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Abstract

The aim of this paper is to discuss recent progress in nonlinear eigenvalue problems for
seminorms (absolutely one-homogeneous convex functionals), which find many appli-
cations in data science, inverse problems, and image processing. We provide a unified
viewpoint on the notion of nonlinear singular vectors and eigenvectors for homogeneous
nonlinear operators respectively functionals. We further discuss in particular ground states,
i.e., the first eigenvector or eigenfunction. Moreover, we review a recent approach to the
analysis of eigenvectors based on duality, which has implications to the possible compu-
tation of spectral decompositions, i.e., signal dependent linear expansions in a system of
eigenvectors.
Moreover, we discuss some relevant implications such as the refined analysis of variational
regularization methods and their bias, as well as the analysis of some iteration methods
and time-continuous flows. Finally, we provide more direct applications of the nonlinear
eigenvalue problems such as nonlinear spectral clustering on graphs.
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1. Introduction

Eigenvalue problems are not just a basic technique in linear algebra (cf. [39, 40]),
they also find many applications in several branches of sciences, more recently also in data
or image analysis. Prominent examples are the computation of states in quantum mechan-
ics, Fourier decompositions—i.e., expansion in Laplacian eigenvalues—of audio signals or
images (cf., e.g., [8]), or spectral clustering based on graph Laplacians (cf. [42]). In most
of these applications the eigenvector or eigenfunction is of more importance than the exact
eigenvalue, e.g., spectral clustering is based on dividing into the sets where the first non-
trivial eigenfunction is negative or positive, respectively. Thus, particular focus is pot on the
computation of eigenvectors respectively eigenfunctions.

While eigenvalue problems for linear operators are well understood, nonlinear
eigenvalue problems, in particular those being nonlinear in the eigenvector or eigenfunction
(cf. [1, 38]), are still a lively topic with many different directions of research. In physics,
eigenvalue problems for nonlinear Schrödinger equations are a prominent example (cf.
[24,43]), while eigenvalue problems for p-Laplacian operators (and their graph equivalents)
received strong recent attention in partial differential equations and data science (cf., e.g.,
[12,21,33–35]).

In this paper we want to focus on a special type of eigenvalue problems for (pos-
itively) zero-homogeneous operators related to the subdifferential of absolutely one-homo-
geneous functionals, more precisely we look for � > 0 and u 2 H ,H a Hilbert space, such
that

�u 2 @J.u/: (1.1)

Here J WH ! R [ ¹C1º is assumed to be convex and absolutely one-homogeneous, thus it
is effectively a seminorm on a subspace ofH (cf. [15]). The assumption of one-homogeneity
is less restrictive than it seems, since many other homogeneous eigenvalue problems can be
reformulated equivalently as one-homogeneous problems, as we shall see in the p-Laplacian
case below. Such eigenvalue problems can be rephrased in a variational setting, since we look
for stationary points of the Rayleigh-quotient

R.u/ D
J.u/

kuk
: (1.2)

Indeed, (iterative) minimization of the Rayleigh quotient is a key technique for the compu-
tation of eigenvectors or eigenfunctions (cf. [13,25,29,31,32]).

Let us mention a related notion of nonlinear singular values (cf. [3]), given by

�K�Ku 2 @J0.u/; (1.3)

where J0 W X ! R [ ¹C1º is a convex and absolutely one-homogeneous functional on a
Banach spaceX , andK WX ! Y is a bounded linear operator into the Hilbert space Y . This
notion generalizes the linear singular value problem

K�Ku D �2u; (1.4)

with the obvious relation � D
1p
�

to a nonlinear setting, and finds interesting applications in
the regularization theory of inverse problems (cf. [3,4]). We shall see below that indeed there
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is a reformulation of the singular value problem (1.3) as a nonlinear eigenvalue problem of
the form (1.1).

Besides some basic issues for eigenvalue problems and their direct applications,
we will also discuss the issue of spectral decompositions (cf. [15, 18, 19, 27, 28, 30]), i.e., the
possibility to develop signals in a systematic way into nonlinear eigenvectors, e.g., as a sum

f D

1X
kD1

ckuk ;

for f 2 H and uk being the eigenvector with eigenvalue �k . In a general setting we rather
look for a decomposition of the form

f D

Z 1

0

d��; (1.5)

with a measure � on RC valued in the Hilbert spaceH . Such a decomposition will be called
spectral decomposition if the polar composition

�� D u�j��j (1.6)

is such that for each � in the support of j��j the unit vector u� 2 H is an eigenvector for
the eigenvalue �. Fundamental questions, only partly answered so far, are the existence of
nonlinear spectral decompositions as well as a systematic way to compute such decompo-
sitions from data. A particular advantage of a spectral decomposition is the possibility to
define filtered versions of f ,

f D

Z 1

0

 .�/ d��; (1.7)

e.g., with  being zero on a certain interval to suppress certain scales related to a range of
eigenvalues. Such approaches find applications, e.g., in image or geometry processing (cf.
[26,30]). Moreover, the spectral decompositions of two different data f1 and f2 can be mixed,
which finds interesting applications, e.g., in image fusion (cf. [5]).

