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Abstract

We introduce the concept of strong high-order approximate minimizers of nonconvex
optimization problems. These apply in both standard smooth and composite nonsmooth
settings, and additionally allow convex or inexpensive constraints. An adaptive regular-
ization algorithm is then proposed to find such approximate minimizers. Under suitable
Lipschitz continuity assumptions, the evaluation complexity of this algorithm is investi-
gated. The bounds obtained not only provide, to the best of our knowledge, the first known
result for (unconstrained or inexpensively-constrained) composite problems for optimality
orders exceeding one, but also give the first sharp bounds for high-order strong approx-
imate qth order minimizers of standard (unconstrained and inexpensively constrained)
smooth problems, thereby complementing known results for weak minimizers.
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1. Introduction

We consider composite optimization problems of the form

min
x2F

w.x/
def
D f .x/ C h

�
c.x/

�
; (1.1)

where f , c are smooth and h possibly nonsmooth but Lipschitz continuous, and where F is
a feasible set associated with inexpensive constraints (which are discussed in the next para-
graph). Such problems have attracted considerable attention, due to the their occurrence in
important applications such as LASSO methods in computational statistics [26], Tikhonov
regularization of underdetermined estimation problems [21], compressed sensing [16], arti-
ficial intelligence [22], penalty or projection methods for constrained optimization [8], least
Euclidean distance and continuous location problems [17], reduced-precision deep-learning
[27], image processing [2], to cite but a few examples. We refer the reader to the thorough
review in [23]. In these applications, the function h is typically globally Lipschitz continuous
and cheap to compute—common examples include the Euclidean, `1, or `1 norms.

Inexpensive constraints defining the feasible set F are constraints whose evaluation
or enforcement has negligible cost compared to that of evaluating f , c and/or their deriva-
tives. They are of interest here since the evaluation complexity of solving inexpensively
constrained problems is dominated solely by the number of evaluations of f , c and their
derivatives. Inexpensive constraints include, but are not limited to, convex constraints with
cheap projections (such as bounds or the ordered simplex). Such constraints have already
been considered elsewhere [3,12].

Of course, problem (1.1) may be viewed as a general nonsmooth optimization prob-
lem, to which a battery of existing methods may be applied (for example, subgradient, prox-
imal gradient, and bundle methods). However, this avenue ignores the problem’s special
structure, which may be viewed as a drawback. More importantly for our purpose, this
approach essentially limits the type of approximate minimizers one can reasonably hope
for to first-order points (see [18, Chapter 14] for a discussion of second-order optimality
conditions and [8, 20] for examples of structure-exploiting first-order complexity analysis).
However, our first objective in this paper is to cover approximate minimizers of arbitrary
order (obviously including first- and second-order ones), in a sense that we describe below.
This, as far we know, precludes a view of (1.1) that ignores the structure present in h.

It is also clear that any result we can obtain for problem (1.1) also applies to stan-
dard smooth problems (by letting h be the zero function), for which evaluation complexity
results are available. Most of these results cover first- and second-order approximate min-
imizers (see [7, 10, 15, 24, 25] for a few references), but two recent papers [11, 12] propose an
analysis covering our stated objective to cover arbitrary-order minimizers for smooth nonon-
vex functions. However, these two proposals significantly differ, in that they use different
definitions of high-order minimizers, by no means a trivial concept. The first paper, focus-
ing on trust-region methods, uses a much stronger definition than the second one which
covers adaptive regularization algorithms. Our second objective in the present paper is to
strengthen these latter results to use the stronger definition of optimality for adaptive regu-
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larization algorithms and therefore bridge the gap between the two previous approaches in
the more general framework of composite problems.

Contributions and motivation. The main contributions of this paper may be summarized
as follows:

(1) We formalize the notion of strong approximate minimizer of arbitrary order
for standard (noncomposite) smooth problems and extend it to composite ones,
including the case where the composition function is nonsmooth, and addition-
ally allow inexpensive constraints. This notion is stronger than that of “weak”
approximate minimizers used in [3,12,14].

(2) We provide a conceptual adaptive regularization algorithm whose purpose is to
compute such strong approximate minimizers.

(3) We analyze the worst-case complexity of this conceptual algorithm both for
composite and standard problems, allowing arbitrary optimality order and any
degree of the model used within the algorithm. For composite problems, these
bounds are the first ones available for approximate minimizers of order exceed-
ing one. For smooth problems, the bounds are shown to improve on those
derived in [11] for trust-region methods, while being less favorable (for orders
beyond the second) than those in [12] for approximate minimizers of the weaker
sort. These bounds are summarized in Table 1.1 in the case where all "j are
identical. Each table entry also mentions existing references for the quoted
result. Sharpness (in the order of ") is also reported when known.

We acknowledge upfront that our approach is essentially theoretical, because it
depends, in its present incarnation, on computing global minimizers of Taylor series within
Euclidean balls, a problem which is known to be a very hard for high orders [1]. Although
these calculations do not involve any evaluation of the problem’s objective function or of
its derivatives (and thus do not affect evaluation complexity bounds), this is a significant
hurdle. While realistic algorithms may have to resort to inexact global minimization (we
discuss the necessity and impact of such approximations in Section 7), the case of exact
ones can be viewed as an idealized, aspirational setting and the complexity results derived
therein as “best possible.” Thus we ask here the mathematically important questions: what
would be achievable in this idealized setting? Or if constrained global minimizers of poly-
nomials were computable because of special problem structure? A second motivation is that
high-order models have already proved their usefulness in practice, in particular in the solu-
tion of highly nonlinear low-dimensional least-squares problems [19], even if implementing
algorithms using them is far from obvious [4]. The identification of approximate minimizers
of orders matching the degree of the models is, in our view, an obvious, yet unexplored ques-
tion. Moreover, the consideration of such approximate minimizers results in new insights in
the definition of approximate minimizers and prompts a proposal for a new approximate
optimality measure (see Section 2). At variance with standard ones, this proposal has the
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inexpensive
constraints

Weak minimizers Strong minimizers

smooth (h D 0) smooth (h D 0) composite
h convex h nonconvex

q D 1 none "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp � "�2 [8,20]

convex "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp "�2

nonconvex "
�

pC1
p sharp

[5,12]

"
�

pC1
p sharp

[5,12]

"�2 "�2

q D 2 none "
�

pC1
p�1 sharp

[12]

"
�

pC1
p�1 sharp

[12]

"�3 "�3

convex "
�

pC1
p�1 sharp

[12]

"
�

2.pC1/
p sharp "�3 "�3

nonconvex "
�

pC1
p�1 sharp

[12]

"
�

2.pC1/
p sharp "�3 "�3

q > 2 none, or
general

"
�

pC1
p�qC1 sharp

[12]

"
�

q.pC1/
p sharp "�.qC1/ "�.qC1/

Table 1.1

Order bounds (as multiples of powers of the accuracy ") on the worst-case evaluation complexity of finding
weak/strong ."; ı/-approximate minimizers for composite and smooth problems, as a function of optimality order
(q), model degree (p), convexity of the composition function h and presence/absence/convexity of inexpensive
constraints. The dagger indicates that this bound for the special case when h.�/ D k � k2 and f D 0 is already
known [9].

advantage of being well-defined and consistent across all orders and it is obviously also
applicable (and computationally cheap) for orders one and two.

Outline. The paper is organized as follows. Section 2 outlines some useful background and
motivation on high-order optimality measures. In Section 3, we describe our problem more
formally and introduce the notions of weak and strong high-order approximate minimizers.
We describe an adaptive regularization algorithm for problem (1.1) in Section 4, while Sec-
tion 5 discusses the associated evaluation complexity analysis. Section 6 then shows that
several of the obtained complexity bounds are sharp, while Section 7 discusses the necessity
of global minimizations and the impact of allowing them to be inexact. Some conclusions
and perspectives are finally outlined in Section 8.
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2. A discussion of qth-order necessary optimality

conditions

Before going any further, it is best to put our second objective (establishing strong
complexity bounds for arbitrary qth order using an adaptive regularization method) in per-
spective by briefly discussing high-order optimality measures. For this purpose, we now
digress slightly and first focus on the standard unconstrained (smooth) optimization problem
where one tries to minimize an objective function f over Rn. The definition of a j th-order
approximate minimizer of a general (sufficiently) smooth function f is a delicate question.
It was argued in [11] that expressing the necessary optimality conditions at a given point x in
terms of individual derivatives of f at x leads to extremely complicated expressions involv-
ing the potential decrease of the function along all possible feasible arcs emanating from x.
To avoid this, an alternative based on Taylor expansions was proposed. Such an expansion is
given by

Tf;q.x; d/ D

qX
`D0

1

`Š
r

`
xf .x/Œd �` (2.1)

where r`
xf .x/Œd �` denotes the `th-order cubically1 symmetric derivative tensor (of dimen-

sion `) of f at x applied to ` copies of the vector d . The idea of the approximate necessary
condition that we use is that, if x is a local minimizer and q � p is an integer, there should be
a neighborhood of x of radius ıj 2 .0;1� in which the decrease in (2.1), which we measure by

�
ıj

f;j
.x/

def
D f .x/ � min

d2Rn;kdk�ıj

Tf;j .x; d/; (2.2)

must be small. In fact, it can be shown [11, Lemma 3.4] that

lim
ıj !0

�
ıj

f;j
.x/

ı
j
j

D 0; (2.3)

whenever x is a local minimizer of f . Making the ratio in this limit small for small enough ıj

therefore seems reasonable. Let "j is a prescribed order-dependent accuracy parameter, and
"

def
D ."1; : : : ; "q/. Also let ı

def
D .ı1; : : : ; ıq/ be a vector of associated “optimality radii.” Then

we will say that x is a strong ."; ı/-approximate qth-order minimizer if, for all j 2 ¹1; : : : ; qº,
there exists a ıj > 0 such that

�
ıj

f;j
.x/ � "j

ı
j
j

j Š
: (2.4)

(The factor j Š is introduced for notational convenience.) The ıj are called optimality radii
because they are the radii of the neighborhood of x in which the Taylor series Tf;j .x; d/

cannot decrease more than "j (appropriately scaled). Thus ıj and "j are tightly linked (see
Lemma 4.4 below) and the limit (2.3) (which applies at true local minimizers) is conceptually
achieved when "j itself tends to zero. Note that (2.4) reduces to the condition kr1

xf .x/k � "1

for j D 1, and that, for j D 2, �
ıj

f;2
.x/ is obtained by solving a trust-region subproblem,

1 Meaning all its dimensions are the same.
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a process whose cost is comparable to that of computing the leftmost eigenvalue of the
Hessian, as would be required for the standard second-order measure.

