rm be a symmetric convex body and Y 2 Rm be a � -sub-
Gaussian random vector. Then for the standard Gaussian g 2 Rm,

E
�
kY kK

�
� O.�/ � E

�
kgkK

�
:

Bansal, Dadush, Garg, and Lovett [9] designed an algorithm called the Gram–
Schmidt walk (GS-walk), with the following guarantee.

Theorem 4.6 ([9]). Given vectors v1; : : : ; vn 2 Rm with kvj k2 � 1, GS-walk outputs a col-
oring x 2 ¹�1; 1ºn such that

Pn
j D1 x.j /vj is sub-Gaussian with � � 6:32.

Harshaw, Sävje, Spielman, and Zhang [35] gave an improved analysis of the algo-
rithm and showed that � D 1, which is the best possible.

4.2.1. Gram–Schmidt walk algorithm
Before we describe the algorithm, we give some intuition. Suppose first that the

vectors v1; : : : ; vn are orthogonal. Then, in fact a random coloring suffices. This follows
as for any � 2 Rm, we have h�;

P
j x.j /vj i D

P
j x.j /h�; vj i, which for a random ˙1

coloring x is distributed as a sub-Gaussian with variance
P

j h�; vj i2, which is at most k�k2
2

as the vj are orthogonal and have at most unit length.
On the other extreme, suppose that v1; : : : ; vn are all identical and equal to some

unit vector v. Then a random coloring is very bad and has variance n (instead of O.1/) in the
direction � D v. The right thing here, of course, is to pair up the signs of x.j /. The general
algorithm will handle these two extreme examples in a unified way, by trying to exploit the
linear dependencies as much as possible while also using randomness.

We now describe the algorithm formally.

The Gram–Schmidt walk. Let v1; : : : ; vn be the input vectors. Let xt�1; At�1 denote the
coloring and the set of alive elements at the beginning of time t .

Let n.t/ 2 At�1 be the largest indexed element alive at time t . This is called the
pivot at time t and will play a special role. Let Wt be subspace spanned by the vectors
in At�1 n ¹n.t/º (i.e., all vectors alive at time t except n.t/). Let v?.t/ be the orthogonal
projection of the pivot vn.t/ on W ?

t .
The algorithms works as follows. Initialize x0 D .0; : : : ; 0/ and A0 D Œn�.
At t D 1; : : : ; n, do the following:

(1) Compute the update direction ut D .ut .1/; : : : ; ut .n// 2 Rn as follows. Set
ut .j / D 1 for the pivot j D n.t/ and ut .j / D 0 for j … At�1.
The ut .j / for the remaining j 2 At�1 n ¹n.t/º are defined by writing

v?.t/ D vn.t/ C

X
j 2At�1n¹n.t/º

ut .j /vj :
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(2) Let ı�
t < 0 < ıC

t be the unique negative and positive solutions for ı, respectively,
to maxj 2At�1 jxt�1.j / C ıut .j /j D 1. Let

ıt D

8<: ı�
t with probability ıC

t =.ıC
t � ı�

t /;

ıC
t with probability � ı�

t =.ıC
t � ı�

t /:

(3) Update xt�1 randomly as xt D xt�1 C ıt ut . Update At accordingly.

Remark. Let us first see what the algorithm does for the two cases mentioned above. If the
vi are orthonormal, then v?.t/ D vn.t/ as vn.t is orthogonal to Wt , and the algorithm only
updates the color of the pivot. Moreover, at each time t x.n.t// is set independently to ˙1,
and so the algorithm eventually produces a completely random coloring. On the other hand,
in the case where the vi are identical, at each step t , as long as nt � 2, the algorithm will
exactly pair up the color of the pivot with the alive vector with the lowest index, resulting in
overall discrepancy of at most 1.

Sketch of analysis. At each step, at least one element reaches �1 or 1, so the algorithm
terminates in at most n steps.