The remainder of this paper is organized as follows: In Section 2 we provide some
notations and fundamental properties of eigenvalue problems for seminorms, as well as first
examples. We also discuss the motivation for a nonlinear spectral decomposition. Section 3
is devoted to the study of ground states, the eigenvectors for the first nontrivial eigenvalue,
which are of particular relevance and also the easiest to compute numerically. Section 4 dis-
cusses the relation between eigenvalue problems, on the one hand, and variational methods,
iterative schemes, and time-continuous flows, on the other. Here we see that eigenvectors
and eigenfunctions yield structured examples of exact solutions for those methods. On the
other hand, these methods, in particular gradient flows and time-continuous versions, can be
used to compute eigenvectors and possibly even spectral decompositions.

2. Basic properties and formulations

In the following we fix some notation, discuss some basic properties of nonlinear
eigenvalue problems such as (1.1), and unify the formulations of eigenvalues and singular
values.
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2.1. Seminorms, duality, and subdifferentials
Throughout the whole paper we assume that J W H ! R [ ¹C1º is convex and

absolutely one-homogeneous, i.e.,

J.tu/ D jt jJ.u/; 8t 2 R: (2.1)

This implies that J satisfies a triangle inequality, since

J.u1 C u2/ D 2J

�
1

2
u1 C

1

2
u2

�
� 2

�
1

2
J.u1/C

1

2
J.u2/

�
D J.u1/C J.u2/:

Moreover, the set
H0 D

®
u 2 H j J.u/ < 1

¯
is a subspace of H on which J is a seminorm, hence our nomenclature as eigenvalue prob-
lems for seminorms.

For completeness, let us recall the definition of the subdifferential of a convex func-
tional J ,

@J.u/ D
®
p 2 H�

j hp; v � ui � J.v/ � J.u/;8v 2 H
¯
; (2.2)

and the polar function (or convex dual),

J �.p/ D sup
u2H

hp; ui � J.u/: (2.3)

Note that for p 2 @J.u/ we have
hp; ui D J.u/

and
hp; vi � J.v/

for each v 2H , and these properties are actually an equivalent characterization of subgradi-
ents under our assumptions (cf. [15]). Since J is a norm on a subspace, we can define a dual
norm

kpk� D sup
u2H;J.u/�1

hp; ui; (2.4)

which is interesting for the analysis of subgradients. Indeed, it can be shown that

@J.u/ � @J.0/ D
®
p 2 H�

j kpk� � 1
¯
;

for each u 2 H , i.e., subdifferentials are contained in the dual unit ball.
The eigenvalue problem (1.1) can be interpreted in a dual way, by noticing that each

eigenvector u is also a multiple of a subgradient p, respectively as p 2 �@J �.p/. A key
observation made in [15] is that these subgradients arising in the eigenvalue problems are of
minimal norm.

Proposition 2.1. Let u be an eigenvector of J satisfying �u D p 2 @J.u/. Then p is a
subgradient of minimal norm, i.e.,

kpk � kqk; 8q 2 @J.u/:
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In [15] a further geometric characterization of eigenvectors has been derived, which
relates to the minimal norm property.

Proposition 2.2. An element p 2 @J.0/ defines an eigenvector u D
1
�
p for some � > 0 if

and only if p satisfies the extremal property,

hp; p � qi � 0; 8q 2 @J.0/: (2.5)

At least from a theoretical point of view, this yields an option to obtain all eigenvec-
tors of functional as follows: first of all, compute for eachu2H with kuk D 1 the subgradient
of minimal norm, i.e.,

p D arg min
®
kqk j q 2 @J.u/

¯
;

and subsequently check condition (2.5). In case of satisfaction, u is an eigenvector.

Example 2.3. Consider the simple example J.u/ D
p

hu;Aui for a positive semidefinite
operator A. In this case

@J.u/ D
1

J.u/
Au

for u ¤ 0, and it is easy to see that

@J.0/ D
®
p D Aw j w 2 H hw;Awi � 1

¯
:

Let u be a linear eigenvector with eigenvalue � ¤ 0, i.e., �u D Au, then (2.5) with p D

1
J.u/

Au D
�
J.u/

u becomes

�

J.u/

�
u;

1

J.u/
Au � Aw

�
� 0:

This is satisfied, since it is equivalent top
hu;Aui � hu;Awi;

and this inequality holds due to the Cauchy–Schwarz inequality in the scalar product induced
by A.