The definition (2.4) should be contrasted with notion of weak minimizers introduced
in [12]. Formally, x is a weak ."; ı/-approximate qth-order minimizer if there exists ıq 2 R

such that

�
ıq

f;q
.x/ � "q�q.ıq/ where �q.ı/

def
D

qX
`D1

ı`

`Š
: (2.5)

Obviously, (2.5) is less restrictive than (2.4) since it is easy to show that �q.ı/ 2 Œı; 2ı/ and
is thus significantly larger than ı

q
q =qŠ for small ıq . Moreover, (2.5) is a single condition,

while (2.4) has to hold for all j 2 ¹1; : : : ; qº. The interest of considering weak approximate
minimizers is that they can be computed faster than strong ones. It is shown in [12] that the
evaluation complexity bound for finding them is O."

�
pC1

p�qC1 /, thereby providing a smooth
extension to high-order of the complexity bounds known for q 2 ¹1; 2º. However, the major
drawback of using the weak notion is that, at variance with (2.4), it is not coherent with
the scaling implied by (2.3).2 Obtaining this coherence therefore comes at a cost for orders
beyond two, as will be clear in our developments below.

If we now consider that inexpensive constraints are present in the problem, it is easy
to adapt the notions of weak and strong optimality for this case by (re)defining

�
ıj

f;j
.x/

def
D f .x/ � min

xCd2F ; kdk�ıj

Tf;j .x; d/; (2.6)

where F is the feasible set. We then say that x is a strong inexpensively constrained ."; ı/-
approximate qth-order minimizer if, for all j 2 ¹1; : : : ; qº, there exists a ıj > 0 such that
(2.4) holds with this new definition.

3. The composite problem and its properties

We now return to the more general composite optimization (1.1), and make our
assumptions more specific:

AS.1 The function f from Rn to R is p times continuously differentiable and each
of its derivatives r`

xf .x/ of order ` 2 ¹1; : : : ; pº are Lipschitz continuous
in a convex open neighborhood of F , that is, for every j 2 ¹1; : : : ; pº, there
exists a constant Lf;j � 1 such that, for all x; y in that neighborhood,

r

j
x f .x/ � r

j
x f .y/



 � Lf;j kx � yk; (3.1)

where k � k denotes the Euclidean norm for vectors and the induced operator
norm for matrices and tensors.

AS.2 The function c from Rn to Rm is p times continuously differentiable and each
of its derivatives r`

xc.x/ of order ` 2 ¹1; : : : ; pº are Lipschitz continuous in

2 In the worst case, it may lead to the origin being accepted as a second-order approximate
minimizer of �x2.
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a convex open neighborhood of F , that is, for every j 2 ¹1; : : : ; pº there
exists a constant Lc;j � 1 such that, for all x; y in that neighborhood,

r

j
x c.x/ � r

j
x c.y/



 � Lc;j kx � yk; (3.2)

AS.3 The function h from Rm to R is Lipschitz continuous, subbadditive, and zero
at zero, that is, there exists a constant Lh;0 � 0 such that, for all x; y 2 Rm,

h.x/ � h.y/



 � Lh;0kx � yk; (3.3)

h.x C y/ � h.x/ C h.y/ and h.0/ D 0: (3.4)

AS.4 There is a constant wlow such that w.x/ � wlow for all x 2 F .

Assumption AS.3 allows a fairly general class of composition functions. Examples include
the popular k � k1, k � k, and k � k1 norms, concave functions vanishing at zero and, in the
unidimensional case, the ReLu function maxŒ0; �� and the periodic j sin.�/j. As these examples
show, nonconvexity and nondifferentiability are allowed (but not necessary). Note that finite
sums of functions satisfying AS.3 also satisfy AS.3. Note also that h being subadditive does
not imply that h˛ is also subadditive for ˛ � 1 (h.c/ D c is, but h.c/2 is not), or that it is
concave [6]. Observe finally that equality always holds in (3.4) when h is odd.3

When h is smooth, problem (1.1) can be viewed either as composite or smooth. Does
the composite view present any advantage in this case? The answer is that the assumptions
needed on h in the composite case are weaker in that Lipschitz continuity is only required
for h itself, not for its derivatives of orders 1 to p. If any of these derivatives are costly,
unbounded or nonexistent, this can be a significant advantage. However, as we will see below
(in Theorems 5.5 and 5.6) this comes at the price of a worse evaluation complexity bound.
For example, the case of linear h is simple to assess, since in that case h.c/ amounts to a linear
combination of the ci , and there is obviously no costly or unbounded derivative involved: a
smooth approach is therefore preferable from a complexity perspective.

Observe also that AS.1 and AS.2 imply, in particular, that

r
j
x f .x/



 � Lf;j �1 and


r

j
x c.x/



 � Lc;j �1 for j 2 ¹2; : : : ; pº (3.5)

Observe also that AS.3 ensures that, for all x 2 Rm,ˇ̌
h.x/

ˇ̌
D
ˇ̌
h.x/ � h.0/

ˇ̌
� Lh;0kx � 0k D Lh;0kxk: (3.6)

For future reference, we define

Lw
def
D max

j 2¹1;:::;pº
.Lf;j �1 C Lh;0Lc;j �1/: (3.7)

We note that AS.4 makes the problem well-defined in that its objective function is bounded
below. We now state a useful lemma on the Taylor expansion’s error for a general function r

with Lipschitz continuous derivative.

3 Indeed, h.�x � y/ � h.�x/ C h.�y/ and thus, since h is odd, �h.x C y/ � �h.x/ � h.y/,
which, combined with (3.4), gives that h.x C y/ D h.x/ C h.y/.
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Lemma 3.1. Let r W Rn ! R be p times continuously differentiable and suppose that
r

p
x r.x/ is Lipschitz continuous with Lipschitz constant Lr;p , Let Tr;p.x; s/ be the pth degree

Taylor approximation of r.x C s/ about x given by (2.1). Then for all x; s 2 Rn,ˇ̌
r.x C s/ � Tr;p.x; s/

ˇ̌
�

Lr;p

.p C 1/Š
ksk

pC1; (3.8)

r
j
x r.x C s/ � r

j
s Tr;p.x; s/



 �
Lr;p

.p � j C 1/Š
ksk

p�j C1 .j D 1; : : : ; p/: (3.9)

Proof. See [12, Lemma 2.1] with ˇ D 1.

We now extend the concepts and notation of Section 2 to the case of composite
optimization. Abusing notation slightly, we denote, for j 2 ¹1; : : : ; pº,

Tw;j .x; s/
def
D Tf;j .x; s/ C h

�
Tc;j .x; s/

�
(3.10)

(Tw;j .x; s/ it is not a Taylor expansion). We also define, for j 2 ¹1; : : : ; qº,

�ı
w;j .x/

def
D w.x/ � min

xCd2F ;kdk�ı

�
Tf;j .x; s/ C h

�
Tc;j .x; s/

��
D w.x/ � min

xCd2F ;kdk�ı
Tw;j .x; s/ (3.11)

by analogy with (2.6). This definition allows us to consider (approximate) high-order mini-
mizers of w, despite h being potentially nonsmooth, because we have left h unchanged in the
optimality measure (3.11), rather than using a Taylor expansion of h.

We now state a simple first-order necessary optimality condition for a global mini-
mizer of composite problems of the form (1.1) with convex h.

Lemma 3.2. Suppose that f and c are continuously differentiable and that AS.3 holds.
Suppose in addition that h is convex and that x� is a global minimizer of w. Then the origin
is a global minimizer of Tw;1.x�; s/ and �ı

w;1.x�/ D 0 for all ı > 0.

Proof. Suppose now that the origin is not a global minimizer of Tw;1.x�; s/, but that there
exists an s1 ¤ 0 with Tw;1.x�; s1/ < Tw;1.x�; 0/ D w.x�/. By Taylor’s theorem, we obtain
that, for ˛ 2 Œ0; 1�,

f .x� C ˛s1/ D Tf;1.x�; ˛s1/ C o.˛/; c.x� C ˛s1/ D Tc;1.x�; ˛s1/ C o.˛/ (3.12)

and, using AS.3 and (3.6),

h
�
c.x� C ˛s1/

�
D h

�
Tc;1.x�; ˛s1/ C o

�
˛ks1k

��
� h

�
Tc;1.x�; ˛s1/

�
C h

�
o.˛/ks1k

�
� h

�
Tc;1.x�; ˛s1/

�
C o.˛/Lh;0ks1k D h

�
Tc;1.x�; ˛s1/

�
C o.˛/:

(3.13)

Now note that the convexity of h and the linearity of Tf;1.x�; s/ and Tc;1.x�; s/ imply that
Tw;1.x�; s/ is convex, and thus that Tw;1.x�; ˛s1/ � w.x�/ � ˛ŒTw;1.x�; s1/ � w.x�/�.
Hence, using (3.12) and (3.13), we deduce that

0 � w.x� C ˛s1/ � w.x�/ � Tw;1.x�; ˛s1/ � w.x�/ C o.˛/

� ˛
�
Tw;1.x�; s1/ � w.x�/

�
C o.˛/;
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which is impossible for ˛ sufficiently small, since Tw;1.x�; s1/ � w.x�/ < 0 by construction
of s1. As a consequence, the origin must be a global minimizer of the convex Tw;1.x�; s/

and therefore �ı
w;1.x�/ D 0 for all ı > 0.

Unfortunately, this result does not extend to �ı
w;q.x/ when q D 2, as is shown by

the following example. Consider the univariate w.x/ D �
2
5
x C jx � x2 C 2x3j, where h is

the (convex) absolute value function satisfying AS.3. Then x� D 0 is a global minimizer of
w (plotted as unbroken line in Figure 3.1) and yet

Tw;2.x�; s/ D Tf;2.x�; s/ C
ˇ̌
Tc;2.x�; s/

ˇ̌
D �

2

5
s C

ˇ̌
s � s2

ˇ̌
(plotted as dashed line in the figure) admits a global minimum for s D 1 whose value (� 2

5
)

is smaller that w.x�/ D 0. Thus �1
w;2.x�/ > 0 despite x� being a global minimizer. But it is

clear in the figure that �ı
w;2.x�/ D 0 for ı smaller than 1

2
.

Figure 3.1

Functions w.x/ (unbroken) and Tw;2.0; s/ D Tf;2.0; s/ C jTc;2.0; s/j (dashed).