Fix a vector � 2 Rm with respect to which we want to show sub-Gaussianity of the
discrepancy vector. Let Yt WD

Pn
iD1 xt .i/vi and let disct D h�; Yt i. The goal is to show that

E
�
ediscn

�
� e.�2=2/k�k2

2 ; for � D O.1/:

Let us denote �xt WD xt � xt�1 D ıt ut and � disct WD disct � disct�1. A key observation
is that as ut is chosen to satisfy v?.t/ D

Pn
iD1 ut .i/vi , we have

� disct D

nX
iD1

h�; vi i�xt .i/ D ıt

nX
iD1

h�; vi iut .i/ D ıt

˝
�; v?.t/

˛
(4.6)

and hence depends only on the vector v?.t/.

Proving sub-Gaussianity. We sketch the main idea. Let us first make a simplifying assump-
tion that at each time t , the element to reach ˙1 is the pivot. So the elements get colored
in the order n; n � 1; : : : ; 1 and the pivot at time t is n.t/ D n � t C 1. Let w1; : : : ; wn be
the orthonormal vectors obtained by applying the Gram–Schmidt orthonormalization pro-
cedure (GS) on the vectors v1; : : : ; vn in that order. That is, w1 D v1=kv1k and for i > 1,
wi is the projection of vi orthogonal to v1; : : : ; vi�1, normalized to have unit norm. Then
v?.t/ D hvn.t/; wn.t/iwn.t/.

By (4.6), the overall discrepancy along � is discn.�/ D
Pn

tD1 ıt h�; v?.t/i. As ıt

is a mean-zero random variable chosen independently at time t , and jıt j � 2, we have

E
�
ediscn.�/

�
D E

�
e

Pn
tD1 ıt h�;v?.t/i

�
� eO.1/�

Pn
tD1h�;v?.t/i2

:

But this is at most eO.1/�k�k2
2 , as desired, becauseX

t

˝
�; v?.t/

˛2
D

X
t

˝
�; hvn.t/; wn.t/iwn.t/

˛2
�

X
t

h�; wn.t/i
2

� k�k
2
2;
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as jhvn.t/; wn.t/ij � kwn.t/k2kvn.t/k2 � 1, and
P

i h�; wi i
2 � k�k2

2 as the wi are orthonor-
mal.

In general the analysis needs some more care as non-pivot elements will also get
colored during the process. But, roughly speaking, this only improves the bounds. If some
non-pivot element xk is colored at some time t , then the GS procedure (without vk) will pro-
duce a different set of orthonormal vectors ¹w0

i º, but the increase in h�;w0
n.t/

i2 � h�;wn.t/i
2,

can be charged against the fact that k will never be a pivot anymore in the the future. We
refer to [9] for the formal analysis.

5. Approximating hereditary discrepancy

In the previous sections we obtained bounds on the discrepancy of various classes of
set systems and matrices. One can ask whether given a particular matrix A, can we efficiently
determine disc.A/. However, as described earlier in Theorem 3.2, discrepancy is hard to
approximate in a very strong sense [21]. Intuitively, this is because discrepancy can be quite
brittle, e.g., consider some matrix A with large discrepancy; however, if we duplicate each
column of A, the resulting matrix has discrepancy 0.

Even though discrepancy is hard to approximate, in a surprising and remarkable
result Matoušek, Nikolov, and Talwar [50] showed that herdisc.A/ can be well approximated.
Note that a priori it is not even clear how to certify (even approximately) that herdisc.A/ � k,
as it is the maximum over exponentially many quantities that themselves cannot be certified.

Theorem 5.1 ([50]). There is an O.log m/3=2/ approximation algorithm for computing the
hereditary discrepancy of any A 2 Rm�n.

This is based on relating the hereditary discrepancy of a matrix to its 
2-norm.

The 
2-norm. For a matrix A, let r.A/ D maxi .
P

j A2
ij /1=2 and C.A/ D maxj .