Example 2.4. Consider a polyhedral functional, i.e.,

J.u/ D ��
C D sup

p2C

hp; ui;

with the symmetric polyhedral set

C D conv
�
¹p1; : : : ; pm;�p1; : : : ;�pmº

�
:

Then pj satisfies (2.5) if the plane orthogonal to pj only intersects C in pj .
Let us make this more concrete in R2 in polyhedra with m D 2. We start with the

example p1 D .1; 1/ and p2 D .�1; 1/, i.e., C is the unit ball in `1. The lines orthogonal to
˙pj only intersect C in pj , thus all pj are eigenvectors. As a specific case, we explicitely
compute (2.5) for p1 and q D .r; s/ 2 C ,

hp1; p1 � qi D 2 � r � s � 0;

since r; s 2 Œ�1; 1�.
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As a second example consider p1 D .1; 1/ and p2 D ."; 1/ with " 2 .0; 1/. With
the reasoning as above, we see that p1 is an eigenvector. However, p2 is not as we see with
q D .1; 1/ 2 C ,

hp2; p2 � qi D "2 C 1 � " � 1 D "." � 1/ < 0:

2.2. Singular values and eigenvalues
In the following we discuss the reformulation of the nonlinear singular value prob-

lem (1.3) as a nonlinear eigenvalue problem. Throughout this section we assume that J0 is
a seminorm on a subspace of X extended by C1, and K W X ! Y is a bounded linear
operator. In order to unify the formulation with (1.1), we want to define a functional J on a
subspace of Y , respectively on values v D Ku. Hence, it is natural to define the spaceH as
the closure of the range ofK in Y . IfK has a nontrivial nullspace, the definition of J0.v/ as
J.u/ with Ku D v is not unique, however. We thus first provide a property of eigenvectors
that will enable a unique definition.

Lemma 2.5. Let u be a nonlinear singular vector according to (1.3). Then J0.u/ � J0.w/

for all w such that Kw D Ku.

Proof. We take a duality product of �K�Ku with u � w to obtain

�
˝
K�Ku;w � u

˛
D �hKu;Ku �Kwi D 0:

On the other hand, from the singular value equation (1.3) we find

�
˝
K�Ku;w � u

˛
D hp;w � ui D hp;wi � J0.u/ � J0.w/ � J0.u/:

Hence, J0.u/ � J0.w/.

From this result we see that we need to define J via the minimal value of J0, more
precisely

J.v/ WD inf
u;KuDv

J0.u/: (2.6)

It is straightforward to check that J W H ! R [ ¹C1º is an absolutely one-homogeneous
convex functional. Moreover, there is a direct relation between subgradients: we find p 2

@J.Ku/ if and only if K�p 2 @J0.u/. Thus, we find the equivalence between

�v D �Ku 2 @J.v/ and �K�Ku D �K�v 2 @J0.u/:

2.3. Spectral decomposition
An interesting question is the possible existence of a spectral decomposition in the

nonlinear case. Let us recall the well-known spectral decomposition of a positive semi-
definite linear operator A on a Hilbert space H : there exists an operator-valued spectral
measure E supported on the spectrum of A such that

A D

Z 1

0

�dE�:
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This allows extending functions f W RC ! R to the operator A as

f .A/ D

Z 1

0

f .�/ dE�:

In the case of a compact operator, the spectral measure is concentrated on a countable set
and takes the form

E D

1X
kD1

uk ˝ ukı�k ;

where uk is an eigenvector for the eigenvalue �k and ˝ denotes the outer product. A positive
semidefinite linear operator is the canonical choice in our setting, since it defines a convex
absolutely one-homogeneous functional

J.u/ D
p

hu;Aui:

In general, we cannot expect to obtain some kind of spectral decomposition from a
convex functional J , respectively its subdifferential @J , but we can hope to have a pointwise
decomposition, corresponding in the linear case to

Au D

Z 1

0

�d.E�u/ D

Z 1

0

�d��;

with a spectral measure � valued in the Hilbert space H . In particular, this allows for the
reconstruction of u from the spectral measure via

u D

Z 1

0

d��;

as well as some spectral filtering by integrating some function of �, e.g., a characteristic
function in some region.

In general, there is no unique way to construct a unique spectral decomposition of
this kind. For example, for total variation regularization in one dimension (with appropri-
ate definition of the variation on the boundary), it was shown in [3] that the Haar wavelet
basis is an orthogonal basis of nonlinear eigenfunctions, hence there exists an atomic spec-
tral decomposition in this basis. However, it also has been shown that there is a continuum
of further eigenfunctions, necessarily linearly dependent, hence further spectral decomposi-
tions can be obtained by exchanging parts of the Haar wavelet basis. An interesting question
is to define a generic spectral decomposition by a natural technique.

3. Ground states

In the following we investigate the first nontrivial eigenvalue and its corresponding
eigenvector or eigenfunction, which we call ground state. More precisely, let

N .J / D
®
u 2 H j J.u/ D 0

¯
be the nullspace of J . Due to the properties of J , the nullspace is indeed a linear subspace
(cf. [3,15]), and we can define its orthogonal complementH0 WD N .J /? inH . It can further
be shown that for each u 2 H and u0 2 N .J / the identity

J.uC u0/ D J.u/C J.u0/
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holds, i.e., there is an analogue of the orthogonal decomposition at the level of J . Finally,
let u 2 H be an eigenvector for the eigenvalue � ¤ 0. Then we find for u0 2 N .J /,

�hu; u0i D hp; u0i � J.uC u0/ � J.u/ D 0:

Since �u is also an eigenvector, we obtain the opposite inequality and hence the orthogonal-
ity of u and u0. Thus, we get rid of the trivial eigenvalues and the corresponding eigenvectors
by restriction to H0, which leads in particular to the definition of a ground state according
to [3].