In the smooth (h D 0) case, Lemma 3.2 may be extended for unconstrained
(i.e., F D Rn) twice-continuously differentiable f since then standard second-order opti-
mality conditions at a global minimizer x� of f imply that Tf;j .x�; d / is convex for
j D 1;2 and thus that �ı

f;1
.x�/ D �ı

f;2
.x�/ D 0. When constraints are present (i.e., F � Rn),

unfortunately, this may require that we restrict ı. For example, the global minimizer of
f .x/ D �.x � 1=3/2 C 2=3x3 for x 2 Œ0; 1� lies at x� D 0, but Tf;2.x�; d / D �.d � 1=3/2

which has its constrained global minimizer at d D 1 with Tf;2.x�; 1/ < Tf;2.x�; 0/ and we
would need ı � 2=3 to ensure that �ı

f;2
.x�/ D 0.
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4. An adaptive regularization algorithm for composite

optimization

We now consider an adaptive regularization algorithm to search for a (strong) ."; ı/-
approximate qth-order minimizer for problem (1.1), that is a point xk 2 F such that

�ı
w;j .xk/ � "j

ı
j
j

j Š
for j 2 ¹1; : : : ; qº; (4.1)

where �ı
w;q.x/ is defined in (3.11). At each iteration, the algorithm seeks a feasible approx-

imate minimizer of the (possibly nonsmooth) regularized model

mk.s/ D Tf;p.xk ; s/ C h
�
Tc;p.xk ; s/

�
C

�k

.p C 1/Š
ksk

pC1

D Tw;p.xk ; s/ C
�k

.p C 1/Š
ksk

pC1 (4.2)

and this process is allowed to terminate whenever

mk.s/ � mk.0/ (4.3)

and, for each j 2 ¹1; : : : ; qº,

�
ıs;j

mk ;j .s/ � �"j

ı
j
s;j

j Š
(4.4)

for some � 2 .0; 1/. Observe that mk.s/ is bounded below since (3.6) ensures that the reg-
ularization term of degree p C 1 dominates for large steps. Obviously, the inclusion of h

in the definition of the model (4.2) implicitly assumes that, as is common, the cost of eval-
uating h is small compared with that of evaluating f or c. It also implies that computing
�

ıj

w;j .x/ and �
ıs;j

mk ;j .s/ is potentially more complicated than in the smooth case, although it
does not impact the evaluation complexity of the algorithm because the model’s approximate
minimization does not involve evaluating f , c or any of their derivatives.

The rest of the algorithm, that we shall refer to as ARqpC, follows the standard
pattern of adaptive regularization algorithms, and is stated on this page. As everywhere in
this paper, we assume that q 2 ¹1; : : : ; pº.

ARqpC algorithm for finding an ."; ı/-approximate qth-order minimizer
of the composite function w in (1.1)

Step 0: Initialization. An initial point x0 and an initial regularization parameter
�0 > 0 are given, as well as an accuracy level " 2 .0; 1/q . The constants
ı0, � , �1, �2, 
1, 
2, 
3, and �min are also given and satisfy

� 2 .0; 1/; ı0 2 .0; 1�q; �min 2 .0; �0�; 0 < �1 � �2 < 1;

and 0 < 
1 < 1 < 
2 < 
3: (4.5)

Compute w.x0/ and set k D 0.

Step 1: Test for termination. Evaluate ¹ri
xf .xk/º

q
iD1 and ¹ri

xc.xk/º
q
iD1. If (4.1)

holds with ı D ık , terminate with the approximate solution x" D xk . Oth-
erwise compute ¹ri

xf .xk/º
p
iDqC1 and ¹ri

xc.xk/º
p
iDqC1.
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Step 2: Step calculation. Attempt to compute an approximate minimizer sk of model
mk.s/ given in (4.2) such that xk C sk 2 F and optimality radii ısk

2 .0; 1�q

exist such that (4.3) holds and (4.4) holds for j 2 ¹1; : : : ; qº and s D sk . If
no such step exists, terminate with the approximate solution x" D xk .

Step 3: Acceptance of the trial point. Compute w.xk C sk/ and define

�k D
w.xk/ � w.xk C sk/

w.xk/ � Tw;p.xk ; s/
: (4.6)

If �k � �1, then define xkC1 D xk C sk and ıkC1 D ısk
; otherwise define

xkC1 D xk and ıkC1 D ık .

Step 4: Regularization parameter update. Set

�kC1 2

8̂̂<̂
:̂

Œmax.�min; 
1�k/; �k � if �k � �2;

Œ�k ; 
2�k � if �k 2 Œ�1; �2/;

Œ
2�k ; 
3�k � if �k < �1:

(4.7)

Increment k by one and go to Step 1 if �k � �1, or to Step 2 otherwise.

As expected, the ARqpC algorithm shows obvious similarities with that discussed in [12], but
differs from it in significant ways. Beyond the fact that it now handles composite objective
functions, the main one being that the termination criterion in Step 1 now tests for strong
approximate minimizers, rather than weak ones.

As is standard for adaptive regularization algorithms, we say that an iteration is
successful when �k � �1 (and xkC1 D xk C sk) and that it is unsuccessful otherwise. We
denote by �k the index set of all successful iterations from 0 to k, that is,

�k D
®
j 2 ¹0; : : : ; kº j �j � �1

¯
;

and then obtain a well-known result ensuring that successful iterations up to iteration k do
not amount to a vanishingly small proportion of these iterations.

Lemma 4.1. The mechanism of the ARqpC algorithm guarantees that, if

�k � �max; (4.8)

for some �max > 0, then

k C 1 � j�kj

�
1 C

j log 
1j

log 
2

�
C

1

log 
2

log
�

�max

�0

�
: (4.9)

Proof. See [5, Theorem 2.4].

We also have the following identity for the norm of the successive derivatives of the
regularization term.

Lemma 4.2. Let s be a vector of Rn. Then

r
j
s

�
ksk

pC1
� 

 D

.p C 1/Š

.p � j C 1/Š
ksk

p�j C1 for j 2 ¹0; : : : ; p C 1º: (4.10)

Moreover, r
j
s .kskpC1/Œd �j is a convex function in d for any d orthogonal to s. It is also

convex for any multiple of s whenever j is even.
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Proof. See [12, Lemma 2.4] with ˇ D 1.

As the conditions for accepting a pair .sk ; ıs/ in Step 2 are stronger than previously
considered (in particular, they are stronger than those discussed in [12]), we must ensure that
such acceptable pairs exist. We start by recalling a result discussed in [12] for the smooth
case.

Lemma 4.3. Suppose that

.q D 1; F is convex; and h is convex/; or

.q D 2; F D Rn and h D 0/:
(4.11)

Suppose in addition that s�
k

¤ 0 is a global minimizer of mk.s/ for xk C s 2 F . Then there
exist a feasible neighborhood of s�

k
such that (4.3) and (4.4) hold for any sk in this neigh-

borhood with ıs D 1.

Proof. Consider first the composite case where q D 1. We have that

Tmk ;1.s�
k ; d / D Tf;p.xk ; s�

k / C r
1
s Tf;p.xk ; s�

k /Œd � C h
�
Tc;p.xk ; s�

k / C r
1
s Tc;p.xk ; s�

k /Œd �
�

C
�k

.p C 1/Š

�ˇ̌ˇ̌
s�

k

ˇ̌ˇ̌pC1
Cr

1
s

ˇ̌ˇ̌
s�

k

ˇ̌ˇ̌pC1
Œd �
�

is a convex function of d (since h is convex, all terms in the above right-hand side are). Sup-
pose now that it has a feasible global minimizer d� such that Tmk ;1.s�

k
; d�/ < Tmk ;1.s�

k
; 0/ D

mk.s�
k
/. Since F is convex, Tmk ;1.s�

k
; d 0/ < mk.s�

k
/ for all d ’ in the segment .0; d��. But

(3.5) implies that

r
`
s Tf;p.xk ; s�

k /


 �

pX
iD`

1

.i � `/Š



r
i
xf .xk/



 

s�
k



i�`
� max

j 2¹2;:::;pº
Lf;j �1

pX
iD`

ks�
k
ki�`

.i � `/Š
;



r
`
s Tc;p.xk ; s�

k /


 �

pX
iD`

1

.i � `/Š



r
i
xc.xk/



 

s�
k



i�`
� max

j 2¹2;:::;pº
Lc;j �1

pX
iD`

ks�
k
ki�`

.i � `/Š

and both must be bounded for s�
k

given. Thus, Tmk ;1.s�
k
; d 0/ approximates mk.s�

k
C d 0/ arbi-

trarily well for small enough kd 0k, and therefore mk.s�
k

C d 0/ < mk.s�
k
/ for small enough

kd 0k, which is impossible since s�
k

is a global minimizer of mk.s/. As a consequence d D 0

must be a global minimizer of Tmk ;1.s�
k
; d /. Thus �ı

mk ;1.s�
k
/ D 0 for all ı > 0, and in par-

ticular for ı D 1, which, by continuity, yields the desired conclusion.
Consider now the case where q D 2, h D 0 and F D Rn. Suppose that j D 1 (j D 2).

Then the j th order Taylor expansion of the model at s�
k

is a linear (positive semidefinite
quadratic) polynomial, which is a convex function. As a consequence, we obtain as above
that �ı

mk ;j .s�
k
/ D 0 for all ıs;j > 0 and the conclusion then again follows.

Alas, the example given at the end of Section 3 implies that ıs may have to be
chosen smaller than one for q D 2 and when h is nonzero, even if it is convex. Fortunately,
the existence of a step is still guaranteed in general, even without assuming convexity of h.
To state our result, we first define � to be an arbitrary constant in .0; 1/ independent of ",
which we specify later.
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Lemma 4.4. Let � 2 .0;1/ and suppose that s�
k

is a global minimizer of mk.s/ for xk C s 2 F

such that mk.s�
k
/ < mk.0/. Then there exists a pair .s; ıs/ such that (4.3) and (4.4) hold.

Moreover, one has that either ksk � � or (4.3) and (4.4) hold for s for all ıs;j .j 2 ¹1; : : : ;qº/,
for which

0 < ıs;j �
�

qŠ.6Lw C 2�k/
"j : (4.12)

Proof. We first need to show that a pair .s; ıs/ satisfying (4.3) and (4.4) exists. Since
mk.s�

k
/ < mk.0/, we have that s�

k
¤ 0. By Taylor’s theorem, we have that, for all d ,

0 � mk.s�
k C d/ � mk.s�

k /

D

pX
`D1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h

 
pX

`D0

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!
� h

�
Tc;p.xk ; s�

k /
�

C
�k

.p C 1/Š

"
pX

`D1

1

`Š
r

`
s

�

s�
k



pC1�
Œd �` C

1

.p C 1/Š
r

pC1
s

�

s�
k C �d



pC1�
Œd �pC1

#
(4.13)

for some � 2 .0; 1/. Using (4.10) in (4.13) and the subadditivity of h ensured by AS.3 then
yields that, for any j 2 ¹1; : : : ; qº and all d ,

�

jX
`D1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h
�
Tc;p.xk ; s�

k /
�

� h

 
jX

`D0

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!