P
i A2

ij /1=2

denote the largest `2-norm of rows and columns A. The 
2.A/-norm of A is defined as


2.A/ D min
®
r.U /c.V / W U V D A

¯
;

the smallest product r.U /c.V / over all possible factorizations of A.
The quantity 
2.A/ is efficiently computable using an SDP as follows. Consider

vectors w1; : : : ; wm corresponding to rows of U and wmC1; : : : ; wmCn to columns of V . As
˛U; V=˛ is also a valid factorization for any ˛ > 0, we can assume that r.U / D c.V /. Then,
it is easily seen that 
2.A/ is the smallest value t for which the following SDP is feasible.

hwi ; wj Cmi D Aij 8i 2 Œm�; j 2 Œn� and hwi ; wi i � t 8i 2 Œm C n�: (5.1)

Theorem 5.1 follows from the following two facts.

Lemma 5.2. For any A 2 Rm�n and factorization A D U V with U; V arbitrary, we have
that disc.A/ � O.r.U /c.V /.log 2m/1=2/. In particular, disc.A/ � O.
2.A/.log 2m/1=2/.

This also implies that herdisc.A/ � O.
2.A/.log 2m/1=2/ as 
2.�/ itself is a heredi-
tary function. Indeed, for any subset of columns S , we have 
2.AjS / � 
2.A/ as AjS D U VjS

5201 Discrepancy theory and related algorithms



and C.VjS / � C.V /. The proof of Lemma 5.2 uses Banaszczyk’s theorem in an interesting
way.

Proof. Define the body K D ¹y W kUyk1 � 2r.U /.log2m/1=2º. Then 
.K/ � 1=2 because
for a random gaussian g � N.0; I /, Prg ŒkUgk1 � 2r.U /.log 2m/1=2� � 1=2.

As the columns of V have length at most c.V / and 
.K/ � 1=2, by Theorem 2.3
there exists x 2 ¹�1; 1ºn such that y WD Vx 2 5c.V /K. By definition of K, this gives
kUyk1 � 10r.U /c.V /.log 2m/1=2, and as Ax D Uy, the result follows.

Lemma 5.3. For any A 2 Rm�n, we have herdisc.A/ � �.
2.A/= log m/.

The proof of Lemma 5.3 establishes an interesting connection between the 
2-norm
and the determinant lower bound defined as follows.

detlb.A/ D max
k

max
S�Œm�;T �Œn�;jS jDjT jDk

ˇ̌
det.AS;T /

ˇ̌1=k
;

where AS;T is the submatrix of A restricted to row and columns in S and T .
In a classical result, Lovász, Spencer, and Vesztergombi [44] showed that

herdisc.A/ � detlb.A/=2 for any matrix A. using a geometric view of hereditary discrep-
ancy similar to that in Observation 2.1.1. In the other direction, Matoušek [48] showed that
herdisc.A/ � O.log.mn/.log n/1=2 detlb.A//. Interestingly, Matoušek’s proof used The-
orem 3.1 and duality for the SDP considered in Section 3.1. In particular, if the vector
discrepancy is large for some subset of columns, there there must exist a sub-matrix with
large detlb. This result was improved recently by Jiang and Reis [39] to herdisc.A/ �

O..log m log n/1=2 detlb.A//, and this bound is the best possible.
To prove Lemma 5.3, [50] show that detlb.A/ � 
2.A/= log m using the duality of

the SDP (5.1) together with ideas of Matoušek [48].
The bounds in both Lemmas 5.2 and 5.3 are the best possible. However, the follow-

ing conjecture seems quite plausible.

Conjecture 5.3.1. There is an O.log mn/ approximation algorithm for computing the
hereditary discrepancy of any matrix A.

As detlb.A/ and herdisc.A/ are within an O.log mn/ factor, by the results of [44]

and [39], one possible way to prove Conjecture 5.3.1 would be to give an O.1/ approximation
for computing detlb.A/.