Definition 3.1. Let J W H ! R [ ¹C1º be an absolutely one-homogeneous convex func-
tional andH0 be the orthogonal of its nullspace as above. Then we call u 2H a ground state
of J if

u 2 arg min
u2H0

J.u/

kuk
: (3.1)

Let us mention that we can rescale u in the above definition and consider equiva-
lently a ground state as a minimizer of J on the unit sphere ¹u 2 H0 j kuk D 1º. The latter
is useful for proving the existence of ground states. If J is lower semicontinuous and the
sublevel sets of J are precompact, existence follows from a standard argument (cf. [3]). It is
apparent for normalized eigenvectors u that � D J.u/, thus

�0 WD min
u2H0

J.u/

kuk
� �

for each nontrivial eigenvalue. On the other hand, �0 is indeed an eigenvalue for each eigen-
vector u0 minimizing the Rayleigh-quotient. For this, define p0 D �0u0. Then we have

hp0; u0i D �0hu0; u0i D �0 D J.u0/;

and for arbitrary u 2 H n ¹0º,

hp0; ui D �0hu0; ui � �0kuk �
J.u/

kuk
kuk D J.u/:

Thus p0 D �0u0 2 @J.u0/.
We finally recall the relation to the case of nonlinear singular values. The ground

state in this case can be equivalently computed from minimizing

u 2 arg min
u2X

J0.u/

kKuk
; (3.2)

which is often more accessible.

3.1. p-Laplacian eigenvalues
Ground states of the p-Laplacian are a well-studied problem in partial differential

equations, as well as on graphs. In the standard setting, one would look for the first eigenvalue
in the problem

�r �
�
jruj

p�2
ru

�
D �1ujuj

p�2;
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in a domain� with homogeneous Neumann or Dirichlet boundary values. This is, however,
related to the eigenvalue of the p-Laplacian energy

Ep.u/ D

Z
�

ˇ̌
ru.x/

ˇ̌p
dx

in Lp.�/, while our Hilbert space setting corresponds to solving

�r �
�
jruj

p�2
ru

�
D �1ukuk

p�2

L2
:

Since u 7! Ep.u/
1=p is an absolutely one-homogeneous convex functional, the ground state

can be computed by minimizing the corresponding Rayleigh quotient

R.u/ D
Ep.u/

1=p

kukL2
;

which corresponds to our setup in this paper. For p D 2, all formulations simply yield the
standard linear eigenvalue problem for the Laplacian and, indeed, the formulation with the
Rayleigh quotient is related to the fact that the first eigenvalue is the best constant in the
Poincaré-inequality. On graphs, the corresponding problem for the graph Laplacian is fun-
damental for spectral clustering techniques (cf. [42]).

Particularly interesting cases are, of course, the limiting ones p D 1 and p D 1.
For p D 1, the ground state is the first eigenfunction of total variation, and, due to area and
coarea formula, the L2-norm and total variation can be related to the volume, respectively
perimeter, of level sets (cf. [22]). In this way and similar to the classical Cheeger problems
(cf. [37]), it can be shown that, indeed, ground states only take two-function values and the
interface between solves an isoperimetric problem. On a graph the ground states of total
variation can be related in a similar way to a graph cut, the so-called Cheeger cut (cf. [41]).
In one dimension, for a modified version of total variation that takes into account also the
variation across the boundary (assuming extension by zero outside), the ground state can
be computed as a piecewise constant function with single discontinuity in the midpoint of
the interval. For this approach, also scaling of the eigenfunction is possible. For simplicity,
consider � D .0; 1/ and let u1 be the ground state. Then indeed, for s < 1, the function

us1.x/ D

´
1p
s
u1.

x
s
/ if x < s;

0 if x > s

is another eigenfunction for a larger eigenvalue. Moreover, the dilation

u
s;t
1 .x/ D

8̂<̂
:
0 if x < t;
1p
s
u1.

x�t
s
/ if x < s C t;

0 if x > s C t

is another eigenfunction if t � 1 � s. Indeed, such results can be generalized to anisotropic
total variation in multiple dimension by scaling and dilation along the coordinate axes.

In the case p D 1, the setup in a Hilbert space is not the one usually referred to as
1-Laplacian, which rather corresponds to the treatment of the 1-Laplacian energy

J.u/ D kruk1
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in L1.�/, while we use the Hilbert spaceH D L2.�/. In this case an interesting problem
is to consider an extended version of J , defined as C1 if u does not have homogeneous
boundary values, i.e., we effectively solve the homogeneous Dirichlet problem. Here the
ground state can be computed more easily with a different scaling J.u/ D 1, i.e., we effec-
tively maximize kuk2 subject to jru.x/j � 1 almost everywhere. For a domain �, this is
indeed the case if u is the distance function to the boundary, thus computing the ground
state yields an alternative way to compute distance functions, respectively solve the eikonal
equation (cf. [17] for further details). On a graph, the computation of the ground state with
the above normalization yields a way to define and compute a distance function.