�
�k

.p C 1/Š

jX
`D1

r
`
s



s�
k



pC1
Œd �`

�

pX
`Dj C1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h

 
qX

`Dj C1

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!

C
�k

.p C 1/Š

"
pX

`Dj C1

1

`Š
r

`
s



s�
k



pC1
Œd �` C kdk

pC1

#
: (4.14)

Since s�
k

¤ 0, and using (3.6), we may then choose ıs;j 2 .0; 1� such that, for every d with
kdk � ıs;j , we have

pX
`Dj C1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h

 
pX

`Dj C1

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!

C
�k

.p C 1/Š

"
pX

`Dj C1

1

`Š
r

`
s



s�
k



pC1
Œd �` C kdk

pC1

#
�

1

2
�"j

ı
j
s;j

j Š
: (4.15)

As a consequence, we obtain that if ıs;j is small enough to ensure (4.15), then (4.14) implies

�

jX
`D1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h
�
Tc;p.xk ; s�

k /
�

� h

 
jX

`D0

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!

�
�k

.p C 1/Š

jX
`D1

r
`
s



s�
k



pC1
Œd �` �

1

2
�"j

ı
j
s;j

j Š
: (4.16)
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The fact that, by definition,

�
ıs;j

mk ;j .s/ D max

"
0; max

kdk�ıs;j

´
�

jX
`D1

1

`Š
r

`
s Tf;p.xk ; s/Œd �` C h

�
Tc;p.xk ; sk/

�
� h

 
jX

`D0

1

`Š
r

`
s Tc;p.xk ; s/Œd �`

!
�

�k

.p C 1/Š

jX
`D1

1

`Š
r

`
s ksk

pC1Œd �`

µ#
;

(4.17)

continuity of Tf;p.xk ; s/ and Tc;p.xk ; s/ and their derivatives and the inequality
mk.s�

k
/ < mk.0/ then ensure the existence of a feasible neighborhood of s�

k
¤ 0 in which s

can be chosen such that (4.3) and (4.4) hold for s D s, concluding the first part of the proof.
To prove the second part, assume first that ks�

k
k � 1. We may then restrict the neigh-

borhood of s�
k

in which s can be chosen enough to ensure that ksk � �. Assume therefore
that ks�

k
k � 1. Remembering that, by definition and the triangle inequality,

r

`
s Tf;p.xk ; s�

k /


 �

pX
j D`

1

.j � `/Š



r
j
x f .xk/



 

s�
k



j �`
;



r
`
s Tc;p.xk ; s�

k /


 �

pX
j D`

1

.j � `/Š



r
j
x c.xk/



 

s�
k



j �`
;

for ` 2 ¹q C 1; : : : ; pº, and thus, using (3.6), (3.5), and (4.10), we deduce that
pX

`Dj C1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C h

 
pX

`Dj C1

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`

!

C
�k

.p C 1/Š

"
pX

`Dj C1

r
`
s



s�
k



pC1
Œd �`

#

�

pX
`Dj C1

1

`Š
r

`
s Tf;p.xk ; s�

k /Œd �` C Lh;0






 pX
`Dj C1

1

`Š
r

`
s Tc;p.xk ; s�

k /Œd �`







C

�k

.p C 1/Š

"
pX

`Dj C1

r
`
s



s�
k



pC1
Œd �`

#

�

pX
`Dj C1

kdk`

`Š

"
pX

iD`

ks�
k
ki�`

.i � `/Š

�

r
i
xf .xk/



C Lh;0



r
i
xc.xk/



�C
�kks�

k
kp�`C1

.p � ` C 1/Š

#

�

pX
`Dj C1

kdk`

`Š

"
Lw

pX
iD`

ks�
k
ki�`

.i � `/Š
C

�kks�
k
kp�`C1

.p � ` C 1/Š

#
;

where Lw is defined in (3.7). We therefore obtain from (4.15) that any pair .s�
k
; ıs;j / satisfies

(4.16) for kdk � ıs;j if
pX

`Dj C1

ı`
s;j

`Š

"
Lw

pX
iD`

1

.i � `/Š



s�
k



i�`
C

�kks�
k
kp�`C1

.p � ` C 1/Š

#
C �k

ı
pC1
s;j

.p C 1/Š
�

1

2
�"j

ı
j
s;j

j Š
:

(4.18)
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which, because ks�
k
k � 1, is in turn ensured by the inequality

pX
`Dj C1

ı`
s;j

`Š

"
Lw

pX
iD`

1

.i � `/Š
C �k

#
C �k

ı
pC1
s;j

.p C 1/Š
�

1

2
�"j

ı
j
s;j

j Š
: (4.19)

Observe now that, since ıs;j 2 Œ0; 1�, we have ı`
s;j � ı

j C1
s;j for ` 2 ¹j C 1; : : : ; pº. Moreover,

we have that,
pX

iD`

1

.i � `/Š
� e < 3

�
` 2 ¹j C 1; : : : ; p C 1º

�
;

pC1X
`Dj C1

1

`Š
� e � 1 < 2;

and therefore (4.19) is (safely) guaranteed by the condition

j Š.6Lw C 2�k/ ıs;j �
1

2
�"j ; (4.20)

which means that the pair .s�
k
; ıs/ satisfies (4.16) for all j 2 ¹1; : : : ; qº whenever

ıs;j �

1
2
�"j

qŠ.6Lw C 2�k/

def
D

1

2
ımin;k :

We may thus again invoke the continuity of the derivatives of mk and (4.17) to deduce that
there exists a neighborhood of s�

k
such that, for every s in this neighborhood, mk.s/ < mk.0/

and the pair .s; ımin;k/ satisfies �
ımin;k

mk ;j .s/ � �"j

ı
j
min;k

j Š
, yielding the desired conclusion.

This lemma indicates that either the norm of the step is larger than � , or the range of
acceptable ıs;j is not too small in that any positive value at most equal to the right-hand side
of (4.12) can be chosen. Thus any value larger than a fixed fraction (a half, say) of (4.12) is
also acceptable. Such a value is, for instance, guaranteed if ıs;j is chosen according to the
technique described as Algorithm 4.1.

A detailed Step 2 for the ARqpC algorithm (Algorithm 4.1)

Step 2: Step calculation.

Step 2.1: Compute a descent step sk such that

mk.sk/ < mk.0/

and either kskk � 1 or sk is the global minimizer of mk.s/ for
ksk � 1. If no such step exists, terminate the ARqpC algorithm
with the approximate solution x" D xk .

Step 2.2: For j 2 ¹1; : : : ; qº, set ıs;j D 1.

Step 2.3: If kskk > 1, return the pair .sk ; ıs/.

Step 2.4: For each j 2 ¹3; : : : ; qº,

(i) compute the global minimum of Tmk ;j .sk ; d / over all d

such that kdk � ıs;j ;
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(ii) if

�
ıs;j

mk ;j .sk/ � �"j

ı
j
s;j

j Š

consider the next value of j ; else set ıs;j D
1
2
ıs;j and return

to Step 2.4(ii).

Step 2.5: Return the pair .sk ; ıs/.

Lemma 4.4 then ensures that this conceptual algorithm is well-defined (and, in particular, that
the loop within Step 2.4 is finite for each j ). We therefore assume, without loss of generality,
that, if some constant �max is given such that �k � �max for all k, then the ARqpC algorithm
ensures that

ıs;j � �ı;min "j with �ı;min
def
D

�

2qŠ.6Lw C 2�max/
2

�
0;

1

2

�
(4.21)

for j 2 ¹1; : : : ; qº whenever kskk � �.
We also need to establish that the possibility of termination in Step 2 of the ARqpC

algorithm is a satisfactory outcome.

Lemma 4.5. Termination cannot occur in Step 2 of the ARqpC algorithm if q D 1 and h

is convex. In other cases, if the ARqpC algorithm terminates in Step 2 of iteration k with
x" D xk , then there exists a ı 2 .0; 1�q such that (4.1) holds for x D x" and x" is a strong
."; ı/-approximate qth-order-necessary minimizer.

Proof. Given Lemma 4.4, if the algorithm terminates within Step 2, it must be because every
(feasible) global minimizer s�

k
of mk.s/ is such that mk.s�

k
/ � mk.0/. In that case, s�

k
D 0

is one such global minimizer. If q D 1 and h is convex, Lemma 3.2 ensures that termination
must have happened in Step 1, and termination in Step 2 is thus impossible. Otherwise, we
have that, for any j 2 ¹1; : : : ; qº and all d with xk C d 2 F ,

0 � mk.d/ � mk.0/ D

jX
`D1

1

`Š
r

`
xf .xk/Œd �` C

pX
`Dj C1

1

`Š
r

`
xf .xk/Œd �`

C h

 
c.xk/ C

jX
`D1

1

`Š
r

`
xc.xk/Œd �` C

pX
`Dj C1

1

`Š
r

`
xc.xk/Œd �`

!
C

�k

.p C 1/Š
kdk

pC1
� h

�
c.xk/

�
�

jX
`D1

1

`Š
r

`
xf .xk/Œd �` C

pX
`Dj C1

1

`Š
r

`
xf .xk/Œd �` C h

 
jX

`D1

1

`Š
r

`
xc.xk/Œd �`

!

C h

 
pX

`Dj C1

1

`Š
r

`
xc.xk/Œd �`

!
C

�k

.p C 1/Š
kdk

pC1;
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where we used the subadditivity of h (ensured by AS.3) to derive the last inequality. Hence

�

jX
`D1

1

`Š
r

`
xf .xk/Œd �` � h

 
jX

`D1

1

`Š
r

`
xc.xk/Œd �`

!

�

pX
`Dj C1

1

`Š
r

`
xf .xk/Œd �` C h

 
pX

`Dj C1

1

`Š
r

`
xc.xk/Œd �`

!
C

�k

.p C 1/Š
kdk

pC1:

Using (3.6), we may now choose each ıj 2 .0; 1� for j 2 ¹1; : : : ; qº small enough to ensure
that the absolute value of the last right-hand side is at most "j ı

j

k;j
=j Š for all d with kdk � ık;j

and xk C d 2 F , which, in view of (3.11), implies (4.1).

5. Evaluation complexity

To analyze the evaluation complexity of the ARqpC algorithm, we first derive the
predicted decrease in the unregularized model from (4.2).

Lemma 5.1. At every iteration k of the ARqpC algorithm, one has that

w.xk/ � Tw;p.xk ; sk/ �
�k

.p C 1/Š
kskk

pC1: (5.1)

Proof. Immediate from (4.2) and (3.10), the fact that mk.0/ D w.xk/ and (4.3).