6. Other recent directions

We now discuss some other recent directions. First, we consider an interesting line of
work on understanding the discrepancy of random instances. Next, we consider some results
in the online setting where the vectors vj are revealed over time and the sign x.j / must be
chosen immediately and irrevocably when vj is revealed. Finally, we consider some matrix
discrepancy problems, where one considers signed sums of matrices, instead of signed sums
of vectors.
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6.1. Random instances
In this survey, we restrict our attention to the work on the Beck–Fiala problem

[2, 14, 29, 37, 57]. There are two natural probabilistic models here. Either each column has
a 1 in exactly k positions chosen randomly out of the m choices, or the Bernoulli ensemble
where each entry is 1 with probability p D k=m. The latter is slightly easier due to the lack of
dependencies. For both these settings, an O.k1=2/ discrepancy can be achieved for the entire
range of n and m, under fairly general conditions [14,57]. These results are also algorithmic.

An interesting recent line of work shows that in fact much smaller discrepancy is
possible if n � m. Franks and Saks [31] showed that disc.A/ � 2 with high probability for a
fairly general class of random matrices A if n D �.m3 log2 m/. Independently, Hoberg and
Rothvoss [37] showed that disc.A/ � 1 whp for the Bernoulli ensemble if n D �.m2 log m/,
provided that mp D �.log n/. Both these results use Fourier based techniques and are non-
algorithmic.

Let us note that n D �.m logm/ is necessary to achieve O.1/ discrepancy, provided
that p is not too small. Indeed, if we fix any coloring x, and consider a random instance,
the probability that a fixed row has discrepancy O.1/ is O..pn/�1=2/, so the probability
that each row has discrepancy O.1/ is at most .pn/��.m/. As there are (only) 2n possible
colorings, a first moment argument already requires that 2n.pn/�m D �.1/.

So a natural question is whether the discrepancy is actually O.1/ for nD�.m logm/.
Curiously, the Fourier-based methods seem to require n D �.m2/ even for p D 1=2. How-
ever, subsequent results show this optimal dependence using the second moment method.
Potukuchi [56] showed that disc.A/ � 1 if n D �.m log m/ for the dense case of p D 1=2.
The sparse setting with p � 1 turns out to be more subtle, and was only recently resolved
by Altschuler and Weed [2] using a more sophisticated approach based on the conditional
second moment method together with Stein’s method of exchangeable pairs. They show the
following result.

Theorem 6.1 ([2]). Let A 2 ¹0; 1ºm�n be a random matrix with each entry independently
chosen to be 1 with probability p WD p.n/. Then there is a constant c > 0 such that if
n � cm log m, then disc.A/ � 1 whp.

The results of [2,56] are also non-algorithmic, and given the use of the probabilistic
method it seems unlikely that they can be made algorithmic. However, one may wonder if
this can be done under weaker assumptions such as when n � m10.

Problem 6.2. Is there an efficient algorithm to find a coloring with expected discrepancy
O.1/ for random instances of the Beck–Fiala problem when n D m�.1/.

Smoothed analysis. A substantial generalization of the random setting is the smoothed anal-
ysis setting, where the instance is obtained by taking underlying worst-case instance and
perturbing it by a small random noise [65]. Recently, [12] studied the prefix-Komlós problem
in this setting, where the vectors v1; : : : ; vn are chosen adversarially and then vj is perturbed
by an independent random noise vector uj .
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Theorem 6.3 ([12]). If the covariance Cov.uj / < "2Im for some � � 1=poly.m; log n/. Then,
whp each prefix has discrepancy O..log m C log log n/1=2/.

This improves the dependence on n in Theorem 2.4 to doubly logarithmic, even if
the noise is quite small, e.g., a vector is changed only with probability 1=poly.m; log n/ in a
single random coordinate. The techniques for random instances do not directly work here as
these methods crucially use various special properties of random instances.

An interesting question is whether Theorem 6.1 can be extended to the smoothed
setting.

Problem 6.4. Does the Beck–Fiala problem have O.1/ expected discrepancy in the smooth-
ed setting, for a reasonably small noise rate, when n D m�.1/.