3.2. Ground states and sparsity
An interesting class of functionals J in many applications in signal and image pro-

cessing are `1-norms or their continuum counterpart, the total variation of a measure. Such
functionals are used to enforce sparsity of their minimizers, i.e., a minimal size of the support.

Let us start in the finite-dimensional case X D Rn, K W Rn ! Rm (the latter
equipped with the Euclidean norm), and

J0.u/ D kuk1 D

nX
iD1

jui j:

Here we use the singular value formulation (3.2), i.e., we want to compute

u 2 arg min
u2X

kuk1

kKuk2
:

Indeed, the sparsity is present also in the ground state. To see this, let ei be the i th unit vector
and Qei D sign.ui /ei . Then, for arbitrary u, we have

kKuk2 D kuk1

 nX
iD1

�iK Qei


2

;

with �i D
jui j

kuk1
. By convexity, we find further

kKuk2 � kuk1

nX
iD1

�ikK Qeik2;

and equality holds if u has a single nonzero entry. In particular, we find

R.u/ D
kuk1

kKuk2
�

1

maxi kKeik2
;

and thus u D ej with j such that

kKej k2 � kKeik2; 8i 2 ¹1; : : : ; nº

is a ground state. Moreover, the proof shows that there are no other ground states, i.e., all of
them have maximal sparsity.

In the infinite-dimensional case, we have X D M.�/ for some domain � and K
mapping to some Hilbert space, typically with the assumption that K is the adjoint of an

5243 Nonlinear eigenvalue problems for seminorms and applications



operator L mapping from the Hilbert space to the predual space Cb.�/ (cf. [9]). Using the
latter issues with the dual space of M.�/ can be avoided and the analysis can be carried out
in the predual space. The functional J0 is the total variation norm

J0.u/ D sup
'2Cb.�/;k'k1�1

Z
�

' du:

With analogous reasoning as above, interpreting a general measure after division by its total
variation norm as a convex combination of signed concentrated measures, we see that the
ground states are of the form u D ız for z 2 � such that

kKızk � kKıxk; 8x 2 �:

Example 3.2. Let us consider� � Rd and let k W Rd ! R be a continuous and integrable
kernel. We consider the convolution operator

K W M.�/ ! L2.Rd /; u 7!

Z
�

k.� � y/du.y/:

We see that Kız D k.� � z/ and thus

kKızk
2
L2

D

Z
Rd

k.x � z/2 dx D

Z
Rd

k.y/2 dy:

Hence, the maximum of kKızk is attained for any z 2�, which implies that the concentrated
measure ız is a ground state for any z 2 �.

Example 3.3. We return to the case of a polyhedral regularization J D ��
C , but actually the

argument holds for general convex sets C . Since we know that the ground state is an eigen-
vector and thus a subgradient in @J.0/ D C , it suffices to minimize the Rayleigh quotient
over C . Moreover, the extremal property (2.5) can be satisfied only for p 2 @C , hence we
further restrict the possible minimization. Let p be the solution of

p D arg min
q2@C

kqk;

i.e., the element of minimal norm in @C . Then

R.p/ D
J.p/

kpk
D

1

kpk
sup
q2C

hq; pi D
1

kpk
hp; pi D kpk:

By analogous reasoning, we can show

R.q/ � kqk � kpk D R.p/:

Thus, p is indeed a ground state of J .

4. Variational problems, iterations, and flows

A first motivation of the definition of nonlinear singular values was to obtain exact
solutions of variational problems of the form

u 2 arg min
u2X

1

2
kKu � f k

2
C ˛J0.u/;
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which frequently arise in the regularization of inverse problems, image processing, and data
analysis (cf. [4] and the references therein). It was further extended to some iterative methods
and time-continuous flows, which in turn can be used as methods to compute eigenvectors
or singular vectors. We shall discuss these developments in the following. For the sake of a
simple notation, we denote by u� an eigenvector with eigenvalue �, i.e.,

�u� D p� 2 @J.u�/: (4.1)

Moreover, throughout the whole section we will use data f 2H0, since for arbitrary f 2H

we can factor out the component in N .J /. The latter is just technical and beyond our interest
of highlighting the main points of the analysis in this paper.