We next derive the existence of an upper bound on the regularization parameter for
the structured composite problem. The proof of this result hinges on the fact that, once the
regularization parameter �k exceeds the relevant Lipschitz constant (Lw;p here), there is
no need to increase it any further because the model then provides an overestimation of the
objective function.

Lemma 5.2. Suppose that AS.1–AS.3 hold. Then, for all k � 0,

�k � �max
def
D max

�
�0;


3Lw;p

1 � �2

�
; (5.2)

where Lw;p D Lf;p C Lh;0Lc;p .

Proof. Successively using (4.6), Theorem 3.1 applied to f and c, and (5.1), we deduce that,
at iteration k,

j�k � 1j D

ˇ̌̌̌
w.xk/ � w.xk C sk/

w.xk/ � Tw;p.xk ; s/
� 1

ˇ̌̌̌
D

jf .xk C sk/ C h.c.xk C sk// � Tf;p.xk ; s/ � h.Tc;p.xk ; s//j

w.xk/ � Tw;p.xk ; s/

�

Lf;pkskkpC1

.pC1/Š
C Lh;0kc.xk C sk/ � Tc;p.xk ; s/k

w.xk/ � Tw;p.xk ; s/

�

Lf;pCLh;0Lc;p

.pC1/Š
kskkpC1

�k

.pC1/Š
kskkpC1

D
Lf;p C Lh;0Lc;p

�k

:
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Thus, if �k � Lw;p=.1 � �2/, then iteration k is successful, xkC1 D xk , and (4.7) implies
that �kC1 � �k . The conclusion then follows from the mechanism of (4.7).

We now establish an important inequality derived from our smoothness assump-
tions.

Lemma 5.3. Suppose that AS.1–AS.3 hold. Suppose also that iteration k is successful and
that the ARqpC algorithm does not terminate at iteration k C 1. Then there exists a j 2

¹1; : : : ; qº such that

.1 � �/ "
ı

j

kC1;j

j Š
� .Lw;p C �max/

jX
`D1

ı`
kC1;j

`Š
kskk

p�`C1
C 2

Lh;0Lc;p

.p C 1/Š
kskk

pC1: (5.3)

Proof. If the algorithm does not terminate at iteration k C 1, there must exist a j 2 ¹1; : : : ; qº

such that (4.1) fails at order j at iteration k C 1. Consider such a j and let d be the
argument of the minimization in the definition of �

ıkC1;j

w;j .xkC1/. Then xk C d 2 F and
kdk � ıkC1;j � 1. The definition of �

ıkC1;j

w;j .xkC1/ in (3.11) then gives that

"
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�
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C

jX
`D1
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`Š.p � ` C 1/Š
: (5.4)

Now, using Theorem 3.1 for r D f yields

�

jX
`D1

1

`Š
r

`
xf .xkC1/Œd �` C

jX
`D1

1

`Š
r

`
s Tf;p.xk ; sk/Œd �`

�

jX
`D1

ı`
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`Š



r
`
xf .xkC1/ � r

`
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� Lf;p

jX
`D1

ı`
kC1;j

`Š.p � ` C 1/Š
kskk

p�`C1: (5.5)
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In the same spirit, also using AS.3 and applying Theorem 3.1 to c, we obtain

� h
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`
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!
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�
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`
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`
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�
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� Lh;0

jX
`D0

ı`
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r
`
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`
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� Lh;0Lc;p

jX
`D0

ı`
kC1;j

`Š.p � ` C 1/Š
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p�`C1 (5.6)

and

h
�
c.xkC1/

�
� h

�
Tc;p.xk ; sk/

�
� Lh;0



c.xkC1/ � Tc;p.xk ; sk/


 �

Lh;0Lc;p

.p C 1/Š
kskk

pC1:

(5.7)
Because of Lemma 5.2 we also have that

jX
`D1

�kkskkp�`C1ı`
kC1;j

`Š.p � ` C 1/Š
� �max

jX
`D1

kskkp�`C1ı`
kC1;j

`Š.p � ` C 1/Š
: (5.8)

Moreover, in view of (4.2) and (4.4),

�

jX
`D1

1

`Š
r

`
s Tf;p.xk ; sk/Œd �` C h

�
Tc;p.xk ; sk/

�
� h

 
jX

`D0

1

`Š
r

`
s Tc;p.xk ; sk/Œd �`

!

�

jX
`D1

�k

`Š.p � ` C 1/Š
kskk

p�`C1ı`
kC1;j � �

ıs;j

mk ;j .sk/ D �"
ı

j

kC1;j

j Š
; (5.9)

where the last equality is derived using ıs;j D ıkC1;j if iteration k is successful. We may now
substitute (5.5)–(5.9) into (5.4) and use the inequality .p � ` C 1/Š � 1 to obtain (5.3).

Lemma 5.4. Suppose that AS.1–AS.3 hold, that iteration k is successful, and that the ARqpC
algorithm does not terminate at iteration k C 1. Suppose also that the algorithm ensures, for
each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11) holds (as allowed by Lemma 4.3),
or that (4.21) holds (as allowed by Lemma 4.4) otherwise. Then there exists a j 2 ¹1; : : : ; qº

such that

kskk �

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
1��

3j Š.Lw;pC�max/

� 1
p�j C1 "

1
p�j C1

j if (4.11) holds,� .1��/�
j �1
ı;min

3j Š.Lw;pC�max/

� 1
p "

j
p

j if (4.11) fails but h D 0;� .1��/�
j
ı;min

3j Š.Lw;pC�max/

� 1
pC1 "

j C1
pC1

j if (4.11) fails and h ¤ 0;

(5.10)

where �ı;min is defined in (4.21).

Proof. We now use our freedom to choose � 2 .0; 1/. Let

�
def
D

�
1 � �

3qŠ.Lw;p C �max/

� 1
p�qC1

D min
j 2¹1;:::;qº

�
1 � �

3j Š.Lw;p C �max/

� 1
p�j C1

2 .0; 1/:
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If kskk � �, then (5.10) clearly holds since " � 1 and �ı;min < 1. We therefore assume that
kskk < �. Because the algorithm has not terminated, Lemma 5.3 ensures that (5.3) holds for
some j 2 ¹1; : : : ; qº. It is easy to verify that this inequality is equivalent to

˛ " ı
j

kC1;j
� kskk

pC1�j

�
ıkC1;j

kskk

�
C ˇkskk

pC1 (5.11)

where the function �j is defined in (2.5) and where we have set

˛ D
1 � �

j Š.Lw;p C �max/
and ˇ D

2

.p C 1/Š

Lh;0Lc;p

Lw;p C �max
2 Œ0; 1/;

the last inclusion resulting from the definition of Lw;p in Lemma 5.2. In particular, since
�j .t/ � 2tj for t � 1 and ˇ < 1, we have that, when kskk � ıkC1;j ,

˛ " � 2kskk
pC1

�
1

kskk

�j

C

�
kskk

ıkC1;j

�j

kskk
p�j C1

� 3kskk
p�j C1: (5.12)

Suppose first that (4.11) hold. Then, from our assumptions, ıkC1;j D 1 and kskk � � < 1 D

ıkC1;j . Thus (5.12) yields the first case of (5.10). Suppose now that (4.11) fails. Then our
assumptions imply that (4.21) holds. If kskk � ıkC1;j , we may again deduce from (5.12)
that the first case of (5.10) holds, which implies, because �ı;min < 1, that the second and
third cases also hold. Consider therefore the case where kskk > ıkC1;j and suppose first that
ˇ D 0. Then (5.11) and the fact that �j .t/ < 2t for t 2 Œ0; 1� give that

˛"ı
j

kC1;j
� 2kskk

pC1

�
ıkC1;j

kskk

�
;

which, with (4.21), implies the second case of (5.10). Finally, if ˇ > 0, (5.11), the bound
ˇ � 1, and �j .t/ < 2 for t 2 Œ0; 1� ensure that

˛"ı
j

kC1;j
� 2kskk

pC1
C kskk

pC1;

the third case of (5.10) then follows from (4.21).

Note that the proof of this lemma ensures the better lower bound given by the first
case of (5.10) whenever kskk � ıkC1;j . Unfortunately, there is no guarantee that this inequal-
ity holds when (4.11) fails.

We may then derive our final evaluation complexity results. To make them clearer,
we provide separate statements for the standard smooth and for the general composite cases.

Theorem 5.5 (Smooth case). Suppose that AS.1 and AS.4 hold and that h D 0. Suppose also
that the algorithm ensures, for each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11)
holds (as allowed by Lemma 4.3), or that (4.21) holds (as allowed by Lemma 4.4) otherwise.

1. Suppose that F is convex and q D 1 or that F D Rn and q D 2. Then there
exist positive constants �

s;1
ARqp, �

a;1
ARqp, and �c

ARqp such that, for any " 2 .0; 1�q , the
ARqpC algorithm requires at most

�
a;1
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
pC1

p�j C1

j

C �c
ARqp D O

�
max

j 2¹1;:::;qº
"

�
pC1

p�j C1

j

�
(5.13)
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evaluations of f and c, and at most

�
s;1
ARqp

w.x0/ � wlow

minj 2¹1;:::;qº "
pC1

p�j C1

j

C 1 D O
�

max
j 2¹1;:::;qº

"
�
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p�j C1

j

�
(5.14)

evaluations of the derivatives of f of orders 1 to p to produce an iterate x" such
that �1

f;j
.x"/ � "j =j Š for all j 2 ¹1; : : : ; qº.

2. Suppose that either F � Rn and q D 2, or that F is nonconvex or that q > 2.
Then there exist positive constants �

s;2
ARqp, �

a;2
ARqp, and �c

ARqp such that, for any
" 2 .0; 1�q , the ARqpC algorithm requires at most
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evaluations of f and c, and at most
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(5.16)

evaluations of the derivatives of f of orders 1 to p to produce an iterate x" such
that �

ı"

f;j
.x"/ � "j ı

j
";j =j Š for some ı" 2 .0; 1�q and all j 2 ¹1; : : : ; qº.

Theorem 5.6 (Composite case). Suppose that AS.1–AS.4 hold. Suppose also that the algo-
rithm ensures, for each k, that either ıkC1;j D 1 for j 2 ¹1; : : : ; qº if (4.11) holds (as allowed
by Lemma 4.3), or that (4.21) holds (as allowed by Lemma 4.4) otherwise.