6.2. Online setting
In all the results considered thus far, we assumed that the vectors v1; : : : ; vn 2 Rm

are all given in advance. Another natural model is the online setting, first studied by Spencer
[62], where the vector vt is revealed at time t and a sign x.t/ must be chosen irrevocably
without the knowledge of the vectors that will arrive in the future. The goal is to keep the
discrepancy kdt k1 any time t as small as possible, where dt D x.1/v1 C � � � C x.t/vt is
the discrepancy at end of time t .

We restrict our focus here to the online Komlós setting. Notice that setting x.t/

randomly to ˙1 also works in the online setting, but this gives �.n1=2/ dependence on n.
Unfortunately, this dependence is unavoidable in general—at each step t an adversary can
choose the vector vt to be orthogonal to the current discrepancy vector dt�1 causing kdt k2

(and hence kdt k1) to grow as �.t1=2/ with time. More refined lower bounds are also known
[16,64].

Interestingly, it turns out that the dependence on n can be substantially improved if
the vectors vt are chosen in a less adversarial manner.

Stochastic model. Here the vectors are chosen randomly and independently from some dis-
tribution D, that is known to the algorithm [11,13,15,34]. For the Komlós setting, [11] showed
the following.

Theorem 6.5 ([11]). Let D be any distribution on unit vectors in Rm. There is an online
algorithm that given vectors sampled iid from D, achieves discrepancy O.log4 mn/ whp.

These results are based on a greedy deterministic algorithms that choose the sign
x.t/ based on a suitable potential function.

Let us consider the simpler setting of `2 discrepancy and where D is the uniform
distribution over the unit sphere Sm�1. We sketch the proof of an O.m1=2/ bound (which is
the best possible for `2-discrepancy even offline, e.g., for m orthonormal vectors).

Consider the potential ˆt D kdt k
2
2. Upon given vt , the algorithm chooses x.t/ to

minimize the increase in �ˆt D ˆt � ˆt�1. This evaluates to

dt�1 C x.t/vt



2
� kdt�1k

2
2 D 2x.t/hdt ; vt i C jvt j

2
2 D 2x.t/hdt ; vt i C 1;
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and hence setting x.t/ D �sign.hdt ; vt i/ gives �ˆt D �2jhdt ; vt ij C 1.
As vt is uniform in Sm�1, we have that in expectation EDjhdt�1; vt ij �

m�1=2kdt�1k2 for any dt�1. This gives that EŒ�ˆt � � 0, and hence ˆt has a strong
negative drift whenever jdt�1j � m1=2. Using standard arguments, this implies that the
discrepancy is O.m1=2/ whp at any given time.

The case of general distributions D is harder as EDjhdt�1; vt ij need not be large for
every dt�1. For example, if most of the probability mass of D lies in some subspace M , and
dt�1 is orthogonal to M . However, one can still make this approach work by considering
more complicated potential functions, that in addition to penalizing dt�1 with large norm,
also penalize dt�1 if it gets close to certain undesirable regions.

Oblivious adversary model. Recently, these results were considered in the much more gen-
eral oblivious adversary model. Here, the adversary knows the online algorithm and can
pick the vectors accordingly, but it must choose them in advance before the online algorithm
begins its execution. Equivalently, it cannot see the internal random choices made by the
algorithm.

Notice that the oblivious setting generalizes both the stochastic setting and the
worst case offline setting. Moreover, unlike for the stochastic model, here the �.n1=2/ lower
bound holds for any deterministic online algorithm, as dt�1 is completely determined by
v1; : : : ; vt�1 and the adversary can always pick vt orthogonal to dt�1. So any nontrivial
algorithm in this model must use its internal randomness cleverly.

In a recent breakthrough, Alweiss, Liu, and Sawhney [3] showed the following
remarkable result.

Theorem 6.6 ([3]). For any ı > 0, vectors v1; v2; : : : ; vn 2 Rm with kvt k2 � 1 for all t 2 Œn�,
the algorithm maintains kdt k1 D O.log.mn=ı// for all t 2 Œn� with probability 1 � ı.