4.1. Variational regularization methods
We start with a discussion of variational regularization methods, which we rephrase

as in Section 2 in a Hilbert space setting, i.e.,

u 2 arg min
u2H

1

2
ku � f k

2
C ˛J.u/: (4.2)

We consider f being a multiple of the eigenvector u�, i.e., f D cu�, c > 0, and look for a
solution of the form u D C.˛; �/u�. The basis for this investigation is the optimality condi-
tion

u � f C ˛p D 0; p 2 @J.u/

satisfied by a solution u of (4.2). Making the ansatz p D p� D �u�, which is in the subdif-
ferential of C.˛; �/u due to the zero-homogeneity of @J , we arrive at the scalar relation

C.˛; �/ � c C ˛� D 0;

which yields a positive solution if c > ˛�. If c � ˛�, we obtain a solution by choosing
C.˛; �/ D 0, since c

˛�
2 @J.0/. Thus, we find

C.˛; �/ D .c � ˛�/C; (4.3)

i.e., the solution is a multiple of an eigenvector with the magnitude obtained by a shrinkage
formula. We see that obviously the shrinkage is stronger for larger ˛, but also for larger �.
Hence, there is less change in smaller eigenvalues (low frequencies) than in larger eigenval-
ues (high frequencies).

The solutions of this kind can be investigated with respect to their robustness with
respect to noise (errors in f ) and bias (errors due to positive values of ˛), see [3]. Let us
detail some aspects of bias in the following, a particularly interesting property is that the
ground state yields the minimal bias (cf. [3]).

Theorem 4.1. Let ˛ > 0 and u … N .J / be a solution of (4.2). Then

ku � f k � ˛�0;

where �0 is the minimal eigenvalue of J .

5245 Nonlinear eigenvalue problems for seminorms and applications



Proof. We employ the optimality condition p D
1
˛
.f � u/ with p 2 @J.u/ to obtain

J.u/ D hp; ui D
1

˛
hf � u; ui �

1

˛
kukku � f k:

Moreover, due to our assumption on f and since p 2 H0 for every subgradient, we also
conclude u 2 H0. Due to the definition of the minimal eigenvalue via the ground state, we
conclude

kuk �
1

�0
J.u/:

Inserting this relation into the above inequality and canceling J.u/, which is possible due to
u … N .J /, yields the assertion.

In order to get rid of bias effects for low frequencies, several two-step approaches
have been proposed in literature for examples of J . A structured approach has been derived
in [11], which computes a solution v via minimizing

kv � f k ! min
v

subject to J.v/ � J.u/ � hp; v � ui D 0;

where u is the solution of (4.2) and p the corresponding subgradient arising in the optimality
condition. We can elucidate this scheme in the case of f D cu�. If c > ˛�, we have a
nontrivial solution u D C.˛; �/u�, thus v D cu� satisfies J.v/ � J.u/ � hp; v � ui D 0

and clearly minimizes kv � f k. This means that low frequencies are exactly reconstructed
by this two-step procedure. An alternative approach to reduce bias is iterative regularization,
in particular the Bregman iteration, which can be interpreted as an inexact penalization of the
above constraint. We will further investigate the behavior of singular vectors in this iteration
in the next part.

4.2. Bregman iterations and inverse scale space flows
The Bregman iteration is obtained by subsequently computing

ukC1
2 arg min

u

1

2
ku � f k

2
C ˛

�
J.u/ � J

�
uk

�
�

˝
pk ; u � uk

˛�
;

the penalty being the Bregman distance between u and the last iterate uk , and pk the subgra-
dient from the optimality condition for uk (cf. [36]). The optimality condition directly yields
an update formula for the subgradients in the form

pkC1
D pk C

1

˛
.f � ukC1/:

Let us mention that for consistency with the variational method the choice p0 D 0 and u0 2

N .J / is usually assumed, without loss of generality we can choose u0 D 0. In this case the
variational method (4.2) is just the first step of the Bregman iteration. In order to obtain a
suitable result, ˛ has to be chosen large in the Bregman iteration, however.

It is instructive to investigate again the case f D cu� in the Bregman iteration,
looking for a solution of the form uk D C k.˛; �/u�. If ˛ is large, we may expect to have
c < ˛� and hence u1 D 0, which yields p1 D

c
˛
u�. Indeed, we obtain

pk D
ck

˛
u� for k �

˛�

c
:
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The first iteration step with a nonzero solution uk is given by k D K.˛; �/ with

K.˛; �/ D min
²
k 2 N j k >

˛�

c

³
:

Here we can easily compute pk D �u� and thus

uk D cu� C ˛

�
c.k � 1/

˛
� �

�
u�;

i.e.,
C k.˛; �/ D c �

�
˛� � c.k � 1/

�
D ck � ˛�:

For k D K.˛; �/C 1, we obtain again uk , being a nontrivial multiple of u�, and the corre-
sponding subgradient is pk D �u� D pk�1, which implies uk D f . For further iterations,
the result clearly does not change anymore. Hence, the number of iterations needed to obtain
the exact solution behaves like ˛�

c
, and we see again that eigenvectors for smaller eigenval-

ues (low frequency) are reconstructed faster, while eigenvectors for larger eigenvalues will
appear only very late in the iteration.