1. Suppose that F is convex, q D 1, and h is convex. Then there exist positive
constants �

s;1
ARqpC, �

a;1
ARqpC, and �c

ARqpC such that, for any "1 2 .0; 1�, the ARqpC
algorithm requires at most
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evaluations of f and c, and at most
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w.x0/ � wlow
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p

1

C 1 D O
�
"
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pC1

p

1

�
(5.18)

evaluations of the derivatives of f and c of orders 1 to p to produce an iterate
x" such that �1

w;j .x"/ � "1 for all j 2 ¹1; : : : ; qº.

2. Suppose that F is nonconvex or that h is nonconvex, or that q > 1. Then there
exist positive constants �

s;2
ARqp, �

a;2
ARqp, and �c

ARqp such that, for any " 2 .0; 1�q , the
ARqpC algorithm requires at most

�
a;2
ARqpC

w.x0/ � wlow

minj 2¹1;:::;qº "
j C1
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ARqpC D O
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�.j C1/
j
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(5.19)

evaluations of f and c, and at most
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(5.20)
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evaluations of the derivatives of f and c of orders 1 to p to produce an iterate
x" such that �

ı"

w;j .x"/ � "j ı
j
";j =j Š for some ı" 2 .0; 1�q and all j 2 ¹1; : : : ; qº.

Proof. We prove Theorems 5.5 and 5.6 together. At each successful iteration k of the ARqpC
algorithm before termination, we have the guaranteed decrease

w.xk/ � w.xkC1/ � �1

�
Tw;p.xk ; 0/ � Tw;p.xk ; sk/

�
�

�1�min

.p C 1/Š
kskk

pC1 (5.21)

where we used (5.1) and (4.7). We now wish to substitute the bounds given by Lemma 5.4
in (5.21), and deduce that, for some j 2 ¹1; : : : ; qº,

w.xk/ � w.xkC1/ � ��1"!
j (5.22)

where the definition of � and ! depends on q and h. Specifically,

�
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
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ˆ̂̂̂̂̂̂
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if .q D 1; h and F are convex/; and

if .q 2 ¹1; 2º; F is convex and h D 0/;

�
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ARqp
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D

.pC1/Š
�1�min

� .1��/�
j �1
ı;min

3j Š.Lw;pC�max/

�� pC1
p

if h D 0 and

..q D 2 and F � Rn/ or q > 2 or F is nonconvex/

�
s;2
ARqpC

def
D

.pC1/Š
�1�min

� .1��/�
j
ı;min

3j Š.Lw;pC�max/

��1

if h ¤ 0 and .q > 1 or F is nonconvex/;

where �ı;min is given by (4.21), and

!
def
D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

pC1
p�qC1

if .q D 1; h and F are convex/; and
if .q D 2; F D Rn and h D 0/;

q.pC1/
p

if h D 0 and
..q D 2 and F � Rn/ or q > 2 or F is nonconvex/

q C 1 if h ¤ 0 and .q > 1 or F is nonconvex/:

(5.23)

Thus, since ¹w.xk/º decreases monotonically,

w.x0/ � w.xkC1/ � ��1 min
j 2¹1;:::;qº

"!
j j�kj:

Using AS.4, we conclude that

j�kj � �
w.x0/ � wlow

minj 2¹1;:::;qº "!
j

(5.24)

until termination, bounding the number of successful iterations. Lemma 4.1 is then invoked
to compute the upper bound on the total number of iterations, yielding the constants

�
a;1
ARqp
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D �

s;1
ARqp

�
1 C

j log 
1j

log 
2

�
; �
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log 
2

�
;
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a;1
ARqpC
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D �
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j log 
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log 
2

�
; �

a;2
ARqpC
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D �
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�
1 C

j log 
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log 
2

�
;
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and
�c

ARqp D �c
ARqpC

def
D

1

log 
2

log
�

�max

�0

�
;

where �max D maxŒ�0;

3Lw;p

1��2
� (see (5.2)). The desired conclusions then follow from the fact

that each iteration involves one evaluation of f and each successful iteration one evaluation
of its derivatives.

For the standard smooth case, Theorem 5.5 provides the first results on the complex-
ity of finding strong minimizers of arbitrary orders using adaptive regularization algorithms
that we are aware of. By comparison, [12] provides similar results but for the convergence
to weak minimizers (see (2.5)). Unsurprisingly, the worst-case complexity bounds for weak
minimizers are better than those for strong ones: the O."�.pC1/=.p�qC1// bound which we
have derived for q 2 ¹1;2º then extends to any order q. Moreover, the full power of AS.1 is not
needed for these results since it is sufficient to assume that r

p
x f .x/ is Lipschitz continuous.

It is interesting to note that the results for weak and strong approximate minimizers coincide
for first and second order. The results of Theorem 5.5 may also be compared with the bound
in O."�.qC1// which was proved for trust-region methods in [11]. While these trust-region
bounds do not depend on the degree of the model, those derived above for the ARqpC algo-
rithm show that worst-case performance improves with p and is always better than that of
trust-region methods. It is also interesting to note that the bound obtained in Theorem 5.5
for order q is identical to that which would be obtained for first-order but using "q instead
of ". This reflects the observation that, different from the weak approximate optimality, the
very definition of strong approximate optimality in (2.4) requires very high accuracy on the
(usually dominant) low order terms of the Taylor series while the requirement lessens as the
order increases.

An interesting feature of the algorithm discussed in [12] is that computing and testing
the value of �ı

mk ;j .sk/ is unnecessary if the length of the step is large enough. The same
feature can easily be introduced into the ARqpC algorithm. Specifically, we may redefine
Step 2 to accept a step as soon as (4.3) holds and

kskk �

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

$ minj 2¹1;:::;qº "
1

p�qC1

j if .q D 1; h and F are convex/; and
if .q D 2; F D Rn and h D 0/;

$ minj 2¹1;:::;qº "
q
p

j if h D 0 and
..q D 2 and F � Rn/ or q > 2 or F is nonconvex/;

$ minj 2¹1;:::;qº "
qC1
pC1

j if h ¤ 0 and .q > 1 or F is nonconvex/;

for some $ 2 .�; 1�. If these conditions fail, then one still needs to verify the requirements
(4.3) and (4.4), as we have done previously. Given Lemma 5.1 and the proof of Theorems 5.5
and 5.6, it is easy to verify that this modification does not affect the conclusions of these
complexity theorems, while potentially avoiding significant computations.

Existing complexity results for (possibly nonsmooth) composite problems are few
[8,13,14,20]. Theorem 5.6 provides, to the best of our knowledge, the first upper complexity
bounds for optimality orders exceeding one, with the exception of [13] (but this paper requires
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strong specific assumptions on F ). While equivalent to those of Theorem 5.5 for the standard
case when q D 1, they are not as good and match those obtained for the trust-region methods
when q > 1. They could be made identical in order of "j to those of Theorem 5.5 if one is
ready to assume that Lh;0Lc;p is sufficiently small (for instance, if c is a polynomial of degree
less than p). In this case, the constant ˇ in Lemma 5.11 will of the order of ıkC1;j =kskk,
leading to the better bound.

6. Sharpness

We now show that the upper complexity bounds in Theorem 5.5 and the first part of
Theorem 5.6 are sharp. Since it is sufficient for our purposes, we assume in this section that
"j D " for all j 2 ¹1; : : : ; qº.

We first consider a first class of problems, where the choice of ık;j D 1 is allowed.
Since it is proved in [12] that the order in " given by the Theorem 5.5 is sharp for finding
weak approximate minimizers for the standard (smooth) case, it is not surprising that this
order is also sharp for the stronger concept of optimality whenever the same bound applies,
that is when q 2 ¹1; 2º. However, the ARqpC algorithm slightly differs from the algorithm
discussed in [12]. Not only are the termination tests for the algorithm itself and those for the
step computation weaker in [12], but the algorithm there makes a provision to avoid comput-
ing �ı

mk ;j whenever the step is large enough, as discussed at the end of the last section. It is
thus impossible to use the example of slow convergence provided in [12, Section 5.2] directly,
but we now propose a variant that fits our present framework.

Theorem 6.1. Suppose that h D 0 and that the choice ık;j D 1 is possible (and made) for
all k and all j 2 ¹1; : : : ; qº. Then the ARqpC algorithm applied to minimize f may require

"
�

pC1
p�qC1

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �1

w;q.x"/ � "=j Š for all j 2 ¹1; : : : ; qº.

Proof. Our aim is to show that, for each choice of p � 1, there exists an objective func-
tion satisfying AS.1 and AS.4 such that obtaining a strong ."; ı/-approximate qth-order-
necessary minimizer may require at least "�.pC1/=.p�qC1/ evaluations of the objective
function and its derivatives using the ARqpC algorithm. Also note that, in this context,
�

ıj
w;q.x/ D �

ıj

f;q
.x/ and (4.1) reduces to (2.4).

Given a model degree p � 1 and an optimality order q, we also define the sequences
¹f

.j /

k
º for j 2 ¹0; : : : ; pº and k 2 ¹0; : : : ; k"º by

k" D
˙
"

�
pC1

p�qC1
�

(6.1)

and
!k D "

k" � k

k"

2 Œ0; "�; (6.2)
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as well as

f
.j /

k
D 0 for j 2 ¹1; : : : ; q � 1º [ ¹q C 1; : : : ; pº and f

.q/

k
D �." C !k/ < 0:

Thus

Tf;p.xk ; s/ D

pX
j D0

f
.j /

k

j Š
sj

D f
.0/

k
� ." C !k/

sq

qŠ
: (6.3)

We also set �k D pŠ=.q � 1/Š for all k 2 ¹0; : : : ; k"º (we verify below that is acceptable). It
is easy to verify using (6.3) that the model (4.2) is then globally minimized for

sk D
ˇ̌
f

.q/

k

ˇ̌ 1
p�qC1 D Œ" C !k �

1
p�qC1 > "

1
p�qC1

�
k 2 ¹0; : : : ; k"º

�
: (6.4)

We then assume that Step 2 of the ARqpC algorithm returns, for all k 2 ¹0; : : : ; k"º, the
step sk given by (6.4) and the optimality radius ık;j D 1 for j 2 ¹1; : : : ; qº (as allowed by
our assumption). Thus implies that

�
ık;q

f;q
.xk/ D ." C !k/

ı
q

k;q

qŠ
; (6.5)

and therefore that

!k 2 .0; "�; �
ık;j

f;j
.xk/ D 0 .j D 1; : : : ; q � 1/ and �

ık;q

f;q
.xk/ > "

ı
q

k;q

qŠ
(6.6)

(and (2.4) fails at xk) for k 2 ¹0; : : : ; k" � 1º, while

!k"
D 0; �

ık;j

f;j
.xk"

/ D 0 .j D 1; : : : ; q � 1/ and �
ık;q

f;q
.xk"

/ D "
ı

q

k;q

qŠ
(6.7)