Choosing ı D 1=n2 gives that each prefix has discrepancy O.log mn/ whp, almost
matching the offline O..log mn/1=2/ bound for prefix discrepancy given by Theorem 2.4.
Moreover, the algorithm is extremely elegant and simple to describe.

Self-balancing walk algorithm. Let c D 30 log mn=ı. At each time t ,

(1) If jdt�1j1 > c or if jhdt�1; vt ij > c, declare failure.

(2) Set xt D 1 with probability 1=2 � hdt�1; vt i=2c and xt D �1 otherwise.

The algorithm can be viewed as a randomized version of the greedy algorithm that
picks the sign randomly if vt and dt�1 are orthogonal, and otherwise uses the correlation
between them to create a bias to move dt closer to the origin.

The proof is a based on a clever stochastic domination argument and induction, and
shows that as long as the algorithm does not declare failure, the distribution of dt is less
spread out than N.0; 2�cI /.

Theorem 6.6 is remarkable in many ways. First, it gives a simple linear time algo-
rithm to obtain O.log n/ discrepancy for the Komlós problem. Second, it also matches the
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best algorithmic bound that we currently know for the prefix-Komlós problem in the offline
setting. So any improvement of Theorem 6.6 would be extremely interesting.

Problem 6.7. Design an online algorithm for the Komlós problem, or for the prefix Komlós
problem, that achieves an O..log mn/1=2/ discrepancy.

For recent partial progress in this direction, see [43].

6.3. Matrix discrepancy
So far we only considered problems involving a signed sum of vectors. It is also very

interesting to consider signed sums of more general objects such as matrices. An important
problem of this type, with application to various fields, is the Kadison–Singer problem [40].
Below is an equivalent formulation in terms of discrepancy due to Weaver [68].

Kadison–Singer problem [68]. Let A1; : : : ; An 2 Rd�d be rank-1 Hermitian matrices sat-
isfying

P
j Aj D I and kAj kop � ı for all j 2 Œn�, where ı � 1=2. Is there a ˙1 coloring x

such that k
P

j x.j /Aj kop � 1 � �, for some fixed constant � > 0 independent of n and d?
More generally, one can ask how small can the discrepancy k

P
j x.j /Aj kop be over

all possible ˙1 colorings x. For a random coloring, standard matrix concentration results
[55] give a bound of O..ı log d/1=2/, which does not give anything useful for the Kadison–
Singer problem for large d . In a major breakthrough, Marcus, Spielman, and Srivastava [46]

showed a bound of O.
p

ı/, without any dependence on d , using the method of interlacing
polynomials. This bound is also the best possible [68]. These techniques are very different
and we do not discus them here.

Their result however is non-constructive and obtaining an algorithmic version in an
outstanding open question.

Problem 6.8. Is there an algorithmic version for the Kadison–Singer problem, even for the
weaker bound of 1 � � instead of O.

p
ı/.

Matrix Spencer problem. Another very interesting question, proposed originally by Raghu
Meka, is the following matrix version of the Spencer’s problem: given symmetric matrices
A1; : : : ; An 2 Rn�n with kAj kop � 1, find a ˙1 coloring x to minimize k

P
j x.j /Aj kop.

Notice that if the Aj are diagonal, this is equivalent to Spencer’s problem for m D n.
Again, standard matrix concentration bounds imply a O..n log n/1=2/ bound for random
coloring, and the question is whether better bounds are possible.

Conjecture 6.8.1. The matrix Spencer problem has discrepancy O.n1=2/.

Very recently, Hopkins, Raghavendra, and Shetty [38] proved Conjecture 6.8.1 when
the Aj have rank n1=2, or, more generally, when kAj kF � n1=2. This result is based on an
interesting new connection between discrepancy and communication complexity, and they
also use this to give an alternate new proof of Spencer’s result in classical setting. Another
related result is due to Dadush, Jiang, and Reis [25].
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