The computations are a bit more precise in the limit ˛ ! 1, which yields (after
appropriate rescaling of step sizes) a time-continuous flow, the so-called inverse scale space
method (cf. [20])

@tp.t/ D f � u.t/; p.t/ 2 @J
�
u.t/

�
:

By analogous reasoning, we can compute the solution for u.0/D p.0/D 0 and f D cu� as

u.t/ D

´
0; t < �

c
;

cu�; t > �
c
:

Thus, the reconstruction becomes exact at a time proportional to the eigenvalue.

4.3. Gradient flows
Another iterative scheme obtained from the variational method (4.2) is to start with

u D f and solve for
ukC1

2 arg min
u

1

2
ku � ukk

2
C ˛J.u/:

Again, the first step is consistent with (4.2), but the dynamics is very different from the Breg-
man iteration, in particular for small ˛, which is the relevant case here. Choosing f D cu�,
the optimality condition

ukC1
� uk C ˛pkC1

D 0; pkC1
2 @J.ukC1/

yields u1 D .c � ˛�/u�, and by analogous reasoning

uk D .c � k˛�/u�;

as long as k < c
˛�

. For k > c
˛�

, we can indeed verify that uk D 0 solves the problem. Here
we see that eigenvectors related to larger eigenvalues (high frequencies) shrink faster to zero,
whereas the ground state is the last to disappear.
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Again, this can be made more precise for the time-continuous variant, this time
obtained as ˛ ! 0. The above iteration scheme is also known as minimizing movement
scheme (cf. [23]) and the limit for appropriately scaled time is the gradient flow

@tu.t/ D �p.t/; p.t/ 2 @J
�
u.t/

�
; (4.4)

with initial value u.0/ D f . Again, the solution of the gradient flow has a simple form if
f D cu�, namely

u.t/ D

´
.c � �t/u�; t < c

�
;

0; t > c
�
:

This means that solutions shrink to zero linearly in time, and the extinction time c
�

again
changes with the eigenvalue. Due to the inverse relation with �, low frequencies get extinct
later than high ones.

The behavior on eigenvectors motivates studying the gradient flow also for arbitrary
initial values f . First of all, we can generalize the finite time extinction. For initial value
f 2 H0, it is easy to show that u.t/ 2 H0 for all t > 0, since for v 2 N .J / we have˝

u.t/; v
˛
D hf; vi �

Z t

0

˝
p.s/; v

˛
ds D 0:

Now we can use we use the standard dissipation relationu.t/2 C 2

Z t

0

J
�
u.s/

�
ds � kf k

2;

and J.u.s// � �0ku.s/k, resulting inu.t/2 C 2�0

Z t

0

u.s/ ds � kf k
2:

Similar to the proof of the Gronwall inequality, this allows deducingu.t/ � kf k � �0t; for t <
kf k

�0
:

Thus u.t/ D 0 for t D
kf k

�0
, and it is easy to show that for t > kf k

� 0
the unique solution of

the gradient flow is given by u.t/D 0 and p.t/D 0. Thus, the gradient flow exhibits a finite
extinction phenomenon, the solution vanishes after finite time. We define the extinction time
as

t�.f / D inf
®
t > 0 j u.t/ D 0

¯
: (4.5)

Our analysis above yields the following upper bound on the extinction time:

Theorem 4.2. Let f 2H0 and u 2 C.0;T IH/ be a solution of the gradient flow (4.4). Then
the extinction time defined by (4.5) satisfies

t�.f / �
kf k

�0
; (4.6)

where �0 is the minimal nontrivial eigenvalue of J .

5248 M. Burger



From the special case of f being a multiple of a ground state, we see that (4.6) is
sharp for suitable initial values. In order to gain further understanding, it is instructive to
investigate scalar products of the solution u with eigenvectors. This leads to˝

u.t/; u�
˛
D hf; u�i �

Z t

0

˝
p.s/; u�

˛
ds � hf; u�i � �t:

Thus we obtain lower bounds on the extinction time of the form

t�.f / �
1

�

ˇ̌
hf; u�i

ˇ̌
and see that the extinction time will be larger the more the initial value is correlated with
low frequencies.

The extinction time is not the only relevant quantity, but also the so-called extinction
profile is of high relevance. The extinction profile vf is defined as

vf D lim
�#0

1

�
u

�
t�.f / � �

�
;

i.e., it is the left-sided derivative of the gradient flow at the extinction time. Surprisingly,
it can be shown that vf is an eigenvector of J , under suitable conditions even that it is the
ground state. This was shown first for the total variation flow (cf., e.g., [2]) and later also
other zero-homogeneous evolution equations such as the fast diffusion equation (cf. [6, 7]).
In [15,16] this has been reconsidered in the abstract setting of eigenvectors of seminorms and
general results on the extinction profile could be obtained. Let us just motivate formally why
it can be expected that the extinction profile is an eigenvector. From the optimality condition
in the minimizing movement scheme with � chosen appropriately, we obtain

1

�
u

�
t�.f / � �

�
D
1

�

�
u

�
t�.f / � �

�
� u

�
t�.f /

��
D p

�
t�.f /

�
:

Hence, if p.t�.f // is not vanishing, the limit � # 0 yields vf D p.t�.f // and, due to the
homogeneity of the subdifferential, we also obtain p.t�.f // 2 @J.vf / in the limit. Thus, vf ,
respectively its rescaled version, is an eigenvector of J .