(and (2.4) holds at xk"
). The step (6.4) yields that

mk.sk/ D f
.0/

k
�

" C !k

qŠ
Œ" C !k �

q
p�qC1 C

�k

.p C 1/Š
Œ" C !k �

pC1
p�qC1

D f
.0/

k
�

" C !k

qŠ
Œ" C !k �

q
p�qC1 C

1

.p C 1/.q � 1/Š
Œ" C !k �

pC1
p�qC1

D f
.0/

k
� �.q; p/Œ" C !k �

pC1
p�qC1 (6.8)

where
�.q; p/

def
D

p � q C 1

.p C 1/qŠ
2 .0; 1/: (6.9)

Thus mk.sk/ < mk.0/ and (4.3) holds. We then define

f
.0/

0 D 2
1C

pC1
p�qC1 and f

.0/

kC1
D f

.0/

k
� �.q; p/Œ" C !k �

pC1
p�qC1 ; (6.10)

which provides the identity
mk.sk/ D f

.0/

kC1
(6.11)

(ensuring that iteration k is successful because �k D 1 in (4.6) and thus that our choice of
a constant �k is acceptable). In addition, using (6.2), (6.10), (6.6), (6.9) and the inequality
k" � 1 C "

�
pC1

p�qC1 resulting from (6.1), gives that, for k 2 ¹0; : : : ; k"º,

f
.0/

0 � f
.0/

k
� f

.0/
0 � k�.q; p/Œ2"�

pC1
p�qC1 > f

.0/
0 � k""

pC1
p�qC1 2

pC1
p�qC1

� f
.0/

0 �
�
1 C "

pC1
p�qC1

�
2

pC1
p�qC1 � f

.0/
0 � 2

1C
pC1

p�qC1 ;
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and hence that
f

.0/

k
2 .0; 2

1C
pC1

p�qC1 � for k 2 ¹0; : : : ; k"º: (6.12)

We also set

x0 D 0 and xk D

k�1X
iD0

si :

Then (6.11) and (4.2) give thatˇ̌
f

.0/

kC1
� Tf;p.xk ; sk/

ˇ̌
D

1

.p C 1/.q � 1/Š
jskj

pC1
� jskj

pC1: (6.13)

Now note that, using (6.3) and the first equality in (6.4),

T
.j /

f;p
.xk ; sk/ D

f
.q/

k

.q � j /Š
s

q�j

k
ıŒj �q� D �

1

.q � j /Š
s

p�j C1

k
ıŒj �q�;

where ıŒ�� is the standard indicator function. We now see that, for j 2 ¹1; : : : ; q � 1º,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D
ˇ̌
0 � T

.j /

f;p
.xk ; sk/

ˇ̌
�

1

.q � j /Š
jskj

p�j C1
� jskj

p�j C1; (6.14)

while, for j D q, we have thatˇ̌
f

.q/

kC1
� T

.q/

f;p
.xk ; sk/

ˇ̌
D
ˇ̌
�s

p�qC1

k
C s

p�qC1

k

ˇ̌
D 0 (6.15)

and, for j 2 ¹q C 1; : : : ; pº,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D j0 � 0j D 0: (6.16)

Combining (6.13)–(6.16), we may then apply classical Hermite interpolation (see [12, The-

orem 5.2] with �f D 1), and deduce the existence of a p times continuously differentiable
function fARqpC from R to R with Lipschitz continuous derivatives of order 0 to p (hence sat-
isfying AS.1) which interpolates ¹f

.j /

k
º at ¹xkº for k 2 ¹0; : : : ;k"º and j 2 ¹0; : : : ;pº. More-

over, (6.12), (6.3), (6.4), and the same Hermite interpolation theorem imply that jf .j /.x/j

is bounded by a constant only depending on p and q, for all x 2 R and j 2 ¹0; : : : ; pº (and
thus AS.1 holds) and that fARqpC is bounded below (ensuring AS.4.) and that its range only
depends on p and q. This concludes our proof.

This immediately provides the following important corollary.

Corollary 6.2. Suppose that h D 0 and that either q D 1 and F is convex, or q D 2 and
F D Rn. Then the ARqpC algorithm applied to minimize f may require

"
�

pC1
p�qC1

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �1

w;q.x"/ � "=j Š for all j 2 ¹1; : : : ; qº.

Proof. We start by noting that, in both cases covered by our assumptions, Lemma 4.3 allows
the choice ık;j D 1 for all k and all j 2 ¹1; : : : ; qº. We conclude by applying Theorem 6.1.
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It is then possible to derive a lower complexity bound for the simple composite case
where h is nonzero but convex and q D 1.

Corollary 6.3. Suppose that q D 1 and that h is convex. Then the ARqpC algorithm applied
to minimize w may require

"
�

pC1
p

iterations and evaluations of f and c and of their derivatives of order 1 up to p to produce
a point x" such that �1

w;1.x"/ � ".

Proof. It is enough to consider the unconstrained problem where w D h.c.x// with
h.x/ D jxj and c is the positive function f constructed in the proof of Theorem 6.1.

We now turn to the high-order smooth case.

Theorem 6.4. Suppose that h D 0 and that either q > 2, or q D 2 and F D Rn. If " 2 .0; 1/

is sufficiently small and if the ARqpC algorithm applied to minimize f allows the choice of
an arbitrary ık;j > 0 satisfying (4.21), it may then require

"
�

q.pC1/
p

iterations and evaluations of f and of its derivatives of order 1 up to p to produce a point
x" such that �

ı";j

f;j
.x"/ � "ı

j
";j =j Š for all j 2 ¹1; : : : ; qº and some ı" 2 .0; 1�q .

Proof. As this is sufficient, we focus on the case where F D Rn. Our aim is now to show
that, for each choice of p � 1 and q > 2, there exists an objective function satisfying AS.1
and AS.4 such that obtaining a strong ."; ı/-approximate qth-order-necessary minimizer may
require at least "�q.pC1/=p evaluations of the objective function and its derivatives using the
ARqpC algorithm. As in Theorem 6.1, we have to construct f such that it satisfies AS.1 and
is globally bounded below, which then ensures AS.4. Again, we note that, in this context,
�

ıj

f;q
.x/ D �

ıj

f;q
.x/ and (4.1) reduces to (2.4).

Without loss of generality, we assume that " �
1
2
. Given a model degree p � 1 and

an optimality order q > 2, we set

k" D
˙
"

�
q.pC1/

p
�

(6.17)

and
!k D "q k" � k

k"

2
�
0; "q

� �
k 2 ¹0; : : : ; k"º

�
: (6.18)

Moreover, for j 2 ¹0; : : : ; pº and each k 2 ¹0; : : : ; k"º, we define the sequences ¹f
.j /

k
º by

f
.1/

k
D �

"q C !k

qŠ
< 0 and f

.j /

k
D 0 for j 2 ¹2; : : : ; pº; (6.19)

and therefore

Tf;p.xk ; s/ D

pX
j D0

f
.j /

k

j Š
sj

D f
.0/

k
�

"q C !k

qŠ
s: (6.20)
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This definition and the choice �k D pŠ .k 2 ¹0; : : : ; k"º/ (we verify below that this is accept-
able) then allow us to define the model (4.2) by

mk.s/ D f
.0/

k
�

"q C !k

qŠ
s C

jsjpC1

p C 1
: (6.21)

We now assume that, for each k, Step 2 returns the model’s global minimizer

sk D

�
"q C !k

qŠ

� 1
p �

k 2 ¹0; : : : ; k"º
�

(6.22)

and the optimality radius
ık;j D "

�
j 2 ¹1; : : : ; qº

�
: (6.23)

Indeed, a simple calculation shows that we may choose ık;j at least as large as

ık;j D
3jskj

p � 1
D

3

p � 1

�
"q C !k

qŠ

� 1
p

: (6.24)

which is clearly the case for (6.23) under our assumption on ". Let us show that the above
choice (6.24) is correct. Consider the model (6.21) and let ˇ D ."q C !k/=qŠ. We may
then compute Tmk ;j .sk ; ˛sk/ the j th degree Taylor expansion of this model at sk for
j 2 ¹1; : : : ; qº. Since r1

s mk.sk/ D 0, we obtain from Lemma 4.2 that

Tmk ;j .sk ; ˛sk/ D

jX
`D0

r`
s mk.sk/Œ˛sk �`

`Š
D mk.sk/ C

�k

.p C 1/Š

jX
`D2

r`
s .js�

k
jpC1/Œ˛sk �`

`Š

D mk.sk/ C
�k

.p C 1/Š

jX
`D2

˛`r`
s .jskjpC1/Œsk �`

`Š

D mk.sk/ C �k

jX
`D2

˛`jskjpC1

`Š.p C 1 � `/Š
:

Clearly, Tmk ;1.sk ; ˛sk/ D mk.sk/ for all ˛ because the standard first-order optimality condi-
tion at sk gives that r1

d
Tmk ;1.sk ; 0/ D 0. The second-order optimality condition implies that

Tmk ;2.sk ; ˛sk/ is convex in ˛, but, given that ˛ can be negative, approximations of degree
larger than 2 are no longer convex for odd values of j . We are now interested in computing
an upper bound on ısk ;j so that (4.4) holds and for odd j (and thus for all j ). Consider the
case where j D 3: choosing ˇ D 1 (and thus s�

k
D e1) as above, (4.4) then requires that, for

all j˛skj � ısk ;3,

Tmk ;3.sk ; 0/ � Tmk ;3.s�
k ; ˛sk/ < �"

j˛skj3

6
;

which is obviously satisfied for any ısk ;3 smaller or equal to absolute value of the root ˛�;3 of
the equation Tmk ;3.sk ; 0/ D Tmk ;3.s�

k
; ˛sk/. Using the expression of Tmk ;3.s�

k
; ˛sk/ derived

above, one verifies that

˛�;3 D �
3pjskjpC1

p.p � 1/jskjpC1
D �

3

p � 1
:

The cases j D 5; 9; : : : ; p are less restrictive because the corresponding roots ˛�;j are all
smaller than ˛�;3. As a consequence, (4.4) holds for j 2 ¹1; : : : ; qº and ık;j D

3jsk j

p�1
.
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Thus, from (6.24), (6.20) and (6.23),

�
ık;j

f;j
.xk/ D ."q

C !k/
"

qŠ

for j 2 ¹1; : : : ; qº and k 2 ¹0; : : : ; k"º. Using (6.23), (6.17), and the fact that, for
j 2 ¹1; : : : ; q � 1º,

"q C !k

qŠ
�

2"q

qŠ
�

"j

j Š
D

ı
j

k;j

j Š
(6.25)

when q � 2 and " �
1
2
, we then obtain that

�
ık;j

f;j
.xk/ � "