We finally mention that an extension of the results on the extinction profile has been
carried out in [14], which analyzes the fine asymptotics for gradient flows of p-homogeneous
functionals. In the case p < 2, there is still an extinction profile with similar properties,
for p � 2 there is only decay as t ! 1, however. Appropriately rescaled versions of the
asymptotics of the solution are again eigenvectors of the underlying functionals.

4.4. Gradient flows and spectral decompositions
Gradient flows are particularly interesting for computing eigenvectors and even

spectral decompositions, since the classical theory by Brezis (cf. [10]) implies that indeed
the solution selects subgradients of minimal norm, i.e.,

@tu.t/ D �p0.t/; p0.t/ D arg min
®
kpk j p 2 @J

�
u.t/

�¯
:

Thus, we obtain a spectral decomposition into eigenvectorsp0.t/with the Lebesgue measure
on RC if all subgradients of minimal norm are indeed eigenvectors. This means that (2.5)
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needs to be satisfied for the subgradients of minimal norm in @J.v/ for all v 2 H . Then we
have indeed

f D

Z 1

0

p.t/ dt;

but this is not yet a spectral decomposition in the above sense, since the integration is not
with respect to a measure of the eigenvalue. However, as seen in [15], a change of measure
from t to �.t/ indeed yields a spectral decomposition. Note, however, that sincep.t/ and thus
�.t/ can be piecewise constant, the arising measure in the spectral domain is not absolutely
continuous with respect to the Lebesgue measure in typical cases.

In [16] an alternative way to obtain a spectral decomposition in separable Hilbert
spaces was derived via extinction profiles. This countable spectral decomposition is obtain
by first computing the extinction profile of the gradient flow with starting value f and then
projecting f onto the space orthogonal to the first extinction profile. This projection is used
again as starting value of the gradient flow and then again f is projected onto the space
orthogonal to the new extinction profile. Iterating this procedure the projections converge to
zero and the sum of the orthogonal components yields an atomic spectral decomposition.

There are several examples of flows that yield a spectral decomposition, the most
prominent one being the one-dimensional total variation (cf. [15]). Other examples are
polyhedral regularizations with sufficiently regular convex sets C (cf. [18, 19]) and one-
homogeneous functionals vector fields using divergence and rotation (cf. [15]).

5. Applications

In order to illustrate the use of nonlinear eigenvalue problems in data science, we
discuss two toy examples representing wider classes of applications in this section.

5.1. 1-Laplacian graph clustering
We start with a common technique for data clustering, namely the computation of

the first eigenfunction of the 1-Laplacian on graphs. For this, we acquire data on a surface by
a laser scanner with random sampling, as illustrated in Figure 1. This resembles the classical
two-moons data set frequently used for the evaluation of clustering methods. Based on those
data points we build a nearest neighbor graph as illustrated in the right image of Figure 1.

On the arising graph we compute the first nontrivial eigenfunction of the classical
graph Laplacian, which is shown in the left part of Figure 2. This serves mainly for compar-
ison with the eigenfunction of the 1-Laplacian on the graph (the ground state of the graph
total variation), which is shown in the right part. The ground state can be computed as an
extinction profile of the gradient flow with the graph Laplacian eigenfunction as a starting
value (cf. [16]). It is apparent that the eigenfunction of the 1-Laplacian has a much sharper
transition between positive and negative values, which corresponds closely to the geometric
structure in the data. This leads to improved spectral clustering as shown in Figure 3, namely
the sub- and superlevel sets at zero (in red, respectively blue). One observes a rather linear
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Figure 1

Image of traditional Austrian Christmas cookies (Vanillekipferl) and random sampling of points on the surface
(left, respectively middle) and neighborhood graph built out of the sample points.

Figure 2

First nontrivial eigenfunction of the graph (2-)Laplacian (left) and the graph 1-Laplacian (right).

Figure 3

Spectral clustering based on the graph (2-)Laplacian (left) and the graph 1-Laplacian (right).

structure in the clustering with the graph Laplacian, while the clustering with the 1-Laplacian
perfectly adapts to the structure in the data set.

5.2. Distance functions from 1-Laplacians
In the following we illustrate the computation of distance functions by minimizing

the 1-Laplacian energy
J.u/ D ess sup

x

ˇ̌
ru.x/

ˇ̌
: (5.1)

We use the graph Laplacian energy on a grid graph built on the map of the United Kingdom
with a large stencil. In this case we compute the (nonnegative) ground state over the set of
functions on the graph vanishing on a predefined boundary (corresponding to the geograph-
ical boundary). We then normalize it such that J.u/ D 1, which implies that u becomes the
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Figure 4

Distance function on a grid graph for the geometry of the United Kingdom.

distance function to the boundary. The result is shown in Figure 4 and generalizes results
obtained by solving the eikonal equation in the continuum setting.
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