ı
j

k;j

j Š
.j D 1 : : : ; q � 1/ and �

ık;q

f;q
.xk/ > "

ı
q

k;q

qŠ

(and (2.4) fails at xk) for k 2 ¹0; : : : ; k" � 1º, while

�
ık;j

f;j
.xk"

/ < "
ı

j

k;j

j Š
.j D 1 : : : ; q � 1/ and �

ık;q

f;q
.xk"

/ D "
ı

q

k;q

qŠ

(and (2.4) holds at xk"
). Now (6.21) and (6.22) give that

mk.sk/ D f
.0/

k
�

"q C !k

qŠ

�
"q C !k

qŠ

� 1
p

C
1

p C 1

�
"q C !k

qŠ

� pC1
p

D f
.0/

k
�

p

p C 1

�
"q C !k

qŠ

� pC1
p

:

Thus mk.sk/ < mk.0/ and (4.3) holds. We then define

f
.0/

0 D 2
1C

q.pC1/
p and f

.0/

kC1
D f

.0/

k
�

p

p C 1

�
"q C !k

qŠ

� pC1
p

; (6.26)

which provides the identity
mk.sk/ D f

.0/

kC1
(6.27)

(ensuring that iteration k is successful because �k D 1 in (4.6) and thus that our choice of a
constant �k is acceptable). In addition, using (6.18), (6.26), and the inequality
k" � 1 C "�q.pC1/=p resulting from (6.17), (6.26) gives that, for k 2 ¹0; : : : ; k"º,

f
.0/

0 � f
.0/

k
� f

.0/
0 � kŒ2"�

q.pC1/
p � f

.0/
0 � k""

q.pC1/
p 2

q.pC1/
p

� f
.0/

0 �
�
1 C "

q.pC1/
p

�
2

q.pC1/
p � f

.0/
0 � 2

1C
q.pC1/

p ;

and hence that
f

.0/

k
2
�
0; 2

1C
q.pC1/

p
�

for k 2 ¹0; : : : ; k"º: (6.28)

As in Theorem 6.1, we set x0 D 0 and xk D
Pk�1

iD0 si . Then (6.11) and (4.2) give thatˇ̌
f

.0/

kC1
� Tf;p.xk ; sk/

ˇ̌
D

1

p
jskj

pC1: (6.29)

Using (6.20), we also see thatˇ̌
f

.1/

kC1
� T

.1/

f;p
.xk ; sk/

ˇ̌
D

ˇ̌̌̌
�

."q C !kC1/

qŠ
C

."q C !k/

qŠ

ˇ̌̌̌
� jskj

p

�
1 �

"q C !kC1

"q C !k

�
< jskj

p;

(6.30)
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while, for j 2 ¹2; : : : ; pº,ˇ̌
f

.j /

kC1
� T

.j /

f;p
.xk ; sk/

ˇ̌
D j0 � 0j < jskj

p�j C1: (6.31)

The proof is concluded as in Theorem 6.1. Combining (6.29)–(6.31), we may then apply
classical Hermite interpolation (see [12, Theorem 5.2] with �f D 1) and deduce the existence of
a p-times continuously differentiable function fARqpC from R to R with Lipschitz continuous
derivatives of order 0 to p (hence satisfying AS.1) which interpolates ¹f

.j /

k
º at ¹xkº for

k 2 ¹0; : : : ; k"º and j 2 ¹0; : : : ; pº. Moreover, the Hermite theorem, (6.19), and (6.22)
also guarantee that jf .j /.x/j is bounded by a constant only depending on p and q, for all
x 2 R and j 2 ¹0; : : : ; pº. As a consequence, AS.1, AS.2, and AS.4 hold. This concludes
the proof.

Whether the bound (5.20) is sharp remains an open question at present.

7. Inexact global minimization

We finally discuss the necessity of performing global minimization when calcu-
lating the (objective and model) optimality measures and, when relevant, the effect of per-
forming such computations inexactly. We start by recalling that such minimization problems
potentially occur in two parts of the algorithm: in Step 1 (for deciding termination) and in
Step 2 (during the step computation).

Step computation. Consider the step computation first and remember that the ultimate pur-
pose of Step 2 is to find a step sk guaranteeing a sufficient decrease of the Taylor series at xk ,
in that

Tw;j .xk ; 0/ � Tw;j .xk ; sk/ � �decr"
!
j (7.1)

for some fixed �decr > 0 and j 2 ¹1; : : : ; qº, where ! is defined in (5.23) (this argument is
used in the proof of Theorems 5.5 and 5.6). Of course, if a step sk that satisfies (7.1) for some
given �decr can be found simply,4 without resorting to global optimization, so much the better
(and we may then choose ık;j D 1 for j 2 ¹1; : : : ; qº). In other cases, the decrease guarantee
(7.1) is obtained in one of two possible ways: if kskk � 1 and given that "j 2 .0; 1�, sufficient
decrease follows from Lemma 5.1 with �decr D �min=.p C 1/Š. Alternatively, if kskk � 1, we
then have to enforce (4.4) for some ıs;j 2 .0; 1�, and use the more complicated Lemma 5.4 to
reach the desired conclusion. In our development, the constant 1 in the inequality kskk � 1

was chosen solely for simplicity of exposition, but can be replaced by any constant indepen-
dent of k. In particular, it can be replaced by �

1=.pC1/
decr "

!=.pC1/
min where "min D minj 2¹1;:::;qº "j ,

so that sufficient decrease still immediately follows from Lemma 5.1 if

kskk � �
1=.pC1/
decr "

!=.pC1/
min : (7.2)

As a consequence, we see that performing any global optimization in Step 2 is only necessary
whenever a descent step cannot be found that satisfies either (7.1) or (7.2). From a practical
point of view, the failure of these two conditions could be considered as a reasonable ter-

4 Say, by applying some trusted local minimization method.
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mination rule for small enough "min, even if there is then no guarantee that the iterate xk at
which the algorithm appears to be stuck is an approximate minimizer.

If one now insists on true optimality, the details of Algorithm 4.1 become relevant.
In this algorithm, the sole purpose of the global minimization in Step 2.1 is to ensure that
Lemma 4.4 can be applied to guarantee finite termination of the loop within Step 2.2. Thus, if
Step 2.1 cannot be performed exactly, it may happen that this loop does not terminate (even
assuming feasibility of the additional global minimizations within the loop). A practical
algorithm would terminate this loop if ıs;j becomes too small or if a maximum number of
inner iterations have been taken, returning a value of ıs;j which is potentially too large for
the computed step (compared to what would have resulted if global minimization had always
been successful). This is also the outcome of Step 2.2 if the global minimizations involved
within this step become too costly and the j th loop must be terminated prematurely. Thus,
given that ıkC1 D ıs at successful iterations, we next have to consider what happens in
Step 1 of iteration k C 1 when one or more of the ıkC1;j is too large. In this case, the
definition of �

ıkC1;j

w;j .xkC1/ (see (2.2)) implies that there might exist a move dkC1;j with
kdkC1;j k � ıkC1;j such that

Tw;j .xkC1; 0/ � Tw;j .xkC1; dkC1;j / > "j

ı
j

kC1;j

j Š
;

preventing termination even if xkC1 is a suitable ."; ı/-approximate minimizer. This is obvi-
ously a serious problem from the point of view of bounding evaluation complexity, since the
algorithm will continue and evaluate further, unnecessary, values of f , c, and their deriva-
tives. Two possibilities may then occur. Either iteration k C 1 is unsuccessful, �k increased
causing a subsequent stepsize reduction and, if the behavior persists, forcing convergence
to xk , or it is successful,5 yielding a further objective function reduction and allowing the
algorithm to progress towards an alternative approximate minimizer with a lower objective
function value. The complexity bound is maintained if (7.1) or (7.2) holds, or if an insuffi-
cient decrease only occurs at most a number of times independent of "min. However, even if
this is not the case and the complexity bound we have derived evaporates as a consequence,
the fact that the algorithm moves on can be viewed as beneficial for the optimization process
from a more global perspective.

Termination test. One also needs global minimization to compute the optimality measure
�

ık;j

w;j .xk/ in Step 1. Clearly, the global optimization defining �
ık;j

w;j .xk/ in (2.2) may be ter-
minated as soon as an approximate solution d is found such that

�
ık;j

w;j .xk/ > "j

ı
j

k;j

j Š
;

thereby avoiding a full-accuracy computation of the global minimizer. When far from the
solution, we expect the optimality measure to be large, and hence such an approximate

5 As suggested by the fact that minimization in Step 2 of iteration k C 1 may obviously be
started from xkC1 C dkC1;j , a point already providing descent on a good approximation
of w.
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solution d to be found quickly. Suppose now that the solution is approached, and that the
minimization of Tw;j .xk ; d / within the ball of radius ık;j can only be performed inexactly
in that one can only find a move d such that

Tw;j .xk ; d / � Tw;j .xk ; d�/ � "�;j

ı
j

k;j

j Š
; (7.3)

where d� is the elusive constrained global minimizer and "�j
2 .0; 1�. Then the only effect

of this computational constraint is to limit the achievable accuracy on the approximate min-
imizer by imposing that "j � "�;j . However, achieving (7.3) for small ık;j might also be too
challenging: one is then left (as above) with the option of using a larger value of ık;j , pos-
sibly missing the identification of xk as an ."; ı/-approximate minimizer, which potentially
leads to an alternative better one but destroys the complexity guarantee.

To summarize this discussion, the need for global optimization in Steps 1 and 2.4 is
driven by the desire to obtain a good evaluation complexity bound (by avoiding further evalu-
ations if a suitable approximate minimizer has been found). The algorithm could still employ
approximate calculations, but at the price of losing the complexity guarantee or limiting the
achievable accuracy.

8. Conclusions and perspectives

We have presented an adaptive regularization algorithm for the minimization of
nonconvex, nonsmooth composite functions, and proved bounds detailed in Table 1.1 on the
evaluation complexity (as a function of accuracy) for composite and smooth problems and
for arbitrary model degree and optimality orders.

These results complement the bound proved in [12] for weak approximate minimiz-
ers of inexpensively constrained smooth problems (third column of Table 1.1) by provid-
ing corresponding results for strong approximate minimizers. They also provide the first
complexity results for the convergence to minimizers of order larger than one for (possibly
nonsmooth and inexpensively constrained) composite ones.

The fact that high-order approximate minimizers for nonsmooth composite prob-
lems can be defined and computed in a quantifiable way opens up interesting possibilities. In
particular, these results may be applied in the case of expensively-constrained optimization
problems, where exact penalty functions result in composite subproblems of the type studied
here.
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